267daddecc
Clean up and simplification of both estimate_max_q variants and only call once per clip/section. This leads to a more constrained range of Q values across a clip / section. Average gains across all 4 test sets:- PSNR ~0.5% SSIM ~0.3% Change-Id: If77d5f7bb50939a464e117724f4da5b001c62d70
2646 lines
90 KiB
C
2646 lines
90 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_block.h"
|
|
#include "vp9/encoder/vp9_encodeframe.h"
|
|
#include "vp9/encoder/vp9_encodemb.h"
|
|
#include "vp9/encoder/vp9_extend.h"
|
|
#include "vp9/encoder/vp9_firstpass.h"
|
|
#include "vp9/encoder/vp9_mcomp.h"
|
|
#include "vp9/encoder/vp9_onyx_int.h"
|
|
#include "vp9/encoder/vp9_variance.h"
|
|
#include "vpx_scale/vpx_scale.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vpx_scale/yv12config.h"
|
|
#include "vp9/encoder/vp9_quantize.h"
|
|
#include "vp9/encoder/vp9_rdopt.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_entropymv.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/encoder/vp9_vaq.h"
|
|
#include "./vpx_scale_rtcd.h"
|
|
// TODO(jkoleszar): for setup_dst_planes
|
|
#include "vp9/common/vp9_reconinter.h"
|
|
|
|
#define OUTPUT_FPF 0
|
|
|
|
#define IIFACTOR 12.5
|
|
#define IIKFACTOR1 12.5
|
|
#define IIKFACTOR2 15.0
|
|
#define RMAX 512.0
|
|
#define GF_RMAX 96.0
|
|
#define ERR_DIVISOR 150.0
|
|
#define MIN_DECAY_FACTOR 0.1
|
|
|
|
#define KF_MB_INTRA_MIN 150
|
|
#define GF_MB_INTRA_MIN 100
|
|
|
|
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
|
|
|
|
#define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
#define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0
|
|
|
|
static void swap_yv12(YV12_BUFFER_CONFIG *a, YV12_BUFFER_CONFIG *b) {
|
|
YV12_BUFFER_CONFIG temp = *a;
|
|
*a = *b;
|
|
*b = temp;
|
|
}
|
|
|
|
static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame);
|
|
|
|
static int select_cq_level(int qindex) {
|
|
int ret_val = QINDEX_RANGE - 1;
|
|
int i;
|
|
|
|
double target_q = (vp9_convert_qindex_to_q(qindex) * 0.5847) + 1.0;
|
|
|
|
for (i = 0; i < QINDEX_RANGE; i++) {
|
|
if (target_q <= vp9_convert_qindex_to_q(i)) {
|
|
ret_val = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return ret_val;
|
|
}
|
|
|
|
static int gfboost_qadjust(int qindex) {
|
|
const double q = vp9_convert_qindex_to_q(qindex);
|
|
return (int)((0.00000828 * q * q * q) +
|
|
(-0.0055 * q * q) +
|
|
(1.32 * q) + 79.3);
|
|
}
|
|
|
|
static int kfboost_qadjust(int qindex) {
|
|
const double q = vp9_convert_qindex_to_q(qindex);
|
|
return (int)((0.00000973 * q * q * q) +
|
|
(-0.00613 * q * q) +
|
|
(1.316 * q) + 121.2);
|
|
}
|
|
|
|
// Resets the first pass file to the given position using a relative seek from
|
|
// the current position.
|
|
static void reset_fpf_position(VP9_COMP *cpi, FIRSTPASS_STATS *position) {
|
|
cpi->twopass.stats_in = position;
|
|
}
|
|
|
|
static int lookup_next_frame_stats(VP9_COMP *cpi, FIRSTPASS_STATS *next_frame) {
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
|
|
*next_frame = *cpi->twopass.stats_in;
|
|
return 1;
|
|
}
|
|
|
|
// Read frame stats at an offset from the current position
|
|
static int read_frame_stats(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *frame_stats,
|
|
int offset) {
|
|
FIRSTPASS_STATS *fps_ptr = cpi->twopass.stats_in;
|
|
|
|
// Check legality of offset
|
|
if (offset >= 0) {
|
|
if (&fps_ptr[offset] >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
} else if (offset < 0) {
|
|
if (&fps_ptr[offset] < cpi->twopass.stats_in_start)
|
|
return EOF;
|
|
}
|
|
|
|
*frame_stats = fps_ptr[offset];
|
|
return 1;
|
|
}
|
|
|
|
static int input_stats(VP9_COMP *cpi, FIRSTPASS_STATS *fps) {
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end)
|
|
return EOF;
|
|
|
|
*fps = *cpi->twopass.stats_in;
|
|
cpi->twopass.stats_in =
|
|
(void *)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS));
|
|
return 1;
|
|
}
|
|
|
|
static void output_stats(const VP9_COMP *cpi,
|
|
struct vpx_codec_pkt_list *pktlist,
|
|
FIRSTPASS_STATS *stats) {
|
|
struct vpx_codec_cx_pkt pkt;
|
|
pkt.kind = VPX_CODEC_STATS_PKT;
|
|
pkt.data.twopass_stats.buf = stats;
|
|
pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
|
|
vpx_codec_pkt_list_add(pktlist, &pkt);
|
|
|
|
// TEMP debug code
|
|
#if OUTPUT_FPF
|
|
|
|
{
|
|
FILE *fpfile;
|
|
fpfile = fopen("firstpass.stt", "a");
|
|
|
|
fprintf(stdout, "%12.0f %12.0f %12.0f %12.0f %12.0f %12.4f %12.4f"
|
|
"%12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f"
|
|
"%12.0f %12.0f %12.4f %12.0f %12.0f %12.4f\n",
|
|
stats->frame,
|
|
stats->intra_error,
|
|
stats->coded_error,
|
|
stats->sr_coded_error,
|
|
stats->ssim_weighted_pred_err,
|
|
stats->pcnt_inter,
|
|
stats->pcnt_motion,
|
|
stats->pcnt_second_ref,
|
|
stats->pcnt_neutral,
|
|
stats->MVr,
|
|
stats->mvr_abs,
|
|
stats->MVc,
|
|
stats->mvc_abs,
|
|
stats->MVrv,
|
|
stats->MVcv,
|
|
stats->mv_in_out_count,
|
|
stats->new_mv_count,
|
|
stats->count,
|
|
stats->duration);
|
|
fclose(fpfile);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void zero_stats(FIRSTPASS_STATS *section) {
|
|
section->frame = 0.0;
|
|
section->intra_error = 0.0;
|
|
section->coded_error = 0.0;
|
|
section->sr_coded_error = 0.0;
|
|
section->ssim_weighted_pred_err = 0.0;
|
|
section->pcnt_inter = 0.0;
|
|
section->pcnt_motion = 0.0;
|
|
section->pcnt_second_ref = 0.0;
|
|
section->pcnt_neutral = 0.0;
|
|
section->MVr = 0.0;
|
|
section->mvr_abs = 0.0;
|
|
section->MVc = 0.0;
|
|
section->mvc_abs = 0.0;
|
|
section->MVrv = 0.0;
|
|
section->MVcv = 0.0;
|
|
section->mv_in_out_count = 0.0;
|
|
section->new_mv_count = 0.0;
|
|
section->count = 0.0;
|
|
section->duration = 1.0;
|
|
}
|
|
|
|
static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
|
|
section->frame += frame->frame;
|
|
section->intra_error += frame->intra_error;
|
|
section->coded_error += frame->coded_error;
|
|
section->sr_coded_error += frame->sr_coded_error;
|
|
section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter += frame->pcnt_inter;
|
|
section->pcnt_motion += frame->pcnt_motion;
|
|
section->pcnt_second_ref += frame->pcnt_second_ref;
|
|
section->pcnt_neutral += frame->pcnt_neutral;
|
|
section->MVr += frame->MVr;
|
|
section->mvr_abs += frame->mvr_abs;
|
|
section->MVc += frame->MVc;
|
|
section->mvc_abs += frame->mvc_abs;
|
|
section->MVrv += frame->MVrv;
|
|
section->MVcv += frame->MVcv;
|
|
section->mv_in_out_count += frame->mv_in_out_count;
|
|
section->new_mv_count += frame->new_mv_count;
|
|
section->count += frame->count;
|
|
section->duration += frame->duration;
|
|
}
|
|
|
|
static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) {
|
|
section->frame -= frame->frame;
|
|
section->intra_error -= frame->intra_error;
|
|
section->coded_error -= frame->coded_error;
|
|
section->sr_coded_error -= frame->sr_coded_error;
|
|
section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err;
|
|
section->pcnt_inter -= frame->pcnt_inter;
|
|
section->pcnt_motion -= frame->pcnt_motion;
|
|
section->pcnt_second_ref -= frame->pcnt_second_ref;
|
|
section->pcnt_neutral -= frame->pcnt_neutral;
|
|
section->MVr -= frame->MVr;
|
|
section->mvr_abs -= frame->mvr_abs;
|
|
section->MVc -= frame->MVc;
|
|
section->mvc_abs -= frame->mvc_abs;
|
|
section->MVrv -= frame->MVrv;
|
|
section->MVcv -= frame->MVcv;
|
|
section->mv_in_out_count -= frame->mv_in_out_count;
|
|
section->new_mv_count -= frame->new_mv_count;
|
|
section->count -= frame->count;
|
|
section->duration -= frame->duration;
|
|
}
|
|
|
|
static void avg_stats(FIRSTPASS_STATS *section) {
|
|
if (section->count < 1.0)
|
|
return;
|
|
|
|
section->intra_error /= section->count;
|
|
section->coded_error /= section->count;
|
|
section->sr_coded_error /= section->count;
|
|
section->ssim_weighted_pred_err /= section->count;
|
|
section->pcnt_inter /= section->count;
|
|
section->pcnt_second_ref /= section->count;
|
|
section->pcnt_neutral /= section->count;
|
|
section->pcnt_motion /= section->count;
|
|
section->MVr /= section->count;
|
|
section->mvr_abs /= section->count;
|
|
section->MVc /= section->count;
|
|
section->mvc_abs /= section->count;
|
|
section->MVrv /= section->count;
|
|
section->MVcv /= section->count;
|
|
section->mv_in_out_count /= section->count;
|
|
section->duration /= section->count;
|
|
}
|
|
|
|
// Calculate a modified Error used in distributing bits between easier and
|
|
// harder frames.
|
|
static double calculate_modified_err(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *this_frame) {
|
|
const FIRSTPASS_STATS *const stats = &cpi->twopass.total_stats;
|
|
const double av_err = stats->ssim_weighted_pred_err / stats->count;
|
|
const double this_err = this_frame->ssim_weighted_pred_err;
|
|
return av_err * pow(this_err / DOUBLE_DIVIDE_CHECK(av_err),
|
|
this_err > av_err ? POW1 : POW2);
|
|
}
|
|
|
|
static const double weight_table[256] = {
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000,
|
|
0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500,
|
|
0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250,
|
|
0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000,
|
|
0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750,
|
|
0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500,
|
|
0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000,
|
|
1.000000, 1.000000, 1.000000, 1.000000
|
|
};
|
|
|
|
static double simple_weight(YV12_BUFFER_CONFIG *source) {
|
|
int i, j;
|
|
|
|
uint8_t *src = source->y_buffer;
|
|
double sum_weights = 0.0;
|
|
|
|
// Loop through the Y plane examining levels and creating a weight for
|
|
// the image.
|
|
i = source->y_height;
|
|
do {
|
|
j = source->y_width;
|
|
do {
|
|
sum_weights += weight_table[ *src];
|
|
src++;
|
|
} while (--j);
|
|
src -= source->y_width;
|
|
src += source->y_stride;
|
|
} while (--i);
|
|
|
|
sum_weights /= (source->y_height * source->y_width);
|
|
|
|
return sum_weights;
|
|
}
|
|
|
|
|
|
// This function returns the current per frame maximum bitrate target.
|
|
static int frame_max_bits(VP9_COMP *cpi) {
|
|
// Max allocation for a single frame based on the max section guidelines
|
|
// passed in and how many bits are left.
|
|
// For VBR base this on the bits and frames left plus the
|
|
// two_pass_vbrmax_section rate passed in by the user.
