vpx/vp9/common/vp9_reconintra.c
Deb Mukherjee 1929c9b391 Rename highbitdepth functions to use highbd prefix
Uses highbd_ prefix convention consistently.

Change-Id: I58f7f799a7ff8e32701bcd71c955bcf1cdd4581e
2014-10-09 14:40:40 -07:00

909 lines
30 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "./vpx_config.h"
#include "./vp9_rtcd.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_onyxc_int.h"
const TX_TYPE intra_mode_to_tx_type_lookup[INTRA_MODES] = {
DCT_DCT, // DC
ADST_DCT, // V
DCT_ADST, // H
DCT_DCT, // D45
ADST_ADST, // D135
ADST_DCT, // D117
DCT_ADST, // D153
DCT_ADST, // D207
ADST_DCT, // D63
ADST_ADST, // TM
};
// This serves as a wrapper function, so that all the prediction functions
// can be unified and accessed as a pointer array. Note that the boundary
// above and left are not necessarily used all the time.
#define intra_pred_sized(type, size) \
void vp9_##type##_predictor_##size##x##size##_c(uint8_t *dst, \
ptrdiff_t stride, \
const uint8_t *above, \
const uint8_t *left) { \
type##_predictor(dst, stride, size, above, left); \
}
#if CONFIG_VP9_HIGHBITDEPTH
#define intra_pred_highbd_sized(type, size) \
void vp9_highbd_##type##_predictor_##size##x##size##_c( \
uint16_t *dst, ptrdiff_t stride, const uint16_t *above, \
const uint16_t *left, int bd) { \
highbd_##type##_predictor(dst, stride, size, above, left, bd); \
}
#define intra_pred_allsizes(type) \
intra_pred_sized(type, 4) \
intra_pred_sized(type, 8) \
intra_pred_sized(type, 16) \
intra_pred_sized(type, 32) \
intra_pred_highbd_sized(type, 4) \
intra_pred_highbd_sized(type, 8) \
intra_pred_highbd_sized(type, 16) \
intra_pred_highbd_sized(type, 32)
#else
#define intra_pred_allsizes(type) \
intra_pred_sized(type, 4) \
intra_pred_sized(type, 8) \
intra_pred_sized(type, 16) \
intra_pred_sized(type, 32)
#endif // CONFIG_VP9_HIGHBITDEPTH
#if CONFIG_VP9_HIGHBITDEPTH
static INLINE void highbd_d207_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
(void) above;
(void) bd;
// First column.
for (r = 0; r < bs - 1; ++r) {
dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1], 1);
}
dst[(bs - 1) * stride] = left[bs - 1];
dst++;
// Second column.
for (r = 0; r < bs - 2; ++r) {
dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1] * 2 +
left[r + 2], 2);
}
dst[(bs - 2) * stride] = ROUND_POWER_OF_TWO(left[bs - 2] +
left[bs - 1] * 3, 2);
dst[(bs - 1) * stride] = left[bs - 1];
dst++;
// Rest of last row.
