bd7cfb46fb
disable clang-format for bilinear_filters_avx2 restores the row layout prior to: 099bd7f vpx_dsp: apply clang-format but keeps the justification used by clang-format Change-Id: Icf1733a37edb807e74c26b23a93963c03bd08fd7
709 lines
27 KiB
C
709 lines
27 KiB
C
/*
|
|
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <immintrin.h> // AVX2
|
|
|
|
#include "./vpx_dsp_rtcd.h"
|
|
#include "vpx_ports/mem.h"
|
|
|
|
/* clang-format off */
|
|
DECLARE_ALIGNED(32, static const uint8_t, bilinear_filters_avx2[512]) = {
|
|
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
|
|
16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0, 16, 0,
|
|
14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
|
|
14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2,
|
|
12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
|
|
12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4,
|
|
10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
|
|
10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
|
|
6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10,
|
|
4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
|
|
4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12, 4, 12,
|
|
2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
|
|
2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14, 2, 14,
|
|
};
|
|
/* clang-format on */
|
|
|
|
void vpx_get16x16var_avx2(const unsigned char *src_ptr, int source_stride,
|
|
const unsigned char *ref_ptr, int recon_stride,
|
|
unsigned int *SSE, int *Sum) {
|
|
__m256i src, src_expand_low, src_expand_high, ref, ref_expand_low;
|
|
__m256i ref_expand_high, madd_low, madd_high;
|
|
unsigned int i, src_2strides, ref_2strides;
|
|
__m256i zero_reg = _mm256_set1_epi16(0);
|
|
__m256i sum_ref_src = _mm256_set1_epi16(0);
|
|
__m256i madd_ref_src = _mm256_set1_epi16(0);
|
|
|
|
// processing two strides in a 256 bit register reducing the number
|
|
// of loop stride by half (comparing to the sse2 code)
|
|
src_2strides = source_stride << 1;
|
|
ref_2strides = recon_stride << 1;
|
|
for (i = 0; i < 8; i++) {
|
|
src = _mm256_castsi128_si256(_mm_loadu_si128((__m128i const *)(src_ptr)));
|
|
src = _mm256_inserti128_si256(
|
|
src, _mm_loadu_si128((__m128i const *)(src_ptr + source_stride)), 1);
|
|
|
|
ref = _mm256_castsi128_si256(_mm_loadu_si128((__m128i const *)(ref_ptr)));
|
|
ref = _mm256_inserti128_si256(
|
|
ref, _mm_loadu_si128((__m128i const *)(ref_ptr + recon_stride)), 1);
|
|
|
|
// expanding to 16 bit each lane
|
|
src_expand_low = _mm256_unpacklo_epi8(src, zero_reg);
|
|
src_expand_high = _mm256_unpackhi_epi8(src, zero_reg);
|
|
|
|
ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg);
|
|
ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg);
|
|
|
|
// src-ref
|
|
src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low);
|
|
src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high);
|
|
|
|
// madd low (src - ref)
|
|
madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low);
|
|
|
|
// add high to low
|
|
src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high);
|
|
|
|
// madd high (src - ref)
|
|
madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high);
|
|
|
|
sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low);
|
|
|
|
// add high to low
|
|
madd_ref_src =
|
|
_mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high));
|
|
|
|
src_ptr += src_2strides;
|
|
ref_ptr += ref_2strides;
|
|
}
|
|
|
|
{
|
|
__m128i sum_res, madd_res;
|
|
__m128i expand_sum_low, expand_sum_high, expand_sum;
|
|
__m128i expand_madd_low, expand_madd_high, expand_madd;
|
|
__m128i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum;
|
|
|
|
// extract the low lane and add it to the high lane
|
|
sum_res = _mm_add_epi16(_mm256_castsi256_si128(sum_ref_src),
