vpx/vp9/common/vp9_idct.c
Deb Mukherjee 0ce2a27e9b Enable coefficient range checking for 10-/12-bit
Also fixes a broken build with --enable-coefficient-range-checking
configuration option.

Change-Id: Icc536f53088e8cec59dfb8f635668555fdb9125e
2015-01-06 02:40:51 -08:00

2867 lines
100 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include "./vp9_rtcd.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_idct.h"
#include "vp9/common/vp9_systemdependent.h"
static INLINE uint8_t clip_pixel_add(uint8_t dest, tran_high_t trans) {
trans = WRAPLOW(trans, 8);
return clip_pixel(WRAPLOW(dest + trans, 8));
}
void vp9_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
/* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
0.5 shifts per pixel. */
int i;
tran_low_t output[16];
tran_high_t a1, b1, c1, d1, e1;
const tran_low_t *ip = input;
tran_low_t *op = output;
for (i = 0; i < 4; i++) {
a1 = ip[0] >> UNIT_QUANT_SHIFT;
c1 = ip[1] >> UNIT_QUANT_SHIFT;
d1 = ip[2] >> UNIT_QUANT_SHIFT;
b1 = ip[3] >> UNIT_QUANT_SHIFT;
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
op[0] = WRAPLOW(a1, 8);
op[1] = WRAPLOW(b1, 8);
op[2] = WRAPLOW(c1, 8);
op[3] = WRAPLOW(d1, 8);
ip += 4;
op += 4;
}
ip = output;
for (i = 0; i < 4; i++) {
a1 = ip[4 * 0];
c1 = ip[4 * 1];
d1 = ip[4 * 2];
b1 = ip[4 * 3];
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
dest[stride * 0] = clip_pixel_add(dest[stride * 0], a1);
dest[stride * 1] = clip_pixel_add(dest[stride * 1], b1);
dest[stride * 2] = clip_pixel_add(dest[stride * 2], c1);
dest[stride * 3] = clip_pixel_add(dest[stride * 3], d1);
ip++;
dest++;
}
}
void vp9_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest, int dest_stride) {
int i;
tran_high_t a1, e1;
tran_low_t tmp[4];
const tran_low_t *ip = in;
tran_low_t *op = tmp;
a1 = ip[0] >> UNIT_QUANT_SHIFT;
e1 = a1 >> 1;
a1 -= e1;
op[0] = WRAPLOW(a1, 8);
op[1] = op[2] = op[3] = WRAPLOW(e1, 8);
ip = tmp;
for (i = 0; i < 4; i++) {
e1 = ip[0] >> 1;
a1 = ip[0] - e1;
dest[dest_stride * 0] = clip_pixel_add(dest[dest_stride * 0], a1);
dest[dest_stride * 1] = clip_pixel_add(dest[dest_stride * 1], e1);
dest[dest_stride * 2] = clip_pixel_add(dest[dest_stride * 2], e1);
dest[dest_stride * 3] = clip_pixel_add(dest[dest_stride * 3], e1);
ip++;
dest++;
}
}
static void idct4(const tran_low_t *input, tran_low_t *output) {
tran_low_t step[4];
tran_high_t temp1, temp2;
// stage 1
temp1 = (input[0] + input[2]) * cospi_16_64;
temp2 = (input[0] - input[2]) * cospi_16_64;
step[0] = WRAPLOW(dct_const_round_shift(temp1), 8);
step[1] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step[2] = WRAPLOW(dct_const_round_shift(temp1), 8);
step[3] = WRAPLOW(dct_const_round_shift(temp2), 8);
// stage 2
output[0] = WRAPLOW(step[0] + step[3], 8);
output[1] = WRAPLOW(step[1] + step[2], 8);
output[2] = WRAPLOW(step[1] - step[2], 8);
output[3] = WRAPLOW(step[0] - step[3], 8);
}
void vp9_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[4], temp_out[4];
// Rows
for (i = 0; i < 4; ++i) {
idct4(input, outptr);
input += 4;
outptr += 4;
}
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
idct4(temp_in, temp_out);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 4));
}
}
}
void vp9_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest,
int dest_stride) {
int i;
tran_high_t a1;
tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8);
out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8);
a1 = ROUND_POWER_OF_TWO(out, 4);
for (i = 0; i < 4; i++) {
dest[0] = clip_pixel_add(dest[0], a1);
dest[1] = clip_pixel_add(dest[1], a1);
dest[2] = clip_pixel_add(dest[2], a1);
dest[3] = clip_pixel_add(dest[3], a1);
dest += dest_stride;
}
}
static void idct8(const tran_low_t *input, tran_low_t *output) {
tran_low_t step1[8], step2[8];
tran_high_t temp1, temp2;
// stage 1
step1[0] = input[0];
step1[2] = input[4];
step1[1] = input[2];
step1[3] = input[6];
temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64;
temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64;
step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64;
temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8);
// stage 2 & stage 3 - even half
idct4(step1, step1);
// stage 2 - odd half
step2[4] = WRAPLOW(step1[4] + step1[5], 8);
step2[5] = WRAPLOW(step1[4] - step1[5], 8);
step2[6] = WRAPLOW(-step1[6] + step1[7], 8);
step2[7] = WRAPLOW(step1[6] + step1[7], 8);
// stage 3 -odd half
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[7] = step2[7];
// stage 4
output[0] = WRAPLOW(step1[0] + step1[7], 8);
output[1] = WRAPLOW(step1[1] + step1[6], 8);
output[2] = WRAPLOW(step1[2] + step1[5], 8);
output[3] = WRAPLOW(step1[3] + step1[4], 8);
output[4] = WRAPLOW(step1[3] - step1[4], 8);
output[5] = WRAPLOW(step1[2] - step1[5], 8);
output[6] = WRAPLOW(step1[1] - step1[6], 8);
output[7] = WRAPLOW(step1[0] - step1[7], 8);
}
void vp9_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
tran_low_t out[8 * 8];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[8], temp_out[8];
// First transform rows
for (i = 0; i < 8; ++i) {
idct8(input, outptr);
input += 8;
outptr += 8;
}
// Then transform columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
idct8(temp_in, temp_out);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 5));
}
}
}
void vp9_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
int i, j;
tran_high_t a1;
tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8);
out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8);
a1 = ROUND_POWER_OF_TWO(out, 5);
for (j = 0; j < 8; ++j) {
for (i = 0; i < 8; ++i)
dest[i] = clip_pixel_add(dest[i], a1);
dest += stride;
}
}
static void iadst4(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_low_t x0 = input[0];
tran_low_t x1 = input[1];
tran_low_t x2 = input[2];
tran_low_t x3 = input[3];
if (!(x0 | x1 | x2 | x3)) {
output[0] = output[1] = output[2] = output[3] = 0;
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_2_9 * x0;
s2 = sinpi_3_9 * x1;
s3 = sinpi_4_9 * x2;
s4 = sinpi_1_9 * x2;
s5 = sinpi_2_9 * x3;
s6 = sinpi_4_9 * x3;
s7 = x0 - x2 + x3;
s0 = s0 + s3 + s5;
s1 = s1 - s4 - s6;
s3 = s2;
s2 = sinpi_3_9 * s7;
// 1-D transform scaling factor is sqrt(2).
// The overall dynamic range is 14b (input) + 14b (multiplication scaling)
// + 1b (addition) = 29b.
// Hence the output bit depth is 15b.
output[0] = WRAPLOW(dct_const_round_shift(s0 + s3), 8);
output[1] = WRAPLOW(dct_const_round_shift(s1 + s3), 8);
output[2] = WRAPLOW(dct_const_round_shift(s2), 8);
output[3] = WRAPLOW(dct_const_round_shift(s0 + s1 - s3), 8);
}
void vp9_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
const transform_2d IHT_4[] = {
{ idct4, idct4 }, // DCT_DCT = 0
{ iadst4, idct4 }, // ADST_DCT = 1
{ idct4, iadst4 }, // DCT_ADST = 2
{ iadst4, iadst4 } // ADST_ADST = 3
};
int i, j;
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
tran_low_t temp_in[4], temp_out[4];
// inverse transform row vectors
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, outptr);
input += 4;
outptr += 4;
}
// inverse transform column vectors
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
IHT_4[tx_type].cols(temp_in, temp_out);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 4));
}
}
}
static void iadst8(const tran_low_t *input, tran_low_t *output) {
int s0, s1, s2, s3, s4, s5, s6, s7;
tran_high_t x0 = input[7];
tran_high_t x1 = input[0];
tran_high_t x2 = input[5];
tran_high_t x3 = input[2];
tran_high_t x4 = input[3];
tran_high_t x5 = input[4];
tran_high_t x6 = input[1];
tran_high_t x7 = input[6];
if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) {
output[0] = output[1] = output[2] = output[3] = output[4]
= output[5] = output[6] = output[7] = 0;
return;
}
// stage 1
s0 = (int)(cospi_2_64 * x0 + cospi_30_64 * x1);
s1 = (int)(cospi_30_64 * x0 - cospi_2_64 * x1);
s2 = (int)(cospi_10_64 * x2 + cospi_22_64 * x3);
s3 = (int)(cospi_22_64 * x2 - cospi_10_64 * x3);
s4 = (int)(cospi_18_64 * x4 + cospi_14_64 * x5);
s5 = (int)(cospi_14_64 * x4 - cospi_18_64 * x5);
s6 = (int)(cospi_26_64 * x6 + cospi_6_64 * x7);
s7 = (int)(cospi_6_64 * x6 - cospi_26_64 * x7);
x0 = WRAPLOW(dct_const_round_shift(s0 + s4), 8);
x1 = WRAPLOW(dct_const_round_shift(s1 + s5), 8);
x2 = WRAPLOW(dct_const_round_shift(s2 + s6), 8);
x3 = WRAPLOW(dct_const_round_shift(s3 + s7), 8);
x4 = WRAPLOW(dct_const_round_shift(s0 - s4), 8);
x5 = WRAPLOW(dct_const_round_shift(s1 - s5), 8);
x6 = WRAPLOW(dct_const_round_shift(s2 - s6), 8);
x7 = WRAPLOW(dct_const_round_shift(s3 - s7), 8);
// stage 2
s0 = (int)x0;
s1 = (int)x1;
s2 = (int)x2;
s3 = (int)x3;
s4 = (int)(cospi_8_64 * x4 + cospi_24_64 * x5);
s5 = (int)(cospi_24_64 * x4 - cospi_8_64 * x5);
s6 = (int)(-cospi_24_64 * x6 + cospi_8_64 * x7);
s7 = (int)(cospi_8_64 * x6 + cospi_24_64 * x7);
x0 = WRAPLOW(s0 + s2, 8);
x1 = WRAPLOW(s1 + s3, 8);
x2 = WRAPLOW(s0 - s2, 8);
x3 = WRAPLOW(s1 - s3, 8);
x4 = WRAPLOW(dct_const_round_shift(s4 + s6), 8);
x5 = WRAPLOW(dct_const_round_shift(s5 + s7), 8);
x6 = WRAPLOW(dct_const_round_shift(s4 - s6), 8);
x7 = WRAPLOW(dct_const_round_shift(s5 - s7), 8);
// stage 3
s2 = (int)(cospi_16_64 * (x2 + x3));
s3 = (int)(cospi_16_64 * (x2 - x3));
s6 = (int)(cospi_16_64 * (x6 + x7));
s7 = (int)(cospi_16_64 * (x6 - x7));
x2 = WRAPLOW(dct_const_round_shift(s2), 8);
x3 = WRAPLOW(dct_const_round_shift(s3), 8);
x6 = WRAPLOW(dct_const_round_shift(s6), 8);
x7 = WRAPLOW(dct_const_round_shift(s7), 8);
output[0] = WRAPLOW(x0, 8);
output[1] = WRAPLOW(-x4, 8);
output[2] = WRAPLOW(x6, 8);
output[3] = WRAPLOW(-x2, 8);
output[4] = WRAPLOW(x3, 8);
output[5] = WRAPLOW(-x7, 8);
output[6] = WRAPLOW(x5, 8);
output[7] = WRAPLOW(-x1, 8);
}
static const transform_2d IHT_8[] = {
{ idct8, idct8 }, // DCT_DCT = 0
{ iadst8, idct8 }, // ADST_DCT = 1
{ idct8, iadst8 }, // DCT_ADST = 2
{ iadst8, iadst8 } // ADST_ADST = 3
};
void vp9_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
