vpx/vp9/common/vp9_entropy.c
Deb Mukherjee b8b3f1a46d Balancing coef-tree to reduce bool decodes
This patch changes the coefficient tree to move the EOB to below
the ZERO node in order to save number of bool decodes.

The advantages of moving EOB one step down as opposed to two steps down
in the other parallel patch are: 1. The coef modeling based on
the One-node becomes independent of the tree structure above it, and
2. Fewer conext/counter increases are needed.

The drawback is that the potential savings in bool decodes will be
less, but assuming that 0s are much more predominant than 1's the
potential savings is still likely to be substantial.

Results on derf300: -0.237%

Change-Id: Ie784be13dc98291306b338e8228703a4c2ea2242
2013-05-29 16:25:52 -07:00

752 lines
34 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_entropy.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_onyxc_int.h"
#include "vp9/common/vp9_entropymode.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_coefupdateprobs.h"
DECLARE_ALIGNED(16, const uint8_t, vp9_norm[256]) = {
0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};
DECLARE_ALIGNED(16, const uint8_t,
vp9_coefband_trans_8x8plus[MAXBAND_INDEX + 1]) = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4,
4, 4, 4, 4, 4, 5
};
DECLARE_ALIGNED(16, const uint8_t,
vp9_coefband_trans_4x4[MAXBAND_INDEX + 1]) = {
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
5, 5, 5, 5, 5, 5
};
DECLARE_ALIGNED(16, const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]) = {
0, 1, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5
};
DECLARE_ALIGNED(16, const int, vp9_default_scan_4x4[16]) = {
0, 4, 1, 5,
8, 2, 12, 9,
3, 6, 13, 10,
7, 14, 11, 15,
};
DECLARE_ALIGNED(16, const int, vp9_col_scan_4x4[16]) = {
0, 4, 8, 1,
12, 5, 9, 2,
13, 6, 10, 3,
7, 14, 11, 15,
};
DECLARE_ALIGNED(16, const int, vp9_row_scan_4x4[16]) = {
0, 1, 4, 2,
5, 3, 6, 8,
9, 7, 12, 10,
13, 11, 14, 15,
};
DECLARE_ALIGNED(64, const int, vp9_default_scan_8x8[64]) = {
0, 8, 1, 16, 9, 2, 17, 24,
10, 3, 18, 25, 32, 11, 4, 26,
33, 19, 40, 12, 34, 27, 5, 41,
20, 48, 13, 35, 42, 28, 21, 6,
49, 56, 36, 43, 29, 7, 14, 50,
57, 44, 22, 37, 15, 51, 58, 30,
45, 23, 52, 59, 38, 31, 60, 53,
46, 39, 61, 54, 47, 62, 55, 63,
};
DECLARE_ALIGNED(16, const int, vp9_col_scan_8x8[64]) = {
0, 8, 16, 1, 24, 9, 32, 17,
2, 40, 25, 10, 33, 18, 48, 3,
26, 41, 11, 56, 19, 34, 4, 49,
27, 42, 12, 35, 20, 57, 50, 28,
5, 43, 13, 36, 58, 51, 21, 44,
6, 29, 59, 37, 14, 52, 22, 7,
45, 60, 30, 15, 38, 53, 23, 46,
31, 61, 39, 54, 47, 62, 55, 63,
};
DECLARE_ALIGNED(16, const int, vp9_row_scan_8x8[64]) = {
0, 1, 2, 8, 9, 3, 16, 10,
4, 17, 11, 24, 5, 18, 25, 12,
19, 26, 32, 6, 13, 20, 33, 27,
7, 34, 40, 21, 28, 41, 14, 35,
48, 42, 29, 36, 49, 22, 43, 15,
56, 37, 50, 44, 30, 57, 23, 51,
58, 45, 38, 52, 31, 59, 53, 46,
60, 39, 61, 47, 54, 55, 62, 63,
};
DECLARE_ALIGNED(16, const int, vp9_default_scan_16x16[256]) = {
0, 16, 1, 32, 17, 2, 48, 33, 18, 3, 64, 34, 49, 19, 65, 80,
50, 4, 35, 66, 20, 81, 96, 51, 5, 36, 82, 97, 67, 112, 21, 52,
98, 37, 83, 113, 6, 68, 128, 53, 22, 99, 114, 84, 7, 129, 38, 69,
100, 115, 144, 130, 85, 54, 23, 8, 145, 39, 70, 116, 101, 131, 160, 146,
55, 86, 24, 71, 132, 117, 161, 40, 9, 102, 147, 176, 162, 87, 56, 25,
133, 118, 177, 148, 72, 103, 41, 163, 10, 192, 178, 88, 57, 134, 149, 119,
26, 164, 73, 104, 193, 42, 179, 208, 11, 135, 89, 165, 120, 150, 58, 194,