|
|
_mm256_extractf128_si256(sum_ref_src, 1));
|
|
|
|
madd_res = _mm_add_epi32(_mm256_castsi256_si128(madd_ref_src),
|
|
_mm256_extractf128_si256(madd_ref_src, 1));
|
|
|
|
// padding each 2 bytes with another 2 zeroed bytes
|
|
expand_sum_low =
|
|
_mm_unpacklo_epi16(_mm256_castsi256_si128(zero_reg), sum_res);
|
|
expand_sum_high =
|
|
_mm_unpackhi_epi16(_mm256_castsi256_si128(zero_reg), sum_res);
|
|
|
|
// shifting the sign 16 bits right
|
|
expand_sum_low = _mm_srai_epi32(expand_sum_low, 16);
|
|
expand_sum_high = _mm_srai_epi32(expand_sum_high, 16);
|
|
|
|
expand_sum = _mm_add_epi32(expand_sum_low, expand_sum_high);
|
|
|
|
// expand each 32 bits of the madd result to 64 bits
|
|
expand_madd_low =
|
|
_mm_unpacklo_epi32(madd_res, _mm256_castsi256_si128(zero_reg));
|
|
expand_madd_high =
|
|
_mm_unpackhi_epi32(madd_res, _mm256_castsi256_si128(zero_reg));
|
|
|
|
expand_madd = _mm_add_epi32(expand_madd_low, expand_madd_high);
|
|
|
|
ex_expand_sum_low =
|
|
_mm_unpacklo_epi32(expand_sum, _mm256_castsi256_si128(zero_reg));
|
|
ex_expand_sum_high =
|
|
_mm_unpackhi_epi32(expand_sum, _mm256_castsi256_si128(zero_reg));
|
|
|
|
ex_expand_sum = _mm_add_epi32(ex_expand_sum_low, ex_expand_sum_high);
|
|
|
|
// shift 8 bytes eight
|
|
madd_res = _mm_srli_si128(expand_madd, 8);
|
|
sum_res = _mm_srli_si128(ex_expand_sum, 8);
|
|
|
|
madd_res = _mm_add_epi32(madd_res, expand_madd);
|
|
sum_res = _mm_add_epi32(sum_res, ex_expand_sum);
|
|
|
|
*((int *)SSE) = _mm_cvtsi128_si32(madd_res);
|
|
|
|
*((int *)Sum) = _mm_cvtsi128_si32(sum_res);
|
|
}
|
|
}
|
|
|
|
void vpx_get32x32var_avx2(const unsigned char *src_ptr, int source_stride,
|
|
const unsigned char *ref_ptr, int recon_stride,
|
|
unsigned int *SSE, int *Sum) {
|
|
__m256i src, src_expand_low, src_expand_high, ref, ref_expand_low;
|
|
__m256i ref_expand_high, madd_low, madd_high;
|
|
unsigned int i;
|
|
__m256i zero_reg = _mm256_set1_epi16(0);
|
|
__m256i sum_ref_src = _mm256_set1_epi16(0);
|
|
__m256i madd_ref_src = _mm256_set1_epi16(0);
|
|
|
|
// processing 32 elements in parallel
|
|
for (i = 0; i < 16; i++) {
|
|
src = _mm256_loadu_si256((__m256i const *)(src_ptr));
|
|
|
|
ref = _mm256_loadu_si256((__m256i const *)(ref_ptr));
|
|
|
|
// expanding to 16 bit each lane
|
|
src_expand_low = _mm256_unpacklo_epi8(src, zero_reg);
|
|
src_expand_high = _mm256_unpackhi_epi8(src, zero_reg);
|
|
|
|
ref_expand_low = _mm256_unpacklo_epi8(ref, zero_reg);
|
|
ref_expand_high = _mm256_unpackhi_epi8(ref, zero_reg);
|
|
|
|
// src-ref
|
|
src_expand_low = _mm256_sub_epi16(src_expand_low, ref_expand_low);
|
|
src_expand_high = _mm256_sub_epi16(src_expand_high, ref_expand_high);
|
|
|
|
// madd low (src - ref)
|
|
madd_low = _mm256_madd_epi16(src_expand_low, src_expand_low);
|
|
|
|
// add high to low
|
|
src_expand_low = _mm256_add_epi16(src_expand_low, src_expand_high);
|
|
|
|
// madd high (src - ref)
|
|
madd_high = _mm256_madd_epi16(src_expand_high, src_expand_high);
|
|
|
|
sum_ref_src = _mm256_add_epi16(sum_ref_src, src_expand_low);
|
|
|
|
// add high to low
|
|
madd_ref_src =
|
|
_mm256_add_epi32(madd_ref_src, _mm256_add_epi32(madd_low, madd_high));
|
|
|
|
src_ptr += source_stride;
|
|
ref_ptr += recon_stride;
|
|
}
|
|
|
|
{
|
|
__m256i expand_sum_low, expand_sum_high, expand_sum;
|
|
__m256i expand_madd_low, expand_madd_high, expand_madd;
|
|
__m256i ex_expand_sum_low, ex_expand_sum_high, ex_expand_sum;
|
|
|
|
// padding each 2 bytes with another 2 zeroed bytes
|
|
expand_sum_low = _mm256_unpacklo_epi16(zero_reg, sum_ref_src);
|
|
expand_sum_high = _mm256_unpackhi_epi16(zero_reg, sum_ref_src);
|
|
|
|
// shifting the sign 16 bits right
|
|
expand_sum_low = _mm256_srai_epi32(expand_sum_low, 16);
|
|
expand_sum_high = _mm256_srai_epi32(expand_sum_high, 16);
|
|
|
|