int i, j;
tran_low_t out[8 * 8];
tran_low_t *outptr = out;
tran_low_t temp_in[8], temp_out[8];
const transform_2d ht = IHT_8[tx_type];
// inverse transform row vectors
for (i = 0; i < 8; ++i) {
ht.rows(input, outptr);
input += 8;
outptr += 8;
}
// inverse transform column vectors
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 5));
}
}
}
void vp9_idct8x8_12_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
tran_low_t out[8 * 8] = { 0 };
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[8], temp_out[8];
// First transform rows
// only first 4 row has non-zero coefs
for (i = 0; i < 4; ++i) {
idct8(input, outptr);
input += 8;
outptr += 8;
}
// Then transform columns
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
idct8(temp_in, temp_out);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 5));
}
}
}
static void idct16(const tran_low_t *input, tran_low_t *output) {
tran_low_t step1[16], step2[16];
tran_high_t temp1, temp2;
// stage 1
step1[0] = input[0/2];
step1[1] = input[16/2];
step1[2] = input[8/2];
step1[3] = input[24/2];
step1[4] = input[4/2];
step1[5] = input[20/2];
step1[6] = input[12/2];
step1[7] = input[28/2];
step1[8] = input[2/2];
step1[9] = input[18/2];
step1[10] = input[10/2];
step1[11] = input[26/2];
step1[12] = input[6/2];
step1[13] = input[22/2];
step1[14] = input[14/2];
step1[15] = input[30/2];
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[8] = WRAPLOW(step2[8] + step2[9], 8);
step1[9] = WRAPLOW(step2[8] - step2[9], 8);
step1[10] = WRAPLOW(-step2[10] + step2[11], 8);
step1[11] = WRAPLOW(step2[10] + step2[11], 8);
step1[12] = WRAPLOW(step2[12] + step2[13], 8);
step1[13] = WRAPLOW(step2[12] - step2[13], 8);
step1[14] = WRAPLOW(-step2[14] + step2[15], 8);
step1[15] = WRAPLOW(step2[14] + step2[15], 8);
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[4] = WRAPLOW(step1[4] + step1[5], 8);
step2[5] = WRAPLOW(step1[4] - step1[5], 8);
step2[6] = WRAPLOW(-step1[6] + step1[7], 8);
step2[7] = WRAPLOW(step1[6] + step1[7], 8);
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[11] = step1[11];
step2[12] = step1[12];
// stage 5
step1[0] = WRAPLOW(step2[0] + step2[3], 8);
step1[1] = WRAPLOW(step2[1] + step2[2], 8);
step1[2] = WRAPLOW(step2[1] - step2[2], 8);
step1[3] = WRAPLOW(step2[0] - step2[3], 8);
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[7] = step2[7];
step1[8] = WRAPLOW(step2[8] + step2[11], 8);
step1[9] = WRAPLOW(step2[9] + step2[10], 8);
step1[10] = WRAPLOW(step2[9] - step2[10], 8);
step1[11] = WRAPLOW(step2[8] - step2[11], 8);
step1[12] = WRAPLOW(-step2[12] + step2[15], 8);
step1[13] = WRAPLOW(-step2[13] + step2[14], 8);
step1[14] = WRAPLOW(step2[13] + step2[14], 8);
step1[15] = WRAPLOW(step2[12] + step2[15], 8);
// stage 6
step2[0] = WRAPLOW(step1[0] + step1[7], 8);
step2[1] = WRAPLOW(step1[1] + step1[6], 8);
step2[2] = WRAPLOW(step1[2] + step1[5], 8);
step2[3] = WRAPLOW(step1[3] + step1[4], 8);
step2[4] = WRAPLOW(step1[3] - step1[4], 8);
step2[5] = WRAPLOW(step1[2] - step1[5], 8);
step2[6] = WRAPLOW(step1[1] - step1[6], 8);
step2[7] = WRAPLOW(step1[0] - step1[7], 8);
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[14] = step1[14];
step2[15] = step1[15];
// stage 7
output[0] = WRAPLOW(step2[0] + step2[15], 8);
output[1] = WRAPLOW(step2[1] + step2[14], 8);
output[2] = WRAPLOW(step2[2] + step2[13], 8);
output[3] = WRAPLOW(step2[3] + step2[12], 8);
output[4] = WRAPLOW(step2[4] + step2[11], 8);
output[5] = WRAPLOW(step2[5] + step2[10], 8);
output[6] = WRAPLOW(step2[6] + step2[9], 8);
output[7] = WRAPLOW(step2[7] + step2[8], 8);
output[8] = WRAPLOW(step2[7] - step2[8], 8);
output[9] = WRAPLOW(step2[6] - step2[9], 8);
output[10] = WRAPLOW(step2[5] - step2[10], 8);
output[11] = WRAPLOW(step2[4] - step2[11], 8);
output[12] = WRAPLOW(step2[3] - step2[12], 8);
output[13] = WRAPLOW(step2[2] - step2[13], 8);
output[14] = WRAPLOW(step2[1] - step2[14], 8);
output[15] = WRAPLOW(step2[0] - step2[15], 8);
}
void vp9_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest,
int stride) {
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[16], temp_out[16];
// First transform rows
for (i = 0; i < 16; ++i) {
idct16(input, outptr);
input += 16;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
idct16(temp_in, temp_out);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 6));
}
}
}
static void iadst16(const tran_low_t *input, tran_low_t *output) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
tran_high_t s9, s10, s11, s12, s13, s14, s15;
tran_high_t x0 = input[15];
tran_high_t x1 = input[0];
tran_high_t x2 = input[13];
tran_high_t x3 = input[2];
tran_high_t x4 = input[11];
tran_high_t x5 = input[4];
tran_high_t x6 = input[9];
tran_high_t x7 = input[6];
tran_high_t x8 = input[7];
tran_high_t x9 = input[8];
tran_high_t x10 = input[5];
tran_high_t x11 = input[10];
tran_high_t x12 = input[3];
tran_high_t x13 = input[12];
tran_high_t x14 = input[1];
tran_high_t x15 = input[14];
if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8
| x9 | x10 | x11 | x12 | x13 | x14 | x15)) {
output[0] = output[1] = output[2] = output[3] = output[4]
= output[5] = output[6] = output[7] = output[8]
= output[9] = output[10] = output[11] = output[12]
= output[13] = output[14] = output[15] = 0;
return;
}
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = WRAPLOW(dct_const_round_shift(s0 + s8), 8);
x1 = WRAPLOW(dct_const_round_shift(s1 + s9), 8);
x2 = WRAPLOW(dct_const_round_shift(s2 + s10), 8);
x3 = WRAPLOW(dct_const_round_shift(s3 + s11), 8);
x4 = WRAPLOW(dct_const_round_shift(s4 + s12), 8);
x5 = WRAPLOW(dct_const_round_shift(s5 + s13), 8);
x6 = WRAPLOW(dct_const_round_shift(s6 + s14), 8);
x7 = WRAPLOW(dct_const_round_shift(s7 + s15), 8);
x8 = WRAPLOW(dct_const_round_shift(s0 - s8), 8);
x9 = WRAPLOW(dct_const_round_shift(s1 - s9), 8);
x10 = WRAPLOW(dct_const_round_shift(s2 - s10), 8);
x11 = WRAPLOW(dct_const_round_shift(s3 - s11), 8);
x12 = WRAPLOW(dct_const_round_shift(s4 - s12), 8);
x13 = WRAPLOW(dct_const_round_shift(s5 - s13), 8);
x14 = WRAPLOW(dct_const_round_shift(s6 - s14), 8);
x15 = WRAPLOW(dct_const_round_shift(s7 - s15), 8);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = - x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = - x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = WRAPLOW(s0 + s4, 8);
x1 = WRAPLOW(s1 + s5, 8);
x2 = WRAPLOW(s2 + s6, 8);
x3 = WRAPLOW(s3 + s7, 8);
x4 = WRAPLOW(s0 - s4, 8);
x5 = WRAPLOW(s1 - s5, 8);
x6 = WRAPLOW(s2 - s6, 8);
x7 = WRAPLOW(s3 - s7, 8);
x8 = WRAPLOW(dct_const_round_shift(s8 + s12), 8);
x9 = WRAPLOW(dct_const_round_shift(s9 + s13), 8);
x10 = WRAPLOW(dct_const_round_shift(s10 + s14), 8);
x11 = WRAPLOW(dct_const_round_shift(s11 + s15), 8);
x12 = WRAPLOW(dct_const_round_shift(s8 - s12), 8);
x13 = WRAPLOW(dct_const_round_shift(s9 - s13), 8);
x14 = WRAPLOW(dct_const_round_shift(s10 - s14), 8);
x15 = WRAPLOW(dct_const_round_shift(s11 - s15), 8);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = - x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = - x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = WRAPLOW(check_range(s0 + s2), 8);
x1 = WRAPLOW(check_range(s1 + s3), 8);
x2 = WRAPLOW(check_range(s0 - s2), 8);
x3 = WRAPLOW(check_range(s1 - s3), 8);
x4 = WRAPLOW(dct_const_round_shift(s4 + s6), 8);
x5 = WRAPLOW(dct_const_round_shift(s5 + s7), 8);
x6 = WRAPLOW(dct_const_round_shift(s4 - s6), 8);
x7 = WRAPLOW(dct_const_round_shift(s5 - s7), 8);
x8 = WRAPLOW(check_range(s8 + s10), 8);
x9 = WRAPLOW(check_range(s9 + s11), 8);
x10 = WRAPLOW(check_range(s8 - s10), 8);
x11 = WRAPLOW(check_range(s9 - s11), 8);
x12 = WRAPLOW(dct_const_round_shift(s12 + s14), 8);
x13 = WRAPLOW(dct_const_round_shift(s13 + s15), 8);
x14 = WRAPLOW(dct_const_round_shift(s12 - s14), 8);
x15 = WRAPLOW(dct_const_round_shift(s13 - s15), 8);
// stage 4
s2 = (- cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (- x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (- x10 + x11);
s14 = (- cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = WRAPLOW(dct_const_round_shift(s2), 8);
x3 = WRAPLOW(dct_const_round_shift(s3), 8);
x6 = WRAPLOW(dct_const_round_shift(s6), 8);
x7 = WRAPLOW(dct_const_round_shift(s7), 8);
x10 = WRAPLOW(dct_const_round_shift(s10), 8);
x11 = WRAPLOW(dct_const_round_shift(s11), 8);
x14 = WRAPLOW(dct_const_round_shift(s14), 8);
x15 = WRAPLOW(dct_const_round_shift(s15), 8);
output[0] = WRAPLOW(x0, 8);
output[1] = WRAPLOW(-x8, 8);
output[2] = WRAPLOW(x12, 8);
output[3] = WRAPLOW(-x4, 8);
output[4] = WRAPLOW(x6, 8);
output[5] = WRAPLOW(x14, 8);
output[6] = WRAPLOW(x10, 8);
output[7] = WRAPLOW(x2, 8);
output[8] = WRAPLOW(x3, 8);
output[9] = WRAPLOW(x11, 8);
output[10] = WRAPLOW(x15, 8);
output[11] = WRAPLOW(x7, 8);
output[12] = WRAPLOW(x5, 8);
output[13] = WRAPLOW(-x13, 8);
output[14] = WRAPLOW(x9, 8);
output[15] = WRAPLOW(-x1, 8);
}
static const transform_2d IHT_16[] = {
{ idct16, idct16 }, // DCT_DCT = 0
{ iadst16, idct16 }, // ADST_DCT = 1
{ idct16, iadst16 }, // DCT_ADST = 2
{ iadst16, iadst16 } // ADST_ADST = 3
};
void vp9_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest, int stride,
int tx_type) {
int i, j;
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
tran_low_t temp_in[16], temp_out[16];
const transform_2d ht = IHT_16[tx_type];
// Rows
for (i = 0; i < 16; ++i) {
ht.rows(input, outptr);
input += 16;
outptr += 16;
}
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
ht.cols(temp_in, temp_out);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 6));
}
}
}
void vp9_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest,
int stride) {
tran_low_t out[16 * 16] = { 0 };
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[16], temp_out[16];
// First transform rows. Since all non-zero dct coefficients are in
// upper-left 4x4 area, we only need to calculate first 4 rows here.