for (c = 0; c < bs - 2; ++c)
dst[(bs - 1) * stride + c] = left[bs - 1];
for (r = bs - 2; r >= 0; --r) {
for (c = 0; c < bs - 2; ++c)
dst[r * stride + c] = dst[(r + 1) * stride + c - 2];
}
}
static INLINE void highbd_d63_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
(void) left;
(void) bd;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
dst[c] = r & 1 ? ROUND_POWER_OF_TWO(above[r/2 + c] +
above[r/2 + c + 1] * 2 +
above[r/2 + c + 2], 2)
: ROUND_POWER_OF_TWO(above[r/2 + c] +
above[r/2 + c + 1], 1);
}
dst += stride;
}
}
static INLINE void highbd_d45_predictor(uint16_t *dst, ptrdiff_t stride, int bs,
const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
(void) left;
(void) bd;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c) {
dst[c] = r + c + 2 < bs * 2 ? ROUND_POWER_OF_TWO(above[r + c] +
above[r + c + 1] * 2 +
above[r + c + 2], 2)
: above[bs * 2 - 1];
}
dst += stride;
}
}
static INLINE void highbd_d117_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
(void) bd;
// first row
for (c = 0; c < bs; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c], 1);
dst += stride;
// second row
dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2);
for (c = 1; c < bs; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2);
dst += stride;
// the rest of first col
dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2);
for (r = 3; r < bs; ++r)
dst[(r - 2) * stride] = ROUND_POWER_OF_TWO(left[r - 3] + left[r - 2] * 2 +
left[r - 1], 2);
// the rest of the block
for (r = 2; r < bs; ++r) {
for (c = 1; c < bs; c++)
dst[c] = dst[-2 * stride + c - 1];
dst += stride;
}
}
static INLINE void highbd_d135_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
(void) bd;
dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2);
for (c = 1; c < bs; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2);
dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2);
for (r = 2; r < bs; ++r)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 +
left[r], 2);
dst += stride;
for (r = 1; r < bs; ++r) {
for (c = 1; c < bs; c++)
dst[c] = dst[-stride + c - 1];
dst += stride;
}
}
static INLINE void highbd_d153_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
(void) bd;
dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0], 1);
for (r = 1; r < bs; r++)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 1] + left[r], 1);
dst++;
dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2);
dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2);
for (r = 2; r < bs; r++)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 +
left[r], 2);
dst++;
for (c = 0; c < bs - 2; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c] * 2 + above[c + 1], 2);
dst += stride;
for (r = 1; r < bs; ++r) {
for (c = 0; c < bs - 2; c++)
dst[c] = dst[-stride + c - 2];
dst += stride;
}
}
static INLINE void highbd_v_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void) left;
(void) bd;
for (r = 0; r < bs; r++) {
vpx_memcpy(dst, above, bs * sizeof(uint16_t));
dst += stride;
}
}
static INLINE void highbd_h_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void) above;
(void) bd;
for (r = 0; r < bs; r++) {
vpx_memset16(dst, left[r], bs);
dst += stride;
}
}
static INLINE void highbd_tm_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r, c;
int ytop_left = above[-1];
(void) bd;
for (r = 0; r < bs; r++) {
for (c = 0; c < bs; c++)
dst[c] = clip_pixel_highbd(left[r] + above[c] - ytop_left, bd);
dst += stride;
}
}
static INLINE void highbd_dc_128_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int r;
(void) above;
(void) left;
for (r = 0; r < bs; r++) {
vpx_memset16(dst, 128 << (bd - 8), bs);
dst += stride;
}
}
static INLINE void highbd_dc_left_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int i, r, expected_dc, sum = 0;
(void) above;
(void) bd;
for (i = 0; i < bs; i++)