180, 27, 74, 209, 105, 151, 136, 43, 90, 224, 166, 195, 181, 121, 210, 59,
12, 152, 106, 167, 196, 75, 137, 225, 211, 240, 182, 122, 91, 28, 197, 13,
226, 168, 183, 153, 44, 212, 138, 107, 241, 60, 29, 123, 198, 184, 227, 169,
242, 76, 213, 154, 45, 92, 14, 199, 139, 61, 228, 214, 170, 185, 243, 108,
77, 155, 30, 15, 200, 229, 124, 215, 244, 93, 46, 186, 171, 201, 109, 140,
230, 62, 216, 245, 31, 125, 78, 156, 231, 47, 187, 202, 217, 94, 246, 141,
63, 232, 172, 110, 247, 157, 79, 218, 203, 126, 233, 188, 248, 95, 173, 142,
219, 111, 249, 234, 158, 127, 189, 204, 250, 235, 143, 174, 220, 205, 159, 251,
190, 221, 175, 236, 237, 191, 206, 252, 222, 253, 207, 238, 223, 254, 239, 255,
};
DECLARE_ALIGNED(16, const int, vp9_col_scan_16x16[256]) = {
0, 16, 32, 48, 1, 64, 17, 80, 33, 96, 49, 2, 65, 112, 18, 81,
34, 128, 50, 97, 3, 66, 144, 19, 113, 35, 82, 160, 98, 51, 129, 4,
67, 176, 20, 114, 145, 83, 36, 99, 130, 52, 192, 5, 161, 68, 115, 21,
146, 84, 208, 177, 37, 131, 100, 53, 162, 224, 69, 6, 116, 193, 147, 85,
22, 240, 132, 38, 178, 101, 163, 54, 209, 117, 70, 7, 148, 194, 86, 179,
225, 23, 133, 39, 164, 8, 102, 210, 241, 55, 195, 118, 149, 71, 180, 24,
87, 226, 134, 165, 211, 40, 103, 56, 72, 150, 196, 242, 119, 9, 181, 227,
88, 166, 25, 135, 41, 104, 212, 57, 151, 197, 120, 73, 243, 182, 136, 167,
213, 89, 10, 228, 105, 152, 198, 26, 42, 121, 183, 244, 168, 58, 137, 229,
74, 214, 90, 153, 199, 184, 11, 106, 245, 27, 122, 230, 169, 43, 215, 59,
200, 138, 185, 246, 75, 12, 91, 154, 216, 231, 107, 28, 44, 201, 123, 170,
60, 247, 232, 76, 139, 13, 92, 217, 186, 248, 155, 108, 29, 124, 45, 202,
233, 171, 61, 14, 77, 140, 15, 249, 93, 30, 187, 156, 218, 46, 109, 125,
62, 172, 78, 203, 31, 141, 234, 94, 47, 188, 63, 157, 110, 250, 219, 79,
126, 204, 173, 142, 95, 189, 111, 235, 158, 220, 251, 127, 174, 143, 205, 236,
159, 190, 221, 252, 175, 206, 237, 191, 253, 222, 238, 207, 254, 223, 239, 255,
};
DECLARE_ALIGNED(16, const int, vp9_row_scan_16x16[256]) = {
0, 1, 2, 16, 3, 17, 4, 18, 32, 5, 33, 19, 6, 34, 48, 20,
49, 7, 35, 21, 50, 64, 8, 36, 65, 22, 51, 37, 80, 9, 66, 52,
23, 38, 81, 67, 10, 53, 24, 82, 68, 96, 39, 11, 54, 83, 97, 69,
25, 98, 84, 40, 112, 55, 12, 70, 99, 113, 85, 26, 41, 56, 114, 100,
13, 71, 128, 86, 27, 115, 101, 129, 42, 57, 72, 116, 14, 87, 130, 102,
144, 73, 131, 117, 28, 58, 15, 88, 43, 145, 103, 132, 146, 118, 74, 160,
89, 133, 104, 29, 59, 147, 119, 44, 161, 148, 90, 105, 134, 162, 120, 176,
75, 135, 149, 30, 60, 163, 177, 45, 121, 91, 106, 164, 178, 150, 192, 136,
165, 179, 31, 151, 193, 76, 122, 61, 137, 194, 107, 152, 180, 208, 46, 166,
167, 195, 92, 181, 138, 209, 123, 153, 224, 196, 77, 168, 210, 182, 240, 108,
197, 62, 154, 225, 183, 169, 211, 47, 139, 93, 184, 226, 212, 241, 198, 170,
124, 155, 199, 78, 213, 185, 109, 227, 200, 63, 228, 242, 140, 214, 171, 186,
156, 229, 243, 125, 94, 201, 244, 215, 216, 230, 141, 187, 202, 79, 172, 110,
157, 245, 217, 231, 95, 246, 232, 126, 203, 247, 233, 173, 218, 142, 111, 158,
188, 248, 127, 234, 219, 249, 189, 204, 143, 174, 159, 250, 235, 205, 220, 175,
190, 251, 221, 191, 206, 236, 207, 237, 252, 222, 253, 223, 238, 239, 254, 255,
};
DECLARE_ALIGNED(16, const int, vp9_default_scan_32x32[1024]) = {
0, 32, 1, 64, 33, 2, 96, 65, 34, 128, 3, 97, 66, 160, 129, 35, 98, 4, 67, 130, 161, 192, 36, 99, 224, 5, 162, 193, 68, 131, 37, 100,