for (i = 0; i < 4; ++i) {
idct16(input, outptr);
input += 16;
outptr += 16;
}
// Then transform columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
idct16(temp_in, temp_out);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 6));
}
}
}
void vp9_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
int i, j;
tran_high_t a1;
tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8);
out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8);
a1 = ROUND_POWER_OF_TWO(out, 6);
for (j = 0; j < 16; ++j) {
for (i = 0; i < 16; ++i)
dest[i] = clip_pixel_add(dest[i], a1);
dest += stride;
}
}
static void idct32(const tran_low_t *input, tran_low_t *output) {
tran_low_t step1[32], step2[32];
tran_high_t temp1, temp2;
// stage 1
step1[0] = input[0];
step1[1] = input[16];
step1[2] = input[8];
step1[3] = input[24];
step1[4] = input[4];
step1[5] = input[20];
step1[6] = input[12];
step1[7] = input[28];
step1[8] = input[2];
step1[9] = input[18];
step1[10] = input[10];
step1[11] = input[26];
step1[12] = input[6];
step1[13] = input[22];
step1[14] = input[14];
step1[15] = input[30];
temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64;
temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64;
step1[16] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[31] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64;
temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64;
step1[17] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[30] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64;
temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64;
step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64;
temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64;
step1[19] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[28] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64;
temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64;
step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64;
temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64;
step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64;
temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64;
step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64;
temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64;
step1[23] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[24] = WRAPLOW(dct_const_round_shift(temp2), 8);
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[15] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[16] = WRAPLOW(step1[16] + step1[17], 8);
step2[17] = WRAPLOW(step1[16] - step1[17], 8);
step2[18] = WRAPLOW(-step1[18] + step1[19], 8);
step2[19] = WRAPLOW(step1[18] + step1[19], 8);
step2[20] = WRAPLOW(step1[20] + step1[21], 8);
step2[21] = WRAPLOW(step1[20] - step1[21], 8);
step2[22] = WRAPLOW(-step1[22] + step1[23], 8);
step2[23] = WRAPLOW(step1[22] + step1[23], 8);
step2[24] = WRAPLOW(step1[24] + step1[25], 8);
step2[25] = WRAPLOW(step1[24] - step1[25], 8);
step2[26] = WRAPLOW(-step1[26] + step1[27], 8);
step2[27] = WRAPLOW(step1[26] + step1[27], 8);
step2[28] = WRAPLOW(step1[28] + step1[29], 8);
step2[29] = WRAPLOW(step1[28] - step1[29], 8);
step2[30] = WRAPLOW(-step1[30] + step1[31], 8);
step2[31] = WRAPLOW(step1[30] + step1[31], 8);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[7] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[8] = WRAPLOW(step2[8] + step2[9], 8);
step1[9] = WRAPLOW(step2[8] - step2[9], 8);
step1[10] = WRAPLOW(-step2[10] + step2[11], 8);
step1[11] = WRAPLOW(step2[10] + step2[11], 8);
step1[12] = WRAPLOW(step2[12] + step2[13], 8);
step1[13] = WRAPLOW(step2[12] - step2[13], 8);
step1[14] = WRAPLOW(-step2[14] + step2[15], 8);
step1[15] = WRAPLOW(step2[14] + step2[15], 8);
step1[16] = step2[16];
step1[31] = step2[31];
temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64;
temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64;
step1[17] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[30] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64;
temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64;
step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[19] = step2[19];
step1[20] = step2[20];
temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64;
temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64;
step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64;
temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64;
step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[23] = step2[23];
step1[24] = step2[24];
step1[27] = step2[27];
step1[28] = step2[28];
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[1] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[3] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[4] = WRAPLOW(step1[4] + step1[5], 8);
step2[5] = WRAPLOW(step1[4] - step1[5], 8);
step2[6] = WRAPLOW(-step1[6] + step1[7], 8);
step2[7] = WRAPLOW(step1[6] + step1[7], 8);
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[14] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[11] = step1[11];
step2[12] = step1[12];
step2[16] = WRAPLOW(step1[16] + step1[19], 8);
step2[17] = WRAPLOW(step1[17] + step1[18], 8);
step2[18] = WRAPLOW(step1[17] - step1[18], 8);
step2[19] = WRAPLOW(step1[16] - step1[19], 8);
step2[20] = WRAPLOW(-step1[20] + step1[23], 8);
step2[21] = WRAPLOW(-step1[21] + step1[22], 8);
step2[22] = WRAPLOW(step1[21] + step1[22], 8);
step2[23] = WRAPLOW(step1[20] + step1[23], 8);
step2[24] = WRAPLOW(step1[24] + step1[27], 8);
step2[25] = WRAPLOW(step1[25] + step1[26], 8);
step2[26] = WRAPLOW(step1[25] - step1[26], 8);
step2[27] = WRAPLOW(step1[24] - step1[27], 8);
step2[28] = WRAPLOW(-step1[28] + step1[31], 8);
step2[29] = WRAPLOW(-step1[29] + step1[30], 8);
step2[30] = WRAPLOW(step1[29] + step1[30], 8);
step2[31] = WRAPLOW(step1[28] + step1[31], 8);
// stage 5
step1[0] = WRAPLOW(step2[0] + step2[3], 8);
step1[1] = WRAPLOW(step2[1] + step2[2], 8);
step1[2] = WRAPLOW(step2[1] - step2[2], 8);
step1[3] = WRAPLOW(step2[0] - step2[3], 8);
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[6] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[7] = step2[7];
step1[8] = WRAPLOW(step2[8] + step2[11], 8);
step1[9] = WRAPLOW(step2[9] + step2[10], 8);
step1[10] = WRAPLOW(step2[9] - step2[10], 8);
step1[11] = WRAPLOW(step2[8] - step2[11], 8);
step1[12] = WRAPLOW(-step2[12] + step2[15], 8);
step1[13] = WRAPLOW(-step2[13] + step2[14], 8);
step1[14] = WRAPLOW(step2[13] + step2[14], 8);
step1[15] = WRAPLOW(step2[12] + step2[15], 8);
step1[16] = step2[16];
step1[17] = step2[17];
temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64;
temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64;
step1[18] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[29] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64;
temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64;
step1[19] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[28] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64;
temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64;
step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64;
temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64;
step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[22] = step2[22];
step1[23] = step2[23];
step1[24] = step2[24];
step1[25] = step2[25];
step1[30] = step2[30];
step1[31] = step2[31];
// stage 6
step2[0] = WRAPLOW(step1[0] + step1[7], 8);
step2[1] = WRAPLOW(step1[1] + step1[6], 8);
step2[2] = WRAPLOW(step1[2] + step1[5], 8);
step2[3] = WRAPLOW(step1[3] + step1[4], 8);
step2[4] = WRAPLOW(step1[3] - step1[4], 8);
step2[5] = WRAPLOW(step1[2] - step1[5], 8);
step2[6] = WRAPLOW(step1[1] - step1[6], 8);
step2[7] = WRAPLOW(step1[0] - step1[7], 8);
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[13] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = WRAPLOW(dct_const_round_shift(temp1), 8);
step2[12] = WRAPLOW(dct_const_round_shift(temp2), 8);
step2[14] = step1[14];
step2[15] = step1[15];
step2[16] = WRAPLOW(step1[16] + step1[23], 8);
step2[17] = WRAPLOW(step1[17] + step1[22], 8);
step2[18] = WRAPLOW(step1[18] + step1[21], 8);
step2[19] = WRAPLOW(step1[19] + step1[20], 8);
step2[20] = WRAPLOW(step1[19] - step1[20], 8);
step2[21] = WRAPLOW(step1[18] - step1[21], 8);
step2[22] = WRAPLOW(step1[17] - step1[22], 8);
step2[23] = WRAPLOW(step1[16] - step1[23], 8);
step2[24] = WRAPLOW(-step1[24] + step1[31], 8);
step2[25] = WRAPLOW(-step1[25] + step1[30], 8);
step2[26] = WRAPLOW(-step1[26] + step1[29], 8);
step2[27] = WRAPLOW(-step1[27] + step1[28], 8);
step2[28] = WRAPLOW(step1[27] + step1[28], 8);
step2[29] = WRAPLOW(step1[26] + step1[29], 8);
step2[30] = WRAPLOW(step1[25] + step1[30], 8);
step2[31] = WRAPLOW(step1[24] + step1[31], 8);
// stage 7
step1[0] = WRAPLOW(step2[0] + step2[15], 8);
step1[1] = WRAPLOW(step2[1] + step2[14], 8);
step1[2] = WRAPLOW(step2[2] + step2[13], 8);
step1[3] = WRAPLOW(step2[3] + step2[12], 8);
step1[4] = WRAPLOW(step2[4] + step2[11], 8);
step1[5] = WRAPLOW(step2[5] + step2[10], 8);
step1[6] = WRAPLOW(step2[6] + step2[9], 8);
step1[7] = WRAPLOW(step2[7] + step2[8], 8);
step1[8] = WRAPLOW(step2[7] - step2[8], 8);
step1[9] = WRAPLOW(step2[6] - step2[9], 8);
step1[10] = WRAPLOW(step2[5] - step2[10], 8);
step1[11] = WRAPLOW(step2[4] - step2[11], 8);
step1[12] = WRAPLOW(step2[3] - step2[12], 8);
step1[13] = WRAPLOW(step2[2] - step2[13], 8);
step1[14] = WRAPLOW(step2[1] - step2[14], 8);
step1[15] = WRAPLOW(step2[0] - step2[15], 8);
step1[16] = step2[16];
step1[17] = step2[17];
step1[18] = step2[18];
step1[19] = step2[19];
temp1 = (-step2[20] + step2[27]) * cospi_16_64;
temp2 = (step2[20] + step2[27]) * cospi_16_64;
step1[20] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[27] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = (-step2[21] + step2[26]) * cospi_16_64;
temp2 = (step2[21] + step2[26]) * cospi_16_64;
step1[21] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[26] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = (-step2[22] + step2[25]) * cospi_16_64;
temp2 = (step2[22] + step2[25]) * cospi_16_64;
step1[22] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[25] = WRAPLOW(dct_const_round_shift(temp2), 8);
temp1 = (-step2[23] + step2[24]) * cospi_16_64;
temp2 = (step2[23] + step2[24]) * cospi_16_64;
step1[23] = WRAPLOW(dct_const_round_shift(temp1), 8);
step1[24] = WRAPLOW(dct_const_round_shift(temp2), 8);
step1[28] = step2[28];
step1[29] = step2[29];
step1[30] = step2[30];
step1[31] = step2[31];
// final stage
output[0] = WRAPLOW(step1[0] + step1[31], 8);
output[1] = WRAPLOW(step1[1] + step1[30], 8);
output[2] = WRAPLOW(step1[2] + step1[29], 8);
output[3] = WRAPLOW(step1[3] + step1[28], 8);