sum += left[i];
expected_dc = (sum + (bs >> 1)) / bs;
for (r = 0; r < bs; r++) {
vpx_memset16(dst, expected_dc, bs);
dst += stride;
}
}
static INLINE void highbd_dc_top_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int i, r, expected_dc, sum = 0;
(void) left;
(void) bd;
for (i = 0; i < bs; i++)
sum += above[i];
expected_dc = (sum + (bs >> 1)) / bs;
for (r = 0; r < bs; r++) {
vpx_memset16(dst, expected_dc, bs);
dst += stride;
}
}
static INLINE void highbd_dc_predictor(uint16_t *dst, ptrdiff_t stride,
int bs, const uint16_t *above,
const uint16_t *left, int bd) {
int i, r, expected_dc, sum = 0;
const int count = 2 * bs;
(void) bd;
for (i = 0; i < bs; i++) {
sum += above[i];
sum += left[i];
}
expected_dc = (sum + (count >> 1)) / count;
for (r = 0; r < bs; r++) {
vpx_memset16(dst, expected_dc, bs);
dst += stride;
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static INLINE void d207_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
(void) above;
// first column
for (r = 0; r < bs - 1; ++r)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1], 1);
dst[(bs - 1) * stride] = left[bs - 1];
dst++;
// second column
for (r = 0; r < bs - 2; ++r)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r] + left[r + 1] * 2 +
left[r + 2], 2);
dst[(bs - 2) * stride] = ROUND_POWER_OF_TWO(left[bs - 2] +
left[bs - 1] * 3, 2);
dst[(bs - 1) * stride] = left[bs - 1];
dst++;
// rest of last row
for (c = 0; c < bs - 2; ++c)
dst[(bs - 1) * stride + c] = left[bs - 1];
for (r = bs - 2; r >= 0; --r)
for (c = 0; c < bs - 2; ++c)
dst[r * stride + c] = dst[(r + 1) * stride + c - 2];
}
intra_pred_allsizes(d207)
static INLINE void d63_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
(void) left;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dst[c] = r & 1 ? ROUND_POWER_OF_TWO(above[r/2 + c] +
above[r/2 + c + 1] * 2 +
above[r/2 + c + 2], 2)
: ROUND_POWER_OF_TWO(above[r/2 + c] +
above[r/2 + c + 1], 1);
dst += stride;
}
}
intra_pred_allsizes(d63)
static INLINE void d45_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
(void) left;
for (r = 0; r < bs; ++r) {
for (c = 0; c < bs; ++c)
dst[c] = r + c + 2 < bs * 2 ? ROUND_POWER_OF_TWO(above[r + c] +
above[r + c + 1] * 2 +
above[r + c + 2], 2)
: above[bs * 2 - 1];
dst += stride;
}
}
intra_pred_allsizes(d45)
static INLINE void d117_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
// first row
for (c = 0; c < bs; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c], 1);
dst += stride;
// second row
dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2);
for (c = 1; c < bs; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2);
dst += stride;
// the rest of first col
dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2);
for (r = 3; r < bs; ++r)
dst[(r - 2) * stride] = ROUND_POWER_OF_TWO(left[r - 3] + left[r - 2] * 2 +
left[r - 1], 2);
// the rest of the block
for (r = 2; r < bs; ++r) {
for (c = 1; c < bs; c++)
dst[c] = dst[-2 * stride + c - 1];
dst += stride;
}
}
intra_pred_allsizes(d117)
static INLINE void d135_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2);
for (c = 1; c < bs; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 2] + above[c - 1] * 2 + above[c], 2);
dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2);
for (r = 2; r < bs; ++r)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 +
left[r], 2);
dst += stride;
for (r = 1; r < bs; ++r) {
for (c = 1; c < bs; c++)
dst[c] = dst[-stride + c - 1];
dst += stride;
}
}
intra_pred_allsizes(d135)
static INLINE void d153_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
dst[0] = ROUND_POWER_OF_TWO(above[-1] + left[0], 1);
for (r = 1; r < bs; r++)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 1] + left[r], 1);
dst++;
dst[0] = ROUND_POWER_OF_TWO(left[0] + above[-1] * 2 + above[0], 2);
dst[stride] = ROUND_POWER_OF_TWO(above[-1] + left[0] * 2 + left[1], 2);