|
|
const double max_bits = (1.0 * cpi->twopass.bits_left /
|
|
(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) *
|
|
(cpi->oxcf.two_pass_vbrmax_section / 100.0);
|
|
if (max_bits < 0)
|
|
return 0;
|
|
if (max_bits >= INT_MAX)
|
|
return INT_MAX;
|
|
return (int)max_bits;
|
|
}
|
|
|
|
void vp9_init_first_pass(VP9_COMP *cpi) {
|
|
zero_stats(&cpi->twopass.total_stats);
|
|
}
|
|
|
|
void vp9_end_first_pass(VP9_COMP *cpi) {
|
|
output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats);
|
|
}
|
|
|
|
static void zz_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
YV12_BUFFER_CONFIG *recon_buffer,
|
|
int *best_motion_err, int recon_yoffset) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
switch (xd->mi_8x8[0]->mbmi.sb_type) {
|
|
case BLOCK_8X8:
|
|
vp9_mse8x8(x->plane[0].src.buf, x->plane[0].src.stride,
|
|
xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
|
|
(unsigned int *)(best_motion_err));
|
|
break;
|
|
case BLOCK_16X8:
|
|
vp9_mse16x8(x->plane[0].src.buf, x->plane[0].src.stride,
|
|
xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
|
|
(unsigned int *)(best_motion_err));
|
|
break;
|
|
case BLOCK_8X16:
|
|
vp9_mse8x16(x->plane[0].src.buf, x->plane[0].src.stride,
|
|
xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
|
|
(unsigned int *)(best_motion_err));
|
|
break;
|
|
default:
|
|
vp9_mse16x16(x->plane[0].src.buf, x->plane[0].src.stride,
|
|
xd->plane[0].pre[0].buf, xd->plane[0].pre[0].stride,
|
|
(unsigned int *)(best_motion_err));
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void first_pass_motion_search(VP9_COMP *cpi, MACROBLOCK *x,
|
|
int_mv *ref_mv, MV *best_mv,
|
|
YV12_BUFFER_CONFIG *recon_buffer,
|
|
int *best_motion_err, int recon_yoffset) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int num00;
|
|
|
|
int_mv tmp_mv;
|
|
int_mv ref_mv_full;
|
|
|
|
int tmp_err;
|
|
int step_param = 3;
|
|
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
|
|
int n;
|
|
vp9_variance_fn_ptr_t v_fn_ptr =
|
|
cpi->fn_ptr[xd->mi_8x8[0]->mbmi.sb_type];
|
|
int new_mv_mode_penalty = 256;
|
|
|
|
int sr = 0;
|
|
int quart_frm = MIN(cpi->common.width, cpi->common.height);
|
|
|
|
// refine the motion search range accroding to the frame dimension
|
|
// for first pass test
|
|
while ((quart_frm << sr) < MAX_FULL_PEL_VAL)
|
|
sr++;
|
|
|
|
step_param += sr;
|
|
further_steps -= sr;
|
|
|
|
// override the default variance function to use MSE
|
|
switch (xd->mi_8x8[0]->mbmi.sb_type) {
|
|
case BLOCK_8X8:
|
|
v_fn_ptr.vf = vp9_mse8x8;
|
|
break;
|
|
case BLOCK_16X8:
|
|
v_fn_ptr.vf = vp9_mse16x8;
|
|
break;
|
|
case BLOCK_8X16:
|
|
v_fn_ptr.vf = vp9_mse8x16;
|
|
break;
|
|
default:
|
|
v_fn_ptr.vf = vp9_mse16x16;
|
|
break;
|
|
}
|
|
|
|
// Set up pointers for this macro block recon buffer
|
|
xd->plane[0].pre[0].buf = recon_buffer->y_buffer + recon_yoffset;
|
|
|
|
// Initial step/diamond search centred on best mv
|
|
tmp_mv.as_int = 0;
|
|
ref_mv_full.as_mv.col = ref_mv->as_mv.col >> 3;
|
|
ref_mv_full.as_mv.row = ref_mv->as_mv.row >> 3;
|
|
tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv, step_param,
|
|
x->sadperbit16, &num00, &v_fn_ptr,
|
|
x->nmvjointcost,
|
|
x->mvcost, ref_mv);
|
|
if (tmp_err < INT_MAX - new_mv_mode_penalty)
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err) {
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.as_mv.row;
|
|
best_mv->col = tmp_mv.as_mv.col;
|
|
}
|
|
|
|
// Further step/diamond searches as necessary
|
|
n = num00;
|
|
num00 = 0;
|
|
|
|
while (n < further_steps) {
|
|
n++;
|
|
|
|
if (num00) {
|
|
num00--;
|
|
} else {
|
|
tmp_err = cpi->diamond_search_sad(x, &ref_mv_full, &tmp_mv,
|
|
step_param + n, x->sadperbit16,
|
|
&num00, &v_fn_ptr,
|
|
x->nmvjointcost,
|
|
x->mvcost, ref_mv);
|
|
if (tmp_err < INT_MAX - new_mv_mode_penalty)
|
|
tmp_err += new_mv_mode_penalty;
|
|
|
|
if (tmp_err < *best_motion_err) {
|
|
*best_motion_err = tmp_err;
|
|
best_mv->row = tmp_mv.as_mv.row;
|
|
best_mv->col = tmp_mv.as_mv.col;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void vp9_first_pass(VP9_COMP *cpi) {
|
|
int mb_row, mb_col;
|
|
MACROBLOCK *const x = &cpi->mb;
|
|
VP9_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
TileInfo tile;
|
|
struct macroblock_plane *const p = x->plane;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
PICK_MODE_CONTEXT *ctx = &x->sb64_context;
|
|
int i;
|
|
|
|
int recon_yoffset, recon_uvoffset;
|
|
const int lst_yv12_idx = cm->ref_frame_map[cpi->lst_fb_idx];
|
|
const int gld_yv12_idx = cm->ref_frame_map[cpi->gld_fb_idx];
|
|
YV12_BUFFER_CONFIG *const lst_yv12 = &cm->yv12_fb[lst_yv12_idx];
|
|
YV12_BUFFER_CONFIG *const gld_yv12 = &cm->yv12_fb[gld_yv12_idx];
|
|
YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
|
|
const int recon_y_stride = lst_yv12->y_stride;
|
|
const int recon_uv_stride = lst_yv12->uv_stride;
|
|
int64_t intra_error = 0;
|
|
int64_t coded_error = 0;
|
|
int64_t sr_coded_error = 0;
|
|
|
|
int sum_mvr = 0, sum_mvc = 0;
|
|
int sum_mvr_abs = 0, sum_mvc_abs = 0;
|
|
int sum_mvrs = 0, sum_mvcs = 0;
|
|
int mvcount = 0;
|
|
int intercount = 0;
|
|
int second_ref_count = 0;
|
|
int intrapenalty = 256;
|
|
int neutral_count = 0;
|
|
int new_mv_count = 0;
|
|
int sum_in_vectors = 0;
|
|
uint32_t lastmv_as_int = 0;
|
|
|
|
int_mv zero_ref_mv;
|
|
|
|
zero_ref_mv.as_int = 0;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
vp9_setup_src_planes(x, cpi->Source, 0, 0);
|
|
setup_pre_planes(xd, 0, lst_yv12, 0, 0, NULL);
|
|
setup_dst_planes(xd, new_yv12, 0, 0);
|
|
|
|
xd->mi_8x8 = cm->mi_grid_visible;
|
|
// required for vp9_frame_init_quantizer
|
|
xd->mi_8x8[0] = cm->mi;
|
|
|
|
setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
vp9_frame_init_quantizer(cpi);
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i) {
|
|
p[i].coeff = ctx->coeff_pbuf[i][1];
|
|
p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
|
|
pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
|
|
p[i].eobs = ctx->eobs_pbuf[i][1];
|
|
}
|
|
x->skip_recode = 0;
|
|
|
|
|
|
// Initialise the MV cost table to the defaults
|
|
// if( cm->current_video_frame == 0)
|
|
// if ( 0 )
|
|
{
|
|
vp9_init_mv_probs(cm);
|
|
vp9_initialize_rd_consts(cpi);
|
|
}
|
|
|
|
// tiling is ignored in the first pass
|
|
vp9_tile_init(&tile, cm, 0, 0);
|
|
|
|
// for each macroblock row in image
|
|
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
|
|
int_mv best_ref_mv;
|
|
|
|
best_ref_mv.as_int = 0;
|
|
|
|
// reset above block coeffs
|
|
xd->up_available = (mb_row != 0);
|
|
recon_yoffset = (mb_row * recon_y_stride * 16);
|
|
recon_uvoffset = (mb_row * recon_uv_stride * 8);
|
|
|
|
// Set up limit values for motion vectors to prevent them extending
|
|
// outside the UMV borders
|
|
x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
|
|
x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
|
|
+ BORDER_MV_PIXELS_B16;
|
|
|
|
// for each macroblock col in image
|
|
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
|
|
int this_error;
|
|
int gf_motion_error = INT_MAX;
|
|
int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
|
|
double error_weight;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
error_weight = 1.0; // avoid uninitialized warnings
|
|
|
|
xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
|
|
xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
|
|
xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
|
|
xd->left_available = (mb_col != 0);
|
|
|
|
if (mb_col * 2 + 1 < cm->mi_cols) {
|
|
if (mb_row * 2 + 1 < cm->mi_rows) {
|
|
xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X16;
|
|
} else {
|
|
xd->mi_8x8[0]->mbmi.sb_type = BLOCK_16X8;
|
|
}
|
|
} else {
|
|
if (mb_row * 2 + 1 < cm->mi_rows) {
|
|
xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X16;
|
|
} else {
|
|
xd->mi_8x8[0]->mbmi.sb_type = BLOCK_8X8;
|
|
}
|
|
}
|
|
xd->mi_8x8[0]->mbmi.ref_frame[0] = INTRA_FRAME;
|
|
set_mi_row_col(xd, &tile,
|
|
mb_row << 1,
|
|
num_8x8_blocks_high_lookup[xd->mi_8x8[0]->mbmi.sb_type],
|
|
mb_col << 1,
|
|
num_8x8_blocks_wide_lookup[xd->mi_8x8[0]->mbmi.sb_type],
|
|
cm->mi_rows, cm->mi_cols);
|
|
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
int energy = vp9_block_energy(cpi, x, xd->mi_8x8[0]->mbmi.sb_type);
|
|
error_weight = vp9_vaq_inv_q_ratio(energy);
|
|
}
|
|
|
|
// do intra 16x16 prediction
|
|
this_error = vp9_encode_intra(x, use_dc_pred);
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
vp9_clear_system_state(); // __asm emms;
|
|
this_error *= error_weight;
|
|
}
|
|
|
|
// intrapenalty below deals with situations where the intra and inter
|
|
// error scores are very low (eg a plain black frame).
|
|
// We do not have special cases in first pass for 0,0 and nearest etc so
|
|
// all inter modes carry an overhead cost estimate for the mv.
|
|
// When the error score is very low this causes us to pick all or lots of
|
|
// INTRA modes and throw lots of key frames.
|
|
// This penalty adds a cost matching that of a 0,0 mv to the intra case.
|
|
this_error += intrapenalty;
|
|
|
|
// Cumulative intra error total
|
|
intra_error += (int64_t)this_error;
|
|
|
|
// Set up limit values for motion vectors to prevent them extending
|
|
// outside the UMV borders.
|
|
x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
|
|
x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16)
|
|
+ BORDER_MV_PIXELS_B16;
|
|
|
|
// Other than for the first frame do a motion search
|
|
if (cm->current_video_frame > 0) {
|
|
int tmp_err;
|
|
int motion_error = INT_MAX;
|
|
int_mv mv, tmp_mv;
|
|
|
|
// Simple 0,0 motion with no mv overhead
|
|
zz_motion_search(cpi, x, lst_yv12, &motion_error, recon_yoffset);
|
|
mv.as_int = tmp_mv.as_int = 0;
|
|
|
|
// Test last reference frame using the previous best mv as the
|
|
// starting point (best reference) for the search
|
|
first_pass_motion_search(cpi, x, &best_ref_mv,
|
|
&mv.as_mv, lst_yv12,
|
|
&motion_error, recon_yoffset);
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
vp9_clear_system_state(); // __asm emms;
|
|
motion_error *= error_weight;
|
|
}
|
|
|
|
// If the current best reference mv is not centered on 0,0 then do a 0,0
|
|
// based search as well.
