vpx/test/fdct8x8_test.cc
Jingning Han 6094bf37c5 Cosmetic changes in 4x4 and 8x8 fdct unit tests
Make the codes consistent with conventions.

Change-Id: Id044ed8382f83a3c3f54f9edd569f00bcd0523db
2013-07-15 11:37:17 -07:00

242 lines
7.6 KiB
C++

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/include/gtest/gtest.h"
#include "vpx_ports/mem.h"
extern "C" {
#include "vp9_rtcd.h"
void vp9_short_idct8x8_add_c(short *input, uint8_t *output, int pitch);
}
#include "acm_random.h"
#include "vpx/vpx_integer.h"
using libvpx_test::ACMRandom;
namespace {
void fdct8x8(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int /*tx_type*/) {
vp9_short_fdct8x8_c(in, out, stride);
}
void idct8x8_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int /*tx_type*/) {
vp9_short_idct8x8_add_c(out, dst, stride >> 1);
}
void fht8x8(int16_t *in, int16_t *out, uint8_t* /*dst*/,
int stride, int tx_type) {
// TODO(jingning): need to refactor this to test both _c and _sse2 functions,
// when we have all inverse dct functions done sse2.
#if HAVE_SSE2
vp9_short_fht8x8_sse2(in, out, stride >> 1, tx_type);
#else
vp9_short_fht8x8_c(in, out, stride >> 1, tx_type);
#endif
}
void iht8x8_add(int16_t* /*in*/, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
vp9_short_iht8x8_add_c(out, dst, stride >> 1, tx_type);
}
class FwdTrans8x8Test : public ::testing::TestWithParam<int> {
public:
virtual ~FwdTrans8x8Test() {}
virtual void SetUp() {
tx_type_ = GetParam();
if (tx_type_ == 0) {
fwd_txfm = fdct8x8;
inv_txfm = idct8x8_add;
} else {
fwd_txfm = fht8x8;
inv_txfm = iht8x8_add;
}
}
protected:
void RunFwdTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*fwd_txfm)(in, out, dst, stride, tx_type);
}
void RunInvTxfm(int16_t *in, int16_t *out, uint8_t *dst,
int stride, int tx_type) {
(*inv_txfm)(in, out, dst, stride, tx_type);
}
int tx_type_;
void (*fwd_txfm)(int16_t*, int16_t*, uint8_t*, int, int);
void (*inv_txfm)(int16_t*, int16_t*, uint8_t*, int, int);
};
TEST_P(FwdTrans8x8Test, SignBiasCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_output_block, 64);
const int pitch = 16;
int count_sign_block[64][2];
const int count_test_block = 100000;
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = rnd.Rand8() - rnd.Rand8();
RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_);
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = 1125;
EXPECT_LT(diff, max_diff)
<< "Error: 8x8 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-255, 255] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
memset(count_sign_block, 0, sizeof(count_sign_block));
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-15, 15].
for (int j = 0; j < 64; ++j)
test_input_block[j] = (rnd.Rand8() >> 4) - (rnd.Rand8() >> 4);
RunFwdTxfm(test_input_block, test_output_block, NULL, pitch, tx_type_);
for (int j = 0; j < 64; ++j) {
if (test_output_block[j] < 0)
++count_sign_block[j][0];
else if (test_output_block[j] > 0)
++count_sign_block[j][1];
}
}
for (int j = 0; j < 64; ++j) {
const int diff = abs(count_sign_block[j][0] - count_sign_block[j][1]);
const int max_diff = 10000;
EXPECT_LT(diff, max_diff)
<< "Error: 4x4 FDCT/FHT has a sign bias > "
<< 1. * max_diff / count_test_block * 100 << "%"
<< " for input range [-15, 15] at index " << j
<< " count0: " << count_sign_block[j][0]
<< " count1: " << count_sign_block[j][1]
<< " diff: " << diff;
}
}
TEST_P(FwdTrans8x8Test, RoundTripErrorCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
double total_error = 0;
const int count_test_block = 100000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64);
for (int j = 0; j < 64; ++j) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 16;
RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 64; ++j){
if(test_temp_block[j] > 0) {
test_temp_block[j] += 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
} else {
test_temp_block[j] -= 2;
test_temp_block[j] /= 4;
test_temp_block[j] *= 4;
}
}
RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 64; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
}
EXPECT_GE(1, max_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has an individual roundtrip error > 1";
EXPECT_GE(count_test_block/5, total_error)
<< "Error: 8x8 FDCT/IDCT or FHT/IHT has average roundtrip "
"error > 1/5 per block";
}
TEST_P(FwdTrans8x8Test, ExtremalCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
int max_error = 0;
double total_error = 0;
const int count_test_block = 100000;
for (int i = 0; i < count_test_block; ++i) {
DECLARE_ALIGNED_ARRAY(16, int16_t, test_input_block, 64);
DECLARE_ALIGNED_ARRAY(16, int16_t, test_temp_block, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, dst, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, src, 64);
for (int j = 0; j < 64; ++j) {
src[j] = rnd.Rand8() % 2 ? 255 : 0;
dst[j] = src[j] > 0 ? 0 : 255;
}
// Initialize a test block with input range [-255, 255].
for (int j = 0; j < 64; ++j)
test_input_block[j] = src[j] - dst[j];
const int pitch = 16;
RunFwdTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
RunInvTxfm(test_input_block, test_temp_block, dst, pitch, tx_type_);
for (int j = 0; j < 64; ++j) {
const int diff = dst[j] - src[j];
const int error = diff * diff;
if (max_error < error)
max_error = error;
total_error += error;
}
EXPECT_GE(1, max_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has an"
<< " individual roundtrip error > 1";
EXPECT_GE(count_test_block/5, total_error)
<< "Error: Extremal 8x8 FDCT/IDCT or FHT/IHT has average"
<< " roundtrip error > 1/5 per block";
}
}
INSTANTIATE_TEST_CASE_P(VP9, FwdTrans8x8Test, ::testing::Range(0, 4));
} // namespace