for (r = 2; r < bs; r++)
dst[r * stride] = ROUND_POWER_OF_TWO(left[r - 2] + left[r - 1] * 2 +
left[r], 2);
dst++;
for (c = 0; c < bs - 2; c++)
dst[c] = ROUND_POWER_OF_TWO(above[c - 1] + above[c] * 2 + above[c + 1], 2);
dst += stride;
for (r = 1; r < bs; ++r) {
for (c = 0; c < bs - 2; c++)
dst[c] = dst[-stride + c - 2];
dst += stride;
}
}
intra_pred_allsizes(d153)
static INLINE void v_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r;
(void) left;
for (r = 0; r < bs; r++) {
vpx_memcpy(dst, above, bs);
dst += stride;
}
}
intra_pred_allsizes(v)
static INLINE void h_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r;
(void) above;
for (r = 0; r < bs; r++) {
vpx_memset(dst, left[r], bs);
dst += stride;
}
}
intra_pred_allsizes(h)
static INLINE void tm_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r, c;
int ytop_left = above[-1];
for (r = 0; r < bs; r++) {
for (c = 0; c < bs; c++)
dst[c] = clip_pixel(left[r] + above[c] - ytop_left);
dst += stride;
}
}
intra_pred_allsizes(tm)
static INLINE void dc_128_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int r;
(void) above;
(void) left;
for (r = 0; r < bs; r++) {
vpx_memset(dst, 128, bs);
dst += stride;
}
}
intra_pred_allsizes(dc_128)
static INLINE void dc_left_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above,
const uint8_t *left) {
int i, r, expected_dc, sum = 0;
(void) above;
for (i = 0; i < bs; i++)
sum += left[i];
expected_dc = (sum + (bs >> 1)) / bs;
for (r = 0; r < bs; r++) {
vpx_memset(dst, expected_dc, bs);
dst += stride;
}
}
intra_pred_allsizes(dc_left)
static INLINE void dc_top_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int i, r, expected_dc, sum = 0;
(void) left;
for (i = 0; i < bs; i++)
sum += above[i];
expected_dc = (sum + (bs >> 1)) / bs;
for (r = 0; r < bs; r++) {
vpx_memset(dst, expected_dc, bs);
dst += stride;
}
}
intra_pred_allsizes(dc_top)
static INLINE void dc_predictor(uint8_t *dst, ptrdiff_t stride, int bs,
const uint8_t *above, const uint8_t *left) {
int i, r, expected_dc, sum = 0;
const int count = 2 * bs;
for (i = 0; i < bs; i++) {
sum += above[i];
sum += left[i];
}
expected_dc = (sum + (count >> 1)) / count;
for (r = 0; r < bs; r++) {
vpx_memset(dst, expected_dc, bs);
dst += stride;
}
}
intra_pred_allsizes(dc)
#undef intra_pred_allsizes
typedef void (*intra_pred_fn)(uint8_t *dst, ptrdiff_t stride,
const uint8_t *above, const uint8_t *left);
static intra_pred_fn pred[INTRA_MODES][TX_SIZES];
static intra_pred_fn dc_pred[2][2][TX_SIZES];
#if CONFIG_VP9_HIGHBITDEPTH
typedef void (*intra_high_pred_fn)(uint16_t *dst, ptrdiff_t stride,
const uint16_t *above, const uint16_t *left,
int bd);
static intra_high_pred_fn pred_high[INTRA_MODES][4];
static intra_high_pred_fn dc_pred_high[2][2][4];
#endif // CONFIG_VP9_HIGHBITDEPTH
void vp9_init_intra_predictors() {
#define INIT_ALL_SIZES(p, type) \
p[TX_4X4] = vp9_##type##_predictor_4x4; \
p[TX_8X8] = vp9_##type##_predictor_8x8; \
p[TX_16X16] = vp9_##type##_predictor_16x16; \
p[TX_32X32] = vp9_##type##_predictor_32x32
INIT_ALL_SIZES(pred[V_PRED], v);
INIT_ALL_SIZES(pred[H_PRED], h);
INIT_ALL_SIZES(pred[D207_PRED], d207);
INIT_ALL_SIZES(pred[D45_PRED], d45);
INIT_ALL_SIZES(pred[D63_PRED], d63);
INIT_ALL_SIZES(pred[D117_PRED], d117);
INIT_ALL_SIZES(pred[D135_PRED], d135);
INIT_ALL_SIZES(pred[D153_PRED], d153);
INIT_ALL_SIZES(pred[TM_PRED], tm);
INIT_ALL_SIZES(dc_pred[0][0], dc_128);
INIT_ALL_SIZES(dc_pred[0][1], dc_top);
INIT_ALL_SIZES(dc_pred[1][0], dc_left);
INIT_ALL_SIZES(dc_pred[1][1], dc);
#if CONFIG_VP9_HIGHBITDEPTH
INIT_ALL_SIZES(pred_high[V_PRED], highbd_v);
INIT_ALL_SIZES(pred_high[H_PRED], highbd_h);
INIT_ALL_SIZES(pred_high[D207_PRED], highbd_d207);
INIT_ALL_SIZES(pred_high[D45_PRED], highbd_d45);
INIT_ALL_SIZES(pred_high[D63_PRED], highbd_d63);
INIT_ALL_SIZES(pred_high[D117_PRED], highbd_d117);