|
|
if (best_ref_mv.as_int) {
|
|
tmp_err = INT_MAX;
|
|
first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv.as_mv,
|
|
lst_yv12, &tmp_err, recon_yoffset);
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
vp9_clear_system_state(); // __asm emms;
|
|
tmp_err *= error_weight;
|
|
}
|
|
|
|
if (tmp_err < motion_error) {
|
|
motion_error = tmp_err;
|
|
mv.as_int = tmp_mv.as_int;
|
|
}
|
|
}
|
|
|
|
// Experimental search in an older reference frame
|
|
if (cm->current_video_frame > 1) {
|
|
// Simple 0,0 motion with no mv overhead
|
|
zz_motion_search(cpi, x, gld_yv12,
|
|
&gf_motion_error, recon_yoffset);
|
|
|
|
first_pass_motion_search(cpi, x, &zero_ref_mv,
|
|
&tmp_mv.as_mv, gld_yv12,
|
|
&gf_motion_error, recon_yoffset);
|
|
if (cpi->oxcf.aq_mode == VARIANCE_AQ) {
|
|
vp9_clear_system_state(); // __asm emms;
|
|
gf_motion_error *= error_weight;
|
|
}
|
|
|
|
if ((gf_motion_error < motion_error) &&
|
|
(gf_motion_error < this_error)) {
|
|
second_ref_count++;
|
|
}
|
|
|
|
// Reset to last frame as reference buffer
|
|
xd->plane[0].pre[0].buf = lst_yv12->y_buffer + recon_yoffset;
|
|
xd->plane[1].pre[0].buf = lst_yv12->u_buffer + recon_uvoffset;
|
|
xd->plane[2].pre[0].buf = lst_yv12->v_buffer + recon_uvoffset;
|
|
|
|
// In accumulating a score for the older reference frame
|
|
// take the best of the motion predicted score and
|
|
// the intra coded error (just as will be done for)
|
|
// accumulation of "coded_error" for the last frame.
|
|
if (gf_motion_error < this_error)
|
|
sr_coded_error += gf_motion_error;
|
|
else
|
|
sr_coded_error += this_error;
|
|
} else {
|
|
sr_coded_error += motion_error;
|
|
}
|
|
/* Intra assumed best */
|
|
best_ref_mv.as_int = 0;
|
|
|
|
if (motion_error <= this_error) {
|
|
// Keep a count of cases where the inter and intra were
|
|
// very close and very low. This helps with scene cut
|
|
// detection for example in cropped clips with black bars
|
|
// at the sides or top and bottom.
|
|
if ((((this_error - intrapenalty) * 9) <=
|
|
(motion_error * 10)) &&
|
|
(this_error < (2 * intrapenalty))) {
|
|
neutral_count++;
|
|
}
|
|
|
|
mv.as_mv.row *= 8;
|
|
mv.as_mv.col *= 8;
|
|
this_error = motion_error;
|
|
vp9_set_mbmode_and_mvs(x, NEWMV, &mv);
|
|
xd->mi_8x8[0]->mbmi.tx_size = TX_4X4;
|
|
xd->mi_8x8[0]->mbmi.ref_frame[0] = LAST_FRAME;
|
|
xd->mi_8x8[0]->mbmi.ref_frame[1] = NONE;
|
|
vp9_build_inter_predictors_sby(xd, mb_row << 1,
|
|
mb_col << 1,
|
|
xd->mi_8x8[0]->mbmi.sb_type);
|
|
vp9_encode_sby(x, xd->mi_8x8[0]->mbmi.sb_type);
|
|
sum_mvr += mv.as_mv.row;
|
|
sum_mvr_abs += abs(mv.as_mv.row);
|
|
sum_mvc += mv.as_mv.col;
|
|
sum_mvc_abs += abs(mv.as_mv.col);
|
|
sum_mvrs += mv.as_mv.row * mv.as_mv.row;
|
|
sum_mvcs += mv.as_mv.col * mv.as_mv.col;
|
|
intercount++;
|
|
|
|
best_ref_mv.as_int = mv.as_int;
|
|
|
|
// Was the vector non-zero
|
|
if (mv.as_int) {
|
|
mvcount++;
|
|
|
|
// Was it different from the last non zero vector
|
|
if (mv.as_int != lastmv_as_int)
|
|
new_mv_count++;
|
|
lastmv_as_int = mv.as_int;
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_row < cm->mb_rows / 2) {
|
|
if (mv.as_mv.row > 0)
|
|
sum_in_vectors--;
|
|
else if (mv.as_mv.row < 0)
|
|
sum_in_vectors++;
|
|
} else if (mb_row > cm->mb_rows / 2) {
|
|
if (mv.as_mv.row > 0)
|
|
sum_in_vectors++;
|
|
else if (mv.as_mv.row < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
|
|
// Does the Row vector point inwards or outwards
|
|
if (mb_col < cm->mb_cols / 2) {
|
|
if (mv.as_mv.col > 0)
|
|
sum_in_vectors--;
|
|
else if (mv.as_mv.col < 0)
|
|
sum_in_vectors++;
|
|
} else if (mb_col > cm->mb_cols / 2) {
|
|
if (mv.as_mv.col > 0)
|
|
sum_in_vectors++;
|
|
else if (mv.as_mv.col < 0)
|
|
sum_in_vectors--;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
sr_coded_error += (int64_t)this_error;
|
|
}
|
|
coded_error += (int64_t)this_error;
|
|
|
|
// adjust to the next column of macroblocks
|
|
x->plane[0].src.buf += 16;
|
|
x->plane[1].src.buf += 8;
|
|
x->plane[2].src.buf += 8;
|
|
|
|
recon_yoffset += 16;
|
|
recon_uvoffset += 8;
|
|
}
|
|
|
|
// adjust to the next row of mbs
|
|
x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
|
|
x->plane[1].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols;
|
|
x->plane[2].src.buf += 8 * x->plane[1].src.stride - 8 * cm->mb_cols;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
}
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
{
|
|
double weight = 0.0;
|
|
|
|
FIRSTPASS_STATS fps;
|
|
|
|
fps.frame = cm->current_video_frame;
|
|
fps.intra_error = (double)(intra_error >> 8);
|
|
fps.coded_error = (double)(coded_error >> 8);
|
|
fps.sr_coded_error = (double)(sr_coded_error >> 8);
|
|
weight = simple_weight(cpi->Source);
|
|
|
|
|
|
if (weight < 0.1)
|
|
weight = 0.1;
|
|
|
|
fps.ssim_weighted_pred_err = fps.coded_error * weight;
|
|
|
|
fps.pcnt_inter = 0.0;
|
|
fps.pcnt_motion = 0.0;
|
|
fps.MVr = 0.0;
|
|
fps.mvr_abs = 0.0;
|
|
fps.MVc = 0.0;
|
|
fps.mvc_abs = 0.0;
|
|
fps.MVrv = 0.0;
|
|
fps.MVcv = 0.0;
|
|
fps.mv_in_out_count = 0.0;
|
|
fps.new_mv_count = 0.0;
|
|
fps.count = 1.0;
|
|
|
|
fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs;
|
|
fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs;
|
|
fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs;
|
|
|
|
if (mvcount > 0) {
|
|
fps.MVr = (double)sum_mvr / (double)mvcount;
|
|
fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount;
|
|
fps.MVc = (double)sum_mvc / (double)mvcount;
|
|
fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount;
|
|
fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) /
|
|
(double)mvcount;
|
|
fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) /
|
|
(double)mvcount;
|
|
fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2);
|
|
fps.new_mv_count = new_mv_count;
|
|
|
|
fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs;
|
|
}
|
|
|
|
// TODO(paulwilkins): Handle the case when duration is set to 0, or
|
|
// something less than the full time between subsequent values of
|
|
// cpi->source_time_stamp.
|
|
fps.duration = (double)(cpi->source->ts_end
|
|
- cpi->source->ts_start);
|
|
|
|
// don't want to do output stats with a stack variable!
|
|
cpi->twopass.this_frame_stats = fps;
|
|
output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats);
|
|
accumulate_stats(&cpi->twopass.total_stats, &fps);
|
|
}
|
|
|
|
// Copy the previous Last Frame back into gf and and arf buffers if
|
|
// the prediction is good enough... but also dont allow it to lag too far
|
|
if ((cpi->twopass.sr_update_lag > 3) ||
|
|
((cm->current_video_frame > 0) &&
|
|
(cpi->twopass.this_frame_stats.pcnt_inter > 0.20) &&
|
|
((cpi->twopass.this_frame_stats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.this_frame_stats.coded_error)) >
|
|
2.0))) {
|
|
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
|
|
cpi->twopass.sr_update_lag = 1;
|
|
} else {
|
|
cpi->twopass.sr_update_lag++;
|
|
}
|
|
// swap frame pointers so last frame refers to the frame we just compressed
|
|
swap_yv12(lst_yv12, new_yv12);
|
|
|
|
vp9_extend_frame_borders(lst_yv12, cm->subsampling_x, cm->subsampling_y);
|
|
|
|
// Special case for the first frame. Copy into the GF buffer as a second
|
|
// reference.
|
|
if (cm->current_video_frame == 0)
|
|
vp8_yv12_copy_frame(lst_yv12, gld_yv12);
|
|
|
|
// use this to see what the first pass reconstruction looks like
|
|
if (0) {
|
|
char filename[512];
|
|
FILE *recon_file;
|
|
snprintf(filename, sizeof(filename), "enc%04d.yuv",
|
|
(int)cm->current_video_frame);
|
|
|
|
if (cm->current_video_frame == 0)
|
|
recon_file = fopen(filename, "wb");
|
|
else
|
|
recon_file = fopen(filename, "ab");
|
|
|
|
(void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
|
|
fclose(recon_file);
|
|
}
|
|
|
|
cm->current_video_frame++;
|
|
}
|
|
|
|
// Estimate a cost per mb attributable to overheads such as the coding of
|
|
// modes and motion vectors.
|
|
// Currently simplistic in its assumptions for testing.
|
|
//
|
|
|
|
|
|
static double bitcost(double prob) {
|
|
return -(log(prob) / log(2.0));
|
|
}
|
|
|
|
static int64_t estimate_modemvcost(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *fpstats) {
|
|
#if 0
|
|
int mv_cost;
|
|
int mode_cost;
|
|
|
|
double av_pct_inter = fpstats->pcnt_inter / fpstats->count;
|
|
double av_pct_motion = fpstats->pcnt_motion / fpstats->count;
|
|
double av_intra = (1.0 - av_pct_inter);
|
|
|
|
double zz_cost;
|
|
double motion_cost;
|
|
double intra_cost;
|
|
|
|
zz_cost = bitcost(av_pct_inter - av_pct_motion);
|
|
motion_cost = bitcost(av_pct_motion);
|
|
intra_cost = bitcost(av_intra);
|
|
|
|
// Estimate of extra bits per mv overhead for mbs
|
|
// << 9 is the normalization to the (bits * 512) used in vp9_rc_bits_per_mb
|
|
mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9;
|
|
|
|
// Crude estimate of overhead cost from modes
|
|
// << 9 is the normalization to (bits * 512) used in vp9_rc_bits_per_mb
|
|
mode_cost =
|
|
(int)((((av_pct_inter - av_pct_motion) * zz_cost) +
|
|
(av_pct_motion * motion_cost) +
|
|
(av_intra * intra_cost)) * cpi->common.MBs) << 9;
|
|
|
|
// return mv_cost + mode_cost;
|
|
// TODO(paulwilkins): Fix overhead costs for extended Q range.
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static double calc_correction_factor(double err_per_mb,
|
|
double err_divisor,
|
|
double pt_low,
|
|
double pt_high,
|
|
int q) {
|
|
const double error_term = err_per_mb / err_divisor;
|
|
|
|
// Adjustment based on actual quantizer to power term.
|
|
const double power_term = MIN(vp9_convert_qindex_to_q(q) * 0.01 + pt_low,
|
|
pt_high);
|
|
|
|
// Calculate correction factor
|
|
if (power_term < 1.0)
|
|
assert(error_term >= 0.0);
|
|
|
|
return fclamp(pow(error_term, power_term), 0.05, 5.0);
|
|
}
|
|
|
|
// Given a current maxQ value sets a range for future values.
|
|
// PGW TODO..
|
|
// This code removes direct dependency on QIndex to determine the range
|
|
// (now uses the actual quantizer) but has not been tuned.
|
|
static void adjust_maxq_qrange(VP9_COMP *cpi) {
|
|
int i;
|
|
// Set the max corresponding to cpi->rc.avg_q * 2.0
|
|
double q = cpi->rc.avg_q * 2.0;
|
|
cpi->twopass.maxq_max_limit = cpi->rc.worst_quality;
|
|
for (i = cpi->rc.best_quality; i <= cpi->rc.worst_quality; i++) {
|
|
cpi->twopass.maxq_max_limit = i;
|
|
if (vp9_convert_qindex_to_q(i) >= q)
|
|
break;
|
|
}
|
|
|
|
// Set the min corresponding to cpi->rc.avg_q * 0.5
|
|
q = cpi->rc.avg_q * 0.5;
|
|
cpi->twopass.maxq_min_limit = cpi->rc.best_quality;
|
|
for (i = cpi->rc.worst_quality; i >= cpi->rc.best_quality; i--) {
|
|
cpi->twopass.maxq_min_limit = i;
|
|
if (vp9_convert_qindex_to_q(i) <= q)
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int estimate_max_q(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *fpstats,
|
|
int section_target_bandwitdh) {
|
|
int q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double section_err = fpstats->coded_error / fpstats->count;
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
|
|
if (section_target_bandwitdh <= 0)
|
|
return cpi->twopass.maxq_max_limit; // Highest value allowed
|
|
|
|
target_norm_bits_per_mb = section_target_bandwitdh < (1 << 20)
|
|
? (512 * section_target_bandwitdh) / num_mbs
|
|
: 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
|
|
// Try and pick a max Q that will be high enough to encode the
|
|
// content at the given rate.
|
|
for (q = cpi->twopass.maxq_min_limit; q < cpi->twopass.maxq_max_limit; q++) {
|
|
int bits_per_mb_at_this_q;
|
|
|
|
err_correction_factor = calc_correction_factor(err_per_mb,
|
|
ERR_DIVISOR, 0.4, 0.90, q);
|
|
|
|
bits_per_mb_at_this_q = vp9_rc_bits_per_mb(INTER_FRAME, q,
|
|
err_correction_factor);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// Restriction on active max q for constrained quality mode.
