vpx/vp9/common/vp9_reconinter.c
hkuang 6c9dcae532 Refactor inter_predictor function.
Change-Id: Ic429b2f16462e926f30efb3af4da3080026359d8
2013-12-10 10:36:44 -08:00

411 lines
16 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#include "./vpx_scale_rtcd.h"
#include "./vpx_config.h"
#include "vpx/vpx_integer.h"
#include "vp9/common/vp9_blockd.h"
#include "vp9/common/vp9_filter.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_reconintra.h"
static void build_mc_border(const uint8_t *src, uint8_t *dst, int stride,
int x, int y, int b_w, int b_h, int w, int h) {
// Get a pointer to the start of the real data for this row.
const uint8_t *ref_row = src - x - y * stride;
if (y >= h)
ref_row += (h - 1) * stride;
else if (y > 0)
ref_row += y * stride;
do {
int right = 0, copy;
int left = x < 0 ? -x : 0;
if (left > b_w)
left = b_w;
if (x + b_w > w)
right = x + b_w - w;
if (right > b_w)
right = b_w;
copy = b_w - left - right;
if (left)
memset(dst, ref_row[0], left);
if (copy)
memcpy(dst + left, ref_row + x + left, copy);
if (right)
memset(dst + left + copy, ref_row[w - 1], right);
dst += stride;
++y;
if (y > 0 && y < h)
ref_row += stride;
} while (--b_h);
}
static void inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const int subpel_x,
const int subpel_y,
const struct scale_factors *scale,
int w, int h, int ref,
const struct subpix_fn_table *subpix,
int xs, int ys) {
scale->sfc->predict[subpel_x != 0][subpel_y != 0][ref](
src, src_stride, dst, dst_stride,
subpix->filter_x[subpel_x], xs,
subpix->filter_y[subpel_y], ys,
w, h);
}
void vp9_build_inter_predictor(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride,
const MV *src_mv,
const struct scale_factors *scale,
int w, int h, int ref,
const struct subpix_fn_table *subpix,
enum mv_precision precision) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
const struct scale_factors_common *sfc = scale->sfc;
const MV32 mv = sfc->scale_mv(&mv_q4, scale);
const int subpel_x = mv.col & SUBPEL_MASK;
const int subpel_y = mv.row & SUBPEL_MASK;
src += (mv.row >> SUBPEL_BITS) * src_stride + (mv.col >> SUBPEL_BITS);
inter_predictor(src, src_stride, dst, dst_stride, subpel_x, subpel_y,
scale, w, h, ref, subpix, sfc->x_step_q4, sfc->y_step_q4);
}
static INLINE int round_mv_comp_q4(int value) {
return (value < 0 ? value - 2 : value + 2) / 4;
}
static MV mi_mv_pred_q4(const MODE_INFO *mi, int idx) {
MV res = { round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.row +
mi->bmi[1].as_mv[idx].as_mv.row +
mi->bmi[2].as_mv[idx].as_mv.row +
mi->bmi[3].as_mv[idx].as_mv.row),
round_mv_comp_q4(mi->bmi[0].as_mv[idx].as_mv.col +
mi->bmi[1].as_mv[idx].as_mv.col +
mi->bmi[2].as_mv[idx].as_mv.col +
mi->bmi[3].as_mv[idx].as_mv.col) };
return res;
}
// TODO(jkoleszar): yet another mv clamping function :-(
MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd, const MV *src_mv,
int bw, int bh, int ss_x, int ss_y) {
// If the MV points so far into the UMV border that no visible pixels
// are used for reconstruction, the subpel part of the MV can be
// discarded and the MV limited to 16 pixels with equivalent results.
const int spel_left = (VP9_INTERP_EXTEND + bw) << SUBPEL_BITS;
const int spel_right = spel_left - SUBPEL_SHIFTS;
const int spel_top = (VP9_INTERP_EXTEND + bh) << SUBPEL_BITS;
const int spel_bottom = spel_top - SUBPEL_SHIFTS;
MV clamped_mv = {
src_mv->row * (1 << (1 - ss_y)),
src_mv->col * (1 << (1 - ss_x))
};
assert(ss_x <= 1);
assert(ss_y <= 1);
clamp_mv(&clamped_mv,
xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom);
return clamped_mv;
}
// TODO(jkoleszar): In principle, pred_w, pred_h are unnecessary, as we could
// calculate the subsampled BLOCK_SIZE, but that type isn't defined for
// sizes smaller than 16x16 yet.
static void build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi_8x8[0];
const int is_compound = has_second_ref(&mi->mbmi);
int ref;
for (ref = 0; ref < 1 + is_compound; ++ref) {
struct scale_factors *const scale = &xd->scale_factor[ref];
struct buf_2d *const pre_buf = &pd->pre[ref];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
// TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
// same MV (the average of the 4 luma MVs) but we could do something
// smarter for non-4:2:0. Just punt for now, pending the changes to get
// rid of SPLITMV mode entirely.