expand_sum = _mm256_add_epi32(expand_sum_low, expand_sum_high);
|
|
|
|
// expand each 32 bits of the madd result to 64 bits
|
|
expand_madd_low = _mm256_unpacklo_epi32(madd_ref_src, zero_reg);
|
|
expand_madd_high = _mm256_unpackhi_epi32(madd_ref_src, zero_reg);
|
|
|
|
expand_madd = _mm256_add_epi32(expand_madd_low, expand_madd_high);
|
|
|
|
ex_expand_sum_low = _mm256_unpacklo_epi32(expand_sum, zero_reg);
|
|
ex_expand_sum_high = _mm256_unpackhi_epi32(expand_sum, zero_reg);
|
|
|
|
ex_expand_sum = _mm256_add_epi32(ex_expand_sum_low, ex_expand_sum_high);
|
|
|
|
// shift 8 bytes eight
|
|
madd_ref_src = _mm256_srli_si256(expand_madd, 8);
|
|
sum_ref_src = _mm256_srli_si256(ex_expand_sum, 8);
|
|
|
|
madd_ref_src = _mm256_add_epi32(madd_ref_src, expand_madd);
|
|
sum_ref_src = _mm256_add_epi32(sum_ref_src, ex_expand_sum);
|
|
|
|
// extract the low lane and the high lane and add the results
|
|
*((int *)SSE) =
|
|
_mm_cvtsi128_si32(_mm256_castsi256_si128(madd_ref_src)) +
|
|
_mm_cvtsi128_si32(_mm256_extractf128_si256(madd_ref_src, 1));
|
|
|
|
*((int *)Sum) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_ref_src)) +
|
|
_mm_cvtsi128_si32(_mm256_extractf128_si256(sum_ref_src, 1));
|
|
}
|
|
}
|
|
|
|
#define FILTER_SRC(filter) \
|
|
/* filter the source */ \
|
|
exp_src_lo = _mm256_maddubs_epi16(exp_src_lo, filter); \
|
|
exp_src_hi = _mm256_maddubs_epi16(exp_src_hi, filter); \
|
|
\
|
|
/* add 8 to source */ \
|
|
exp_src_lo = _mm256_add_epi16(exp_src_lo, pw8); \
|
|
exp_src_hi = _mm256_add_epi16(exp_src_hi, pw8); \
|
|
\
|
|
/* divide source by 16 */ \
|
|
exp_src_lo = _mm256_srai_epi16(exp_src_lo, 4); \
|
|
exp_src_hi = _mm256_srai_epi16(exp_src_hi, 4);
|
|
|
|
#define MERGE_WITH_SRC(src_reg, reg) \
|
|
exp_src_lo = _mm256_unpacklo_epi8(src_reg, reg); \
|
|
exp_src_hi = _mm256_unpackhi_epi8(src_reg, reg);
|
|
|
|
#define LOAD_SRC_DST \
|
|
/* load source and destination */ \
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src)); \
|
|
dst_reg = _mm256_loadu_si256((__m256i const *)(dst));
|
|
|
|
#define AVG_NEXT_SRC(src_reg, size_stride) \
|
|
src_next_reg = _mm256_loadu_si256((__m256i const *)(src + size_stride)); \
|
|
/* average between current and next stride source */ \
|
|
src_reg = _mm256_avg_epu8(src_reg, src_next_reg);
|
|
|
|
#define MERGE_NEXT_SRC(src_reg, size_stride) \
|
|
src_next_reg = _mm256_loadu_si256((__m256i const *)(src + size_stride)); \
|
|
MERGE_WITH_SRC(src_reg, src_next_reg)
|
|
|
|
#define CALC_SUM_SSE_INSIDE_LOOP \
|
|
/* expand each byte to 2 bytes */ \
|
|
exp_dst_lo = _mm256_unpacklo_epi8(dst_reg, zero_reg); \
|
|
exp_dst_hi = _mm256_unpackhi_epi8(dst_reg, zero_reg); \
|
|
/* source - dest */ \
|
|
exp_src_lo = _mm256_sub_epi16(exp_src_lo, exp_dst_lo); \
|
|
exp_src_hi = _mm256_sub_epi16(exp_src_hi, exp_dst_hi); \
|
|
/* caculate sum */ \
|
|
sum_reg = _mm256_add_epi16(sum_reg, exp_src_lo); \
|
|
exp_src_lo = _mm256_madd_epi16(exp_src_lo, exp_src_lo); \
|
|
sum_reg = _mm256_add_epi16(sum_reg, exp_src_hi); \
|
|
exp_src_hi = _mm256_madd_epi16(exp_src_hi, exp_src_hi); \
|
|
/* calculate sse */ \
|
|
sse_reg = _mm256_add_epi32(sse_reg, exp_src_lo); \
|
|
sse_reg = _mm256_add_epi32(sse_reg, exp_src_hi);
|
|
|
|
// final calculation to sum and sse
|
|
#define CALC_SUM_AND_SSE \
|
|
res_cmp = _mm256_cmpgt_epi16(zero_reg, sum_reg); \
|
|
sse_reg_hi = _mm256_srli_si256(sse_reg, 8); \
|
|
sum_reg_lo = _mm256_unpacklo_epi16(sum_reg, res_cmp); \
|
|
sum_reg_hi = _mm256_unpackhi_epi16(sum_reg, res_cmp); \
|
|
sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
|
|
sum_reg = _mm256_add_epi32(sum_reg_lo, sum_reg_hi); \
|
|
\
|
|
sse_reg_hi = _mm256_srli_si256(sse_reg, 4); \
|
|
sum_reg_hi = _mm256_srli_si256(sum_reg, 8); \
|
|
\
|
|
sse_reg = _mm256_add_epi32(sse_reg, sse_reg_hi); \
|
|
sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
|
|
*((int *)sse) = _mm_cvtsi128_si32(_mm256_castsi256_si128(sse_reg)) + \
|
|
_mm_cvtsi128_si32(_mm256_extractf128_si256(sse_reg, 1)); \
|
|
sum_reg_hi = _mm256_srli_si256(sum_reg, 4); \
|
|
sum_reg = _mm256_add_epi32(sum_reg, sum_reg_hi); \
|
|
sum = _mm_cvtsi128_si32(_mm256_castsi256_si128(sum_reg)) + \
|
|
_mm_cvtsi128_si32(_mm256_extractf128_si256(sum_reg, 1));
|
|
|
|
unsigned int vpx_sub_pixel_variance32xh_avx2(const uint8_t *src, int src_stride,
|
|
int x_offset, int y_offset,
|
|
const uint8_t *dst, int dst_stride,
|
|
int height, unsigned int *sse) {
|
|
__m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
|
|
__m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
|
|
__m256i zero_reg;
|
|
int i, sum;
|
|
sum_reg = _mm256_set1_epi16(0);
|
|
sse_reg = _mm256_set1_epi16(0);
|
|
zero_reg = _mm256_set1_epi16(0);
|
|
|
|
// x_offset = 0 and y_offset = 0
|
|
if (x_offset == 0) {
|
|
if (y_offset == 0) {
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
// expend each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 0 and y_offset = 8
|
|
} else if (y_offset == 8) {
|
|
__m256i src_next_reg;
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, src_stride)
|
|
// expend each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 0 and y_offset = bilin interpolation
|
|
} else {
|
|
__m256i filter, pw8, src_next_reg;
|
|
|
|
y_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + y_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, src_stride)
|
|
FILTER_SRC(filter)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
// x_offset = 8 and y_offset = 0
|
|
} else if (x_offset == 8) {
|
|
if (y_offset == 0) {
|
|
__m256i src_next_reg;
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
// expand each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 8 and y_offset = 8
|
|
} else if (y_offset == 8) {
|
|
__m256i src_next_reg, src_avg;
|
|
// load source and another source starting from the next
|
|
// following byte
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
for (i = 0; i < height; i++) {
|
|
src_avg = src_reg;
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
// average between previous average to current average
|
|
src_avg = _mm256_avg_epu8(src_avg, src_reg);
|
|
// expand each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_avg, zero_reg)
|
|
// save current source average
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 8 and y_offset = bilin interpolation
|
|
} else {
|
|
__m256i filter, pw8, src_next_reg, src_avg;
|
|
y_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + y_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
// load source and another source starting from the next
|
|
// following byte
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
for (i = 0; i < height; i++) {
|
|
// save current source average
|
|
src_avg = src_reg;
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
MERGE_WITH_SRC(src_avg, src_reg)
|
|
FILTER_SRC(filter)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
// x_offset = bilin interpolation and y_offset = 0
|
|
} else {
|
|
if (y_offset == 0) {
|
|
__m256i filter, pw8, src_next_reg;
|
|
x_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + x_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(filter)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = bilin interpolation and y_offset = 8
|
|
} else if (y_offset == 8) {
|
|
__m256i filter, pw8, src_next_reg, src_pack;
|
|
x_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + x_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(filter)
|
|
// convert each 16 bit to 8 bit to each low and high lane source
|
|
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
for (i = 0; i < height; i++) {
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(filter)