output[4] = WRAPLOW(step1[4] + step1[27], 8);
output[5] = WRAPLOW(step1[5] + step1[26], 8);
output[6] = WRAPLOW(step1[6] + step1[25], 8);
output[7] = WRAPLOW(step1[7] + step1[24], 8);
output[8] = WRAPLOW(step1[8] + step1[23], 8);
output[9] = WRAPLOW(step1[9] + step1[22], 8);
output[10] = WRAPLOW(step1[10] + step1[21], 8);
output[11] = WRAPLOW(step1[11] + step1[20], 8);
output[12] = WRAPLOW(step1[12] + step1[19], 8);
output[13] = WRAPLOW(step1[13] + step1[18], 8);
output[14] = WRAPLOW(step1[14] + step1[17], 8);
output[15] = WRAPLOW(step1[15] + step1[16], 8);
output[16] = WRAPLOW(step1[15] - step1[16], 8);
output[17] = WRAPLOW(step1[14] - step1[17], 8);
output[18] = WRAPLOW(step1[13] - step1[18], 8);
output[19] = WRAPLOW(step1[12] - step1[19], 8);
output[20] = WRAPLOW(step1[11] - step1[20], 8);
output[21] = WRAPLOW(step1[10] - step1[21], 8);
output[22] = WRAPLOW(step1[9] - step1[22], 8);
output[23] = WRAPLOW(step1[8] - step1[23], 8);
output[24] = WRAPLOW(step1[7] - step1[24], 8);
output[25] = WRAPLOW(step1[6] - step1[25], 8);
output[26] = WRAPLOW(step1[5] - step1[26], 8);
output[27] = WRAPLOW(step1[4] - step1[27], 8);
output[28] = WRAPLOW(step1[3] - step1[28], 8);
output[29] = WRAPLOW(step1[2] - step1[29], 8);
output[30] = WRAPLOW(step1[1] - step1[30], 8);
output[31] = WRAPLOW(step1[0] - step1[31], 8);
}
void vp9_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest,
int stride) {
tran_low_t out[32 * 32];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[32], temp_out[32];
// Rows
for (i = 0; i < 32; ++i) {
int16_t zero_coeff[16];
for (j = 0; j < 16; ++j)
zero_coeff[j] = input[2 * j] | input[2 * j + 1];
for (j = 0; j < 8; ++j)
zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1];
for (j = 0; j < 4; ++j)
zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1];
for (j = 0; j < 2; ++j)
zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1];
if (zero_coeff[0] | zero_coeff[1])
idct32(input, outptr);
else
vpx_memset(outptr, 0, sizeof(tran_low_t) * 32);
input += 32;
outptr += 32;
}
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
idct32(temp_in, temp_out);
for (j = 0; j < 32; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 6));
}
}
}
void vp9_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest,
int stride) {
tran_low_t out[32 * 32] = {0};
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[32], temp_out[32];
// Rows
// only upper-left 8x8 has non-zero coeff
for (i = 0; i < 8; ++i) {
idct32(input, outptr);
input += 32;
outptr += 32;
}
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
idct32(temp_in, temp_out);
for (j = 0; j < 32; ++j) {
dest[j * stride + i] = clip_pixel_add(dest[j * stride + i],
ROUND_POWER_OF_TWO(temp_out[j], 6));
}
}
}
void vp9_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest, int stride) {
int i, j;
tran_high_t a1;
tran_low_t out = WRAPLOW(dct_const_round_shift(input[0] * cospi_16_64), 8);
out = WRAPLOW(dct_const_round_shift(out * cospi_16_64), 8);
a1 = ROUND_POWER_OF_TWO(out, 6);
for (j = 0; j < 32; ++j) {
for (i = 0; i < 32; ++i)
dest[i] = clip_pixel_add(dest[i], a1);
dest += stride;
}
}
// idct
void vp9_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
vp9_idct4x4_16_add(input, dest, stride);
else
vp9_idct4x4_1_add(input, dest, stride);
}
void vp9_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob > 1)
vp9_iwht4x4_16_add(input, dest, stride);
else
vp9_iwht4x4_1_add(input, dest, stride);
}
void vp9_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c.
// Combine that with code here.
if (eob == 1)
// DC only DCT coefficient
vp9_idct8x8_1_add(input, dest, stride);
else if (eob <= 12)
vp9_idct8x8_12_add(input, dest, stride);
else
vp9_idct8x8_64_add(input, dest, stride);
}
void vp9_idct16x16_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
/* The calculation can be simplified if there are not many non-zero dct
* coefficients. Use eobs to separate different cases. */
if (eob == 1)
/* DC only DCT coefficient. */
vp9_idct16x16_1_add(input, dest, stride);
else if (eob <= 10)
vp9_idct16x16_10_add(input, dest, stride);
else
vp9_idct16x16_256_add(input, dest, stride);
}
void vp9_idct32x32_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob) {
if (eob == 1)
vp9_idct32x32_1_add(input, dest, stride);
else if (eob <= 34)
// non-zero coeff only in upper-left 8x8
vp9_idct32x32_34_add(input, dest, stride);
else
vp9_idct32x32_1024_add(input, dest, stride);
}
// iht
void vp9_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest,
int stride, int eob) {
if (tx_type == DCT_DCT)
vp9_idct4x4_add(input, dest, stride, eob);
else
vp9_iht4x4_16_add(input, dest, stride, tx_type);
}
void vp9_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest,
int stride, int eob) {
if (tx_type == DCT_DCT) {
vp9_idct8x8_add(input, dest, stride, eob);
} else {
vp9_iht8x8_64_add(input, dest, stride, tx_type);
}
}
void vp9_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input, uint8_t *dest,
int stride, int eob) {
if (tx_type == DCT_DCT) {
vp9_idct16x16_add(input, dest, stride, eob);
} else {
vp9_iht16x16_256_add(input, dest, stride, tx_type);
}
}
#if CONFIG_VP9_HIGHBITDEPTH
void vp9_highbd_iwht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
/* 4-point reversible, orthonormal inverse Walsh-Hadamard in 3.5 adds,
0.5 shifts per pixel. */
int i;
tran_low_t output[16];
tran_high_t a1, b1, c1, d1, e1;
const tran_low_t *ip = input;
tran_low_t *op = output;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
for (i = 0; i < 4; i++) {
a1 = ip[0] >> UNIT_QUANT_SHIFT;
c1 = ip[1] >> UNIT_QUANT_SHIFT;
d1 = ip[2] >> UNIT_QUANT_SHIFT;
b1 = ip[3] >> UNIT_QUANT_SHIFT;
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
op[0] = WRAPLOW(a1, bd);
op[1] = WRAPLOW(b1, bd);
op[2] = WRAPLOW(c1, bd);
op[3] = WRAPLOW(d1, bd);
ip += 4;
op += 4;
}
ip = output;
for (i = 0; i < 4; i++) {
a1 = ip[4 * 0];
c1 = ip[4 * 1];
d1 = ip[4 * 2];
b1 = ip[4 * 3];
a1 += c1;
d1 -= b1;
e1 = (a1 - d1) >> 1;
b1 = e1 - b1;
c1 = e1 - c1;
a1 -= b1;
d1 += c1;
dest[stride * 0] = highbd_clip_pixel_add(dest[stride * 0], a1, bd);
dest[stride * 1] = highbd_clip_pixel_add(dest[stride * 1], b1, bd);
dest[stride * 2] = highbd_clip_pixel_add(dest[stride * 2], c1, bd);
dest[stride * 3] = highbd_clip_pixel_add(dest[stride * 3], d1, bd);
ip++;
dest++;
}
}
void vp9_highbd_iwht4x4_1_add_c(const tran_low_t *in, uint8_t *dest8,
int dest_stride, int bd) {
int i;
tran_high_t a1, e1;
tran_low_t tmp[4];
const tran_low_t *ip = in;
tran_low_t *op = tmp;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
(void) bd;
a1 = ip[0] >> UNIT_QUANT_SHIFT;
e1 = a1 >> 1;
a1 -= e1;
op[0] = WRAPLOW(a1, bd);
op[1] = op[2] = op[3] = WRAPLOW(e1, bd);
ip = tmp;
for (i = 0; i < 4; i++) {
e1 = ip[0] >> 1;
a1 = ip[0] - e1;
dest[dest_stride * 0] = highbd_clip_pixel_add(
dest[dest_stride * 0], a1, bd);
dest[dest_stride * 1] = highbd_clip_pixel_add(
dest[dest_stride * 1], e1, bd);
dest[dest_stride * 2] = highbd_clip_pixel_add(
dest[dest_stride * 2], e1, bd);
dest[dest_stride * 3] = highbd_clip_pixel_add(
dest[dest_stride * 3], e1, bd);
ip++;
dest++;
}
}
void vp9_highbd_idct4(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step[4];
tran_high_t temp1, temp2;
(void) bd;
// stage 1
temp1 = (input[0] + input[2]) * cospi_16_64;
temp2 = (input[0] - input[2]) * cospi_16_64;
step[0] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step[1] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[1] * cospi_24_64 - input[3] * cospi_8_64;
temp2 = input[1] * cospi_8_64 + input[3] * cospi_24_64;
step[2] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step[3] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
// stage 2
output[0] = WRAPLOW(step[0] + step[3], bd);
output[1] = WRAPLOW(step[1] + step[2], bd);
output[2] = WRAPLOW(step[1] - step[2], bd);
output[3] = WRAPLOW(step[0] - step[3], bd);
}
void vp9_highbd_idct4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[4], temp_out[4];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// Rows
for (i = 0; i < 4; ++i) {
vp9_highbd_idct4(input, outptr, bd);
input += 4;
outptr += 4;
}
// Columns
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
vp9_highbd_idct4(temp_in, temp_out, bd);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd);
}
}
}
void vp9_highbd_idct4x4_1_add_c(const tran_low_t *input, uint8_t *dest8,
int dest_stride, int bd) {
int i;
tran_high_t a1;
tran_low_t out = WRAPLOW(
highbd_dct_const_round_shift(input[0] * cospi_16_64, bd), bd);
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
out = WRAPLOW(highbd_dct_const_round_shift(out * cospi_16_64, bd), bd);
a1 = ROUND_POWER_OF_TWO(out, 4);
for (i = 0; i < 4; i++) {
dest[0] = highbd_clip_pixel_add(dest[0], a1, bd);
dest[1] = highbd_clip_pixel_add(dest[1], a1, bd);
dest[2] = highbd_clip_pixel_add(dest[2], a1, bd);
dest[3] = highbd_clip_pixel_add(dest[3], a1, bd);
dest += dest_stride;
}
}
void vp9_highbd_idct8(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step1[8], step2[8];
tran_high_t temp1, temp2;
// stage 1
step1[0] = input[0];
step1[2] = input[4];
step1[1] = input[2];
step1[3] = input[6];
temp1 = input[1] * cospi_28_64 - input[7] * cospi_4_64;
temp2 = input[1] * cospi_4_64 + input[7] * cospi_28_64;
step1[4] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[7] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[5] * cospi_12_64 - input[3] * cospi_20_64;
temp2 = input[5] * cospi_20_64 + input[3] * cospi_12_64;
step1[5] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[6] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
// stage 2 & stage 3 - even half
vp9_highbd_idct4(step1, step1, bd);
// stage 2 - odd half
step2[4] = WRAPLOW(step1[4] + step1[5], bd);
step2[5] = WRAPLOW(step1[4] - step1[5], bd);
step2[6] = WRAPLOW(-step1[6] + step1[7], bd);
step2[7] = WRAPLOW(step1[6] + step1[7], bd);
// stage 3 - odd half
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[6] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[7] = step2[7];
// stage 4
output[0] = WRAPLOW(step1[0] + step1[7], bd);
output[1] = WRAPLOW(step1[1] + step1[6], bd);
output[2] = WRAPLOW(step1[2] + step1[5], bd);
output[3] = WRAPLOW(step1[3] + step1[4], bd);
output[4] = WRAPLOW(step1[3] - step1[4], bd);
output[5] = WRAPLOW(step1[2] - step1[5], bd);
output[6] = WRAPLOW(step1[1] - step1[6], bd);
output[7] = WRAPLOW(step1[0] - step1[7], bd);
}
void vp9_highbd_idct8x8_64_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[8 * 8];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[8], temp_out[8];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// First transform rows.
for (i = 0; i < 8; ++i) {
vp9_highbd_idct8(input, outptr, bd);
input += 8;
outptr += 8;
}
// Then transform columns.