225, 194, 256, 163, 69, 132, 6, 226, 257, 288, 195, 101, 164, 38, 258, 7, 227, 289, 133, 320, 70, 196, 165, 290, 259, 228, 39, 321, 102, 352, 8, 197,
71, 134, 322, 291, 260, 353, 384, 229, 166, 103, 40, 354, 323, 292, 135, 385, 198, 261, 72, 9, 416, 167, 386, 355, 230, 324, 104, 293, 41, 417, 199, 136,
262, 387, 448, 325, 356, 10, 73, 418, 231, 168, 449, 294, 388, 105, 419, 263, 42, 200, 357, 450, 137, 480, 74, 326, 232, 11, 389, 169, 295, 420, 106, 451,
481, 358, 264, 327, 201, 43, 138, 512, 482, 390, 296, 233, 170, 421, 75, 452, 359, 12, 513, 265, 483, 328, 107, 202, 514, 544, 422, 391, 453, 139, 44, 234,
484, 297, 360, 171, 76, 515, 545, 266, 329, 454, 13, 423, 392, 203, 108, 546, 485, 576, 298, 235, 140, 361, 516, 330, 172, 547, 45, 424, 455, 267, 393, 577,
486, 77, 204, 517, 362, 548, 608, 14, 456, 299, 578, 109, 236, 425, 394, 487, 609, 331, 141, 579, 518, 46, 268, 15, 173, 549, 610, 640, 363, 78, 519, 488,
300, 205, 16, 457, 580, 426, 550, 395, 110, 237, 611, 641, 332, 672, 142, 642, 269, 458, 47, 581, 427, 489, 174, 364, 520, 612, 551, 673, 79, 206, 301, 643,
704, 17, 111, 490, 674, 238, 582, 48, 521, 613, 333, 396, 459, 143, 270, 552, 644, 705, 736, 365, 80, 675, 583, 175, 428, 706, 112, 302, 207, 614, 553, 49,
645, 522, 737, 397, 768, 144, 334, 18, 676, 491, 239, 615, 707, 584, 81, 460, 176, 271, 738, 429, 113, 800, 366, 208, 523, 708, 646, 554, 677, 769, 19, 145,
585, 739, 240, 303, 50, 461, 616, 398, 647, 335, 492, 177, 82, 770, 832, 555, 272, 430, 678, 209, 709, 114, 740, 801, 617, 51, 304, 679, 524, 367, 586, 241,
20, 146, 771, 864, 83, 802, 648, 493, 399, 273, 336, 710, 178, 462, 833, 587, 741, 115, 305, 711, 368, 525, 618, 803, 210, 896, 680, 834, 772, 52, 649, 147,
431, 494, 556, 242, 400, 865, 337, 21, 928, 179, 742, 84, 463, 274, 369, 804, 650, 557, 743, 960, 835, 619, 773, 306, 211, 526, 432, 992, 588, 712, 116, 243,
866, 495, 681, 558, 805, 589, 401, 897, 53, 338, 148, 682, 867, 464, 275, 22, 370, 433, 307, 620, 527, 836, 774, 651, 713, 744, 85, 180, 621, 465, 929, 775,
496, 898, 212, 339, 244, 402, 590, 117, 559, 714, 434, 23, 868, 930, 806, 683, 528, 652, 371, 961, 149, 837, 54, 899, 745, 276, 993, 497, 403, 622, 181, 776,
746, 529, 560, 435, 86, 684, 466, 308, 591, 653, 715, 807, 340, 869, 213, 962, 245, 838, 561, 931, 808, 592, 118, 498, 372, 623, 685, 994, 467, 654, 747, 900,
716, 277, 150, 55, 24, 404, 530, 839, 777, 655, 182, 963, 840, 686, 778, 309, 870, 341, 87, 499, 809, 624, 593, 436, 717, 932, 214, 246, 995, 718, 625, 373,
562, 25, 119, 901, 531, 468, 964, 748, 810, 278, 779, 500, 563, 656, 405, 687, 871, 872, 594, 151, 933, 749, 841, 310, 657, 626, 595, 437, 688, 183, 996, 965,
902, 811, 342, 750, 689, 719, 532, 56, 215, 469, 934, 374, 247, 720, 780, 564, 781, 842, 406, 26, 751, 903, 873, 57, 279, 627, 501, 658, 843, 997, 812, 904,
88, 813, 438, 752, 935, 936, 311, 596, 533, 690, 343, 966, 874, 89, 120, 470, 721, 875, 659, 782, 565, 998, 375, 844, 845, 27, 628, 967, 121, 905, 968, 152,
937, 814, 753, 502, 691, 783, 184, 153, 722, 407, 58, 815, 999, 660, 597, 723, 534, 906, 216, 439, 907, 248, 185, 876, 846, 692, 784, 629, 90, 969, 280, 754,
938, 939, 217, 847, 566, 471, 785, 816, 877, 1000, 249, 878, 661, 503, 312, 970, 755, 122, 817, 281, 344, 786, 598, 724, 28, 59, 29, 154, 535, 630, 376, 1001,
313, 908, 186, 91, 848, 849, 345, 909, 940, 879, 408, 818, 693, 1002, 971, 941, 567, 377, 218, 756, 910, 787, 440, 123, 880, 725, 662, 250, 819, 1003, 282, 972,
850, 599, 472, 409, 155, 441, 942, 757, 788, 694, 911, 881, 314, 631, 973, 504, 187, 1004, 346, 473, 851, 943, 820, 726, 60, 505, 219, 378, 912, 974, 30, 31,
536, 882, 1005, 92, 251, 663, 944, 913, 283, 695, 883, 568, 1006, 975, 410, 442, 945, 789, 852, 537, 1007, 124, 315, 61, 758, 821, 600, 914, 976, 569, 474, 347,
156, 1008, 915, 93, 977, 506, 946, 727, 379, 884, 188, 632, 601, 1009, 790, 853, 978, 947, 220, 411, 125, 633, 664, 759, 252, 443, 916, 538, 157, 822, 62, 570,
979, 284, 1010, 885, 948, 189, 475, 94, 316, 665, 696, 1011, 854, 791, 980, 221, 348, 63, 917, 602, 380, 507, 253, 126, 697, 823, 634, 285, 728, 949, 886, 95,
158, 539, 1012, 317, 412, 444, 760, 571, 190, 981, 729, 918, 127, 666, 349, 381, 476, 855, 761, 1013, 603, 222, 159, 698, 950, 508, 254, 792, 286, 635, 887, 793,
413, 191, 982, 445, 540, 318, 730, 667, 223, 824, 919, 1014, 350, 477, 572, 255, 825, 951, 762, 509, 604, 856, 382, 699, 287, 319, 636, 983, 794, 414, 541, 731,
857, 888, 351, 446, 573, 1015, 668, 889, 478, 826, 383, 763, 605, 920, 510, 637, 415, 700, 921, 858, 447, 952, 542, 795, 479, 953, 732, 890, 669, 574, 511, 984,
827, 985, 922, 1016, 764, 606, 543, 701, 859, 638, 1017, 575, 796, 954, 733, 891, 670, 607, 828, 986, 765, 923, 639, 1018, 702, 860, 955, 671, 892, 734, 797, 703,
987, 829, 1019, 766, 924, 735, 861, 956, 988, 893, 767, 798, 830, 1020, 925, 957, 799, 862, 831, 989, 894, 1021, 863, 926, 895, 958, 990, 1022, 927, 959, 991, 1023,
};
/* Array indices are identical to previously-existing CONTEXT_NODE indices */
const vp9_tree_index vp9_coef_tree[ 22] = /* corresponding _CONTEXT_NODEs */
{
#if CONFIG_BALANCED_COEFTREE
-ZERO_TOKEN, 2, /* 0 = ZERO */
-DCT_EOB_TOKEN, 4, /* 1 = EOB */
#else
-DCT_EOB_TOKEN, 2, /* 0 = EOB */
-ZERO_TOKEN, 4, /* 1 = ZERO */
#endif
-ONE_TOKEN, 6, /* 2 = ONE */
8, 12, /* 3 = LOW_VAL */
-TWO_TOKEN, 10, /* 4 = TWO */
-THREE_TOKEN, -FOUR_TOKEN, /* 5 = THREE */
14, 16, /* 6 = HIGH_LOW */
-DCT_VAL_CATEGORY1, -DCT_VAL_CATEGORY2, /* 7 = CAT_ONE */
18, 20, /* 8 = CAT_THREEFOUR */
-DCT_VAL_CATEGORY3, -DCT_VAL_CATEGORY4, /* 9 = CAT_THREE */
-DCT_VAL_CATEGORY5, -DCT_VAL_CATEGORY6 /* 10 = CAT_FIVE */
};
struct vp9_token vp9_coef_encodings[MAX_ENTROPY_TOKENS];
/* Trees for extra bits. Probabilities are constant and
do not depend on previously encoded bits */
static const vp9_prob Pcat1[] = { 159};
static const vp9_prob Pcat2[] = { 165, 145};
static const vp9_prob Pcat3[] = { 173, 148, 140};
static const vp9_prob Pcat4[] = { 176, 155, 140, 135};
static const vp9_prob Pcat5[] = { 180, 157, 141, 134, 130};
static const vp9_prob Pcat6[] = {
254, 254, 254, 252, 249, 243, 230, 196, 177, 153, 140, 133, 130, 129
};
const vp9_tree_index vp9_coefmodel_tree[6] = {
#if CONFIG_BALANCED_COEFTREE
-ZERO_TOKEN, 2,
-DCT_EOB_MODEL_TOKEN, 4,
#else
-DCT_EOB_MODEL_TOKEN, 2, /* 0 = EOB */
-ZERO_TOKEN, 4, /* 1 = ZERO */
#endif
-ONE_TOKEN, -TWO_TOKEN,
};
// Model obtained from a 2-sided zero-centerd distribuition derived
// from a Pareto distribution. The cdf of the distribution is:
// cdf(x) = 0.5 + 0.5 * sgn(x) * [1 - {alpha/(alpha + |x|)} ^ beta]
//
// For a given beta and a given probablity of the 1-node, the alpha
// is first solved, and then the {alpha, beta} pair is used to generate
// the probabilities for the rest of the nodes.
// beta = 8
const vp9_prob vp9_modelcoefprobs_pareto8[COEFPROB_MODELS][MODEL_NODES] = {
{ 3, 86, 128, 6, 86, 23, 88, 29},
{ 9, 86, 129, 17, 88, 61, 94, 76},
{ 15, 87, 129, 28, 89, 93, 100, 110},
{ 20, 88, 130, 38, 91, 118, 106, 136},
{ 26, 89, 131, 48, 92, 139, 111, 156},
{ 31, 90, 131, 58, 94, 156, 117, 171},
{ 37, 90, 132, 66, 95, 171, 122, 184},
{ 42, 91, 132, 75, 97, 183, 127, 194},
{ 47, 92, 133, 83, 98, 193, 132, 202},
{ 52, 93, 133, 90, 100, 201, 137, 208},
{ 57, 94, 134, 98, 101, 208, 142, 214},
{ 62, 94, 135, 105, 103, 214, 146, 218},
{ 66, 95, 135, 111, 104, 219, 151, 222},
{ 71, 96, 136, 117, 106, 224, 155, 225},
{ 76, 97, 136, 123, 107, 227, 159, 228},
{ 80, 98, 137, 129, 109, 231, 162, 231},
{ 84, 98, 138, 134, 110, 234, 166, 233},
{ 89, 99, 138, 140, 112, 236, 170, 235},
{ 93, 100, 139, 145, 113, 238, 173, 236},
{ 97, 101, 140, 149, 115, 240, 176, 238},
{101, 102, 140, 154, 116, 242, 179, 239},
{105, 103, 141, 158, 118, 243, 182, 240},
{109, 104, 141, 162, 119, 244, 185, 241},
{113, 104, 142, 166, 120, 245, 187, 242},
{116, 105, 143, 170, 122, 246, 190, 243},
{120, 106, 143, 173, 123, 247, 192, 244},
{123, 107, 144, 177, 125, 248, 195, 244},
{127, 108, 145, 180, 126, 249, 197, 245},
{130, 109, 145, 183, 128, 249, 199, 245},
{134, 110, 146, 186, 129, 250, 201, 246},
{137, 111, 147, 189, 131, 251, 203, 246},
{140, 112, 147, 192, 132, 251, 205, 247},
{143, 113, 148, 194, 133, 251, 207, 247},
{146, 114, 149, 197, 135, 252, 208, 248},
{149, 115, 149, 199, 136, 252, 210, 248},
{152, 115, 150, 201, 138, 252, 211, 248},
{155, 116, 151, 204, 139, 253, 213, 249},
{158, 117, 151, 206, 140, 253, 214, 249},
{161, 118, 152, 208, 142, 253, 216, 249},
{163, 119, 153, 210, 143, 253, 217, 249},
{166, 120, 153, 212, 144, 254, 218, 250},
{168, 121, 154, 213, 146, 254, 220, 250},
{171, 122, 155, 215, 147, 254, 221, 250},
{173, 123, 155, 217, 148, 254, 222, 250},
{176, 124, 156, 218, 150, 254, 223, 250},
{178, 125, 157, 220, 151, 254, 224, 251},
{180, 126, 157, 221, 152, 254, 225, 251},
{183, 127, 158, 222, 153, 254, 226, 251},
{185, 128, 159, 224, 155, 255, 227, 251},
{187, 129, 160, 225, 156, 255, 228, 251},
{189, 131, 160, 226, 157, 255, 228, 251},
{191, 132, 161, 227, 159, 255, 229, 251},
{193, 133, 162, 228, 160, 255, 230, 252},
{195, 134, 163, 230, 161, 255, 231, 252},
{197, 135, 163, 231, 162, 255, 231, 252},
{199, 136, 164, 232, 163, 255, 232, 252},
{201, 137, 165, 233, 165, 255, 233, 252},
{202, 138, 166, 233, 166, 255, 233, 252},
{204, 139, 166, 234, 167, 255, 234, 252},
{206, 140, 167, 235, 168, 255, 235, 252},
{207, 141, 168, 236, 169, 255, 235, 252},
{209, 142, 169, 237, 171, 255, 236, 252},
{210, 144, 169, 237, 172, 255, 236, 252},
{212, 145, 170, 238, 173, 255, 237, 252},
{214, 146, 171, 239, 174, 255, 237, 253},
{215, 147, 172, 240, 175, 255, 238, 253},
{216, 148, 173, 240, 176, 255, 238, 253},
{218, 149, 173, 241, 177, 255, 239, 253},
{219, 150, 174, 241, 179, 255, 239, 253},
{220, 152, 175, 242, 180, 255, 240, 253},
{222, 153, 176, 242, 181, 255, 240, 253},
{223, 154, 177, 243, 182, 255, 240, 253},
{224, 155, 178, 244, 183, 255, 241, 253},
{225, 156, 178, 244, 184, 255, 241, 253},
{226, 158, 179, 244, 185, 255, 242, 253},
{228, 159, 180, 245, 186, 255, 242, 253},
{229, 160, 181, 245, 187, 255, 242, 253},
{230, 161, 182, 246, 188, 255, 243, 253},
{231, 163, 183, 246, 189, 255, 243, 253},
{232, 164, 184, 247, 190, 255, 243, 253},
{233, 165, 185, 247, 191, 255, 244, 253},
{234, 166, 185, 247, 192, 255, 244, 253},
{235, 168, 186, 248, 193, 255, 244, 253},
{236, 169, 187, 248, 194, 255, 244, 253},
{236, 170, 188, 248, 195, 255, 245, 253},
{237, 171, 189, 249, 196, 255, 245, 254},
{238, 173, 190, 249, 197, 255, 245, 254},
{239, 174, 191, 249, 198, 255, 245, 254},
{240, 175, 192, 249, 199, 255, 246, 254},
{240, 177, 193, 250, 200, 255, 246, 254},
{241, 178, 194, 250, 201, 255, 246, 254},
{242, 179, 195, 250, 202, 255, 246, 254},
{242, 181, 196, 250, 203, 255, 247, 254},
{243, 182, 197, 251, 204, 255, 247, 254},
{244, 184, 198, 251, 205, 255, 247, 254},
{244, 185, 199, 251, 206, 255, 247, 254},
{245, 186, 200, 251, 207, 255, 247, 254},
{246, 188, 201, 252, 207, 255, 248, 254},
{246, 189, 202, 252, 208, 255, 248, 254},
{247, 191, 203, 252, 209, 255, 248, 254},
{247, 192, 204, 252, 210, 255, 248, 254},
{248, 194, 205, 252, 211, 255, 248, 254},
{248, 195, 206, 252, 212, 255, 249, 254},
{249, 197, 207, 253, 213, 255, 249, 254},
{249, 198, 208, 253, 214, 255, 249, 254},
{250, 200, 210, 253, 215, 255, 249, 254},
{250, 201, 211, 253, 215, 255, 249, 254},
{250, 203, 212, 253, 216, 255, 249, 254},
{251, 204, 213, 253, 217, 255, 250, 254},
{251, 206, 214, 254, 218, 255, 250, 254},
{252, 207, 216, 254, 219, 255, 250, 254},
{252, 209, 217, 254, 220, 255, 250, 254},
{252, 211, 218, 254, 221, 255, 250, 254},
{253, 213, 219, 254, 222, 255, 250, 254},
{253, 214, 221, 254, 223, 255, 250, 254},
{253, 216, 222, 254, 224, 255, 251, 254},
{253, 218, 224, 254, 225, 255, 251, 254},
{254, 220, 225, 254, 225, 255, 251, 254},
{254, 222, 227, 255, 226, 255, 251, 254},
{254, 224, 228, 255, 227, 255, 251, 254},
{254, 226, 230, 255, 228, 255, 251, 254},
{255, 228, 231, 255, 230, 255, 251, 254},
{255, 230, 233, 255, 231, 255, 252, 254},
{255, 232, 235, 255, 232, 255, 252, 254},
{255, 235, 237, 255, 233, 255, 252, 254},
{255, 238, 240, 255, 235, 255, 252, 255},
{255, 241, 243, 255, 236, 255, 252, 254},
{255, 246, 247, 255, 239, 255, 253, 255}
};
static void extend_model_to_full_distribution(vp9_prob p,
vp9_prob *tree_probs) {
const int l = ((p - 1) / 2);
const vp9_prob (*model)[MODEL_NODES];
model = vp9_modelcoefprobs_pareto8;
if (p & 1) {
vpx_memcpy(tree_probs + UNCONSTRAINED_NODES,
model[l], MODEL_NODES * sizeof(vp9_prob));
} else {
// interpolate
int i;
for (i = UNCONSTRAINED_NODES; i < ENTROPY_NODES; ++i)
tree_probs[i] = (model[l][i - UNCONSTRAINED_NODES] +
model[l + 1][i - UNCONSTRAINED_NODES]) >> 1;
}
}
void vp9_model_to_full_probs(const vp9_prob *model, vp9_prob *full) {
if (full != model)
vpx_memcpy(full, model, sizeof(vp9_prob) * UNCONSTRAINED_NODES);
extend_model_to_full_distribution(model[PIVOT_NODE], full);
}
void vp9_model_to_full_probs_sb(
vp9_prob model[COEF_BANDS][PREV_COEF_CONTEXTS][UNCONSTRAINED_NODES],
vp9_prob full[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]) {
int c, p;
for (c = 0; c < COEF_BANDS; ++c)
for (p = 0; p < PREV_COEF_CONTEXTS; ++p) {
vp9_model_to_full_probs(model[c][p], full[c][p]);
}
}
static vp9_tree_index cat1[2], cat2[4], cat3[6], cat4[8], cat5[10], cat6[28];
static void init_bit_tree(vp9_tree_index *p, int n) {
int i = 0;
while (++i < n) {
p[0] = p[1] = i << 1;
p += 2;
}
p[0] = p[1] = 0;
}
static void init_bit_trees() {
init_bit_tree(cat1, 1);
init_bit_tree(cat2, 2);
init_bit_tree(cat3, 3);
init_bit_tree(cat4, 4);
init_bit_tree(cat5, 5);
init_bit_tree(cat6, 14);
}
vp9_extra_bit vp9_extra_bits[12] = {
{ 0, 0, 0, 0},
{ 0, 0, 0, 1},
{ 0, 0, 0, 2},
{ 0, 0, 0, 3},
{ 0, 0, 0, 4},
{ cat1, Pcat1, 1, 5},
{ cat2, Pcat2, 2, 7},
{ cat3, Pcat3, 3, 11},
{ cat4, Pcat4, 4, 19},
{ cat5, Pcat5, 5, 35},
{ cat6, Pcat6, 14, 67},
{ 0, 0, 0, 0}
};
#include "vp9/common/vp9_default_coef_probs.h"
// This function updates and then returns n AC coefficient context
// This is currently a placeholder function to allow experimentation
// using various context models based on the energy earlier tokens
// within the current block.
//
// For now it just returns the previously used context.
#define MAX_NEIGHBORS 2
int vp9_get_coef_context(const int *scan, const int *neighbors,
int nb_pad, uint8_t *token_cache, int c, int l) {
int eob = l;
assert(nb_pad == MAX_NEIGHBORS);
if (c == eob) {
return 0;
} else {
int ctx;
assert(neighbors[MAX_NEIGHBORS * c + 0] >= 0);
if (neighbors[MAX_NEIGHBORS * c + 1] >= 0) {
ctx = (1 + token_cache[scan[neighbors[MAX_NEIGHBORS * c + 0]]] +
token_cache[scan[neighbors[MAX_NEIGHBORS * c + 1]]]) >> 1;
} else {
ctx = token_cache[scan[neighbors[MAX_NEIGHBORS * c + 0]]];
}
return ctx;
}
};
void vp9_default_coef_probs(VP9_COMMON *pc) {
vpx_memcpy(pc->fc.coef_probs_4x4, default_coef_probs_4x4,
sizeof(pc->fc.coef_probs_4x4));
vpx_memcpy(pc->fc.coef_probs_8x8, default_coef_probs_8x8,
sizeof(pc->fc.coef_probs_8x8));
vpx_memcpy(pc->fc.coef_probs_16x16, default_coef_probs_16x16,
sizeof(pc->fc.coef_probs_16x16));
vpx_memcpy(pc->fc.coef_probs_32x32, default_coef_probs_32x32,
sizeof(pc->fc.coef_probs_32x32));
}
// Neighborhood 5-tuples for various scans and blocksizes,
// in {top, left, topleft, topright, bottomleft} order
// for each position in raster scan order.
