vpx/vp8/common/findnearmv.c
Adrian Grange 9daf3154db Superblock encoding order
This is the first patch to add superblock (32x32) coding
order capabilities. It does not yet do any mode selection
at the SB level, that will follow in a further patch.

This patch encodes rows of SBs rather than
MBs, each SB contains 2x2 MBs.

Two intra prediction modes have been disabled since they
require reconstructed data for the above-right MB which
may not have been encoded yet (e.g. for the bottom right
MB in each SB).

Results on the one test clip I have tried (720p GIPS clip)
suggest that it is somewhere around 0.2dB worse than the
baseline version, so there may be bugs.

It has been tested with no experiments enabled and with
the following 3 experiments enabled:
  --enable-enhanced_interp
  --enable-high_precision_mv
  --enable-sixteenth_subpel_uv
in each case the decode buffer matches the recon buffer
(using "cmp" to compare the dumped/decoded frames).
Note: Testing these experiments individually created
errors.

Some problems were found with other experiments but it
is unclear what state these experiments are in:
  --enable-comp_intra_pred
  --enable-newentropy
  --enable-uvintra

This code has not been extensively tested yet, so there
is every likelihood that further bugs remain. I also
intend to do some code cleanup & refactoring in tandem
with the next patch that adds the 32x32 modes.

Change-Id: I1eba7f740a70b3510df58db53464535ef881b4d9
2012-04-11 10:40:57 +01:00

186 lines
5.8 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "findnearmv.h"
const unsigned char vp8_mbsplit_offset[4][16] = {
{ 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
/* Predict motion vectors using those from already-decoded nearby blocks.
Note that we only consider one 4x4 subblock from each candidate 16x16
macroblock. */
void vp8_find_near_mvs
(
MACROBLOCKD *xd,
const MODE_INFO *here,
const MODE_INFO *lf_here,
int_mv *nearest,
int_mv *nearby,
int_mv *best_mv,
int cnt[4],
int refframe,
int *ref_frame_sign_bias
)
{
const MODE_INFO *above = here - xd->mode_info_stride;
const MODE_INFO *left = here - 1;
const MODE_INFO *aboveleft = above - 1;
const MODE_INFO *third = NULL;
int_mv near_mvs[4];
int_mv *mv = near_mvs;
int *cntx = cnt;
enum {CNT_INTRA, CNT_NEAREST, CNT_NEAR, CNT_SPLITMV};
/* Zero accumulators */
mv[0].as_int = mv[1].as_int = mv[2].as_int = 0;
cnt[0] = cnt[1] = cnt[2] = cnt[3] = 0;
/* Process above */
if (above->mbmi.ref_frame != INTRA_FRAME)
{
if (above->mbmi.mv.as_int)
{
(++mv)->as_int = above->mbmi.mv.as_int;
mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame],
refframe, mv, ref_frame_sign_bias);
++cntx;
}
*cntx += 2;
}
/* Process left */
if (left->mbmi.ref_frame != INTRA_FRAME)
{
if (left->mbmi.mv.as_int)
{
int_mv this_mv;
this_mv.as_int = left->mbmi.mv.as_int;
mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame],
refframe, &this_mv, ref_frame_sign_bias);
if (this_mv.as_int != mv->as_int)
{
(++mv)->as_int = this_mv.as_int;
++cntx;
}
*cntx += 2;
}
else
cnt[CNT_INTRA] += 2;
}
/* Process above left or the one from last frame */
if ( aboveleft->mbmi.ref_frame != INTRA_FRAME||
(lf_here->mbmi.ref_frame==LAST_FRAME && refframe == LAST_FRAME))
{
if (aboveleft->mbmi.mv.as_int)
{
third = aboveleft;
}
else if(lf_here->mbmi.mv.as_int)
{
third = lf_here;
}
if(third)
{
int_mv this_mv;
this_mv.as_int = third->mbmi.mv.as_int;
mv_bias(ref_frame_sign_bias[third->mbmi.ref_frame],
refframe, &this_mv, ref_frame_sign_bias);
if (this_mv.as_int != mv->as_int)
{
(++mv)->as_int = this_mv.as_int;
++cntx;
}
*cntx += 1;
}
else
cnt[CNT_INTRA] += 1;
}
/* If we have three distinct MV's ... */
if (cnt[CNT_SPLITMV])
{
/* See if the third MV can be merged with NEAREST */
if (mv->as_int == near_mvs[CNT_NEAREST].as_int)
cnt[CNT_NEAREST] += 1;
}
cnt[CNT_SPLITMV] = ((above->mbmi.mode == SPLITMV)
+ (left->mbmi.mode == SPLITMV)) * 2
+ (
lf_here->mbmi.mode == SPLITMV ||
aboveleft->mbmi.mode == SPLITMV);
/* Swap near and nearest if necessary */
if (cnt[CNT_NEAR] > cnt[CNT_NEAREST])
{
int tmp;
tmp = cnt[CNT_NEAREST];
cnt[CNT_NEAREST] = cnt[CNT_NEAR];
cnt[CNT_NEAR] = tmp;
tmp = near_mvs[CNT_NEAREST].as_int;
near_mvs[CNT_NEAREST].as_int = near_mvs[CNT_NEAR].as_int;
near_mvs[CNT_NEAR].as_int = tmp;
}
/* Use near_mvs[0] to store the "best" MV */
if (cnt[CNT_NEAREST] >= cnt[CNT_INTRA])
near_mvs[CNT_INTRA] = near_mvs[CNT_NEAREST];
/* Set up return values */
best_mv->as_int = near_mvs[0].as_int;
nearest->as_int = near_mvs[CNT_NEAREST].as_int;
nearby->as_int = near_mvs[CNT_NEAR].as_int;
/* Make sure that the 1/8th bits of the Mvs are zero if high_precision
* is not being used, by truncating the last bit towards 0
*/
#if CONFIG_HIGH_PRECISION_MV
if (!xd->allow_high_precision_mv)
{
if (best_mv->as_mv.row & 1)
best_mv->as_mv.row += (best_mv->as_mv.row > 0 ? -1 : 1);
if (best_mv->as_mv.col & 1)
best_mv->as_mv.col += (best_mv->as_mv.col > 0 ? -1 : 1);
if (nearest->as_mv.row & 1)
nearest->as_mv.row += (nearest->as_mv.row > 0 ? -1 : 1);
if (nearest->as_mv.col & 1)
nearest->as_mv.col += (nearest->as_mv.col > 0 ? -1 : 1);
if (nearby->as_mv.row & 1)
nearby->as_mv.row += (nearby->as_mv.row > 0 ? -1 : 1);
if (nearby->as_mv.col & 1)
nearby->as_mv.col += (nearby->as_mv.col > 0 ? -1 : 1);
}
#endif
//TODO: move clamp outside findnearmv
vp8_clamp_mv2(nearest, xd);
vp8_clamp_mv2(nearby, xd);
vp8_clamp_mv2(best_mv, xd);
}
vp8_prob *vp8_mv_ref_probs(VP8_COMMON *pc,
vp8_prob p[VP8_MVREFS-1], const int near_mv_ref_ct[4]
)
{
p[0] = pc->vp8_mode_contexts [near_mv_ref_ct[0]] [0];
p[1] = pc->vp8_mode_contexts [near_mv_ref_ct[1]] [1];
p[2] = pc->vp8_mode_contexts [near_mv_ref_ct[2]] [2];
p[3] = pc->vp8_mode_contexts [near_mv_ref_ct[3]] [3];
return p;
}