INIT_ALL_SIZES(pred_high[D135_PRED], highbd_d135);
INIT_ALL_SIZES(pred_high[D153_PRED], highbd_d153);
INIT_ALL_SIZES(pred_high[TM_PRED], highbd_tm);
INIT_ALL_SIZES(dc_pred_high[0][0], highbd_dc_128);
INIT_ALL_SIZES(dc_pred_high[0][1], highbd_dc_top);
INIT_ALL_SIZES(dc_pred_high[1][0], highbd_dc_left);
INIT_ALL_SIZES(dc_pred_high[1][1], highbd_dc);
#endif // CONFIG_VP9_HIGHBITDEPTH
#undef intra_pred_allsizes
}
#if CONFIG_VP9_HIGHBITDEPTH
static void build_intra_predictors_high(const MACROBLOCKD *xd,
const uint8_t *ref8,
int ref_stride,
uint8_t *dst8,
int dst_stride,
PREDICTION_MODE mode,
TX_SIZE tx_size,
int up_available,
int left_available,
int right_available,
int x, int y,
int plane, int bd) {
int i;
uint16_t *dst = CONVERT_TO_SHORTPTR(dst8);
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
DECLARE_ALIGNED_ARRAY(16, uint16_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint16_t, above_data, 128 + 16);
uint16_t *above_row = above_data + 16;
const uint16_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
// int base=128;
int base = 128 << (bd - 8);
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
// left
if (left_available) {
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
} else {
const int extend_bottom = frame_height - y0;
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref[i * ref_stride - 1];
for (; i < bs; ++i)
left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
}
} else {
// TODO(Peter): this value should probably change for high bitdepth
vpx_memset16(left_col, base + 1, bs);
}
// TODO(hkuang) do not extend 2*bs pixels for all modes.
// above
if (up_available) {
const uint16_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, 2 * bs * sizeof(uint16_t));
} else {
vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t));
vpx_memset16(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t));
vpx_memset16(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t));
vpx_memset16(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t));
vpx_memset16(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, r * sizeof(uint16_t));
vpx_memset16(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
}
// TODO(Peter) this value should probably change for high bitdepth
above_row[-1] = left_available ? above_ref[-1] : (base+1);
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
vpx_memcpy(above_row, above_ref, bs * sizeof(uint16_t));
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ref + bs, bs * sizeof(uint16_t));
else
vpx_memset16(above_row + bs, above_row[bs - 1], bs);
// TODO(Peter): this value should probably change for high bitdepth
above_row[-1] = left_available ? above_ref[-1] : (base+1);
}
}
} else {
vpx_memset16(above_row, base - 1, bs * 2);
// TODO(Peter): this value should probably change for high bitdepth
above_row[-1] = base - 1;
}
// predict
if (mode == DC_PRED) {
dc_pred_high[left_available][up_available][tx_size](dst, dst_stride,
const_above_row,
left_col, xd->bd);
} else {
pred_high[mode][tx_size](dst, dst_stride, const_above_row, left_col,
xd->bd);
}
}
#endif // CONFIG_VP9_HIGHBITDEPTH
static void build_intra_predictors(const MACROBLOCKD *xd, const uint8_t *ref,
int ref_stride, uint8_t *dst, int dst_stride,
PREDICTION_MODE mode, TX_SIZE tx_size,
int up_available, int left_available,
int right_available, int x, int y,
int plane) {
int i;
DECLARE_ALIGNED_ARRAY(16, uint8_t, left_col, 64);
DECLARE_ALIGNED_ARRAY(16, uint8_t, above_data, 128 + 16);
uint8_t *above_row = above_data + 16;
const uint8_t *const_above_row = above_row;
const int bs = 4 << tx_size;
int frame_width, frame_height;
int x0, y0;
const struct macroblockd_plane *const pd = &xd->plane[plane];
// 127 127 127 .. 127 127 127 127 127 127
// 129 A B .. Y Z
// 129 C D .. W X
// 129 E F .. U V
// 129 G H .. S T T T T T
// ..