// -1 indicates the neighbor does not exist.
DECLARE_ALIGNED(16, int,
vp9_default_scan_4x4_neighbors[16 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_col_scan_4x4_neighbors[16 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_row_scan_4x4_neighbors[16 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_col_scan_8x8_neighbors[64 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_row_scan_8x8_neighbors[64 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_default_scan_8x8_neighbors[64 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_col_scan_16x16_neighbors[256 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_row_scan_16x16_neighbors[256 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_default_scan_16x16_neighbors[256 * MAX_NEIGHBORS]);
DECLARE_ALIGNED(16, int,
vp9_default_scan_32x32_neighbors[1024 * MAX_NEIGHBORS]);
static int find_in_scan(const int *scan, int l, int idx) {
int n, l2 = l * l;
for (n = 0; n < l2; n++) {
int rc = scan[n];
if (rc == idx)
return n;
}
assert(0);
return -1;
}
static void init_scan_neighbors(const int *scan, int l, int *neighbors,
int max_neighbors) {
int l2 = l * l;
int n, i, j;
for (n = 0; n < l2; n++) {
int rc = scan[n];
assert(max_neighbors == MAX_NEIGHBORS);
i = rc / l;
j = rc % l;
if (i > 0 && j > 0) {
// col/row scan is used for adst/dct, and generally means that
// energy decreases to zero much faster in the dimension in
// which ADST is used compared to the direction in which DCT
// is used. Likewise, we find much higher correlation between
// coefficients within the direction in which DCT is used.
// Therefore, if we use ADST/DCT, prefer the DCT neighbor coeff
// as a context. If ADST or DCT is used in both directions, we
// use the combination of the two as a context.
int a = find_in_scan(scan, l, (i - 1) * l + j);
int b = find_in_scan(scan, l, i * l + j - 1);
if (scan == vp9_col_scan_4x4 || scan == vp9_col_scan_8x8 ||
scan == vp9_col_scan_16x16) {
neighbors[max_neighbors * n + 0] = a;
neighbors[max_neighbors * n + 1] = -1;
} else if (scan == vp9_row_scan_4x4 || scan == vp9_row_scan_8x8 ||
scan == vp9_row_scan_16x16) {
neighbors[max_neighbors * n + 0] = b;
neighbors[max_neighbors * n + 1] = -1;
} else {
neighbors[max_neighbors * n + 0] = a;
neighbors[max_neighbors * n + 1] = b;
}
} else if (i > 0) {
neighbors[max_neighbors * n + 0] = find_in_scan(scan, l, (i - 1) * l + j);
neighbors[max_neighbors * n + 1] = -1;
} else if (j > 0) {
neighbors[max_neighbors * n + 0] =
find_in_scan(scan, l, i * l + j - 1);
neighbors[max_neighbors * n + 1] = -1;
} else {
assert(n == 0);
// dc predictor doesn't use previous tokens
neighbors[max_neighbors * n + 0] = -1;
}
assert(neighbors[max_neighbors * n + 0] < n);
}
}
void vp9_init_neighbors() {
init_scan_neighbors(vp9_default_scan_4x4, 4,
vp9_default_scan_4x4_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_row_scan_4x4, 4,
vp9_row_scan_4x4_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_col_scan_4x4, 4,
vp9_col_scan_4x4_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_default_scan_8x8, 8,
vp9_default_scan_8x8_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_row_scan_8x8, 8,
vp9_row_scan_8x8_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_col_scan_8x8, 8,
vp9_col_scan_8x8_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_default_scan_16x16, 16,
vp9_default_scan_16x16_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_row_scan_16x16, 16,
vp9_row_scan_16x16_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_col_scan_16x16, 16,
vp9_col_scan_16x16_neighbors, MAX_NEIGHBORS);
init_scan_neighbors(vp9_default_scan_32x32, 32,
vp9_default_scan_32x32_neighbors, MAX_NEIGHBORS);
}
const int *vp9_get_coef_neighbors_handle(const int *scan, int *pad) {
if (scan == vp9_default_scan_4x4) {
*pad = MAX_NEIGHBORS;
return vp9_default_scan_4x4_neighbors;
} else if (scan == vp9_row_scan_4x4) {
*pad = MAX_NEIGHBORS;
return vp9_row_scan_4x4_neighbors;
} else if (scan == vp9_col_scan_4x4) {
*pad = MAX_NEIGHBORS;
return vp9_col_scan_4x4_neighbors;
} else if (scan == vp9_default_scan_8x8) {