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
|
|
q < cpi->cq_target_quality)
|
|
q = cpi->cq_target_quality;
|
|
|
|
return q;
|
|
}
|
|
|
|
// For cq mode estimate a cq level that matches the observed
|
|
// complexity and data rate.
|
|
static int estimate_cq(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *fpstats,
|
|
int section_target_bandwitdh) {
|
|
int q;
|
|
int num_mbs = cpi->common.MBs;
|
|
int target_norm_bits_per_mb;
|
|
|
|
double section_err = (fpstats->coded_error / fpstats->count);
|
|
double err_per_mb = section_err / num_mbs;
|
|
double err_correction_factor;
|
|
double clip_iiratio;
|
|
double clip_iifactor;
|
|
|
|
target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20))
|
|
? (512 * section_target_bandwitdh) / num_mbs
|
|
: 512 * (section_target_bandwitdh / num_mbs);
|
|
|
|
|
|
// II ratio correction factor for clip as a whole
|
|
clip_iiratio = cpi->twopass.total_stats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error);
|
|
clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025);
|
|
if (clip_iifactor < 0.80)
|
|
clip_iifactor = 0.80;
|
|
|
|
// Try and pick a Q that can encode the content at the given rate.
|
|
for (q = 0; q < MAXQ; q++) {
|
|
int bits_per_mb_at_this_q;
|
|
|
|
// Error per MB based correction factor
|
|
err_correction_factor =
|
|
calc_correction_factor(err_per_mb, 100.0, 0.4, 0.90, q) * clip_iifactor;
|
|
|
|
bits_per_mb_at_this_q =
|
|
vp9_rc_bits_per_mb(INTER_FRAME, q, err_correction_factor);
|
|
|
|
if (bits_per_mb_at_this_q <= target_norm_bits_per_mb)
|
|
break;
|
|
}
|
|
|
|
// Clip value to range "best allowed to (worst allowed - 1)"
|
|
q = select_cq_level(q);
|
|
if (q >= cpi->rc.worst_quality)
|
|
q = cpi->rc.worst_quality - 1;
|
|
if (q < cpi->rc.best_quality)
|
|
q = cpi->rc.best_quality;
|
|
|
|
return q;
|
|
}
|
|
|
|
extern void vp9_new_framerate(VP9_COMP *cpi, double framerate);
|
|
|
|
void vp9_init_second_pass(VP9_COMP *cpi) {
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
|
|
cpi->oxcf.two_pass_vbrmin_section / 100);
|
|
|
|
if (two_pass_min_rate < lower_bounds_min_rate)
|
|
two_pass_min_rate = lower_bounds_min_rate;
|
|
|
|
zero_stats(&cpi->twopass.total_stats);
|
|
zero_stats(&cpi->twopass.total_left_stats);
|
|
|
|
if (!cpi->twopass.stats_in_end)
|
|
return;
|
|
|
|
cpi->twopass.total_stats = *cpi->twopass.stats_in_end;
|
|
cpi->twopass.total_left_stats = cpi->twopass.total_stats;
|
|
|
|
// each frame can have a different duration, as the frame rate in the source
|
|
// isn't guaranteed to be constant. The frame rate prior to the first frame
|
|
// encoded in the second pass is a guess. However the sum duration is not.
|
|
// Its calculated based on the actual durations of all frames from the first
|
|
// pass.
|
|
vp9_new_framerate(cpi, 10000000.0 * cpi->twopass.total_stats.count /
|
|
cpi->twopass.total_stats.duration);
|
|
|
|
cpi->output_framerate = cpi->oxcf.framerate;
|
|
cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration *
|
|
cpi->oxcf.target_bandwidth / 10000000.0);
|
|
cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration *
|
|
two_pass_min_rate / 10000000.0);
|
|
|
|
// Calculate a minimum intra value to be used in determining the IIratio
|
|
// scores used in the second pass. We have this minimum to make sure
|
|
// that clips that are static but "low complexity" in the intra domain
|
|
// are still boosted appropriately for KF/GF/ARF
|
|
cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs;
|
|
cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs;
|
|
|
|
// This variable monitors how far behind the second ref update is lagging
|
|
cpi->twopass.sr_update_lag = 1;
|
|
|
|
// Scan the first pass file and calculate an average Intra / Inter error score
|
|
// ratio for the sequence.
|
|
{
|
|
double sum_iiratio = 0.0;
|
|
double IIRatio;
|
|
|
|
start_pos = cpi->twopass.stats_in; // Note the starting "file" position.
|
|
|
|
while (input_stats(cpi, &this_frame) != EOF) {
|
|
IIRatio = this_frame.intra_error
|
|
/ DOUBLE_DIVIDE_CHECK(this_frame.coded_error);
|
|
IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio;
|
|
sum_iiratio += IIRatio;
|
|
}
|
|
|
|
cpi->twopass.avg_iiratio = sum_iiratio /
|
|
DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count);
|
|
|
|
// Reset file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
|
|
// Scan the first pass file and calculate a modified total error based upon
|
|
// the bias/power function used to allocate bits.
|
|
{
|
|
start_pos = cpi->twopass.stats_in; // Note starting "file" position
|
|
|
|
cpi->twopass.modified_error_total = 0.0;
|
|
cpi->twopass.modified_error_used = 0.0;
|
|
|
|
while (input_stats(cpi, &this_frame) != EOF) {
|
|
cpi->twopass.modified_error_total +=
|
|
calculate_modified_err(cpi, &this_frame);
|
|
}
|
|
cpi->twopass.modified_error_left = cpi->twopass.modified_error_total;
|
|
|
|
reset_fpf_position(cpi, start_pos); // Reset file position
|
|
}
|
|
}
|
|
|
|
void vp9_end_second_pass(VP9_COMP *cpi) {
|
|
}
|
|
|
|
// This function gives and estimate of how badly we believe
|
|
// the prediction quality is decaying from frame to frame.
|
|
static double get_prediction_decay_rate(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *next_frame) {
|
|
double prediction_decay_rate;
|
|
double second_ref_decay;
|
|
double mb_sr_err_diff;
|
|
|
|
// Initial basis is the % mbs inter coded
|
|
prediction_decay_rate = next_frame->pcnt_inter;
|
|
|
|
// Look at the observed drop in prediction quality between the last frame
|
|
// and the GF buffer (which contains an older frame).
|
|
mb_sr_err_diff = (next_frame->sr_coded_error - next_frame->coded_error) /
|
|
cpi->common.MBs;
|
|
if (mb_sr_err_diff <= 512.0) {
|
|
second_ref_decay = 1.0 - (mb_sr_err_diff / 512.0);
|
|
second_ref_decay = pow(second_ref_decay, 0.5);
|
|
if (second_ref_decay < 0.85)
|
|
second_ref_decay = 0.85;
|
|
else if (second_ref_decay > 1.0)
|
|
second_ref_decay = 1.0;
|
|
} else {
|
|
second_ref_decay = 0.85;
|
|
}
|
|
|
|
if (second_ref_decay < prediction_decay_rate)
|
|
prediction_decay_rate = second_ref_decay;
|
|
|
|
return prediction_decay_rate;
|
|
}
|
|
|
|
// Function to test for a condition where a complex transition is followed
|
|
// by a static section. For example in slide shows where there is a fade
|
|
// between slides. This is to help with more optimal kf and gf positioning.
|
|
static int detect_transition_to_still(
|
|
VP9_COMP *cpi,
|
|
int frame_interval,
|
|
int still_interval,
|
|
double loop_decay_rate,
|
|
double last_decay_rate) {
|
|
int trans_to_still = 0;
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// For example a static image after a fade or other transition
|
|
// instead of a clean scene cut.
|
|
if (frame_interval > MIN_GF_INTERVAL &&
|
|
loop_decay_rate >= 0.999 &&
|
|
last_decay_rate < 0.9) {
|
|
int j;
|
|
FIRSTPASS_STATS *position = cpi->twopass.stats_in;
|
|
FIRSTPASS_STATS tmp_next_frame;
|
|
double zz_inter;
|
|
|
|
// Look ahead a few frames to see if static condition
|
|
// persists...
|
|
for (j = 0; j < still_interval; j++) {
|
|
if (EOF == input_stats(cpi, &tmp_next_frame))
|
|
break;
|
|
|
|
zz_inter =
|
|
(tmp_next_frame.pcnt_inter - tmp_next_frame.pcnt_motion);
|
|
if (zz_inter < 0.999)
|
|
break;
|
|
}
|
|
// Reset file position
|
|
reset_fpf_position(cpi, position);
|
|
|
|
// Only if it does do we signal a transition to still
|
|
if (j == still_interval)
|
|
trans_to_still = 1;
|
|
}
|
|
|
|
return trans_to_still;
|
|
}
|
|
|
|
// This function detects a flash through the high relative pcnt_second_ref
|
|
// score in the frame following a flash frame. The offset passed in should
|
|
// reflect this
|
|
static int detect_flash(VP9_COMP *cpi, int offset) {
|
|
FIRSTPASS_STATS next_frame;
|
|
|
|
int flash_detected = 0;
|
|
|
|
// Read the frame data.
|
|
// The return is FALSE (no flash detected) if not a valid frame
|
|
if (read_frame_stats(cpi, &next_frame, offset) != EOF) {
|
|
// What we are looking for here is a situation where there is a
|
|
// brief break in prediction (such as a flash) but subsequent frames
|
|
// are reasonably well predicted by an earlier (pre flash) frame.
|
|
// The recovery after a flash is indicated by a high pcnt_second_ref
|
|
// comapred to pcnt_inter.
|
|
if (next_frame.pcnt_second_ref > next_frame.pcnt_inter &&
|
|
next_frame.pcnt_second_ref >= 0.5)
|
|
flash_detected = 1;
|
|
}
|
|
|
|
return flash_detected;
|
|
}
|
|
|
|
// Update the motion related elements to the GF arf boost calculation
|
|
static void accumulate_frame_motion_stats(
|
|
FIRSTPASS_STATS *this_frame,
|
|
double *this_frame_mv_in_out,
|
|
double *mv_in_out_accumulator,
|
|
double *abs_mv_in_out_accumulator,
|
|
double *mv_ratio_accumulator) {
|
|
// double this_frame_mv_in_out;
|
|
double this_frame_mvr_ratio;
|
|
double this_frame_mvc_ratio;
|
|
double motion_pct;
|
|
|
|
// Accumulate motion stats.
|
|
motion_pct = this_frame->pcnt_motion;
|
|
|
|
// Accumulate Motion In/Out of frame stats
|
|
*this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct;
|
|
*mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct;
|
|
*abs_mv_in_out_accumulator +=
|
|
fabs(this_frame->mv_in_out_count * motion_pct);
|
|
|
|
// Accumulate a measure of how uniform (or conversely how random)
|
|
// the motion field is. (A ratio of absmv / mv)
|
|
if (motion_pct > 0.05) {
|
|
this_frame_mvr_ratio = fabs(this_frame->mvr_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr));
|
|
|
|
this_frame_mvc_ratio = fabs(this_frame->mvc_abs) /
|
|
DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc));
|
|
|
|
*mv_ratio_accumulator +=
|
|
(this_frame_mvr_ratio < this_frame->mvr_abs)
|
|
? (this_frame_mvr_ratio * motion_pct)
|
|
: this_frame->mvr_abs * motion_pct;
|
|
|
|
*mv_ratio_accumulator +=
|
|
(this_frame_mvc_ratio < this_frame->mvc_abs)
|
|
? (this_frame_mvc_ratio * motion_pct)
|
|
: this_frame->mvc_abs * motion_pct;
|
|
}
|
|
}
|
|
|
|
// Calculate a baseline boost number for the current frame.