|
|
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
// average between previous pack to the current
|
|
src_pack = _mm256_avg_epu8(src_pack, src_reg);
|
|
MERGE_WITH_SRC(src_pack, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src_pack = src_reg;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = bilin interpolation and y_offset = bilin interpolation
|
|
} else {
|
|
__m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
|
|
x_offset <<= 5;
|
|
xfilter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + x_offset));
|
|
y_offset <<= 5;
|
|
yfilter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + y_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
// load source and another source starting from the next
|
|
// following byte
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
|
|
FILTER_SRC(xfilter)
|
|
// convert each 16 bit to 8 bit to each low and high lane source
|
|
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
for (i = 0; i < height; i++) {
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(xfilter)
|
|
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
// merge previous pack to current pack source
|
|
MERGE_WITH_SRC(src_pack, src_reg)
|
|
// filter the source
|
|
FILTER_SRC(yfilter)
|
|
src_pack = src_reg;
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
}
|
|
CALC_SUM_AND_SSE
|
|
return sum;
|
|
}
|
|
|
|
unsigned int vpx_sub_pixel_avg_variance32xh_avx2(
|
|
const uint8_t *src, int src_stride, int x_offset, int y_offset,
|
|
const uint8_t *dst, int dst_stride, const uint8_t *sec, int sec_stride,
|
|
int height, unsigned int *sse) {
|
|
__m256i sec_reg;
|
|
__m256i src_reg, dst_reg, exp_src_lo, exp_src_hi, exp_dst_lo, exp_dst_hi;
|
|
__m256i sse_reg, sum_reg, sse_reg_hi, res_cmp, sum_reg_lo, sum_reg_hi;
|
|
__m256i zero_reg;
|
|
int i, sum;
|
|
sum_reg = _mm256_set1_epi16(0);
|
|
sse_reg = _mm256_set1_epi16(0);
|
|
zero_reg = _mm256_set1_epi16(0);
|
|
|
|
// x_offset = 0 and y_offset = 0
|
|
if (x_offset == 0) {
|
|
if (y_offset == 0) {
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
|
|
sec += sec_stride;
|
|
// expend each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
} else if (y_offset == 8) {
|
|
__m256i src_next_reg;
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, src_stride)
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
|
|
sec += sec_stride;
|
|
// expend each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 0 and y_offset = bilin interpolation
|
|
} else {
|
|
__m256i filter, pw8, src_next_reg;
|
|
|
|
y_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + y_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, src_stride)
|
|
FILTER_SRC(filter)
|
|
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
|
|
sec += sec_stride;
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
// x_offset = 8 and y_offset = 0
|
|
} else if (x_offset == 8) {
|
|
if (y_offset == 0) {
|
|
__m256i src_next_reg;
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
|
|
sec += sec_stride;
|
|
// expand each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 8 and y_offset = 8
|
|
} else if (y_offset == 8) {
|
|
__m256i src_next_reg, src_avg;
|
|
// load source and another source starting from the next
|
|
// following byte
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
for (i = 0; i < height; i++) {
|
|
// save current source average
|
|
src_avg = src_reg;
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
// average between previous average to current average
|
|
src_avg = _mm256_avg_epu8(src_avg, src_reg);
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_avg = _mm256_avg_epu8(src_avg, sec_reg);
|
|
sec += sec_stride;
|
|
// expand each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_avg, zero_reg)