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
vp9_highbd_idct8(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
}
void vp9_highbd_idct8x8_1_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
int i, j;
tran_high_t a1;
tran_low_t out = WRAPLOW(
highbd_dct_const_round_shift(input[0] * cospi_16_64, bd), bd);
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
out = WRAPLOW(highbd_dct_const_round_shift(out * cospi_16_64, bd), bd);
a1 = ROUND_POWER_OF_TWO(out, 5);
for (j = 0; j < 8; ++j) {
for (i = 0; i < 8; ++i)
dest[i] = highbd_clip_pixel_add(dest[i], a1, bd);
dest += stride;
}
}
static void highbd_iadst4(const tran_low_t *input, tran_low_t *output, int bd) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_low_t x0 = input[0];
tran_low_t x1 = input[1];
tran_low_t x2 = input[2];
tran_low_t x3 = input[3];
(void) bd;
if (!(x0 | x1 | x2 | x3)) {
vpx_memset(output, 0, 4 * sizeof(*output));
return;
}
s0 = sinpi_1_9 * x0;
s1 = sinpi_2_9 * x0;
s2 = sinpi_3_9 * x1;
s3 = sinpi_4_9 * x2;
s4 = sinpi_1_9 * x2;
s5 = sinpi_2_9 * x3;
s6 = sinpi_4_9 * x3;
s7 = (tran_high_t)(x0 - x2 + x3);
s0 = s0 + s3 + s5;
s1 = s1 - s4 - s6;
s3 = s2;
s2 = sinpi_3_9 * s7;
// 1-D transform scaling factor is sqrt(2).
// The overall dynamic range is 14b (input) + 14b (multiplication scaling)
// + 1b (addition) = 29b.
// Hence the output bit depth is 15b.
output[0] = WRAPLOW(highbd_dct_const_round_shift(s0 + s3, bd), bd);
output[1] = WRAPLOW(highbd_dct_const_round_shift(s1 + s3, bd), bd);
output[2] = WRAPLOW(highbd_dct_const_round_shift(s2, bd), bd);
output[3] = WRAPLOW(highbd_dct_const_round_shift(s0 + s1 - s3, bd), bd);
}
void vp9_highbd_iht4x4_16_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
const highbd_transform_2d IHT_4[] = {
{ vp9_highbd_idct4, vp9_highbd_idct4 }, // DCT_DCT = 0
{ highbd_iadst4, vp9_highbd_idct4 }, // ADST_DCT = 1
{ vp9_highbd_idct4, highbd_iadst4 }, // DCT_ADST = 2
{ highbd_iadst4, highbd_iadst4 } // ADST_ADST = 3
};
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
int i, j;
tran_low_t out[4 * 4];
tran_low_t *outptr = out;
tran_low_t temp_in[4], temp_out[4];
// Inverse transform row vectors.
for (i = 0; i < 4; ++i) {
IHT_4[tx_type].rows(input, outptr, bd);
input += 4;
outptr += 4;
}
// Inverse transform column vectors.
for (i = 0; i < 4; ++i) {
for (j = 0; j < 4; ++j)
temp_in[j] = out[j * 4 + i];
IHT_4[tx_type].cols(temp_in, temp_out, bd);
for (j = 0; j < 4; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 4), bd);
}
}
}
static void highbd_iadst8(const tran_low_t *input, tran_low_t *output, int bd) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7;
tran_low_t x0 = input[7];
tran_low_t x1 = input[0];
tran_low_t x2 = input[5];
tran_low_t x3 = input[2];
tran_low_t x4 = input[3];
tran_low_t x5 = input[4];
tran_low_t x6 = input[1];
tran_low_t x7 = input[6];
(void) bd;
if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7)) {
vpx_memset(output, 0, 8 * sizeof(*output));
return;
}
// stage 1
s0 = cospi_2_64 * x0 + cospi_30_64 * x1;
s1 = cospi_30_64 * x0 - cospi_2_64 * x1;
s2 = cospi_10_64 * x2 + cospi_22_64 * x3;
s3 = cospi_22_64 * x2 - cospi_10_64 * x3;
s4 = cospi_18_64 * x4 + cospi_14_64 * x5;
s5 = cospi_14_64 * x4 - cospi_18_64 * x5;
s6 = cospi_26_64 * x6 + cospi_6_64 * x7;
s7 = cospi_6_64 * x6 - cospi_26_64 * x7;
x0 = WRAPLOW(highbd_dct_const_round_shift(s0 + s4, bd), bd);
x1 = WRAPLOW(highbd_dct_const_round_shift(s1 + s5, bd), bd);
x2 = WRAPLOW(highbd_dct_const_round_shift(s2 + s6, bd), bd);
x3 = WRAPLOW(highbd_dct_const_round_shift(s3 + s7, bd), bd);
x4 = WRAPLOW(highbd_dct_const_round_shift(s0 - s4, bd), bd);
x5 = WRAPLOW(highbd_dct_const_round_shift(s1 - s5, bd), bd);
x6 = WRAPLOW(highbd_dct_const_round_shift(s2 - s6, bd), bd);
x7 = WRAPLOW(highbd_dct_const_round_shift(s3 - s7, bd), bd);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = cospi_8_64 * x4 + cospi_24_64 * x5;
s5 = cospi_24_64 * x4 - cospi_8_64 * x5;
s6 = -cospi_24_64 * x6 + cospi_8_64 * x7;
s7 = cospi_8_64 * x6 + cospi_24_64 * x7;
x0 = WRAPLOW(s0 + s2, bd);
x1 = WRAPLOW(s1 + s3, bd);
x2 = WRAPLOW(s0 - s2, bd);
x3 = WRAPLOW(s1 - s3, bd);
x4 = WRAPLOW(highbd_dct_const_round_shift(s4 + s6, bd), bd);
x5 = WRAPLOW(highbd_dct_const_round_shift(s5 + s7, bd), bd);
x6 = WRAPLOW(highbd_dct_const_round_shift(s4 - s6, bd), bd);
x7 = WRAPLOW(highbd_dct_const_round_shift(s5 - s7, bd), bd);
// stage 3
s2 = cospi_16_64 * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (x6 - x7);
x2 = WRAPLOW(highbd_dct_const_round_shift(s2, bd), bd);
x3 = WRAPLOW(highbd_dct_const_round_shift(s3, bd), bd);
x6 = WRAPLOW(highbd_dct_const_round_shift(s6, bd), bd);
x7 = WRAPLOW(highbd_dct_const_round_shift(s7, bd), bd);
output[0] = WRAPLOW(x0, bd);
output[1] = WRAPLOW(-x4, bd);
output[2] = WRAPLOW(x6, bd);
output[3] = WRAPLOW(-x2, bd);
output[4] = WRAPLOW(x3, bd);
output[5] = WRAPLOW(-x7, bd);
output[6] = WRAPLOW(x5, bd);
output[7] = WRAPLOW(-x1, bd);
}
static const highbd_transform_2d HIGH_IHT_8[] = {
{ vp9_highbd_idct8, vp9_highbd_idct8 }, // DCT_DCT = 0
{ highbd_iadst8, vp9_highbd_idct8 }, // ADST_DCT = 1
{ vp9_highbd_idct8, highbd_iadst8 }, // DCT_ADST = 2
{ highbd_iadst8, highbd_iadst8 } // ADST_ADST = 3
};
void vp9_highbd_iht8x8_64_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
int i, j;
tran_low_t out[8 * 8];
tran_low_t *outptr = out;
tran_low_t temp_in[8], temp_out[8];
const highbd_transform_2d ht = HIGH_IHT_8[tx_type];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// Inverse transform row vectors.
for (i = 0; i < 8; ++i) {
ht.rows(input, outptr, bd);
input += 8;
outptr += 8;
}
// Inverse transform column vectors.
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
ht.cols(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
}
void vp9_highbd_idct8x8_10_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[8 * 8] = { 0 };
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[8], temp_out[8];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// First transform rows.
// Only first 4 row has non-zero coefs.
for (i = 0; i < 4; ++i) {
vp9_highbd_idct8(input, outptr, bd);
input += 8;
outptr += 8;
}
// Then transform columns.
for (i = 0; i < 8; ++i) {
for (j = 0; j < 8; ++j)
temp_in[j] = out[j * 8 + i];
vp9_highbd_idct8(temp_in, temp_out, bd);
for (j = 0; j < 8; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 5), bd);
}
}
}
void vp9_highbd_idct16(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step1[16], step2[16];
tran_high_t temp1, temp2;
(void) bd;
// stage 1
step1[0] = input[0/2];
step1[1] = input[16/2];
step1[2] = input[8/2];
step1[3] = input[24/2];
step1[4] = input[4/2];
step1[5] = input[20/2];
step1[6] = input[12/2];
step1[7] = input[28/2];
step1[8] = input[2/2];
step1[9] = input[18/2];
step1[10] = input[10/2];
step1[11] = input[26/2];
step1[12] = input[6/2];
step1[13] = input[22/2];
step1[14] = input[14/2];
step1[15] = input[30/2];
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[15] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[14] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[13] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[12] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[7] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[6] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[8] = WRAPLOW(step2[8] + step2[9], bd);
step1[9] = WRAPLOW(step2[8] - step2[9], bd);
step1[10] = WRAPLOW(-step2[10] + step2[11], bd);
step1[11] = WRAPLOW(step2[10] + step2[11], bd);
step1[12] = WRAPLOW(step2[12] + step2[13], bd);
step1[13] = WRAPLOW(step2[12] - step2[13], bd);
step1[14] = WRAPLOW(-step2[14] + step2[15], bd);
step1[15] = WRAPLOW(step2[14] + step2[15], bd);
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[1] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[3] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[4] = WRAPLOW(step1[4] + step1[5], bd);
step2[5] = WRAPLOW(step1[4] - step1[5], bd);
step2[6] = WRAPLOW(-step1[6] + step1[7], bd);
step2[7] = WRAPLOW(step1[6] + step1[7], bd);
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[14] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[13] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[11] = step1[11];
step2[12] = step1[12];
// stage 5
step1[0] = WRAPLOW(step2[0] + step2[3], bd);
step1[1] = WRAPLOW(step2[1] + step2[2], bd);
step1[2] = WRAPLOW(step2[1] - step2[2], bd);
step1[3] = WRAPLOW(step2[0] - step2[3], bd);
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[6] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[7] = step2[7];
step1[8] = WRAPLOW(step2[8] + step2[11], bd);
step1[9] = WRAPLOW(step2[9] + step2[10], bd);
step1[10] = WRAPLOW(step2[9] - step2[10], bd);
step1[11] = WRAPLOW(step2[8] - step2[11], bd);
step1[12] = WRAPLOW(-step2[12] + step2[15], bd);
step1[13] = WRAPLOW(-step2[13] + step2[14], bd);
step1[14] = WRAPLOW(step2[13] + step2[14], bd);
step1[15] = WRAPLOW(step2[12] + step2[15], bd);
// stage 6
step2[0] = WRAPLOW(step1[0] + step1[7], bd);
step2[1] = WRAPLOW(step1[1] + step1[6], bd);
step2[2] = WRAPLOW(step1[2] + step1[5], bd);
step2[3] = WRAPLOW(step1[3] + step1[4], bd);
step2[4] = WRAPLOW(step1[3] - step1[4], bd);
step2[5] = WRAPLOW(step1[2] - step1[5], bd);
step2[6] = WRAPLOW(step1[1] - step1[6], bd);
step2[7] = WRAPLOW(step1[0] - step1[7], bd);
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[13] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[12] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[14] = step1[14];
step2[15] = step1[15];
// stage 7
output[0] = WRAPLOW(step2[0] + step2[15], bd);
output[1] = WRAPLOW(step2[1] + step2[14], bd);
output[2] = WRAPLOW(step2[2] + step2[13], bd);
output[3] = WRAPLOW(step2[3] + step2[12], bd);
output[4] = WRAPLOW(step2[4] + step2[11], bd);
output[5] = WRAPLOW(step2[5] + step2[10], bd);
output[6] = WRAPLOW(step2[6] + step2[9], bd);
output[7] = WRAPLOW(step2[7] + step2[8], bd);
output[8] = WRAPLOW(step2[7] - step2[8], bd);
output[9] = WRAPLOW(step2[6] - step2[9], bd);
output[10] = WRAPLOW(step2[5] - step2[10], bd);
output[11] = WRAPLOW(step2[4] - step2[11], bd);
output[12] = WRAPLOW(step2[3] - step2[12], bd);
output[13] = WRAPLOW(step2[2] - step2[13], bd);
output[14] = WRAPLOW(step2[1] - step2[14], bd);
output[15] = WRAPLOW(step2[0] - step2[15], bd);
}
void vp9_highbd_idct16x16_256_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[16], temp_out[16];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// First transform rows.
for (i = 0; i < 16; ++i) {
vp9_highbd_idct16(input, outptr, bd);
input += 16;
outptr += 16;
}
// Then transform columns.