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
: mi_mv_pred_q4(mi, ref))
: mi->mbmi.mv[ref].as_mv;
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
// mv_precision precision is MV_PRECISION_Q4.
const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
pd->subsampling_x,
pd->subsampling_y);
uint8_t *pre;
MV32 scaled_mv;
int xs, ys, subpel_x, subpel_y;
if (vp9_is_scaled(scale->sfc)) {
pre = pre_buf->buf + scaled_buffer_offset(x, y, pre_buf->stride, scale);
scale->sfc->set_scaled_offsets(scale, mi_y + y, mi_x + x);
scaled_mv = scale->sfc->scale_mv(&mv_q4, scale);
xs = scale->sfc->x_step_q4;
ys = scale->sfc->y_step_q4;
} else {
pre = pre_buf->buf + (y * pre_buf->stride + x);
scaled_mv.row = mv_q4.row;
scaled_mv.col = mv_q4.col;
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
pre += (scaled_mv.row >> SUBPEL_BITS) * pre_buf->stride
+ (scaled_mv.col >> SUBPEL_BITS);
inter_predictor(pre, pre_buf->stride, dst, dst_buf->stride,
subpel_x, subpel_y, scale, w, h, ref, &xd->subpix, xs, ys);
}
}
static void build_inter_predictors_for_planes(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int plane_from, int plane_to) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi_8x8[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
build_inter_predictors(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4, mi_x, mi_y);
} else {
build_inter_predictors(xd, plane, 0, bw, bh,
0, 0, bw, bh, mi_x, mi_y);
}
}
}
void vp9_build_inter_predictors_sby(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0, 0);
}
void vp9_build_inter_predictors_sbuv(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 1,
MAX_MB_PLANE - 1);
}
void vp9_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
build_inter_predictors_for_planes(xd, bsize, mi_row, mi_col, 0,
MAX_MB_PLANE - 1);
}
// TODO(jingning): This function serves as a placeholder for decoder prediction
// using on demand border extension. It should be moved to /decoder/ directory.
static void dec_build_inter_predictors(MACROBLOCKD *xd, int plane, int block,
int bw, int bh,
int x, int y, int w, int h,
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MODE_INFO *mi = xd->mi_8x8[0];
const int is_compound = has_second_ref(&mi->mbmi);
int ref;
for (ref = 0; ref < 1 + is_compound; ++ref) {
struct scale_factors *const scale = &xd->scale_factor[ref];
struct buf_2d *const pre_buf = &pd->pre[ref];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
// TODO(jkoleszar): All chroma MVs in SPLITMV mode are taken as the
// same MV (the average of the 4 luma MVs) but we could do something
// smarter for non-4:2:0. Just punt for now, pending the changes to get
// rid of SPLITMV mode entirely.
const MV mv = mi->mbmi.sb_type < BLOCK_8X8
? (plane == 0 ? mi->bmi[block].as_mv[ref].as_mv
: mi_mv_pred_q4(mi, ref))
: mi->mbmi.mv[ref].as_mv;
// TODO(jkoleszar): This clamping is done in the incorrect place for the
// scaling case. It needs to be done on the scaled MV, not the pre-scaling
// MV. Note however that it performs the subsampling aware scaling so
// that the result is always q4.
// mv_precision precision is MV_PRECISION_Q4.
const MV mv_q4 = clamp_mv_to_umv_border_sb(xd, &mv, bw, bh,
pd->subsampling_x,
pd->subsampling_y);
MV32 scaled_mv;
int xs, ys, x0, y0, x0_16, y0_16, x1, y1, frame_width,
frame_height, subpel_x, subpel_y;
uint8_t *ref_frame, *buf_ptr;
const YV12_BUFFER_CONFIG *ref_buf = xd->ref_buf[ref];
// Get reference frame pointer, width and height.
if (plane == 0) {
frame_width = ref_buf->y_crop_width;
frame_height = ref_buf->y_crop_height;
ref_frame = ref_buf->y_buffer;
} else {
frame_width = ref_buf->uv_crop_width;
frame_height = ref_buf->uv_crop_height;
ref_frame = plane == 1 ? ref_buf->u_buffer : ref_buf->v_buffer;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
// Precision of x0_16 and y0_16 is 1/16th pixel.