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = 8 and y_offset = bilin interpolation
|
|
} else {
|
|
__m256i filter, pw8, src_next_reg, src_avg;
|
|
y_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + y_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
// load source and another source starting from the next
|
|
// following byte
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
for (i = 0; i < height; i++) {
|
|
// save current source average
|
|
src_avg = src_reg;
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
AVG_NEXT_SRC(src_reg, 1)
|
|
MERGE_WITH_SRC(src_avg, src_reg)
|
|
FILTER_SRC(filter)
|
|
src_avg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_avg = _mm256_avg_epu8(src_avg, sec_reg);
|
|
// expand each byte to 2 bytes
|
|
MERGE_WITH_SRC(src_avg, zero_reg)
|
|
sec += sec_stride;
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
// x_offset = bilin interpolation and y_offset = 0
|
|
} else {
|
|
if (y_offset == 0) {
|
|
__m256i filter, pw8, src_next_reg;
|
|
x_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + x_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
for (i = 0; i < height; i++) {
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(filter)
|
|
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_reg = _mm256_avg_epu8(src_reg, sec_reg);
|
|
MERGE_WITH_SRC(src_reg, zero_reg)
|
|
sec += sec_stride;
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
src += src_stride;
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = bilin interpolation and y_offset = 8
|
|
} else if (y_offset == 8) {
|
|
__m256i filter, pw8, src_next_reg, src_pack;
|
|
x_offset <<= 5;
|
|
filter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + x_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(filter)
|
|
// convert each 16 bit to 8 bit to each low and high lane source
|
|
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
for (i = 0; i < height; i++) {
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(filter)
|
|
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
// average between previous pack to the current
|
|
src_pack = _mm256_avg_epu8(src_pack, src_reg);
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_pack = _mm256_avg_epu8(src_pack, sec_reg);
|
|
sec += sec_stride;
|
|
MERGE_WITH_SRC(src_pack, zero_reg)
|
|
src_pack = src_reg;
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
// x_offset = bilin interpolation and y_offset = bilin interpolation
|
|
} else {
|
|
__m256i xfilter, yfilter, pw8, src_next_reg, src_pack;
|
|
x_offset <<= 5;
|
|
xfilter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + x_offset));
|
|
y_offset <<= 5;
|
|
yfilter = _mm256_load_si256(
|
|
(__m256i const *)(bilinear_filters_avx2 + y_offset));
|
|
pw8 = _mm256_set1_epi16(8);
|
|
// load source and another source starting from the next
|
|
// following byte
|
|
src_reg = _mm256_loadu_si256((__m256i const *)(src));
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
|
|
FILTER_SRC(xfilter)
|
|
// convert each 16 bit to 8 bit to each low and high lane source
|
|
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
for (i = 0; i < height; i++) {
|
|
src += src_stride;
|
|
LOAD_SRC_DST
|
|
MERGE_NEXT_SRC(src_reg, 1)
|
|
FILTER_SRC(xfilter)
|
|
src_reg = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
// merge previous pack to current pack source
|
|
MERGE_WITH_SRC(src_pack, src_reg)
|
|
// filter the source
|
|
FILTER_SRC(yfilter)
|
|
src_pack = _mm256_packus_epi16(exp_src_lo, exp_src_hi);
|
|
sec_reg = _mm256_loadu_si256((__m256i const *)(sec));
|
|
src_pack = _mm256_avg_epu8(src_pack, sec_reg);
|
|
MERGE_WITH_SRC(src_pack, zero_reg)
|
|
src_pack = src_reg;
|
|
sec += sec_stride;
|
|
CALC_SUM_SSE_INSIDE_LOOP
|
|
dst += dst_stride;
|
|
}
|
|
}
|
|
}
|
|
CALC_SUM_AND_SSE
|
|
return sum;
|
|
}
|