|
|
static double calc_frame_boost(
|
|
VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *this_frame,
|
|
double this_frame_mv_in_out) {
|
|
double frame_boost;
|
|
|
|
// Underlying boost factor is based on inter intra error ratio
|
|
if (this_frame->intra_error > cpi->twopass.gf_intra_err_min)
|
|
frame_boost = (IIFACTOR * this_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
|
|
else
|
|
frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error));
|
|
|
|
// Increase boost for frames where new data coming into frame
|
|
// (eg zoom out). Slightly reduce boost if there is a net balance
|
|
// of motion out of the frame (zoom in).
|
|
// The range for this_frame_mv_in_out is -1.0 to +1.0
|
|
if (this_frame_mv_in_out > 0.0)
|
|
frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
|
|
// In extreme case boost is halved
|
|
else
|
|
frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
|
|
|
|
// Clip to maximum
|
|
if (frame_boost > GF_RMAX)
|
|
frame_boost = GF_RMAX;
|
|
|
|
return frame_boost;
|
|
}
|
|
|
|
static int calc_arf_boost(VP9_COMP *cpi, int offset,
|
|
int f_frames, int b_frames,
|
|
int *f_boost, int *b_boost) {
|
|
FIRSTPASS_STATS this_frame;
|
|
|
|
int i;
|
|
double boost_score = 0.0;
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
int arf_boost;
|
|
int flash_detected = 0;
|
|
|
|
// Search forward from the proposed arf/next gf position
|
|
for (i = 0; i < f_frames; i++) {
|
|
if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
|
|
break;
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats(&this_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator,
|
|
&mv_ratio_accumulator);
|
|
|
|
// We want to discount the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(cpi, (i + offset)) ||
|
|
detect_flash(cpi, (i + offset + 1));
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if (!flash_detected) {
|
|
decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame);
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator *
|
|
calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out));
|
|
}
|
|
|
|
*f_boost = (int)boost_score;
|
|
|
|
// Reset for backward looking loop
|
|
boost_score = 0.0;
|
|
mv_ratio_accumulator = 0.0;
|
|
decay_accumulator = 1.0;
|
|
this_frame_mv_in_out = 0.0;
|
|
mv_in_out_accumulator = 0.0;
|
|
abs_mv_in_out_accumulator = 0.0;
|
|
|
|
// Search backward towards last gf position
|
|
for (i = -1; i >= -b_frames; i--) {
|
|
if (read_frame_stats(cpi, &this_frame, (i + offset)) == EOF)
|
|
break;
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats(&this_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator,
|
|
&mv_ratio_accumulator);
|
|
|
|
// We want to discount the the flash frame itself and the recovery
|
|
// frame that follows as both will have poor scores.
|
|
flash_detected = detect_flash(cpi, (i + offset)) ||
|
|
detect_flash(cpi, (i + offset + 1));
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if (!flash_detected) {
|
|
decay_accumulator *= get_prediction_decay_rate(cpi, &this_frame);
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator *
|
|
calc_frame_boost(cpi, &this_frame, this_frame_mv_in_out));
|
|
}
|
|
*b_boost = (int)boost_score;
|
|
|
|
arf_boost = (*f_boost + *b_boost);
|
|
if (arf_boost < ((b_frames + f_frames) * 20))
|
|
arf_boost = ((b_frames + f_frames) * 20);
|
|
|
|
return arf_boost;
|
|
}
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Work out the frame coding order for a GF or an ARF group.
|
|
// The current implementation codes frames in their natural order for a
|
|
// GF group, and inserts additional ARFs into an ARF group using a
|
|
// binary split approach.
|
|
// NOTE: this function is currently implemented recursively.
|
|
static void schedule_frames(VP9_COMP *cpi, const int start, const int end,
|
|
const int arf_idx, const int gf_or_arf_group,
|
|
const int level) {
|
|
int i, abs_end, half_range;
|
|
int *cfo = cpi->frame_coding_order;
|
|
int idx = cpi->new_frame_coding_order_period;
|
|
|
|
// If (end < 0) an ARF should be coded at position (-end).
|
|
assert(start >= 0);
|
|
|
|
// printf("start:%d end:%d\n", start, end);
|
|
|
|
// GF Group: code frames in logical order.
|
|
if (gf_or_arf_group == 0) {
|
|
assert(end >= start);
|
|
for (i = start; i <= end; ++i) {
|
|
cfo[idx] = i;
|
|
cpi->arf_buffer_idx[idx] = arf_idx;
|
|
cpi->arf_weight[idx] = -1;
|
|
++idx;
|
|
}
|
|
cpi->new_frame_coding_order_period = idx;
|
|
return;
|
|
}
|
|
|
|
// ARF Group: work out the ARF schedule.
|
|
// Mark ARF frames as negative.
|
|
if (end < 0) {
|
|
// printf("start:%d end:%d\n", -end, -end);
|
|
// ARF frame is at the end of the range.
|
|
cfo[idx] = end;
|
|
// What ARF buffer does this ARF use as predictor.
|
|
cpi->arf_buffer_idx[idx] = (arf_idx > 2) ? (arf_idx - 1) : 2;
|
|
cpi->arf_weight[idx] = level;
|
|
++idx;
|
|
abs_end = -end;
|
|
} else {
|
|
abs_end = end;
|
|
}
|
|
|
|
half_range = (abs_end - start) >> 1;
|
|
|
|
// ARFs may not be adjacent, they must be separated by at least
|
|
// MIN_GF_INTERVAL non-ARF frames.
|
|
if ((start + MIN_GF_INTERVAL) >= (abs_end - MIN_GF_INTERVAL)) {
|
|
// printf("start:%d end:%d\n", start, abs_end);
|
|
// Update the coding order and active ARF.
|
|
for (i = start; i <= abs_end; ++i) {
|
|
cfo[idx] = i;
|
|
cpi->arf_buffer_idx[idx] = arf_idx;
|
|
cpi->arf_weight[idx] = -1;
|
|
++idx;
|
|
}
|
|
cpi->new_frame_coding_order_period = idx;
|
|
} else {
|
|
// Place a new ARF at the mid-point of the range.
|
|
cpi->new_frame_coding_order_period = idx;
|
|
schedule_frames(cpi, start, -(start + half_range), arf_idx + 1,
|
|
gf_or_arf_group, level + 1);
|
|
schedule_frames(cpi, start + half_range + 1, abs_end, arf_idx,
|
|
gf_or_arf_group, level + 1);
|
|
}
|
|
}
|
|
|
|
#define FIXED_ARF_GROUP_SIZE 16
|
|
|
|
void define_fixed_arf_period(VP9_COMP *cpi) {
|
|
int i;
|
|
int max_level = INT_MIN;
|
|
|
|
assert(cpi->multi_arf_enabled);
|
|
assert(cpi->oxcf.lag_in_frames >= FIXED_ARF_GROUP_SIZE);
|
|
|
|
// Save the weight of the last frame in the sequence before next
|
|
// sequence pattern overwrites it.
|
|
cpi->this_frame_weight = cpi->arf_weight[cpi->sequence_number];
|
|
assert(cpi->this_frame_weight >= 0);
|
|
|
|
// Initialize frame coding order variables.
|
|
cpi->new_frame_coding_order_period = 0;
|
|
cpi->next_frame_in_order = 0;
|
|
cpi->arf_buffered = 0;
|
|
vp9_zero(cpi->frame_coding_order);
|
|
vp9_zero(cpi->arf_buffer_idx);
|
|
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
|
|
|
|
if (cpi->twopass.frames_to_key <= (FIXED_ARF_GROUP_SIZE + 8)) {
|
|
// Setup a GF group close to the keyframe.
|
|
cpi->source_alt_ref_pending = 0;
|
|
cpi->rc.baseline_gf_interval = cpi->twopass.frames_to_key;
|
|
schedule_frames(cpi, 0, (cpi->rc.baseline_gf_interval - 1), 2, 0, 0);
|
|
} else {
|
|
// Setup a fixed period ARF group.
|
|
cpi->source_alt_ref_pending = 1;
|
|
cpi->rc.baseline_gf_interval = FIXED_ARF_GROUP_SIZE;
|
|
schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0);
|
|
}
|
|
|
|
// Replace level indicator of -1 with correct level.
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
if (cpi->arf_weight[i] > max_level) {
|
|
max_level = cpi->arf_weight[i];
|
|
}
|
|
}
|
|
++max_level;
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
if (cpi->arf_weight[i] == -1) {
|
|
cpi->arf_weight[i] = max_level;
|
|
}
|
|
}
|
|
cpi->max_arf_level = max_level;
|
|
#if 0
|
|
printf("\nSchedule: ");
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
printf("%4d ", cpi->frame_coding_order[i]);
|
|
}
|
|
printf("\n");
|
|
printf("ARFref: ");
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
printf("%4d ", cpi->arf_buffer_idx[i]);
|
|
}
|
|
printf("\n");
|
|
printf("Weight: ");
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
printf("%4d ", cpi->arf_weight[i]);
|
|
}
|
|
printf("\n");
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Analyse and define a gf/arf group.
|
|
static void define_gf_group(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
FIRSTPASS_STATS next_frame = { 0 };
|
|
FIRSTPASS_STATS *start_pos;
|
|
int i;
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double gf_group_err = 0.0;
|
|
double gf_first_frame_err = 0.0;
|
|
double mod_frame_err = 0.0;
|
|
|
|
double mv_ratio_accumulator = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double zero_motion_accumulator = 1.0;
|
|
|
|
double loop_decay_rate = 1.00; // Starting decay rate
|
|
double last_loop_decay_rate = 1.00;
|
|
|
|
double this_frame_mv_in_out = 0.0;
|
|
double mv_in_out_accumulator = 0.0;
|
|
double abs_mv_in_out_accumulator = 0.0;
|
|
double mv_ratio_accumulator_thresh;
|
|
int max_bits = frame_max_bits(cpi); // Max for a single frame
|
|
|
|
unsigned int allow_alt_ref =
|
|
cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames;
|
|
|
|
int f_boost = 0;
|
|
int b_boost = 0;
|
|
int flash_detected;
|
|
int active_max_gf_interval;
|
|
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
// Load stats for the current frame.
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// Note the error of the frame at the start of the group (this will be
|
|
// the GF frame error if we code a normal gf
|
|
gf_first_frame_err = mod_frame_err;
|
|
|
|
// Special treatment if the current frame is a key frame (which is also
|
|
// a gf). If it is then its error score (and hence bit allocation) need
|
|
// to be subtracted out from the calculation for the GF group
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
gf_group_err -= gf_first_frame_err;
|
|
|
|
// Motion breakout threshold for loop below depends on image size.
|
|
mv_ratio_accumulator_thresh = (cpi->common.width + cpi->common.height) / 10.0;
|
|
|
|
// Work out a maximum interval for the GF.
|
|
// If the image appears completely static we can extend beyond this.
|
|
// The value chosen depends on the active Q range. At low Q we have
|
|
// bits to spare and are better with a smaller interval and smaller boost.
|
|
// At high Q when there are few bits to spare we are better with a longer
|
|
// interval to spread the cost of the GF.
|
|
active_max_gf_interval =
|
|
12 + ((int)vp9_convert_qindex_to_q(cpi->rc.active_worst_quality) >> 5);
|
|
|
|
if (active_max_gf_interval > cpi->rc.max_gf_interval)
|
|
active_max_gf_interval = cpi->rc.max_gf_interval;
|
|
|
|
i = 0;
|
|
while (((i < cpi->twopass.static_scene_max_gf_interval) ||
|
|
((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) &&
|
|
(i < cpi->twopass.frames_to_key)) {
|
|
i++; // Increment the loop counter
|
|
|
|
// Accumulate error score of frames in this gf group
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
gf_group_err += mod_frame_err;
|
|
|
|
if (EOF == input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
// Test for the case where there is a brief flash but the prediction
|
|
// quality back to an earlier frame is then restored.
|
|
flash_detected = detect_flash(cpi, 0);
|
|
|
|
// Update the motion related elements to the boost calculation
|
|
accumulate_frame_motion_stats(&next_frame,
|
|
&this_frame_mv_in_out, &mv_in_out_accumulator,
|
|
&abs_mv_in_out_accumulator,
|
|
&mv_ratio_accumulator);
|
|
|
|
// Cumulative effect of prediction quality decay
|
|
if (!flash_detected) {
|
|
last_loop_decay_rate = loop_decay_rate;
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
|
|
// Monitor for static sections.