// Get current frame pointer, width and height.
if (plane == 0) {
frame_width = xd->cur_buf->y_width;
frame_height = xd->cur_buf->y_height;
} else {
frame_width = xd->cur_buf->uv_width;
frame_height = xd->cur_buf->uv_height;
}
// Get block position in current frame.
x0 = (-xd->mb_to_left_edge >> (3 + pd->subsampling_x)) + x;
y0 = (-xd->mb_to_top_edge >> (3 + pd->subsampling_y)) + y;
vpx_memset(left_col, 129, 64);
// left
if (left_available) {
if (xd->mb_to_bottom_edge < 0) {
/* slower path if the block needs border extension */
if (y0 + bs <= frame_height) {
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
} else {
const int extend_bottom = frame_height - y0;
for (i = 0; i < extend_bottom; ++i)
left_col[i] = ref[i * ref_stride - 1];
for (; i < bs; ++i)
left_col[i] = ref[(extend_bottom - 1) * ref_stride - 1];
}
} else {
/* faster path if the block does not need extension */
for (i = 0; i < bs; ++i)
left_col[i] = ref[i * ref_stride - 1];
}
}
// TODO(hkuang) do not extend 2*bs pixels for all modes.
// above
if (up_available) {
const uint8_t *above_ref = ref - ref_stride;
if (xd->mb_to_right_edge < 0) {
/* slower path if the block needs border extension */
if (x0 + 2 * bs <= frame_width) {
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, 2 * bs);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 + bs <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, bs);
vpx_memset(above_row + bs, above_row[bs - 1], bs);
}
} else if (x0 <= frame_width) {
const int r = frame_width - x0;
if (right_available && bs == 4) {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
} else {
vpx_memcpy(above_row, above_ref, r);
vpx_memset(above_row + r, above_row[r - 1],
x0 + 2 * bs - frame_width);
}
}
above_row[-1] = left_available ? above_ref[-1] : 129;
} else {
/* faster path if the block does not need extension */
if (bs == 4 && right_available && left_available) {
const_above_row = above_ref;
} else {
vpx_memcpy(above_row, above_ref, bs);
if (bs == 4 && right_available)
vpx_memcpy(above_row + bs, above_ref + bs, bs);
else
vpx_memset(above_row + bs, above_row[bs - 1], bs);
above_row[-1] = left_available ? above_ref[-1] : 129;
}
}
} else {
vpx_memset(above_row, 127, bs * 2);
above_row[-1] = 127;
}
// predict
if (mode == DC_PRED) {
dc_pred[left_available][up_available][tx_size](dst, dst_stride,
const_above_row, left_col);
} else {
pred[mode][tx_size](dst, dst_stride, const_above_row, left_col);
}
}
void vp9_predict_intra_block(const MACROBLOCKD *xd, int block_idx, int bwl_in,
TX_SIZE tx_size, PREDICTION_MODE mode,
const uint8_t *ref, int ref_stride,
uint8_t *dst, int dst_stride,
int aoff, int loff, int plane) {
const int bwl = bwl_in - tx_size;
const int wmask = (1 << bwl) - 1;
const int have_top = (block_idx >> bwl) || xd->up_available;
const int have_left = (block_idx & wmask) || xd->left_available;
const int have_right = ((block_idx & wmask) != wmask);
const int x = aoff * 4;
const int y = loff * 4;
assert(bwl >= 0);
#if CONFIG_VP9_HIGHBITDEPTH
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
build_intra_predictors_high(xd, ref, ref_stride, dst, dst_stride, mode,
tx_size, have_top, have_left, have_right,
x, y, plane, xd->bd);
return;
}
#endif
build_intra_predictors(xd, ref, ref_stride, dst, dst_stride, mode, tx_size,
have_top, have_left, have_right, x, y, plane);
}