*pad = MAX_NEIGHBORS;
return vp9_default_scan_8x8_neighbors;
} else if (scan == vp9_row_scan_8x8) {
*pad = 2;
return vp9_row_scan_8x8_neighbors;
} else if (scan == vp9_col_scan_8x8) {
*pad = 2;
return vp9_col_scan_8x8_neighbors;
} else if (scan == vp9_default_scan_16x16) {
*pad = MAX_NEIGHBORS;
return vp9_default_scan_16x16_neighbors;
} else if (scan == vp9_row_scan_16x16) {
*pad = 2;
return vp9_row_scan_16x16_neighbors;
} else if (scan == vp9_col_scan_16x16) {
*pad = 2;
return vp9_col_scan_16x16_neighbors;
} else if (scan == vp9_default_scan_32x32) {
*pad = MAX_NEIGHBORS;
return vp9_default_scan_32x32_neighbors;
} else {
assert(0);
return NULL;
}
}
void vp9_coef_tree_initialize() {
vp9_init_neighbors();
init_bit_trees();
vp9_tokens_from_tree(vp9_coef_encodings, vp9_coef_tree);
}
// #define COEF_COUNT_TESTING
#define COEF_COUNT_SAT 24
#define COEF_MAX_UPDATE_FACTOR 112
#define COEF_COUNT_SAT_KEY 24
#define COEF_MAX_UPDATE_FACTOR_KEY 112
#define COEF_COUNT_SAT_AFTER_KEY 24
#define COEF_MAX_UPDATE_FACTOR_AFTER_KEY 128
void vp9_full_to_model_count(unsigned int *model_count,
unsigned int *full_count) {
int n;
model_count[ZERO_TOKEN] = full_count[ZERO_TOKEN];
model_count[ONE_TOKEN] = full_count[ONE_TOKEN];
model_count[TWO_TOKEN] = full_count[TWO_TOKEN];
for (n = THREE_TOKEN; n < DCT_EOB_TOKEN; ++n)
model_count[TWO_TOKEN] += full_count[n];
model_count[DCT_EOB_MODEL_TOKEN] = full_count[DCT_EOB_TOKEN];
}
void vp9_full_to_model_counts(
vp9_coeff_count_model *model_count, vp9_coeff_count *full_count) {
int i, j, k, l;
for (i = 0; i < BLOCK_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_full_to_model_count(model_count[i][j][k][l],
full_count[i][j][k][l]);
}
}
static void adapt_coef_probs(
vp9_coeff_probs_model *dst_coef_probs,
vp9_coeff_probs_model *pre_coef_probs,
vp9_coeff_count_model *coef_counts,
unsigned int (*eob_branch_count)[REF_TYPES][COEF_BANDS][PREV_COEF_CONTEXTS],
int count_sat,
int update_factor) {
int t, i, j, k, l, count;
int factor;
unsigned int branch_ct[UNCONSTRAINED_NODES][2];
vp9_prob coef_probs[UNCONSTRAINED_NODES];
int entropy_nodes_adapt = UNCONSTRAINED_NODES;
for (i = 0; i < BLOCK_TYPES; ++i)
for (j = 0; j < REF_TYPES; ++j)
for (k = 0; k < COEF_BANDS; ++k)
for (l = 0; l < PREV_COEF_CONTEXTS; ++l) {
if (l >= 3 && k == 0)
continue;
vp9_tree_probs_from_distribution(
vp9_coefmodel_tree,
coef_probs, branch_ct,
coef_counts[i][j][k][l], 0);
#if CONFIG_BALANCED_COEFTREE
branch_ct[1][1] = eob_branch_count[i][j][k][l] - branch_ct[1][0];
coef_probs[1] = get_binary_prob(branch_ct[1][0], branch_ct[1][1]);
#else
branch_ct[0][1] = eob_branch_count[i][j][k][l] - branch_ct[0][0];
coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]);
#endif
for (t = 0; t < entropy_nodes_adapt; ++t) {
count = branch_ct[t][0] + branch_ct[t][1];
count = count > count_sat ? count_sat : count;
factor = (update_factor * count / count_sat);
dst_coef_probs[i][j][k][l][t] =
weighted_prob(pre_coef_probs[i][j][k][l][t],
coef_probs[t], factor);
}
}
}
void vp9_adapt_coef_probs(VP9_COMMON *cm) {
int count_sat;
int update_factor; /* denominator 256 */
if (cm->frame_type == KEY_FRAME) {
update_factor = COEF_MAX_UPDATE_FACTOR_KEY;
count_sat = COEF_COUNT_SAT_KEY;
} else if (cm->last_frame_type == KEY_FRAME) {
update_factor = COEF_MAX_UPDATE_FACTOR_AFTER_KEY; /* adapt quickly */
count_sat = COEF_COUNT_SAT_AFTER_KEY;
} else {
update_factor = COEF_MAX_UPDATE_FACTOR;
count_sat = COEF_COUNT_SAT;
}
adapt_coef_probs(cm->fc.coef_probs_4x4, cm->fc.pre_coef_probs_4x4,
cm->fc.coef_counts_4x4,
cm->fc.eob_branch_counts[TX_4X4],
count_sat, update_factor);
adapt_coef_probs(cm->fc.coef_probs_8x8, cm->fc.pre_coef_probs_8x8,
cm->fc.coef_counts_8x8,
cm->fc.eob_branch_counts[TX_8X8],
count_sat, update_factor);
adapt_coef_probs(cm->fc.coef_probs_16x16, cm->fc.pre_coef_probs_16x16,
cm->fc.coef_counts_16x16,
cm->fc.eob_branch_counts[TX_16X16],
count_sat, update_factor);
adapt_coef_probs(cm->fc.coef_probs_32x32, cm->fc.pre_coef_probs_32x32,
cm->fc.coef_counts_32x32,
cm->fc.eob_branch_counts[TX_32X32],
count_sat, update_factor);
}