x0_16 = x0 << SUBPEL_BITS;
y0_16 = y0 << SUBPEL_BITS;
if (vp9_is_scaled(scale->sfc)) {
scale->sfc->set_scaled_offsets(scale, mi_y + y, mi_x + x);
scaled_mv = scale->sfc->scale_mv(&mv_q4, scale);
xs = scale->sfc->x_step_q4;
ys = scale->sfc->y_step_q4;
// Get block position in the scaled reference frame.
x0 = scale->sfc->scale_value_x(x0, scale->sfc);
y0 = scale->sfc->scale_value_y(y0, scale->sfc);
x0_16 = scale->sfc->scale_value_x(x0_16, scale->sfc);
y0_16 = scale->sfc->scale_value_y(y0_16, scale->sfc);
} else {
scaled_mv.row = mv_q4.row;
scaled_mv.col = mv_q4.col;
xs = ys = 16;
}
subpel_x = scaled_mv.col & SUBPEL_MASK;
subpel_y = scaled_mv.row & SUBPEL_MASK;
// Get reference block top left coordinate.
x0 += scaled_mv.col >> SUBPEL_BITS;
y0 += scaled_mv.row >> SUBPEL_BITS;
x0_16 += scaled_mv.col;
y0_16 += scaled_mv.row;
// Get reference block bottom right coordinate.
x1 = ((x0_16 + (w - 1) * xs) >> SUBPEL_BITS) + 1;
y1 = ((y0_16 + (h - 1) * xs) >> SUBPEL_BITS) + 1;
// Get reference block pointer.
buf_ptr = ref_frame + y0 * pre_buf->stride + x0;
// Do border extension if there is motion or
// width/height is not a multiple of 8 pixels.
if (scaled_mv.col || scaled_mv.row ||
(frame_width & 0x7) || (frame_height & 0x7)) {
if (subpel_x) {
x0 -= VP9_INTERP_EXTEND - 1;
x1 += VP9_INTERP_EXTEND;
}
if (subpel_y) {
y0 -= VP9_INTERP_EXTEND - 1;
y1 += VP9_INTERP_EXTEND;
}
// Skip border extension if block is inside the frame.
if (x0 < 0 || x0 > frame_width - 1 || x1 < 0 || x1 > frame_width ||
y0 < 0 || y0 > frame_height - 1 || y1 < 0 || y1 > frame_height - 1) {
uint8_t *buf_ptr1 = ref_frame + y0 * pre_buf->stride + x0;
// Extend the border.
build_mc_border(buf_ptr1, buf_ptr1, pre_buf->stride, x0, y0, x1 - x0,
y1 - y0, frame_width, frame_height);
}
}
inter_predictor(buf_ptr, pre_buf->stride, dst, dst_buf->stride, subpel_x,
subpel_y, scale, w, h, ref, &xd->subpix, xs, ys);
}
}
void vp9_dec_build_inter_predictors_sb(MACROBLOCKD *xd, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = 0; plane < MAX_MB_PLANE; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize,
&xd->plane[plane]);
const int num_4x4_w = num_4x4_blocks_wide_lookup[plane_bsize];
const int num_4x4_h = num_4x4_blocks_high_lookup[plane_bsize];
const int bw = 4 * num_4x4_w;
const int bh = 4 * num_4x4_h;
if (xd->mi_8x8[0]->mbmi.sb_type < BLOCK_8X8) {
int i = 0, x, y;
assert(bsize == BLOCK_8X8);
for (y = 0; y < num_4x4_h; ++y)
for (x = 0; x < num_4x4_w; ++x)
dec_build_inter_predictors(xd, plane, i++, bw, bh,
4 * x, 4 * y, 4, 4, mi_x, mi_y);
} else {
dec_build_inter_predictors(xd, plane, 0, bw, bh,
0, 0, bw, bh, mi_x, mi_y);
}
}
}
// TODO(dkovalev: find better place for this function)
void vp9_setup_scale_factors(VP9_COMMON *cm, int i) {
const int ref = cm->active_ref_idx[i];
struct scale_factors *const sf = &cm->active_ref_scale[i];
struct scale_factors_common *const sfc = &cm->active_ref_scale_comm[i];
if (ref >= FRAME_BUFFERS) {
vp9_zero(*sf);
vp9_zero(*sfc);
} else {
YV12_BUFFER_CONFIG *const fb = &cm->yv12_fb[ref];
vp9_setup_scale_factors_for_frame(sf, sfc,
fb->y_crop_width, fb->y_crop_height,
cm->width, cm->height);
}
}