|
|
if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
|
|
zero_motion_accumulator) {
|
|
zero_motion_accumulator =
|
|
(next_frame.pcnt_inter - next_frame.pcnt_motion);
|
|
}
|
|
|
|
// Break clause to detect very still sections after motion
|
|
// (for example a static image after a fade or other transition).
|
|
if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
|
|
last_loop_decay_rate)) {
|
|
allow_alt_ref = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Calculate a boost number for this frame
|
|
boost_score +=
|
|
(decay_accumulator *
|
|
calc_frame_boost(cpi, &next_frame, this_frame_mv_in_out));
|
|
|
|
// Break out conditions.
|
|
if (
|
|
// Break at cpi->max_gf_interval unless almost totally static
|
|
(i >= active_max_gf_interval && (zero_motion_accumulator < 0.995)) ||
|
|
(
|
|
// Don't break out with a very short interval
|
|
(i > MIN_GF_INTERVAL) &&
|
|
// Don't break out very close to a key frame
|
|
((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) &&
|
|
((boost_score > 125.0) || (next_frame.pcnt_inter < 0.75)) &&
|
|
(!flash_detected) &&
|
|
((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
|
|
(abs_mv_in_out_accumulator > 3.0) ||
|
|
(mv_in_out_accumulator < -2.0) ||
|
|
((boost_score - old_boost_score) < IIFACTOR)))) {
|
|
boost_score = old_boost_score;
|
|
break;
|
|
}
|
|
|
|
*this_frame = next_frame;
|
|
|
|
old_boost_score = boost_score;
|
|
}
|
|
|
|
cpi->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
|
|
|
|
// Don't allow a gf too near the next kf
|
|
if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) {
|
|
while (i < cpi->twopass.frames_to_key) {
|
|
i++;
|
|
|
|
if (EOF == input_stats(cpi, this_frame))
|
|
break;
|
|
|
|
if (i < cpi->twopass.frames_to_key) {
|
|
mod_frame_err = calculate_modified_err(cpi, this_frame);
|
|
gf_group_err += mod_frame_err;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set the interval until the next gf or arf.
|
|
cpi->rc.baseline_gf_interval = i;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (cpi->multi_arf_enabled) {
|
|
// Initialize frame coding order variables.
|
|
cpi->new_frame_coding_order_period = 0;
|
|
cpi->next_frame_in_order = 0;
|
|
cpi->arf_buffered = 0;
|
|
vp9_zero(cpi->frame_coding_order);
|
|
vp9_zero(cpi->arf_buffer_idx);
|
|
vpx_memset(cpi->arf_weight, -1, sizeof(cpi->arf_weight));
|
|
}
|
|
#endif
|
|
|
|
// Should we use the alternate reference frame
|
|
if (allow_alt_ref &&
|
|
(i < cpi->oxcf.lag_in_frames) &&
|
|
(i >= MIN_GF_INTERVAL) &&
|
|
// dont use ARF very near next kf
|
|
(i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) &&
|
|
((next_frame.pcnt_inter > 0.75) ||
|
|
(next_frame.pcnt_second_ref > 0.5)) &&
|
|
((mv_in_out_accumulator / (double)i > -0.2) ||
|
|
(mv_in_out_accumulator > -2.0)) &&
|
|
(boost_score > 100)) {
|
|
// Alternative boost calculation for alt ref
|
|
cpi->rc.gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
|
|
&b_boost);
|
|
cpi->source_alt_ref_pending = 1;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Set the ARF schedule.
|
|
if (cpi->multi_arf_enabled) {
|
|
schedule_frames(cpi, 0, -(cpi->rc.baseline_gf_interval - 1), 2, 1, 0);
|
|
}
|
|
#endif
|
|
} else {
|
|
cpi->rc.gfu_boost = (int)boost_score;
|
|
cpi->source_alt_ref_pending = 0;
|
|
#if CONFIG_MULTIPLE_ARF
|
|
// Set the GF schedule.
|
|
if (cpi->multi_arf_enabled) {
|
|
schedule_frames(cpi, 0, cpi->rc.baseline_gf_interval - 1, 2, 0, 0);
|
|
assert(cpi->new_frame_coding_order_period ==
|
|
cpi->rc.baseline_gf_interval);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (cpi->multi_arf_enabled && (cpi->common.frame_type != KEY_FRAME)) {
|
|
int max_level = INT_MIN;
|
|
// Replace level indicator of -1 with correct level.
|
|
for (i = 0; i < cpi->frame_coding_order_period; ++i) {
|
|
if (cpi->arf_weight[i] > max_level) {
|
|
max_level = cpi->arf_weight[i];
|
|
}
|
|
}
|
|
++max_level;
|
|
for (i = 0; i < cpi->frame_coding_order_period; ++i) {
|
|
if (cpi->arf_weight[i] == -1) {
|
|
cpi->arf_weight[i] = max_level;
|
|
}
|
|
}
|
|
cpi->max_arf_level = max_level;
|
|
}
|
|
#if 0
|
|
if (cpi->multi_arf_enabled) {
|
|
printf("\nSchedule: ");
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
printf("%4d ", cpi->frame_coding_order[i]);
|
|
}
|
|
printf("\n");
|
|
printf("ARFref: ");
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
printf("%4d ", cpi->arf_buffer_idx[i]);
|
|
}
|
|
printf("\n");
|
|
printf("Weight: ");
|
|
for (i = 0; i < cpi->new_frame_coding_order_period; ++i) {
|
|
printf("%4d ", cpi->arf_weight[i]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// Now decide how many bits should be allocated to the GF group as a
|
|
// proportion of those remaining in the kf group.
|
|
// The final key frame group in the clip is treated as a special case
|
|
// where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left.
|
|
// This is also important for short clips where there may only be one
|
|
// key frame.
|
|
if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count -
|
|
cpi->common.current_video_frame)) {
|
|
cpi->twopass.kf_group_bits =
|
|
(cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0;
|
|
}
|
|
|
|
// Calculate the bits to be allocated to the group as a whole
|
|
if ((cpi->twopass.kf_group_bits > 0) &&
|
|
(cpi->twopass.kf_group_error_left > 0)) {
|
|
cpi->twopass.gf_group_bits =
|
|
(int64_t)(cpi->twopass.kf_group_bits *
|
|
(gf_group_err / cpi->twopass.kf_group_error_left));
|
|
} else {
|
|
cpi->twopass.gf_group_bits = 0;
|
|
}
|
|
cpi->twopass.gf_group_bits =
|
|
(cpi->twopass.gf_group_bits < 0)
|
|
? 0
|
|
: (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits)
|
|
? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits;
|
|
|
|
// Clip cpi->twopass.gf_group_bits based on user supplied data rate
|
|
// variability limit (cpi->oxcf.two_pass_vbrmax_section)
|
|
if (cpi->twopass.gf_group_bits >
|
|
(int64_t)max_bits * cpi->rc.baseline_gf_interval)
|
|
cpi->twopass.gf_group_bits =
|
|
(int64_t)max_bits * cpi->rc.baseline_gf_interval;
|
|
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
// Update the record of error used so far (only done once per gf group)
|
|
cpi->twopass.modified_error_used += gf_group_err;
|
|
|
|
// Assign bits to the arf or gf.
|
|
for (i = 0;
|
|
i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME);
|
|
++i) {
|
|
int allocation_chunks;
|
|
int q = cpi->rc.last_q[INTER_FRAME];
|
|
int gf_bits;
|
|
|
|
int boost = (cpi->rc.gfu_boost * gfboost_qadjust(q)) / 100;
|
|
|
|
// Set max and minimum boost and hence minimum allocation
|
|
boost = clamp(boost, 125, (cpi->rc.baseline_gf_interval + 1) * 200);
|
|
|
|
if (cpi->source_alt_ref_pending && i == 0)
|
|
allocation_chunks = ((cpi->rc.baseline_gf_interval + 1) * 100) + boost;
|
|
else
|
|
allocation_chunks = (cpi->rc.baseline_gf_interval * 100) + (boost - 100);
|
|
|
|
// Prevent overflow
|
|
if (boost > 1023) {
|
|
int divisor = boost >> 10;
|
|
boost /= divisor;
|
|
allocation_chunks /= divisor;
|
|
}
|
|
|
|
// Calculate the number of bits to be spent on the gf or arf based on
|
|
// the boost number
|
|
gf_bits = (int)((double)boost * (cpi->twopass.gf_group_bits /
|
|
(double)allocation_chunks));
|
|
|
|
// If the frame that is to be boosted is simpler than the average for
|
|
// the gf/arf group then use an alternative calculation
|
|
// based on the error score of the frame itself
|
|
if (mod_frame_err < gf_group_err / (double)cpi->rc.baseline_gf_interval) {
|
|
double alt_gf_grp_bits =
|
|
(double)cpi->twopass.kf_group_bits *
|
|
(mod_frame_err * (double)cpi->rc.baseline_gf_interval) /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left);
|
|
|
|
int alt_gf_bits = (int)((double)boost * (alt_gf_grp_bits /
|
|
(double)allocation_chunks));
|
|
|
|
if (gf_bits > alt_gf_bits)
|
|
gf_bits = alt_gf_bits;
|
|
} else {
|
|
// If it is harder than other frames in the group make sure it at
|
|
// least receives an allocation in keeping with its relative error
|
|
// score, otherwise it may be worse off than an "un-boosted" frame.
|
|
int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits *
|
|
mod_frame_err /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.kf_group_error_left));
|
|
|
|
if (alt_gf_bits > gf_bits)
|
|
gf_bits = alt_gf_bits;
|
|
}
|
|
|
|
// Dont allow a negative value for gf_bits
|
|
if (gf_bits < 0)
|
|
gf_bits = 0;
|
|
|
|
// Add in minimum for a frame
|
|
gf_bits += cpi->rc.min_frame_bandwidth;
|
|
|
|
if (i == 0) {
|
|
cpi->twopass.gf_bits = gf_bits;
|
|
}
|
|
if (i == 1 || (!cpi->source_alt_ref_pending
|
|
&& (cpi->common.frame_type != KEY_FRAME))) {
|
|
// Per frame bit target for this frame
|
|
cpi->rc.per_frame_bandwidth = gf_bits;
|
|
}
|
|
}
|
|
|
|
{
|
|
// Adjust KF group bits and error remaining
|
|
cpi->twopass.kf_group_error_left -= (int64_t)gf_group_err;
|
|
cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits;
|
|
|
|
if (cpi->twopass.kf_group_bits < 0)
|
|
cpi->twopass.kf_group_bits = 0;
|
|
|
|
// Note the error score left in the remaining frames of the group.
|
|
// For normal GFs we want to remove the error score for the first frame
|
|
// of the group (except in Key frame case where this has already
|
|
// happened)
|
|
if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME)
|
|
cpi->twopass.gf_group_error_left = (int64_t)(gf_group_err
|
|
- gf_first_frame_err);
|
|
else
|
|
cpi->twopass.gf_group_error_left = (int64_t)gf_group_err;
|
|
|
|
cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits
|
|
- cpi->rc.min_frame_bandwidth;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
// This condition could fail if there are two kfs very close together
|
|
// despite (MIN_GF_INTERVAL) and would cause a divide by 0 in the
|
|
// calculation of alt_extra_bits.
|
|
if (cpi->rc.baseline_gf_interval >= 3) {
|
|
const int boost = cpi->source_alt_ref_pending ?
|
|
b_boost : cpi->rc.gfu_boost;
|
|
|
|
if (boost >= 150) {
|
|
int alt_extra_bits;
|
|
int pct_extra = (boost - 100) / 50;
|
|
pct_extra = (pct_extra > 20) ? 20 : pct_extra;
|
|
|
|
alt_extra_bits = (int)((cpi->twopass.gf_group_bits * pct_extra) / 100);
|
|
cpi->twopass.gf_group_bits -= alt_extra_bits;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cpi->common.frame_type != KEY_FRAME) {
|
|
FIRSTPASS_STATS sectionstats;
|
|
|
|
zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
for (i = 0; i < cpi->rc.baseline_gf_interval; i++) {
|
|
input_stats(cpi, &next_frame);
|
|
accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
avg_stats(§ionstats);
|
|
|
|
cpi->twopass.section_intra_rating = (int)
|
|
(sectionstats.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
|
|
|
|
reset_fpf_position(cpi, start_pos);
|
|
}
|
|
}
|
|
|
|
// Allocate bits to a normal frame that is neither a gf an arf or a key frame.
|
|
static void assign_std_frame_bits(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
int target_frame_size;
|
|
|
|
double modified_err;
|
|
double err_fraction;
|
|
|
|
// Max for a single frame.
|
|
int max_bits = frame_max_bits(cpi);
|
|
|
|
// Calculate modified prediction error used in bit allocation.
|
|
modified_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
if (cpi->twopass.gf_group_error_left > 0)
|
|
// What portion of the remaining GF group error is used by this frame.
|
|
err_fraction = modified_err / cpi->twopass.gf_group_error_left;
|
|
else
|
|
err_fraction = 0.0;
|
|
|
|
// How many of those bits available for allocation should we give it?
|
|
target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction);
|
|
|
|
// Clip target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at
|
|
// the top end.
|
|
if (target_frame_size < 0) {
|
|
target_frame_size = 0;
|
|
} else {
|
|
if (target_frame_size > max_bits)
|
|
target_frame_size = max_bits;
|
|
|
|
if (target_frame_size > cpi->twopass.gf_group_bits)
|
|
target_frame_size = (int)cpi->twopass.gf_group_bits;
|
|
}
|
|
|
|
// Adjust error and bits remaining.
|
|
cpi->twopass.gf_group_error_left -= (int64_t)modified_err;
|
|
cpi->twopass.gf_group_bits -= target_frame_size;
|
|
|
|
if (cpi->twopass.gf_group_bits < 0)
|
|
cpi->twopass.gf_group_bits = 0;
|
|
|
|
// Add in the minimum number of bits that is set aside for every frame.
|
|
target_frame_size += cpi->rc.min_frame_bandwidth;
|
|
|
|
// Per frame bit target for this frame.
|
|
cpi->rc.per_frame_bandwidth = target_frame_size;
|
|
}
|
|
|
|
// Make a damped adjustment to the active max q.
|
|
static int adjust_active_maxq(int old_maxqi, int new_maxqi) {
|
|
int i;
|
|
const double old_q = vp9_convert_qindex_to_q(old_maxqi);
|
|
const double new_q = vp9_convert_qindex_to_q(new_maxqi);
|
|
const double target_q = ((old_q * 7.0) + new_q) / 8.0;
|
|
|
|
if (target_q > old_q) {
|
|
for (i = old_maxqi; i <= new_maxqi; i++)
|
|
if (vp9_convert_qindex_to_q(i) >= target_q)
|
|
return i;
|
|
} else {
|
|
for (i = old_maxqi; i >= new_maxqi; i--)
|
|
if (vp9_convert_qindex_to_q(i) <= target_q)
|
|
return i;
|
|
}
|
|
|
|
return new_maxqi;
|
|
}
|
|
|
|
void vp9_second_pass(VP9_COMP *cpi) {
|
|
int tmp_q;
|
|
int frames_left = (int)(cpi->twopass.total_stats.count -
|
|
cpi->common.current_video_frame);
|
|
|
|
FIRSTPASS_STATS this_frame;
|
|
FIRSTPASS_STATS this_frame_copy;
|
|
|
|
double this_frame_intra_error;
|
|
double this_frame_coded_error;
|
|
|
|
if (!cpi->twopass.stats_in)
|
|
return;
|
|
|
|
vp9_clear_system_state();
|
|
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTANT_QUALITY) {
|
|
cpi->rc.active_worst_quality = cpi->oxcf.cq_level;
|
|
} else if (cpi->common.current_video_frame == 0) {
|
|
// Special case code for first frame.
|
|
int section_target_bandwidth =
|
|
(int)(cpi->twopass.bits_left / frames_left);
|
|
|
|
// guess at maxq needed in 2nd pass
|
|
cpi->twopass.maxq_max_limit = cpi->rc.worst_quality;
|
|
cpi->twopass.maxq_min_limit = cpi->rc.best_quality;
|
|
|
|
tmp_q = estimate_max_q(cpi, &cpi->twopass.total_left_stats,
|
|
section_target_bandwidth);
|
|
|
|
cpi->rc.active_worst_quality = tmp_q;
|
|
cpi->rc.ni_av_qi = tmp_q;
|
|
cpi->rc.avg_q = vp9_convert_qindex_to_q(tmp_q);
|
|
|
|
// Limit the maxq value returned subsequently.
|
|
// This increases the risk of overspend or underspend if the initial
|
|
// estimate for the clip is bad, but helps prevent excessive
|
|
// variation in Q, especially near the end of a clip
|
|
// where for example a small overspend may cause Q to crash
|
|
adjust_maxq_qrange(cpi);
|
|
}
|
|
vp9_zero(this_frame);
|
|
if (EOF == input_stats(cpi, &this_frame))
|
|
return;
|
|
|
|
this_frame_intra_error = this_frame.intra_error;
|
|
this_frame_coded_error = this_frame.coded_error;
|
|
|
|
// keyframe and section processing !
|
|
if (cpi->twopass.frames_to_key == 0) {
|
|
// Define next KF group and assign bits to it
|
|
this_frame_copy = this_frame;
|
|
find_next_key_frame(cpi, &this_frame_copy);
|
|
}
|
|
|
|
// Is this a GF / ARF (Note that a KF is always also a GF)
|
|
if (cpi->rc.frames_till_gf_update_due == 0) {
|
|
// Define next gf group and assign bits to it
|
|
this_frame_copy = this_frame;
|
|
|
|
cpi->gf_zeromotion_pct = 0;
|
|
|
|
#if CONFIG_MULTIPLE_ARF
|
|
if (cpi->multi_arf_enabled) {
|
|
define_fixed_arf_period(cpi);
|
|
} else {
|
|
#endif
|
|
define_gf_group(cpi, &this_frame_copy);
|
|
#if CONFIG_MULTIPLE_ARF
|
|
}
|
|
#endif
|
|
|
|
if (cpi->gf_zeromotion_pct > 995) {
|
|
// As long as max_thresh for encode breakout is small enough, it is ok
|
|
// to enable it for no-show frame, i.e. set enable_encode_breakout to 2.
|
|
if (!cpi->common.show_frame)
|
|
cpi->enable_encode_breakout = 0;
|
|
else
|
|
cpi->enable_encode_breakout = 2;
|
|
}
|
|
|
|
// If we are going to code an altref frame at the end of the group
|
|
// and the current frame is not a key frame....
|
|
// If the previous group used an arf this frame has already benefited
|
|
// from that arf boost and it should not be given extra bits
|
|
// If the previous group was NOT coded using arf we may want to apply
|
|
// some boost to this GF as well
|
|
if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) {
|
|
// Assign a standard frames worth of bits from those allocated
|
|
// to the GF group
|
|
int bak = cpi->rc.per_frame_bandwidth;
|
|
this_frame_copy = this_frame;
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
cpi->rc.per_frame_bandwidth = bak;
|
|
}
|
|
} else {
|
|
// Otherwise this is an ordinary frame
|
|
// Assign bits from those allocated to the GF group
|
|
this_frame_copy = this_frame;
|
|
assign_std_frame_bits(cpi, &this_frame_copy);
|
|
}
|
|
|
|
// Keep a globally available copy of this and the next frame's iiratio.
|
|
cpi->twopass.this_iiratio = (int)(this_frame_intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame_coded_error));
|
|
{
|
|
FIRSTPASS_STATS next_frame;
|
|
if (lookup_next_frame_stats(cpi, &next_frame) != EOF) {
|
|
cpi->twopass.next_iiratio = (int)(next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
}
|
|
}
|
|
|
|
// Set nominal per second bandwidth for this frame
|
|
cpi->target_bandwidth = (int)(cpi->rc.per_frame_bandwidth
|
|
* cpi->output_framerate);
|
|
if (cpi->target_bandwidth < 0)
|
|
cpi->target_bandwidth = 0;
|
|
|
|
cpi->twopass.frames_to_key--;
|
|
|
|
// Update the total stats remaining structure
|
|
subtract_stats(&cpi->twopass.total_left_stats, &this_frame);
|
|
}
|
|
|
|
static int test_candidate_kf(VP9_COMP *cpi,
|
|
FIRSTPASS_STATS *last_frame,
|
|
FIRSTPASS_STATS *this_frame,
|
|
FIRSTPASS_STATS *next_frame) {
|
|
int is_viable_kf = 0;
|
|
|
|
// Does the frame satisfy the primary criteria of a key frame
|
|
// If so, then examine how well it predicts subsequent frames
|
|
if ((this_frame->pcnt_second_ref < 0.10) &&
|
|
(next_frame->pcnt_second_ref < 0.10) &&
|
|
((this_frame->pcnt_inter < 0.05) ||
|
|
(((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .35) &&
|
|
((this_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) &&
|
|
((fabs(last_frame->coded_error - this_frame->coded_error) /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
|
|
.40) ||
|
|
(fabs(last_frame->intra_error - this_frame->intra_error) /
|
|
DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
|
|
.40) ||
|
|
((next_frame->intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5))))) {
|
|
int i;
|
|
FIRSTPASS_STATS *start_pos;
|
|
|
|
FIRSTPASS_STATS local_next_frame;
|
|
|
|
double boost_score = 0.0;
|
|
double old_boost_score = 0.0;
|
|
double decay_accumulator = 1.0;
|
|
double next_iiratio;
|
|
|
|
local_next_frame = *next_frame;
|
|
|
|
// Note the starting file position so we can reset to it
|
|
start_pos = cpi->twopass.stats_in;
|
|
|
|
// Examine how well the key frame predicts subsequent frames
|
|
for (i = 0; i < 16; i++) {
|
|
next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
|
|
|
|
if (next_iiratio > RMAX)
|
|
next_iiratio = RMAX;
|
|
|
|
// Cumulative effect of decay in prediction quality
|
|
if (local_next_frame.pcnt_inter > 0.85)
|
|
decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
else
|
|
decay_accumulator =
|
|
decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0);
|
|
|
|
// decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter;
|
|
|
|
// Keep a running total
|
|
boost_score += (decay_accumulator * next_iiratio);
|
|
|
|
// Test various breakout clauses
|
|
if ((local_next_frame.pcnt_inter < 0.05) ||
|
|
(next_iiratio < 1.5) ||
|
|
(((local_next_frame.pcnt_inter -
|
|
local_next_frame.pcnt_neutral) < 0.20) &&
|
|
(next_iiratio < 3.0)) ||
|
|
((boost_score - old_boost_score) < 3.0) ||
|
|
(local_next_frame.intra_error < 200)
|
|
) {
|
|
break;
|
|
}
|
|
|
|
old_boost_score = boost_score;
|
|
|
|
// Get the next frame details
|
|
if (EOF == input_stats(cpi, &local_next_frame))
|
|
break;
|
|
}
|
|
|
|
// If there is tolerable prediction for at least the next 3 frames then
|
|
// break out else discard this potential key frame and move on
|
|
if (boost_score > 30.0 && (i > 3)) {
|
|
is_viable_kf = 1;
|
|
} else {
|
|
// Reset the file position
|
|
reset_fpf_position(cpi, start_pos);
|
|
|
|
is_viable_kf = 0;
|
|
}
|
|
}
|
|
|
|
return is_viable_kf;
|
|
}
|
|
static void find_next_key_frame(VP9_COMP *cpi, FIRSTPASS_STATS *this_frame) {
|
|
int i, j;
|
|
FIRSTPASS_STATS last_frame;
|
|
FIRSTPASS_STATS first_frame;
|
|
FIRSTPASS_STATS next_frame;
|
|
FIRSTPASS_STATS *start_position;
|
|
|
|
double decay_accumulator = 1.0;
|
|
double zero_motion_accumulator = 1.0;
|
|
double boost_score = 0;
|
|
double loop_decay_rate;
|
|
|
|
double kf_mod_err = 0.0;
|
|
double kf_group_err = 0.0;
|
|
double kf_group_intra_err = 0.0;
|
|
double kf_group_coded_err = 0.0;
|
|
double recent_loop_decay[8] = {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
|
|
|
|
vp9_zero(next_frame);
|
|
|
|
vp9_clear_system_state(); // __asm emms;
|
|
start_position = cpi->twopass.stats_in;
|
|
|
|
cpi->common.frame_type = KEY_FRAME;
|
|
|
|
// is this a forced key frame by interval
|
|
cpi->this_key_frame_forced = cpi->next_key_frame_forced;
|
|
|
|
// Clear the alt ref active flag as this can never be active on a key frame
|
|
cpi->source_alt_ref_active = 0;
|
|
|
|
// Kf is always a gf so clear frames till next gf counter
|
|
cpi->rc.frames_till_gf_update_due = 0;
|
|
|
|
cpi->twopass.frames_to_key = 1;
|
|
|
|
// Take a copy of the initial frame details
|
|
first_frame = *this_frame;
|
|
|
|
cpi->twopass.kf_group_bits = 0; // Total bits available to kf group
|
|
cpi->twopass.kf_group_error_left = 0; // Group modified error score.
|
|
|
|
kf_mod_err = calculate_modified_err(cpi, this_frame);
|
|
|
|
// find the next keyframe
|
|
i = 0;
|
|
while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) {
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including
|
|
// key frames in the group. The effect of the key frame itself can be
|
|
// subtracted out using the first_frame data collected above.