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
vp9_highbd_idct16(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
static void highbd_iadst16(const tran_low_t *input, tran_low_t *output,
int bd) {
tran_high_t s0, s1, s2, s3, s4, s5, s6, s7, s8;
tran_high_t s9, s10, s11, s12, s13, s14, s15;
tran_low_t x0 = input[15];
tran_low_t x1 = input[0];
tran_low_t x2 = input[13];
tran_low_t x3 = input[2];
tran_low_t x4 = input[11];
tran_low_t x5 = input[4];
tran_low_t x6 = input[9];
tran_low_t x7 = input[6];
tran_low_t x8 = input[7];
tran_low_t x9 = input[8];
tran_low_t x10 = input[5];
tran_low_t x11 = input[10];
tran_low_t x12 = input[3];
tran_low_t x13 = input[12];
tran_low_t x14 = input[1];
tran_low_t x15 = input[14];
(void) bd;
if (!(x0 | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8
| x9 | x10 | x11 | x12 | x13 | x14 | x15)) {
vpx_memset(output, 0, 16 * sizeof(*output));
return;
}
// stage 1
s0 = x0 * cospi_1_64 + x1 * cospi_31_64;
s1 = x0 * cospi_31_64 - x1 * cospi_1_64;
s2 = x2 * cospi_5_64 + x3 * cospi_27_64;
s3 = x2 * cospi_27_64 - x3 * cospi_5_64;
s4 = x4 * cospi_9_64 + x5 * cospi_23_64;
s5 = x4 * cospi_23_64 - x5 * cospi_9_64;
s6 = x6 * cospi_13_64 + x7 * cospi_19_64;
s7 = x6 * cospi_19_64 - x7 * cospi_13_64;
s8 = x8 * cospi_17_64 + x9 * cospi_15_64;
s9 = x8 * cospi_15_64 - x9 * cospi_17_64;
s10 = x10 * cospi_21_64 + x11 * cospi_11_64;
s11 = x10 * cospi_11_64 - x11 * cospi_21_64;
s12 = x12 * cospi_25_64 + x13 * cospi_7_64;
s13 = x12 * cospi_7_64 - x13 * cospi_25_64;
s14 = x14 * cospi_29_64 + x15 * cospi_3_64;
s15 = x14 * cospi_3_64 - x15 * cospi_29_64;
x0 = WRAPLOW(highbd_dct_const_round_shift(s0 + s8, bd), bd);
x1 = WRAPLOW(highbd_dct_const_round_shift(s1 + s9, bd), bd);
x2 = WRAPLOW(highbd_dct_const_round_shift(s2 + s10, bd), bd);
x3 = WRAPLOW(highbd_dct_const_round_shift(s3 + s11, bd), bd);
x4 = WRAPLOW(highbd_dct_const_round_shift(s4 + s12, bd), bd);
x5 = WRAPLOW(highbd_dct_const_round_shift(s5 + s13, bd), bd);
x6 = WRAPLOW(highbd_dct_const_round_shift(s6 + s14, bd), bd);
x7 = WRAPLOW(highbd_dct_const_round_shift(s7 + s15, bd), bd);
x8 = WRAPLOW(highbd_dct_const_round_shift(s0 - s8, bd), bd);
x9 = WRAPLOW(highbd_dct_const_round_shift(s1 - s9, bd), bd);
x10 = WRAPLOW(highbd_dct_const_round_shift(s2 - s10, bd), bd);
x11 = WRAPLOW(highbd_dct_const_round_shift(s3 - s11, bd), bd);
x12 = WRAPLOW(highbd_dct_const_round_shift(s4 - s12, bd), bd);
x13 = WRAPLOW(highbd_dct_const_round_shift(s5 - s13, bd), bd);
x14 = WRAPLOW(highbd_dct_const_round_shift(s6 - s14, bd), bd);
x15 = WRAPLOW(highbd_dct_const_round_shift(s7 - s15, bd), bd);
// stage 2
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4;
s5 = x5;
s6 = x6;
s7 = x7;
s8 = x8 * cospi_4_64 + x9 * cospi_28_64;
s9 = x8 * cospi_28_64 - x9 * cospi_4_64;
s10 = x10 * cospi_20_64 + x11 * cospi_12_64;
s11 = x10 * cospi_12_64 - x11 * cospi_20_64;
s12 = -x12 * cospi_28_64 + x13 * cospi_4_64;
s13 = x12 * cospi_4_64 + x13 * cospi_28_64;
s14 = -x14 * cospi_12_64 + x15 * cospi_20_64;
s15 = x14 * cospi_20_64 + x15 * cospi_12_64;
x0 = WRAPLOW(s0 + s4, bd);
x1 = WRAPLOW(s1 + s5, bd);
x2 = WRAPLOW(s2 + s6, bd);
x3 = WRAPLOW(s3 + s7, bd);
x4 = WRAPLOW(s0 - s4, bd);
x5 = WRAPLOW(s1 - s5, bd);
x6 = WRAPLOW(s2 - s6, bd);
x7 = WRAPLOW(s3 - s7, bd);
x8 = WRAPLOW(highbd_dct_const_round_shift(s8 + s12, bd), bd);
x9 = WRAPLOW(highbd_dct_const_round_shift(s9 + s13, bd), bd);
x10 = WRAPLOW(highbd_dct_const_round_shift(s10 + s14, bd), bd);
x11 = WRAPLOW(highbd_dct_const_round_shift(s11 + s15, bd), bd);
x12 = WRAPLOW(highbd_dct_const_round_shift(s8 - s12, bd), bd);
x13 = WRAPLOW(highbd_dct_const_round_shift(s9 - s13, bd), bd);
x14 = WRAPLOW(highbd_dct_const_round_shift(s10 - s14, bd), bd);
x15 = WRAPLOW(highbd_dct_const_round_shift(s11 - s15, bd), bd);
// stage 3
s0 = x0;
s1 = x1;
s2 = x2;
s3 = x3;
s4 = x4 * cospi_8_64 + x5 * cospi_24_64;
s5 = x4 * cospi_24_64 - x5 * cospi_8_64;
s6 = -x6 * cospi_24_64 + x7 * cospi_8_64;
s7 = x6 * cospi_8_64 + x7 * cospi_24_64;
s8 = x8;
s9 = x9;
s10 = x10;
s11 = x11;
s12 = x12 * cospi_8_64 + x13 * cospi_24_64;
s13 = x12 * cospi_24_64 - x13 * cospi_8_64;
s14 = -x14 * cospi_24_64 + x15 * cospi_8_64;
s15 = x14 * cospi_8_64 + x15 * cospi_24_64;
x0 = WRAPLOW(s0 + s2, bd);
x1 = WRAPLOW(s1 + s3, bd);
x2 = WRAPLOW(s0 - s2, bd);
x3 = WRAPLOW(s1 - s3, bd);
x4 = WRAPLOW(highbd_dct_const_round_shift(s4 + s6, bd), bd);
x5 = WRAPLOW(highbd_dct_const_round_shift(s5 + s7, bd), bd);
x6 = WRAPLOW(highbd_dct_const_round_shift(s4 - s6, bd), bd);
x7 = WRAPLOW(highbd_dct_const_round_shift(s5 - s7, bd), bd);
x8 = WRAPLOW(s8 + s10, bd);
x9 = WRAPLOW(s9 + s11, bd);
x10 = WRAPLOW(s8 - s10, bd);
x11 = WRAPLOW(s9 - s11, bd);
x12 = WRAPLOW(highbd_dct_const_round_shift(s12 + s14, bd), bd);
x13 = WRAPLOW(highbd_dct_const_round_shift(s13 + s15, bd), bd);
x14 = WRAPLOW(highbd_dct_const_round_shift(s12 - s14, bd), bd);
x15 = WRAPLOW(highbd_dct_const_round_shift(s13 - s15, bd), bd);
// stage 4
s2 = (- cospi_16_64) * (x2 + x3);
s3 = cospi_16_64 * (x2 - x3);
s6 = cospi_16_64 * (x6 + x7);
s7 = cospi_16_64 * (-x6 + x7);
s10 = cospi_16_64 * (x10 + x11);
s11 = cospi_16_64 * (-x10 + x11);
s14 = (- cospi_16_64) * (x14 + x15);
s15 = cospi_16_64 * (x14 - x15);
x2 = WRAPLOW(highbd_dct_const_round_shift(s2, bd), bd);
x3 = WRAPLOW(highbd_dct_const_round_shift(s3, bd), bd);
x6 = WRAPLOW(highbd_dct_const_round_shift(s6, bd), bd);
x7 = WRAPLOW(highbd_dct_const_round_shift(s7, bd), bd);
x10 = WRAPLOW(highbd_dct_const_round_shift(s10, bd), bd);
x11 = WRAPLOW(highbd_dct_const_round_shift(s11, bd), bd);
x14 = WRAPLOW(highbd_dct_const_round_shift(s14, bd), bd);
x15 = WRAPLOW(highbd_dct_const_round_shift(s15, bd), bd);
output[0] = WRAPLOW(x0, bd);
output[1] = WRAPLOW(-x8, bd);
output[2] = WRAPLOW(x12, bd);
output[3] = WRAPLOW(-x4, bd);
output[4] = WRAPLOW(x6, bd);
output[5] = WRAPLOW(x14, bd);
output[6] = WRAPLOW(x10, bd);
output[7] = WRAPLOW(x2, bd);
output[8] = WRAPLOW(x3, bd);
output[9] = WRAPLOW(x11, bd);
output[10] = WRAPLOW(x15, bd);
output[11] = WRAPLOW(x7, bd);
output[12] = WRAPLOW(x5, bd);
output[13] = WRAPLOW(-x13, bd);
output[14] = WRAPLOW(x9, bd);
output[15] = WRAPLOW(-x1, bd);
}
static const highbd_transform_2d HIGH_IHT_16[] = {
{ vp9_highbd_idct16, vp9_highbd_idct16 }, // DCT_DCT = 0
{ highbd_iadst16, vp9_highbd_idct16 }, // ADST_DCT = 1
{ vp9_highbd_idct16, highbd_iadst16 }, // DCT_ADST = 2
{ highbd_iadst16, highbd_iadst16 } // ADST_ADST = 3
};
void vp9_highbd_iht16x16_256_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int tx_type, int bd) {
int i, j;
tran_low_t out[16 * 16];
tran_low_t *outptr = out;
tran_low_t temp_in[16], temp_out[16];
const highbd_transform_2d ht = HIGH_IHT_16[tx_type];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// Rows
for (i = 0; i < 16; ++i) {
ht.rows(input, outptr, bd);
input += 16;
outptr += 16;
}
// Columns
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j * 16 + i];
ht.cols(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
void vp9_highbd_idct16x16_10_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[16 * 16] = { 0 };
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[16], temp_out[16];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// First transform rows. Since all non-zero dct coefficients are in
// upper-left 4x4 area, we only need to calculate first 4 rows here.
