fcccbcbb39
Support for gyp which doesn't support multiple objects in the same static library having the same basename. Change-Id: Ib947eefbaf68f8b177a796d23f875ccdfa6bc9dc
464 lines
15 KiB
C
464 lines
15 KiB
C
|
|
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "vp9/common/vp9_pred_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
|
|
// TBD prediction functions for various bitstream signals
|
|
|
|
// Returns a context number for the given MB prediction signal
|
|
unsigned char vp9_get_pred_context(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
int pred_context;
|
|
MODE_INFO *m = xd->mode_info_context;
|
|
|
|
// Note:
|
|
// The mode info data structure has a one element border above and to the
|
|
// left of the entries correpsonding to real macroblocks.
|
|
// The prediction flags in these dummy entries are initialised to 0.
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
pred_context = (m - 1)->mbmi.seg_id_predicted +
|
|
(m - cm->mode_info_stride)->mbmi.seg_id_predicted;
|
|
break;
|
|
|
|
|
|
case PRED_REF:
|
|
pred_context = (m - 1)->mbmi.ref_predicted +
|
|
(m - cm->mode_info_stride)->mbmi.ref_predicted;
|
|
break;
|
|
|
|
case PRED_COMP:
|
|
// Context based on use of comp pred flag by neighbours
|
|
// pred_context =
|
|
// ((m - 1)->mbmi.second_ref_frame > INTRA_FRAME) +
|
|
// ((m - cm->mode_info_stride)->mbmi.second_ref_frame > INTRA_FRAME);
|
|
|
|
// Context based on mode and reference frame
|
|
// if ( m->mbmi.ref_frame == LAST_FRAME )
|
|
// pred_context = 0 + (m->mbmi.mode != ZEROMV);
|
|
// else if ( m->mbmi.ref_frame == GOLDEN_FRAME )
|
|
// pred_context = 2 + (m->mbmi.mode != ZEROMV);
|
|
// else
|
|
// pred_context = 4 + (m->mbmi.mode != ZEROMV);
|
|
|
|
if (m->mbmi.ref_frame == LAST_FRAME)
|
|
pred_context = 0;
|
|
else
|
|
pred_context = 1;
|
|
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
pred_context = (m - 1)->mbmi.mb_skip_coeff +
|
|
(m - cm->mode_info_stride)->mbmi.mb_skip_coeff;
|
|
break;
|
|
|
|
case PRED_SWITCHABLE_INTERP:
|
|
{
|
|
int left_in_image = (m - 1)->mbmi.mb_in_image;
|
|
int above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
|
|
int left_mode = (m - 1)->mbmi.mode;
|
|
int above_mode = (m - cm->mode_info_stride)->mbmi.mode;
|
|
int left_interp, above_interp;
|
|
if (left_in_image && left_mode >= NEARESTMV && left_mode <= SPLITMV)
|
|
left_interp = vp9_switchable_interp_map[(m - 1)->mbmi.interp_filter];
|
|
else
|
|
left_interp = VP9_SWITCHABLE_FILTERS;
|
|
if (above_in_image && above_mode >= NEARESTMV && above_mode <= SPLITMV)
|
|
above_interp = vp9_switchable_interp_map[
|
|
(m - cm->mode_info_stride)->mbmi.interp_filter];
|
|
else
|
|
above_interp = VP9_SWITCHABLE_FILTERS;
|
|
|
|
if (left_interp == above_interp)
|
|
pred_context = left_interp;
|
|
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
|
|
above_interp != VP9_SWITCHABLE_FILTERS)
|
|
pred_context = above_interp;
|
|
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
|
|
above_interp == VP9_SWITCHABLE_FILTERS)
|
|
pred_context = left_interp;
|
|
else
|
|
pred_context = VP9_SWITCHABLE_FILTERS;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
// TODO *** add error trap code.
|
|
pred_context = 0;
|
|
break;
|
|
}
|
|
|
|
return pred_context;
|
|
}
|
|
|
|
// This function returns a context probability for coding a given
|
|
// prediction signal
|
|
vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
vp9_prob pred_probability;
|
|
int pred_context;
|
|
|
|
// Get the appropriate prediction context
|
|
pred_context = vp9_get_pred_context(cm, xd, pred_id);
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
pred_probability = cm->segment_pred_probs[pred_context];
|
|
break;
|
|
|
|
case PRED_REF:
|
|
pred_probability = cm->ref_pred_probs[pred_context];
|
|
break;
|
|
|
|
case PRED_COMP:
|
|
// In keeping with convention elsewhre the probability returned is
|
|
// the probability of a "0" outcome which in this case means the
|
|
// probability of comp pred off.
|
|
pred_probability = cm->prob_comppred[pred_context];
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
pred_probability = cm->mbskip_pred_probs[pred_context];
|
|
break;
|
|
|
|
default:
|
|
// TODO *** add error trap code.
|
|
pred_probability = 128;
|
|
break;
|
|
}
|
|
|
|
return pred_probability;
|
|
}
|
|
|
|
// This function returns a context probability ptr for coding a given
|
|
// prediction signal
|
|
const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
const vp9_prob *pred_probability;
|
|
int pred_context;
|
|
|
|
// Get the appropriate prediction context
|
|
pred_context = vp9_get_pred_context(cm, xd, pred_id);
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
pred_probability = &cm->segment_pred_probs[pred_context];
|
|
break;
|
|
|
|
case PRED_REF:
|
|
pred_probability = &cm->ref_pred_probs[pred_context];
|
|
break;
|
|
|
|
case PRED_COMP:
|
|
// In keeping with convention elsewhre the probability returned is
|
|
// the probability of a "0" outcome which in this case means the
|
|
// probability of comp pred off.
|
|
pred_probability = &cm->prob_comppred[pred_context];
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
pred_probability = &cm->mbskip_pred_probs[pred_context];
|
|
break;
|
|
|
|
case PRED_SWITCHABLE_INTERP:
|
|
pred_probability = &cm->fc.switchable_interp_prob[pred_context][0];
|
|
break;
|
|
|
|
default:
|
|
// TODO *** add error trap code.
|
|
pred_probability = NULL;
|
|
break;
|
|
}
|
|
|
|
return pred_probability;
|
|
}
|
|
|
|
// This function returns the status of the given prediction signal.
|
|
// I.e. is the predicted value for the given signal correct.
|
|
unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd,
|
|
PRED_ID pred_id) {
|
|
unsigned char pred_flag = 0;
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
pred_flag = xd->mode_info_context->mbmi.seg_id_predicted;
|
|
break;
|
|
|
|
case PRED_REF:
|
|
pred_flag = xd->mode_info_context->mbmi.ref_predicted;
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
pred_flag = xd->mode_info_context->mbmi.mb_skip_coeff;
|
|
break;
|
|
|
|
default:
|
|
// TODO *** add error trap code.
|
|
pred_flag = 0;
|
|
break;
|
|
}
|
|
|
|
return pred_flag;
|
|
}
|
|
|
|
// This function sets the status of the given prediction signal.
|
|
// I.e. is the predicted value for the given signal correct.
|
|
void vp9_set_pred_flag(MACROBLOCKD *const xd,
|
|
PRED_ID pred_id,
|
|
unsigned char pred_flag) {
|
|
#if CONFIG_SUPERBLOCKS
|
|
const int mis = xd->mode_info_stride;
|
|
#endif
|
|
|
|
switch (pred_id) {
|
|
case PRED_SEG_ID:
|
|
xd->mode_info_context->mbmi.seg_id_predicted = pred_flag;
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (xd->mode_info_context->mbmi.encoded_as_sb) {
|
|
if (xd->mb_to_right_edge >= 0)
|
|
xd->mode_info_context[1].mbmi.seg_id_predicted = pred_flag;
|
|
if (xd->mb_to_bottom_edge >= 0) {
|
|
xd->mode_info_context[mis].mbmi.seg_id_predicted = pred_flag;
|
|
if (xd->mb_to_right_edge >= 0)
|
|
xd->mode_info_context[mis + 1].mbmi.seg_id_predicted = pred_flag;
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case PRED_REF:
|
|
xd->mode_info_context->mbmi.ref_predicted = pred_flag;
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (xd->mode_info_context->mbmi.encoded_as_sb) {
|
|
if (xd->mb_to_right_edge >= 0)
|
|
xd->mode_info_context[1].mbmi.ref_predicted = pred_flag;
|
|
if (xd->mb_to_bottom_edge >= 0) {
|
|
xd->mode_info_context[mis].mbmi.ref_predicted = pred_flag;
|
|
if (xd->mb_to_right_edge >= 0)
|
|
xd->mode_info_context[mis + 1].mbmi.ref_predicted = pred_flag;
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
case PRED_MBSKIP:
|
|
xd->mode_info_context->mbmi.mb_skip_coeff = pred_flag;
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (xd->mode_info_context->mbmi.encoded_as_sb) {
|
|
if (xd->mb_to_right_edge >= 0)
|
|
xd->mode_info_context[1].mbmi.mb_skip_coeff = pred_flag;
|
|
if (xd->mb_to_bottom_edge >= 0) {
|
|
xd->mode_info_context[mis].mbmi.mb_skip_coeff = pred_flag;
|
|
if (xd->mb_to_right_edge >= 0)
|
|
xd->mode_info_context[mis + 1].mbmi.mb_skip_coeff = pred_flag;
|
|
}
|
|
}
|
|
#endif
|
|
break;
|
|
|
|
default:
|
|
// TODO *** add error trap code.
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
// The following contain the guts of the prediction code used to
|
|
// peredict various bitstream signals.
|
|
|
|
// Macroblock segment id prediction function
|
|
unsigned char vp9_get_pred_mb_segid(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd, int MbIndex) {
|
|
// Currently the prediction for the macroblock segment ID is
|
|
// the value stored for this macroblock in the previous frame.
|
|
#if CONFIG_SUPERBLOCKS
|
|
if (!xd->mode_info_context->mbmi.encoded_as_sb) {
|
|
#endif
|
|
return cm->last_frame_seg_map[MbIndex];
|
|
#if CONFIG_SUPERBLOCKS
|
|
} else {
|
|
int seg_id = cm->last_frame_seg_map[MbIndex];
|
|
int mb_col = MbIndex % cm->mb_cols;
|
|
int mb_row = MbIndex / cm->mb_cols;
|
|
if (mb_col + 1 < cm->mb_cols)
|
|
seg_id = seg_id && cm->last_frame_seg_map[MbIndex + 1];
|
|
if (mb_row + 1 < cm->mb_rows) {
|
|
seg_id = seg_id && cm->last_frame_seg_map[MbIndex + cm->mb_cols];
|
|
if (mb_col + 1 < cm->mb_cols)
|
|
seg_id = seg_id && cm->last_frame_seg_map[MbIndex + cm->mb_cols + 1];
|
|
}
|
|
return seg_id;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
MV_REFERENCE_FRAME vp9_get_pred_ref(const VP9_COMMON *const cm,
|
|
const MACROBLOCKD *const xd) {
|
|
MODE_INFO *m = xd->mode_info_context;
|
|
|
|
MV_REFERENCE_FRAME left;
|
|
MV_REFERENCE_FRAME above;
|
|
MV_REFERENCE_FRAME above_left;
|
|
MV_REFERENCE_FRAME pred_ref = LAST_FRAME;
|
|
|
|
int segment_id = xd->mode_info_context->mbmi.segment_id;
|
|
int seg_ref_active;
|
|
int i;
|
|
|
|
unsigned char frame_allowed[MAX_REF_FRAMES] = {1, 1, 1, 1};
|
|
unsigned char ref_score[MAX_REF_FRAMES];
|
|
unsigned char best_score = 0;
|
|
unsigned char left_in_image;
|
|
unsigned char above_in_image;
|
|
unsigned char above_left_in_image;
|
|
|
|
// Is segment coding ennabled
|
|
seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME);
|
|
|
|
// Special case treatment if segment coding is enabled.
|
|
// Dont allow prediction of a reference frame that the segment
|
|
// does not allow
|
|
if (seg_ref_active) {
|
|
for (i = 0; i < MAX_REF_FRAMES; i++) {
|
|
frame_allowed[i] =
|
|
vp9_check_segref(xd, segment_id, i);
|
|
|
|
// Score set to 0 if ref frame not allowed
|
|
ref_score[i] = cm->ref_scores[i] * frame_allowed[i];
|
|
}
|
|
} else
|
|
vpx_memcpy(ref_score, cm->ref_scores, sizeof(ref_score));
|
|
|
|
// Reference frames used by neighbours
|
|
left = (m - 1)->mbmi.ref_frame;
|
|
above = (m - cm->mode_info_stride)->mbmi.ref_frame;
|
|
above_left = (m - 1 - cm->mode_info_stride)->mbmi.ref_frame;
|
|
|
|
// Are neighbours in image
|
|
left_in_image = (m - 1)->mbmi.mb_in_image;
|
|
above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
|
|
above_left_in_image = (m - 1 - cm->mode_info_stride)->mbmi.mb_in_image;
|
|
|
|
// Adjust scores for candidate reference frames based on neigbours
|
|
if (frame_allowed[left] && left_in_image) {
|
|
ref_score[left] += 16;
|
|
if (above_left_in_image && (left == above_left))
|
|
ref_score[left] += 4;
|
|
}
|
|
if (frame_allowed[above] && above_in_image) {
|
|
ref_score[above] += 16;
|
|
if (above_left_in_image && (above == above_left))
|
|
ref_score[above] += 4;
|
|
}
|
|
|
|
// Now choose the candidate with the highest score
|
|
for (i = 0; i < MAX_REF_FRAMES; i++) {
|
|
if (ref_score[i] > best_score) {
|
|
pred_ref = i;
|
|
best_score = ref_score[i];
|
|
}
|
|
}
|
|
|
|
return pred_ref;
|
|
}
|
|
|
|
// Functions to computes a set of modified reference frame probabilities
|
|
// to use when the prediction of the reference frame value fails
|
|
void vp9_calc_ref_probs(int *count, vp9_prob *probs) {
|
|
int tot_count;
|
|
|
|
tot_count = count[0] + count[1] + count[2] + count[3];
|
|
if (tot_count) {
|
|
probs[0] = (vp9_prob)((count[0] * 255 + (tot_count >> 1)) / tot_count);
|
|
probs[0] += !probs[0];
|
|
} else
|
|
probs[0] = 128;
|
|
|
|
tot_count -= count[0];
|
|
if (tot_count) {
|
|
probs[1] = (vp9_prob)((count[1] * 255 + (tot_count >> 1)) / tot_count);
|
|
probs[1] += !probs[1];
|
|
} else
|
|
probs[1] = 128;
|
|
|
|
tot_count -= count[1];
|
|
if (tot_count) {
|
|
probs[2] = (vp9_prob)((count[2] * 255 + (tot_count >> 1)) / tot_count);
|
|
probs[2] += !probs[2];
|
|
} else
|
|
probs[2] = 128;
|
|
|
|
}
|
|
|
|
// Computes a set of modified conditional probabilities for the reference frame
|
|
// Values willbe set to 0 for reference frame options that are not possible
|
|
// because wither they were predicted and prediction has failed or because
|
|
// they are not allowed for a given segment.
|
|
void vp9_compute_mod_refprobs(VP9_COMMON *const cm) {
|
|
int norm_cnt[MAX_REF_FRAMES];
|
|
int intra_count;
|
|
int inter_count;
|
|
int last_count;
|
|
int gfarf_count;
|
|
int gf_count;
|
|
int arf_count;
|
|
|
|
intra_count = cm->prob_intra_coded;
|
|
inter_count = (255 - intra_count);
|
|
last_count = (inter_count * cm->prob_last_coded) / 255;
|
|
gfarf_count = inter_count - last_count;
|
|
gf_count = (gfarf_count * cm->prob_gf_coded) / 255;
|
|
arf_count = gfarf_count - gf_count;
|
|
|
|
// Work out modified reference frame probabilities to use where prediction
|
|
// of the reference frame fails
|
|
norm_cnt[0] = 0;
|
|
norm_cnt[1] = last_count;
|
|
norm_cnt[2] = gf_count;
|
|
norm_cnt[3] = arf_count;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[INTRA_FRAME]);
|
|
cm->mod_refprobs[INTRA_FRAME][0] = 0; // This branch implicit
|
|
|
|
norm_cnt[0] = intra_count;
|
|
norm_cnt[1] = 0;
|
|
norm_cnt[2] = gf_count;
|
|
norm_cnt[3] = arf_count;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[LAST_FRAME]);
|
|
cm->mod_refprobs[LAST_FRAME][1] = 0; // This branch implicit
|
|
|
|
norm_cnt[0] = intra_count;
|
|
norm_cnt[1] = last_count;
|
|
norm_cnt[2] = 0;
|
|
norm_cnt[3] = arf_count;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[GOLDEN_FRAME]);
|
|
cm->mod_refprobs[GOLDEN_FRAME][2] = 0; // This branch implicit
|
|
|
|
norm_cnt[0] = intra_count;
|
|
norm_cnt[1] = last_count;
|
|
norm_cnt[2] = gf_count;
|
|
norm_cnt[3] = 0;
|
|
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[ALTREF_FRAME]);
|
|
cm->mod_refprobs[ALTREF_FRAME][2] = 0; // This branch implicit
|
|
|
|
// Score the reference frames based on overal frequency.
|
|
// These scores contribute to the prediction choices.
|
|
// Max score 17 min 1
|
|
cm->ref_scores[INTRA_FRAME] = 1 + (intra_count * 16 / 255);
|
|
cm->ref_scores[LAST_FRAME] = 1 + (last_count * 16 / 255);
|
|
cm->ref_scores[GOLDEN_FRAME] = 1 + (gf_count * 16 / 255);
|
|
cm->ref_scores[ALTREF_FRAME] = 1 + (arf_count * 16 / 255);
|
|
}
|