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
|
|
// load a the next frame's stats
|
|
last_frame = *this_frame;
|
|
input_stats(cpi, this_frame);
|
|
|
|
// Provided that we are not at the end of the file...
|
|
if (cpi->oxcf.auto_key
|
|
&& lookup_next_frame_stats(cpi, &next_frame) != EOF) {
|
|
// Normal scene cut check
|
|
if (test_candidate_kf(cpi, &last_frame, this_frame, &next_frame))
|
|
break;
|
|
|
|
|
|
// How fast is prediction quality decaying
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
|
|
// We want to know something about the recent past... rather than
|
|
// as used elsewhere where we are concened with decay in prediction
|
|
// quality since the last GF or KF.
|
|
recent_loop_decay[i % 8] = loop_decay_rate;
|
|
decay_accumulator = 1.0;
|
|
for (j = 0; j < 8; j++)
|
|
decay_accumulator *= recent_loop_decay[j];
|
|
|
|
// Special check for transition or high motion followed by a
|
|
// to a static scene.
|
|
if (detect_transition_to_still(cpi, i, cpi->key_frame_frequency - i,
|
|
loop_decay_rate, decay_accumulator))
|
|
break;
|
|
|
|
// Step on to the next frame
|
|
cpi->twopass.frames_to_key++;
|
|
|
|
// If we don't have a real key frame within the next two
|
|
// forcekeyframeevery intervals then break out of the loop.
|
|
if (cpi->twopass.frames_to_key >= 2 * (int)cpi->key_frame_frequency)
|
|
break;
|
|
} else {
|
|
cpi->twopass.frames_to_key++;
|
|
}
|
|
i++;
|
|
}
|
|
|
|
// If there is a max kf interval set by the user we must obey it.
|
|
// We already breakout of the loop above at 2x max.
|
|
// This code centers the extra kf if the actual natural
|
|
// interval is between 1x and 2x
|
|
if (cpi->oxcf.auto_key
|
|
&& cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency) {
|
|
FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in;
|
|
FIRSTPASS_STATS tmp_frame;
|
|
|
|
cpi->twopass.frames_to_key /= 2;
|
|
|
|
// Copy first frame details
|
|
tmp_frame = first_frame;
|
|
|
|
// Reset to the start of the group
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
kf_group_err = 0;
|
|
kf_group_intra_err = 0;
|
|
kf_group_coded_err = 0;
|
|
|
|
// Rescan to get the correct error data for the forced kf group
|
|
for (i = 0; i < cpi->twopass.frames_to_key; i++) {
|
|
// Accumulate kf group errors
|
|
kf_group_err += calculate_modified_err(cpi, &tmp_frame);
|
|
kf_group_intra_err += tmp_frame.intra_error;
|
|
kf_group_coded_err += tmp_frame.coded_error;
|
|
|
|
// Load a the next frame's stats
|
|
input_stats(cpi, &tmp_frame);
|
|
}
|
|
|
|
// Reset to the start of the group
|
|
reset_fpf_position(cpi, current_pos);
|
|
|
|
cpi->next_key_frame_forced = 1;
|
|
} else {
|
|
cpi->next_key_frame_forced = 0;
|
|
}
|
|
// Special case for the last frame of the file
|
|
if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) {
|
|
// Accumulate kf group error
|
|
kf_group_err += calculate_modified_err(cpi, this_frame);
|
|
|
|
// These figures keep intra and coded error counts for all frames including
|
|
// key frames in the group. The effect of the key frame itself can be
|
|
// subtracted out using the first_frame data collected above.
|
|
kf_group_intra_err += this_frame->intra_error;
|
|
kf_group_coded_err += this_frame->coded_error;
|
|
}
|
|
|
|
// Calculate the number of bits that should be assigned to the kf group.
|
|
if ((cpi->twopass.bits_left > 0) &&
|
|
(cpi->twopass.modified_error_left > 0.0)) {
|
|
// Max for a single normal frame (not key frame)
|
|
int max_bits = frame_max_bits(cpi);
|
|
|
|
// Maximum bits for the kf group
|
|
int64_t max_grp_bits;
|
|
|
|
// Default allocation based on bits left and relative
|
|
// complexity of the section
|
|
cpi->twopass.kf_group_bits = (int64_t)(cpi->twopass.bits_left *
|
|
(kf_group_err /
|
|
cpi->twopass.modified_error_left));
|
|
|
|
// Clip based on maximum per frame rate defined by the user.
|
|
max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key;
|
|
if (cpi->twopass.kf_group_bits > max_grp_bits)
|
|
cpi->twopass.kf_group_bits = max_grp_bits;
|
|
} else {
|
|
cpi->twopass.kf_group_bits = 0;
|
|
}
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// Determine how big to make this keyframe based on how well the subsequent
|
|
// frames use inter blocks.
|
|
decay_accumulator = 1.0;
|
|
boost_score = 0.0;
|
|
loop_decay_rate = 1.00; // Starting decay rate
|
|
|
|
// Scan through the kf group collating various stats.
|
|
for (i = 0; i < cpi->twopass.frames_to_key; i++) {
|
|
double r;
|
|
|
|
if (EOF == input_stats(cpi, &next_frame))
|
|
break;
|
|
|
|
// Monitor for static sections.
|
|
if ((next_frame.pcnt_inter - next_frame.pcnt_motion) <
|
|
zero_motion_accumulator) {
|
|
zero_motion_accumulator =
|
|
(next_frame.pcnt_inter - next_frame.pcnt_motion);
|
|
}
|
|
|
|
// For the first few frames collect data to decide kf boost.
|
|
if (i <= (cpi->rc.max_gf_interval * 2)) {
|
|
if (next_frame.intra_error > cpi->twopass.kf_intra_err_min)
|
|
r = (IIKFACTOR2 * next_frame.intra_error /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
else
|
|
r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min /
|
|
DOUBLE_DIVIDE_CHECK(next_frame.coded_error));
|
|
|
|
if (r > RMAX)
|
|
r = RMAX;
|
|
|
|
// How fast is prediction quality decaying
|
|
if (!detect_flash(cpi, 0)) {
|
|
loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
|
|
decay_accumulator = decay_accumulator * loop_decay_rate;
|
|
decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
|
|
? MIN_DECAY_FACTOR : decay_accumulator;
|
|
}
|
|
|
|
boost_score += (decay_accumulator * r);
|
|
}
|
|
}
|
|
|
|
{
|
|
FIRSTPASS_STATS sectionstats;
|
|
|
|
zero_stats(§ionstats);
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
for (i = 0; i < cpi->twopass.frames_to_key; i++) {
|
|
input_stats(cpi, &next_frame);
|
|
accumulate_stats(§ionstats, &next_frame);
|
|
}
|
|
|
|
avg_stats(§ionstats);
|
|
|
|
cpi->twopass.section_intra_rating = (int)
|
|
(sectionstats.intra_error
|
|
/ DOUBLE_DIVIDE_CHECK(sectionstats.coded_error));
|
|
}
|
|
|
|
// Reset the first pass file position
|
|
reset_fpf_position(cpi, start_position);
|
|
|
|
// Work out how many bits to allocate for the key frame itself
|
|
if (1) {
|
|
int kf_boost = (int)boost_score;
|
|
int allocation_chunks;
|
|
int alt_kf_bits;
|
|
|
|
if (kf_boost < (cpi->twopass.frames_to_key * 3))
|
|
kf_boost = (cpi->twopass.frames_to_key * 3);
|
|
|
|
if (kf_boost < 300) // Min KF boost
|
|
kf_boost = 300;
|
|
|
|
// Make a note of baseline boost and the zero motion
|
|
// accumulator value for use elsewhere.
|
|
cpi->rc.kf_boost = kf_boost;
|
|
cpi->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
|
|
|
|
// We do three calculations for kf size.
|
|
// The first is based on the error score for the whole kf group.
|
|
// The second (optionaly) on the key frames own error if this is
|
|
// smaller than the average for the group.
|
|
// The final one insures that the frame receives at least the
|
|
// allocation it would have received based on its own error score vs
|
|
// the error score remaining
|
|
// Special case if the sequence appears almost totaly static
|
|
// In this case we want to spend almost all of the bits on the
|
|
// key frame.
|
|
// cpi->twopass.frames_to_key-1 because key frame itself is taken
|
|
// care of by kf_boost.
|
|
if (zero_motion_accumulator >= 0.99) {
|
|
allocation_chunks =
|
|
((cpi->twopass.frames_to_key - 1) * 10) + kf_boost;
|
|
} else {
|
|
allocation_chunks =
|
|
((cpi->twopass.frames_to_key - 1) * 100) + kf_boost;
|
|
}
|
|
|
|
// Prevent overflow
|
|
if (kf_boost > 1028) {
|
|
int divisor = kf_boost >> 10;
|
|
kf_boost /= divisor;
|
|
allocation_chunks /= divisor;
|
|
}
|
|
|
|
cpi->twopass.kf_group_bits =
|
|
(cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits;
|
|
|
|
// Calculate the number of bits to be spent on the key frame
|
|
cpi->twopass.kf_bits =
|
|
(int)((double)kf_boost *
|
|
((double)cpi->twopass.kf_group_bits / (double)allocation_chunks));
|
|
|
|
// If the key frame is actually easier than the average for the
|
|
// kf group (which does sometimes happen... eg a blank intro frame)
|
|
// Then use an alternate calculation based on the kf error score
|
|
// which should give a smaller key frame.
|
|
if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) {
|
|
double alt_kf_grp_bits =
|
|
((double)cpi->twopass.bits_left *
|
|
(kf_mod_err * (double)cpi->twopass.frames_to_key) /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left));
|
|
|
|
alt_kf_bits = (int)((double)kf_boost *
|
|
(alt_kf_grp_bits / (double)allocation_chunks));
|
|
|
|
if (cpi->twopass.kf_bits > alt_kf_bits) {
|
|
cpi->twopass.kf_bits = alt_kf_bits;
|
|
}
|
|
} else {
|
|
// Else if it is much harder than other frames in the group make sure
|
|
// it at least receives an allocation in keeping with its relative
|
|
// error score
|
|
alt_kf_bits =
|
|
(int)((double)cpi->twopass.bits_left *
|
|
(kf_mod_err /
|
|
DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)));
|
|
|
|
if (alt_kf_bits > cpi->twopass.kf_bits) {
|
|
cpi->twopass.kf_bits = alt_kf_bits;
|
|
}
|
|
}
|
|
|
|
cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits;
|
|
// Add in the minimum frame allowance
|
|
cpi->twopass.kf_bits += cpi->rc.min_frame_bandwidth;
|
|
|
|
// Peer frame bit target for this frame
|
|
cpi->rc.per_frame_bandwidth = cpi->twopass.kf_bits;
|
|
// Convert to a per second bitrate
|
|
cpi->target_bandwidth = (int)(cpi->twopass.kf_bits *
|
|
cpi->output_framerate);
|
|
}
|
|
|
|
// Note the total error score of the kf group minus the key frame itself
|
|
cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err);
|
|
|
|
// Adjust the count of total modified error left.
|
|
// The count of bits left is adjusted elsewhere based on real coded frame
|
|
// sizes.
|
|
cpi->twopass.modified_error_left -= kf_group_err;
|
|
}
|
|
|
|
void vp9_twopass_postencode_update(VP9_COMP *cpi, uint64_t bytes_used) {
|
|
#ifdef DISABLE_RC_LONG_TERM_MEM
|
|
cpi->twopass.bits_left -= cpi->rc.this_frame_target;
|
|
#else
|
|
cpi->twopass.bits_left -= 8 * bytes_used;
|
|
#endif
|
|
if (!cpi->refresh_alt_ref_frame) {
|
|
double lower_bounds_min_rate = FRAME_OVERHEAD_BITS * cpi->oxcf.framerate;
|
|
double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *
|
|
cpi->oxcf.two_pass_vbrmin_section
|
|
/ 100);
|
|
if (two_pass_min_rate < lower_bounds_min_rate)
|
|
two_pass_min_rate = lower_bounds_min_rate;
|
|
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate /
|
|
cpi->oxcf.framerate);
|
|
}
|
|
}
|