for (i = 0; i < 4; ++i) {
vp9_highbd_idct16(input, outptr, bd);
input += 16;
outptr += 16;
}
// Then transform columns.
for (i = 0; i < 16; ++i) {
for (j = 0; j < 16; ++j)
temp_in[j] = out[j*16 + i];
vp9_highbd_idct16(temp_in, temp_out, bd);
for (j = 0; j < 16; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
void vp9_highbd_idct16x16_1_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
int i, j;
tran_high_t a1;
tran_low_t out = WRAPLOW(
highbd_dct_const_round_shift(input[0] * cospi_16_64, bd), bd);
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
out = WRAPLOW(highbd_dct_const_round_shift(out * cospi_16_64, bd), bd);
a1 = ROUND_POWER_OF_TWO(out, 6);
for (j = 0; j < 16; ++j) {
for (i = 0; i < 16; ++i)
dest[i] = highbd_clip_pixel_add(dest[i], a1, bd);
dest += stride;
}
}
static void highbd_idct32(const tran_low_t *input, tran_low_t *output, int bd) {
tran_low_t step1[32], step2[32];
tran_high_t temp1, temp2;
(void) bd;
// stage 1
step1[0] = input[0];
step1[1] = input[16];
step1[2] = input[8];
step1[3] = input[24];
step1[4] = input[4];
step1[5] = input[20];
step1[6] = input[12];
step1[7] = input[28];
step1[8] = input[2];
step1[9] = input[18];
step1[10] = input[10];
step1[11] = input[26];
step1[12] = input[6];
step1[13] = input[22];
step1[14] = input[14];
step1[15] = input[30];
temp1 = input[1] * cospi_31_64 - input[31] * cospi_1_64;
temp2 = input[1] * cospi_1_64 + input[31] * cospi_31_64;
step1[16] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[31] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[17] * cospi_15_64 - input[15] * cospi_17_64;
temp2 = input[17] * cospi_17_64 + input[15] * cospi_15_64;
step1[17] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[30] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[9] * cospi_23_64 - input[23] * cospi_9_64;
temp2 = input[9] * cospi_9_64 + input[23] * cospi_23_64;
step1[18] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[29] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[25] * cospi_7_64 - input[7] * cospi_25_64;
temp2 = input[25] * cospi_25_64 + input[7] * cospi_7_64;
step1[19] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[28] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[5] * cospi_27_64 - input[27] * cospi_5_64;
temp2 = input[5] * cospi_5_64 + input[27] * cospi_27_64;
step1[20] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[27] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[21] * cospi_11_64 - input[11] * cospi_21_64;
temp2 = input[21] * cospi_21_64 + input[11] * cospi_11_64;
step1[21] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[26] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[13] * cospi_19_64 - input[19] * cospi_13_64;
temp2 = input[13] * cospi_13_64 + input[19] * cospi_19_64;
step1[22] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[25] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = input[29] * cospi_3_64 - input[3] * cospi_29_64;
temp2 = input[29] * cospi_29_64 + input[3] * cospi_3_64;
step1[23] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[24] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
// stage 2
step2[0] = step1[0];
step2[1] = step1[1];
step2[2] = step1[2];
step2[3] = step1[3];
step2[4] = step1[4];
step2[5] = step1[5];
step2[6] = step1[6];
step2[7] = step1[7];
temp1 = step1[8] * cospi_30_64 - step1[15] * cospi_2_64;
temp2 = step1[8] * cospi_2_64 + step1[15] * cospi_30_64;
step2[8] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[15] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[9] * cospi_14_64 - step1[14] * cospi_18_64;
temp2 = step1[9] * cospi_18_64 + step1[14] * cospi_14_64;
step2[9] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[14] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[10] * cospi_22_64 - step1[13] * cospi_10_64;
temp2 = step1[10] * cospi_10_64 + step1[13] * cospi_22_64;
step2[10] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[13] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[11] * cospi_6_64 - step1[12] * cospi_26_64;
temp2 = step1[11] * cospi_26_64 + step1[12] * cospi_6_64;
step2[11] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[12] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[16] = WRAPLOW(step1[16] + step1[17], bd);
step2[17] = WRAPLOW(step1[16] - step1[17], bd);
step2[18] = WRAPLOW(-step1[18] + step1[19], bd);
step2[19] = WRAPLOW(step1[18] + step1[19], bd);
step2[20] = WRAPLOW(step1[20] + step1[21], bd);
step2[21] = WRAPLOW(step1[20] - step1[21], bd);
step2[22] = WRAPLOW(-step1[22] + step1[23], bd);
step2[23] = WRAPLOW(step1[22] + step1[23], bd);
step2[24] = WRAPLOW(step1[24] + step1[25], bd);
step2[25] = WRAPLOW(step1[24] - step1[25], bd);
step2[26] = WRAPLOW(-step1[26] + step1[27], bd);
step2[27] = WRAPLOW(step1[26] + step1[27], bd);
step2[28] = WRAPLOW(step1[28] + step1[29], bd);
step2[29] = WRAPLOW(step1[28] - step1[29], bd);
step2[30] = WRAPLOW(-step1[30] + step1[31], bd);
step2[31] = WRAPLOW(step1[30] + step1[31], bd);
// stage 3
step1[0] = step2[0];
step1[1] = step2[1];
step1[2] = step2[2];
step1[3] = step2[3];
temp1 = step2[4] * cospi_28_64 - step2[7] * cospi_4_64;
temp2 = step2[4] * cospi_4_64 + step2[7] * cospi_28_64;
step1[4] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[7] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step2[5] * cospi_12_64 - step2[6] * cospi_20_64;
temp2 = step2[5] * cospi_20_64 + step2[6] * cospi_12_64;
step1[5] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[6] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[8] = WRAPLOW(step2[8] + step2[9], bd);
step1[9] = WRAPLOW(step2[8] - step2[9], bd);
step1[10] = WRAPLOW(-step2[10] + step2[11], bd);
step1[11] = WRAPLOW(step2[10] + step2[11], bd);
step1[12] = WRAPLOW(step2[12] + step2[13], bd);
step1[13] = WRAPLOW(step2[12] - step2[13], bd);
step1[14] = WRAPLOW(-step2[14] + step2[15], bd);
step1[15] = WRAPLOW(step2[14] + step2[15], bd);
step1[16] = step2[16];
step1[31] = step2[31];
temp1 = -step2[17] * cospi_4_64 + step2[30] * cospi_28_64;
temp2 = step2[17] * cospi_28_64 + step2[30] * cospi_4_64;
step1[17] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[30] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step2[18] * cospi_28_64 - step2[29] * cospi_4_64;
temp2 = -step2[18] * cospi_4_64 + step2[29] * cospi_28_64;
step1[18] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[29] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[19] = step2[19];
step1[20] = step2[20];
temp1 = -step2[21] * cospi_20_64 + step2[26] * cospi_12_64;
temp2 = step2[21] * cospi_12_64 + step2[26] * cospi_20_64;
step1[21] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[26] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step2[22] * cospi_12_64 - step2[25] * cospi_20_64;
temp2 = -step2[22] * cospi_20_64 + step2[25] * cospi_12_64;
step1[22] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[25] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[23] = step2[23];
step1[24] = step2[24];
step1[27] = step2[27];
step1[28] = step2[28];
// stage 4
temp1 = (step1[0] + step1[1]) * cospi_16_64;
temp2 = (step1[0] - step1[1]) * cospi_16_64;
step2[0] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[1] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = step1[2] * cospi_24_64 - step1[3] * cospi_8_64;
temp2 = step1[2] * cospi_8_64 + step1[3] * cospi_24_64;
step2[2] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[3] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[4] = WRAPLOW(step1[4] + step1[5], bd);
step2[5] = WRAPLOW(step1[4] - step1[5], bd);
step2[6] = WRAPLOW(-step1[6] + step1[7], bd);
step2[7] = WRAPLOW(step1[6] + step1[7], bd);
step2[8] = step1[8];
step2[15] = step1[15];
temp1 = -step1[9] * cospi_8_64 + step1[14] * cospi_24_64;
temp2 = step1[9] * cospi_24_64 + step1[14] * cospi_8_64;
step2[9] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[14] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step1[10] * cospi_24_64 - step1[13] * cospi_8_64;
temp2 = -step1[10] * cospi_8_64 + step1[13] * cospi_24_64;
step2[10] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[13] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[11] = step1[11];
step2[12] = step1[12];
step2[16] = WRAPLOW(step1[16] + step1[19], bd);
step2[17] = WRAPLOW(step1[17] + step1[18], bd);
step2[18] = WRAPLOW(step1[17] - step1[18], bd);
step2[19] = WRAPLOW(step1[16] - step1[19], bd);
step2[20] = WRAPLOW(-step1[20] + step1[23], bd);
step2[21] = WRAPLOW(-step1[21] + step1[22], bd);
step2[22] = WRAPLOW(step1[21] + step1[22], bd);
step2[23] = WRAPLOW(step1[20] + step1[23], bd);
step2[24] = WRAPLOW(step1[24] + step1[27], bd);
step2[25] = WRAPLOW(step1[25] + step1[26], bd);
step2[26] = WRAPLOW(step1[25] - step1[26], bd);
step2[27] = WRAPLOW(step1[24] - step1[27], bd);
step2[28] = WRAPLOW(-step1[28] + step1[31], bd);
step2[29] = WRAPLOW(-step1[29] + step1[30], bd);
step2[30] = WRAPLOW(step1[29] + step1[30], bd);
step2[31] = WRAPLOW(step1[28] + step1[31], bd);
// stage 5
step1[0] = WRAPLOW(step2[0] + step2[3], bd);
step1[1] = WRAPLOW(step2[1] + step2[2], bd);
step1[2] = WRAPLOW(step2[1] - step2[2], bd);
step1[3] = WRAPLOW(step2[0] - step2[3], bd);
step1[4] = step2[4];
temp1 = (step2[6] - step2[5]) * cospi_16_64;
temp2 = (step2[5] + step2[6]) * cospi_16_64;
step1[5] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[6] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[7] = step2[7];
step1[8] = WRAPLOW(step2[8] + step2[11], bd);
step1[9] = WRAPLOW(step2[9] + step2[10], bd);
step1[10] = WRAPLOW(step2[9] - step2[10], bd);
step1[11] = WRAPLOW(step2[8] - step2[11], bd);
step1[12] = WRAPLOW(-step2[12] + step2[15], bd);
step1[13] = WRAPLOW(-step2[13] + step2[14], bd);
step1[14] = WRAPLOW(step2[13] + step2[14], bd);
step1[15] = WRAPLOW(step2[12] + step2[15], bd);
step1[16] = step2[16];
step1[17] = step2[17];
temp1 = -step2[18] * cospi_8_64 + step2[29] * cospi_24_64;
temp2 = step2[18] * cospi_24_64 + step2[29] * cospi_8_64;
step1[18] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[29] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step2[19] * cospi_8_64 + step2[28] * cospi_24_64;
temp2 = step2[19] * cospi_24_64 + step2[28] * cospi_8_64;
step1[19] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[28] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step2[20] * cospi_24_64 - step2[27] * cospi_8_64;
temp2 = -step2[20] * cospi_8_64 + step2[27] * cospi_24_64;
step1[20] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[27] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = -step2[21] * cospi_24_64 - step2[26] * cospi_8_64;
temp2 = -step2[21] * cospi_8_64 + step2[26] * cospi_24_64;
step1[21] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[26] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[22] = step2[22];
step1[23] = step2[23];
step1[24] = step2[24];
step1[25] = step2[25];
step1[30] = step2[30];
step1[31] = step2[31];
// stage 6
step2[0] = WRAPLOW(step1[0] + step1[7], bd);
step2[1] = WRAPLOW(step1[1] + step1[6], bd);
step2[2] = WRAPLOW(step1[2] + step1[5], bd);
step2[3] = WRAPLOW(step1[3] + step1[4], bd);
step2[4] = WRAPLOW(step1[3] - step1[4], bd);
step2[5] = WRAPLOW(step1[2] - step1[5], bd);
step2[6] = WRAPLOW(step1[1] - step1[6], bd);
step2[7] = WRAPLOW(step1[0] - step1[7], bd);
step2[8] = step1[8];
step2[9] = step1[9];
temp1 = (-step1[10] + step1[13]) * cospi_16_64;
temp2 = (step1[10] + step1[13]) * cospi_16_64;
step2[10] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[13] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = (-step1[11] + step1[12]) * cospi_16_64;
temp2 = (step1[11] + step1[12]) * cospi_16_64;
step2[11] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step2[12] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step2[14] = step1[14];
step2[15] = step1[15];
step2[16] = WRAPLOW(step1[16] + step1[23], bd);
step2[17] = WRAPLOW(step1[17] + step1[22], bd);
step2[18] = WRAPLOW(step1[18] + step1[21], bd);
step2[19] = WRAPLOW(step1[19] + step1[20], bd);
step2[20] = WRAPLOW(step1[19] - step1[20], bd);
step2[21] = WRAPLOW(step1[18] - step1[21], bd);
step2[22] = WRAPLOW(step1[17] - step1[22], bd);
step2[23] = WRAPLOW(step1[16] - step1[23], bd);
step2[24] = WRAPLOW(-step1[24] + step1[31], bd);
step2[25] = WRAPLOW(-step1[25] + step1[30], bd);
step2[26] = WRAPLOW(-step1[26] + step1[29], bd);
step2[27] = WRAPLOW(-step1[27] + step1[28], bd);
step2[28] = WRAPLOW(step1[27] + step1[28], bd);
step2[29] = WRAPLOW(step1[26] + step1[29], bd);
step2[30] = WRAPLOW(step1[25] + step1[30], bd);
step2[31] = WRAPLOW(step1[24] + step1[31], bd);
// stage 7
step1[0] = WRAPLOW(step2[0] + step2[15], bd);
step1[1] = WRAPLOW(step2[1] + step2[14], bd);
step1[2] = WRAPLOW(step2[2] + step2[13], bd);
step1[3] = WRAPLOW(step2[3] + step2[12], bd);
step1[4] = WRAPLOW(step2[4] + step2[11], bd);
step1[5] = WRAPLOW(step2[5] + step2[10], bd);
step1[6] = WRAPLOW(step2[6] + step2[9], bd);
step1[7] = WRAPLOW(step2[7] + step2[8], bd);
step1[8] = WRAPLOW(step2[7] - step2[8], bd);
step1[9] = WRAPLOW(step2[6] - step2[9], bd);
step1[10] = WRAPLOW(step2[5] - step2[10], bd);
step1[11] = WRAPLOW(step2[4] - step2[11], bd);
step1[12] = WRAPLOW(step2[3] - step2[12], bd);
step1[13] = WRAPLOW(step2[2] - step2[13], bd);
step1[14] = WRAPLOW(step2[1] - step2[14], bd);
step1[15] = WRAPLOW(step2[0] - step2[15], bd);
step1[16] = step2[16];
step1[17] = step2[17];
step1[18] = step2[18];
step1[19] = step2[19];
temp1 = (-step2[20] + step2[27]) * cospi_16_64;
temp2 = (step2[20] + step2[27]) * cospi_16_64;
step1[20] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[27] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = (-step2[21] + step2[26]) * cospi_16_64;
temp2 = (step2[21] + step2[26]) * cospi_16_64;
step1[21] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[26] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = (-step2[22] + step2[25]) * cospi_16_64;
temp2 = (step2[22] + step2[25]) * cospi_16_64;
step1[22] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[25] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
temp1 = (-step2[23] + step2[24]) * cospi_16_64;
temp2 = (step2[23] + step2[24]) * cospi_16_64;
step1[23] = WRAPLOW(highbd_dct_const_round_shift(temp1, bd), bd);
step1[24] = WRAPLOW(highbd_dct_const_round_shift(temp2, bd), bd);
step1[28] = step2[28];
step1[29] = step2[29];
step1[30] = step2[30];
step1[31] = step2[31];
// final stage
output[0] = WRAPLOW(step1[0] + step1[31], bd);
output[1] = WRAPLOW(step1[1] + step1[30], bd);
output[2] = WRAPLOW(step1[2] + step1[29], bd);
output[3] = WRAPLOW(step1[3] + step1[28], bd);
output[4] = WRAPLOW(step1[4] + step1[27], bd);
output[5] = WRAPLOW(step1[5] + step1[26], bd);
output[6] = WRAPLOW(step1[6] + step1[25], bd);
output[7] = WRAPLOW(step1[7] + step1[24], bd);
output[8] = WRAPLOW(step1[8] + step1[23], bd);
output[9] = WRAPLOW(step1[9] + step1[22], bd);
output[10] = WRAPLOW(step1[10] + step1[21], bd);
output[11] = WRAPLOW(step1[11] + step1[20], bd);
output[12] = WRAPLOW(step1[12] + step1[19], bd);
output[13] = WRAPLOW(step1[13] + step1[18], bd);
output[14] = WRAPLOW(step1[14] + step1[17], bd);
output[15] = WRAPLOW(step1[15] + step1[16], bd);
output[16] = WRAPLOW(step1[15] - step1[16], bd);
output[17] = WRAPLOW(step1[14] - step1[17], bd);
output[18] = WRAPLOW(step1[13] - step1[18], bd);
output[19] = WRAPLOW(step1[12] - step1[19], bd);
output[20] = WRAPLOW(step1[11] - step1[20], bd);
output[21] = WRAPLOW(step1[10] - step1[21], bd);
output[22] = WRAPLOW(step1[9] - step1[22], bd);
output[23] = WRAPLOW(step1[8] - step1[23], bd);
output[24] = WRAPLOW(step1[7] - step1[24], bd);
output[25] = WRAPLOW(step1[6] - step1[25], bd);
output[26] = WRAPLOW(step1[5] - step1[26], bd);
output[27] = WRAPLOW(step1[4] - step1[27], bd);
output[28] = WRAPLOW(step1[3] - step1[28], bd);
output[29] = WRAPLOW(step1[2] - step1[29], bd);
output[30] = WRAPLOW(step1[1] - step1[30], bd);
output[31] = WRAPLOW(step1[0] - step1[31], bd);
}
void vp9_highbd_idct32x32_1024_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[32 * 32];
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[32], temp_out[32];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// Rows
for (i = 0; i < 32; ++i) {
tran_low_t zero_coeff[16];
for (j = 0; j < 16; ++j)
zero_coeff[j] = input[2 * j] | input[2 * j + 1];
for (j = 0; j < 8; ++j)
zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1];
for (j = 0; j < 4; ++j)
zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1];
for (j = 0; j < 2; ++j)
zero_coeff[j] = zero_coeff[2 * j] | zero_coeff[2 * j + 1];
if (zero_coeff[0] | zero_coeff[1])
highbd_idct32(input, outptr, bd);
else
vpx_memset(outptr, 0, sizeof(tran_low_t) * 32);
input += 32;
outptr += 32;
}
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
highbd_idct32(temp_in, temp_out, bd);
for (j = 0; j < 32; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
void vp9_highbd_idct32x32_34_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
tran_low_t out[32 * 32] = {0};
tran_low_t *outptr = out;
int i, j;
tran_low_t temp_in[32], temp_out[32];
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
// Rows
// Only upper-left 8x8 has non-zero coeff.
for (i = 0; i < 8; ++i) {
highbd_idct32(input, outptr, bd);
input += 32;
outptr += 32;
}
// Columns
for (i = 0; i < 32; ++i) {
for (j = 0; j < 32; ++j)
temp_in[j] = out[j * 32 + i];
highbd_idct32(temp_in, temp_out, bd);
for (j = 0; j < 32; ++j) {
dest[j * stride + i] = highbd_clip_pixel_add(
dest[j * stride + i], ROUND_POWER_OF_TWO(temp_out[j], 6), bd);
}
}
}
void vp9_highbd_idct32x32_1_add_c(const tran_low_t *input, uint8_t *dest8,
int stride, int bd) {
int i, j;
int a1;
uint16_t *dest = CONVERT_TO_SHORTPTR(dest8);
tran_low_t out = WRAPLOW(
highbd_dct_const_round_shift(input[0] * cospi_16_64, bd), bd);
out = WRAPLOW(highbd_dct_const_round_shift(out * cospi_16_64, bd), bd);
a1 = ROUND_POWER_OF_TWO(out, 6);
for (j = 0; j < 32; ++j) {
for (i = 0; i < 32; ++i)
dest[i] = highbd_clip_pixel_add(dest[i], a1, bd);
dest += stride;
}
}
// idct
void vp9_highbd_idct4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
vp9_highbd_idct4x4_16_add(input, dest, stride, bd);
else
vp9_highbd_idct4x4_1_add(input, dest, stride, bd);
}
void vp9_highbd_iwht4x4_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
if (eob > 1)
vp9_highbd_iwht4x4_16_add(input, dest, stride, bd);
else
vp9_highbd_iwht4x4_1_add(input, dest, stride, bd);
}
void vp9_highbd_idct8x8_add(const tran_low_t *input, uint8_t *dest, int stride,
int eob, int bd) {
// If dc is 1, then input[0] is the reconstructed value, do not need
// dequantization. Also, when dc is 1, dc is counted in eobs, namely eobs >=1.
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to decide what to do.
// TODO(yunqingwang): "eobs = 1" case is also handled in vp9_short_idct8x8_c.
// Combine that with code here.
// DC only DCT coefficient
if (eob == 1) {
vp9_highbd_idct8x8_1_add(input, dest, stride, bd);
} else if (eob <= 10) {
vp9_highbd_idct8x8_10_add(input, dest, stride, bd);
} else {
vp9_highbd_idct8x8_64_add(input, dest, stride, bd);
}
}
void vp9_highbd_idct16x16_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// The calculation can be simplified if there are not many non-zero dct
// coefficients. Use eobs to separate different cases.
// DC only DCT coefficient.
if (eob == 1) {
vp9_highbd_idct16x16_1_add(input, dest, stride, bd);
} else if (eob <= 10) {
vp9_highbd_idct16x16_10_add(input, dest, stride, bd);
} else {
vp9_highbd_idct16x16_256_add(input, dest, stride, bd);
}
}
void vp9_highbd_idct32x32_add(const tran_low_t *input, uint8_t *dest,
int stride, int eob, int bd) {
// Non-zero coeff only in upper-left 8x8
if (eob == 1) {
vp9_highbd_idct32x32_1_add(input, dest, stride, bd);
} else if (eob <= 34) {
vp9_highbd_idct32x32_34_add(input, dest, stride, bd);
} else {
vp9_highbd_idct32x32_1024_add(input, dest, stride, bd);
}
}
// iht
void vp9_highbd_iht4x4_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd) {
if (tx_type == DCT_DCT)
vp9_highbd_idct4x4_add(input, dest, stride, eob, bd);
else
vp9_highbd_iht4x4_16_add(input, dest, stride, tx_type, bd);
}
void vp9_highbd_iht8x8_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd) {
if (tx_type == DCT_DCT) {
vp9_highbd_idct8x8_add(input, dest, stride, eob, bd);
} else {
vp9_highbd_iht8x8_64_add(input, dest, stride, tx_type, bd);
}
}
void vp9_highbd_iht16x16_add(TX_TYPE tx_type, const tran_low_t *input,
uint8_t *dest, int stride, int eob, int bd) {
if (tx_type == DCT_DCT) {
vp9_highbd_idct16x16_add(input, dest, stride, eob, bd);
} else {
vp9_highbd_iht16x16_256_add(input, dest, stride, tx_type, bd);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH