vpx/examples/vp9_spatial_svc_encoder.c
Marco 730cdefd3e Add SVC codec control to set frame flags and buffer indices.
Add SVC codec control to set the frame flags and buffer indices
for each spatial layer of the current (super)frame to be encoded.
This allows the application to set (and change on the fly) the
reference frame configuration for spatial layers.

Added an example layer pattern (spatial and temporal layers)
in vp9_spatial_svc_encoder for the bypass_mode using new control.

Change-Id: I05f941897cae13fb9275b939d11f93941cb73bee
2015-09-17 09:37:15 -07:00

888 lines
34 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
/*
* This is an example demonstrating how to implement a multi-layer
* VP9 encoding scheme based on spatial scalability for video applications
* that benefit from a scalable bitstream.
*/
#include <math.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "../args.h"
#include "../tools_common.h"
#include "../video_writer.h"
#include "../vpx_ports/vpx_timer.h"
#include "vpx/svc_context.h"
#include "vpx/vp8cx.h"
#include "vpx/vpx_encoder.h"
#include "../vpxstats.h"
#define OUTPUT_RC_STATS 1
static const arg_def_t skip_frames_arg =
ARG_DEF("s", "skip-frames", 1, "input frames to skip");
static const arg_def_t frames_arg =
ARG_DEF("f", "frames", 1, "number of frames to encode");
static const arg_def_t threads_arg =
ARG_DEF("th", "threads", 1, "number of threads to use");
#if OUTPUT_RC_STATS
static const arg_def_t output_rc_stats_arg =
ARG_DEF("rcstat", "output_rc_stats", 1, "output rc stats");
#endif
static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "source width");
static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "source height");
static const arg_def_t timebase_arg =
ARG_DEF("t", "timebase", 1, "timebase (num/den)");
static const arg_def_t bitrate_arg = ARG_DEF(
"b", "target-bitrate", 1, "encoding bitrate, in kilobits per second");
static const arg_def_t spatial_layers_arg =
ARG_DEF("sl", "spatial-layers", 1, "number of spatial SVC layers");
static const arg_def_t temporal_layers_arg =
ARG_DEF("tl", "temporal-layers", 1, "number of temporal SVC layers");
static const arg_def_t temporal_layering_mode_arg =
ARG_DEF("tlm", "temporal-layering-mode", 1, "temporal layering scheme."
"VP9E_TEMPORAL_LAYERING_MODE");
static const arg_def_t kf_dist_arg =
ARG_DEF("k", "kf-dist", 1, "number of frames between keyframes");
static const arg_def_t scale_factors_arg =
ARG_DEF("r", "scale-factors", 1, "scale factors (lowest to highest layer)");
static const arg_def_t passes_arg =
ARG_DEF("p", "passes", 1, "Number of passes (1/2)");
static const arg_def_t pass_arg =
ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)");
static const arg_def_t fpf_name_arg =
ARG_DEF(NULL, "fpf", 1, "First pass statistics file name");
static const arg_def_t min_q_arg =
ARG_DEF(NULL, "min-q", 1, "Minimum quantizer");
static const arg_def_t max_q_arg =
ARG_DEF(NULL, "max-q", 1, "Maximum quantizer");
static const arg_def_t min_bitrate_arg =
ARG_DEF(NULL, "min-bitrate", 1, "Minimum bitrate");
static const arg_def_t max_bitrate_arg =
ARG_DEF(NULL, "max-bitrate", 1, "Maximum bitrate");
static const arg_def_t lag_in_frame_arg =
ARG_DEF(NULL, "lag-in-frames", 1, "Number of frame to input before "
"generating any outputs");
static const arg_def_t rc_end_usage_arg =
ARG_DEF(NULL, "rc-end-usage", 1, "0 - 3: VBR, CBR, CQ, Q");
static const arg_def_t speed_arg =
ARG_DEF("sp", "speed", 1, "speed configuration");
static const arg_def_t aqmode_arg =
ARG_DEF("aq", "aqmode", 1, "aq-mode off/on");
#if CONFIG_VP9_HIGHBITDEPTH
static const struct arg_enum_list bitdepth_enum[] = {
{"8", VPX_BITS_8},
{"10", VPX_BITS_10},
{"12", VPX_BITS_12},
{NULL, 0}
};
static const arg_def_t bitdepth_arg =
ARG_DEF_ENUM("d", "bit-depth", 1, "Bit depth for codec 8, 10 or 12. ",
bitdepth_enum);
#endif // CONFIG_VP9_HIGHBITDEPTH
static const arg_def_t *svc_args[] = {
&frames_arg, &width_arg, &height_arg,
&timebase_arg, &bitrate_arg, &skip_frames_arg, &spatial_layers_arg,
&kf_dist_arg, &scale_factors_arg, &passes_arg, &pass_arg,
&fpf_name_arg, &min_q_arg, &max_q_arg, &min_bitrate_arg,
&max_bitrate_arg, &temporal_layers_arg, &temporal_layering_mode_arg,
&lag_in_frame_arg, &threads_arg, &aqmode_arg,
#if OUTPUT_RC_STATS
&output_rc_stats_arg,
#endif
#if CONFIG_VP9_HIGHBITDEPTH
&bitdepth_arg,
#endif
&speed_arg,
&rc_end_usage_arg, NULL
};
static const uint32_t default_frames_to_skip = 0;
static const uint32_t default_frames_to_code = 60 * 60;
static const uint32_t default_width = 1920;
static const uint32_t default_height = 1080;
static const uint32_t default_timebase_num = 1;
static const uint32_t default_timebase_den = 60;
static const uint32_t default_bitrate = 1000;
static const uint32_t default_spatial_layers = 5;
static const uint32_t default_temporal_layers = 1;
static const uint32_t default_kf_dist = 100;
static const uint32_t default_temporal_layering_mode = 0;
static const uint32_t default_output_rc_stats = 0;
static const int32_t default_speed = -1; // -1 means use library default.
static const uint32_t default_threads = 0; // zero means use library default.
typedef struct {
const char *input_filename;
const char *output_filename;
uint32_t frames_to_code;
uint32_t frames_to_skip;
struct VpxInputContext input_ctx;
stats_io_t rc_stats;
int passes;
int pass;
} AppInput;
static const char *exec_name;
void usage_exit(void) {
fprintf(stderr, "Usage: %s <options> input_filename output_filename\n",
exec_name);
fprintf(stderr, "Options:\n");
arg_show_usage(stderr, svc_args);
exit(EXIT_FAILURE);
}
static void parse_command_line(int argc, const char **argv_,
AppInput *app_input, SvcContext *svc_ctx,
vpx_codec_enc_cfg_t *enc_cfg) {
struct arg arg = {0};
char **argv = NULL;
char **argi = NULL;
char **argj = NULL;
vpx_codec_err_t res;
int passes = 0;
int pass = 0;
const char *fpf_file_name = NULL;
unsigned int min_bitrate = 0;
unsigned int max_bitrate = 0;
char string_options[1024] = {0};
// initialize SvcContext with parameters that will be passed to vpx_svc_init
svc_ctx->log_level = SVC_LOG_DEBUG;
svc_ctx->spatial_layers = default_spatial_layers;
svc_ctx->temporal_layers = default_temporal_layers;
svc_ctx->temporal_layering_mode = default_temporal_layering_mode;
#if OUTPUT_RC_STATS
svc_ctx->output_rc_stat = default_output_rc_stats;
#endif
svc_ctx->speed = default_speed;
svc_ctx->threads = default_threads;
// start with default encoder configuration
res = vpx_codec_enc_config_default(vpx_codec_vp9_cx(), enc_cfg, 0);
if (res) {
die("Failed to get config: %s\n", vpx_codec_err_to_string(res));
}
// update enc_cfg with app default values
enc_cfg->g_w = default_width;
enc_cfg->g_h = default_height;
enc_cfg->g_timebase.num = default_timebase_num;
enc_cfg->g_timebase.den = default_timebase_den;
enc_cfg->rc_target_bitrate = default_bitrate;
enc_cfg->kf_min_dist = default_kf_dist;
enc_cfg->kf_max_dist = default_kf_dist;
enc_cfg->rc_end_usage = VPX_CQ;
// initialize AppInput with default values
app_input->frames_to_code = default_frames_to_code;
app_input->frames_to_skip = default_frames_to_skip;
// process command line options
argv = argv_dup(argc - 1, argv_ + 1);
for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) {
arg.argv_step = 1;
if (arg_match(&arg, &frames_arg, argi)) {
app_input->frames_to_code = arg_parse_uint(&arg);
} else if (arg_match(&arg, &width_arg, argi)) {
enc_cfg->g_w = arg_parse_uint(&arg);
} else if (arg_match(&arg, &height_arg, argi)) {
enc_cfg->g_h = arg_parse_uint(&arg);
} else if (arg_match(&arg, &timebase_arg, argi)) {
enc_cfg->g_timebase = arg_parse_rational(&arg);
} else if (arg_match(&arg, &bitrate_arg, argi)) {
enc_cfg->rc_target_bitrate = arg_parse_uint(&arg);
} else if (arg_match(&arg, &skip_frames_arg, argi)) {
app_input->frames_to_skip = arg_parse_uint(&arg);
} else if (arg_match(&arg, &spatial_layers_arg, argi)) {
svc_ctx->spatial_layers = arg_parse_uint(&arg);
} else if (arg_match(&arg, &temporal_layers_arg, argi)) {
svc_ctx->temporal_layers = arg_parse_uint(&arg);
#if OUTPUT_RC_STATS
} else if (arg_match(&arg, &output_rc_stats_arg, argi)) {
svc_ctx->output_rc_stat = arg_parse_uint(&arg);
#endif
} else if (arg_match(&arg, &speed_arg, argi)) {
svc_ctx->speed = arg_parse_uint(&arg);
} else if (arg_match(&arg, &aqmode_arg, argi)) {
svc_ctx->aqmode = arg_parse_uint(&arg);
} else if (arg_match(&arg, &threads_arg, argi)) {
svc_ctx->threads = arg_parse_uint(&arg);
} else if (arg_match(&arg, &temporal_layering_mode_arg, argi)) {
svc_ctx->temporal_layering_mode =
enc_cfg->temporal_layering_mode = arg_parse_int(&arg);
if (svc_ctx->temporal_layering_mode) {
enc_cfg->g_error_resilient = 1;
}
} else if (arg_match(&arg, &kf_dist_arg, argi)) {
enc_cfg->kf_min_dist = arg_parse_uint(&arg);
enc_cfg->kf_max_dist = enc_cfg->kf_min_dist;
} else if (arg_match(&arg, &scale_factors_arg, argi)) {
snprintf(string_options, sizeof(string_options), "%s scale-factors=%s",
string_options, arg.val);
} else if (arg_match(&arg, &passes_arg, argi)) {
passes = arg_parse_uint(&arg);
if (passes < 1 || passes > 2) {
die("Error: Invalid number of passes (%d)\n", passes);
}
} else if (arg_match(&arg, &pass_arg, argi)) {
pass = arg_parse_uint(&arg);
if (pass < 1 || pass > 2) {
die("Error: Invalid pass selected (%d)\n", pass);
}
} else if (arg_match(&arg, &fpf_name_arg, argi)) {
fpf_file_name = arg.val;
} else if (arg_match(&arg, &min_q_arg, argi)) {
snprintf(string_options, sizeof(string_options), "%s min-quantizers=%s",
string_options, arg.val);
} else if (arg_match(&arg, &max_q_arg, argi)) {
snprintf(string_options, sizeof(string_options), "%s max-quantizers=%s",
string_options, arg.val);
} else if (arg_match(&arg, &min_bitrate_arg, argi)) {
min_bitrate = arg_parse_uint(&arg);
} else if (arg_match(&arg, &max_bitrate_arg, argi)) {
max_bitrate = arg_parse_uint(&arg);
} else if (arg_match(&arg, &lag_in_frame_arg, argi)) {
enc_cfg->g_lag_in_frames = arg_parse_uint(&arg);
} else if (arg_match(&arg, &rc_end_usage_arg, argi)) {
enc_cfg->rc_end_usage = arg_parse_uint(&arg);
#if CONFIG_VP9_HIGHBITDEPTH
} else if (arg_match(&arg, &bitdepth_arg, argi)) {
enc_cfg->g_bit_depth = arg_parse_enum_or_int(&arg);
switch (enc_cfg->g_bit_depth) {
case VPX_BITS_8:
enc_cfg->g_input_bit_depth = 8;
enc_cfg->g_profile = 0;
break;
case VPX_BITS_10:
enc_cfg->g_input_bit_depth = 10;
enc_cfg->g_profile = 2;
break;
case VPX_BITS_12:
enc_cfg->g_input_bit_depth = 12;
enc_cfg->g_profile = 2;
break;
default:
die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth);
break;
}
#endif // CONFIG_VP9_HIGHBITDEPTH
} else {
++argj;
}
}
// There will be a space in front of the string options
if (strlen(string_options) > 0)
vpx_svc_set_options(svc_ctx, string_options + 1);
if (passes == 0 || passes == 1) {
if (pass) {
fprintf(stderr, "pass is ignored since there's only one pass\n");
}
enc_cfg->g_pass = VPX_RC_ONE_PASS;
} else {
if (pass == 0) {
die("pass must be specified when passes is 2\n");
}
if (fpf_file_name == NULL) {
die("fpf must be specified when passes is 2\n");
}
if (pass == 1) {
enc_cfg->g_pass = VPX_RC_FIRST_PASS;
if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 0)) {
fatal("Failed to open statistics store");
}
} else {
enc_cfg->g_pass = VPX_RC_LAST_PASS;
if (!stats_open_file(&app_input->rc_stats, fpf_file_name, 1)) {
fatal("Failed to open statistics store");
}
enc_cfg->rc_twopass_stats_in = stats_get(&app_input->rc_stats);
}
app_input->passes = passes;
app_input->pass = pass;
}
if (enc_cfg->rc_target_bitrate > 0) {
if (min_bitrate > 0) {
enc_cfg->rc_2pass_vbr_minsection_pct =
min_bitrate * 100 / enc_cfg->rc_target_bitrate;
}
if (max_bitrate > 0) {
enc_cfg->rc_2pass_vbr_maxsection_pct =
max_bitrate * 100 / enc_cfg->rc_target_bitrate;
}
}
// Check for unrecognized options
for (argi = argv; *argi; ++argi)
if (argi[0][0] == '-' && strlen(argi[0]) > 1)
die("Error: Unrecognized option %s\n", *argi);
if (argv[0] == NULL || argv[1] == 0) {
usage_exit();
}
app_input->input_filename = argv[0];
app_input->output_filename = argv[1];
free(argv);
if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 ||
enc_cfg->g_h % 2)
die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h);
printf(
"Codec %s\nframes: %d, skip: %d\n"
"layers: %d\n"
"width %d, height: %d,\n"
"num: %d, den: %d, bitrate: %d,\n"
"gop size: %d\n",
vpx_codec_iface_name(vpx_codec_vp9_cx()), app_input->frames_to_code,
app_input->frames_to_skip,
svc_ctx->spatial_layers, enc_cfg->g_w, enc_cfg->g_h,
enc_cfg->g_timebase.num, enc_cfg->g_timebase.den,
enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist);
}
#if OUTPUT_RC_STATS
// For rate control encoding stats.
struct RateControlStats {
// Number of input frames per layer.
int layer_input_frames[VPX_MAX_LAYERS];
// Total (cumulative) number of encoded frames per layer.
int layer_tot_enc_frames[VPX_MAX_LAYERS];
// Number of encoded non-key frames per layer.
int layer_enc_frames[VPX_MAX_LAYERS];
// Framerate per layer (cumulative).
double layer_framerate[VPX_MAX_LAYERS];
// Target average frame size per layer (per-frame-bandwidth per layer).
double layer_pfb[VPX_MAX_LAYERS];
// Actual average frame size per layer.
double layer_avg_frame_size[VPX_MAX_LAYERS];
// Average rate mismatch per layer (|target - actual| / target).
double layer_avg_rate_mismatch[VPX_MAX_LAYERS];
// Actual encoding bitrate per layer (cumulative).
double layer_encoding_bitrate[VPX_MAX_LAYERS];
// Average of the short-time encoder actual bitrate.
// TODO(marpan): Should we add these short-time stats for each layer?
double avg_st_encoding_bitrate;
// Variance of the short-time encoder actual bitrate.
double variance_st_encoding_bitrate;
// Window (number of frames) for computing short-time encoding bitrate.
int window_size;
// Number of window measurements.
int window_count;
};
// Note: these rate control stats assume only 1 key frame in the
// sequence (i.e., first frame only).
static void set_rate_control_stats(struct RateControlStats *rc,
vpx_codec_enc_cfg_t *cfg) {
unsigned int sl, tl;
// Set the layer (cumulative) framerate and the target layer (non-cumulative)
// per-frame-bandwidth, for the rate control encoding stats below.
const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
const int layer = sl * cfg->ts_number_layers + tl;
const int tlayer0 = sl * cfg->ts_number_layers;
rc->layer_framerate[layer] =
framerate / cfg->ts_rate_decimator[tl];
if (tl > 0) {
rc->layer_pfb[layer] = 1000.0 *
(cfg->layer_target_bitrate[layer] -
cfg->layer_target_bitrate[layer - 1]) /
(rc->layer_framerate[layer] -
rc->layer_framerate[layer - 1]);
} else {
rc->layer_pfb[tlayer0] = 1000.0 *
cfg->layer_target_bitrate[tlayer0] /
rc->layer_framerate[tlayer0];
}
rc->layer_input_frames[layer] = 0;
rc->layer_enc_frames[layer] = 0;
rc->layer_tot_enc_frames[layer] = 0;
rc->layer_encoding_bitrate[layer] = 0.0;
rc->layer_avg_frame_size[layer] = 0.0;
rc->layer_avg_rate_mismatch[layer] = 0.0;
}
}
rc->window_count = 0;
rc->window_size = 15;
rc->avg_st_encoding_bitrate = 0.0;
rc->variance_st_encoding_bitrate = 0.0;
}
static void printout_rate_control_summary(struct RateControlStats *rc,
vpx_codec_enc_cfg_t *cfg,
int frame_cnt) {
unsigned int sl, tl;
int tot_num_frames = 0;
double perc_fluctuation = 0.0;
printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
printf("Rate control layer stats for sl%d tl%d layer(s):\n\n",
cfg->ss_number_layers, cfg->ts_number_layers);
for (sl = 0; sl < cfg->ss_number_layers; ++sl) {
for (tl = 0; tl < cfg->ts_number_layers; ++tl) {
const int layer = sl * cfg->ts_number_layers + tl;
const int num_dropped = (tl > 0) ?
(rc->layer_input_frames[layer] - rc->layer_enc_frames[layer]) :
(rc->layer_input_frames[layer] - rc->layer_enc_frames[layer] - 1);
if (!sl)
tot_num_frames += rc->layer_input_frames[layer];
rc->layer_encoding_bitrate[layer] = 0.001 * rc->layer_framerate[layer] *
rc->layer_encoding_bitrate[layer] / tot_num_frames;
rc->layer_avg_frame_size[layer] = rc->layer_avg_frame_size[layer] /
rc->layer_enc_frames[layer];
rc->layer_avg_rate_mismatch[layer] =
100.0 * rc->layer_avg_rate_mismatch[layer] /
rc->layer_enc_frames[layer];
printf("For layer#: sl%d tl%d \n", sl, tl);
printf("Bitrate (target vs actual): %d %f.0 kbps\n",
cfg->layer_target_bitrate[layer],
rc->layer_encoding_bitrate[layer]);
printf("Average frame size (target vs actual): %f %f bits\n",
rc->layer_pfb[layer], rc->layer_avg_frame_size[layer]);
printf("Average rate_mismatch: %f\n",
rc->layer_avg_rate_mismatch[layer]);
printf("Number of input frames, encoded (non-key) frames, "
"and percent dropped frames: %d %d %f.0 \n",
rc->layer_input_frames[layer], rc->layer_enc_frames[layer],
100.0 * num_dropped / rc->layer_input_frames[layer]);
printf("\n");
}
}
rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
rc->variance_st_encoding_bitrate =
rc->variance_st_encoding_bitrate / rc->window_count -
(rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
rc->avg_st_encoding_bitrate;
printf("Short-time stats, for window of %d frames: \n", rc->window_size);
printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
rc->avg_st_encoding_bitrate,
sqrt(rc->variance_st_encoding_bitrate),
perc_fluctuation);
if (frame_cnt != tot_num_frames)
die("Error: Number of input frames not equal to output encoded frames != "
"%d tot_num_frames = %d\n", frame_cnt, tot_num_frames);
}
vpx_codec_err_t parse_superframe_index(const uint8_t *data,
size_t data_sz,
uint32_t sizes[8], int *count) {
// A chunk ending with a byte matching 0xc0 is an invalid chunk unless
// it is a super frame index. If the last byte of real video compression
// data is 0xc0 the encoder must add a 0 byte. If we have the marker but
// not the associated matching marker byte at the front of the index we have
// an invalid bitstream and need to return an error.
uint8_t marker;
marker = *(data + data_sz - 1);
*count = 0;
if ((marker & 0xe0) == 0xc0) {
const uint32_t frames = (marker & 0x7) + 1;
const uint32_t mag = ((marker >> 3) & 0x3) + 1;
const size_t index_sz = 2 + mag * frames;
// This chunk is marked as having a superframe index but doesn't have
// enough data for it, thus it's an invalid superframe index.
if (data_sz < index_sz)
return VPX_CODEC_CORRUPT_FRAME;
{
const uint8_t marker2 = *(data + data_sz - index_sz);
// This chunk is marked as having a superframe index but doesn't have
// the matching marker byte at the front of the index therefore it's an
// invalid chunk.
if (marker != marker2)
return VPX_CODEC_CORRUPT_FRAME;
}
{
// Found a valid superframe index.
uint32_t i, j;
const uint8_t *x = &data[data_sz - index_sz + 1];
for (i = 0; i < frames; ++i) {
uint32_t this_sz = 0;
for (j = 0; j < mag; ++j)
this_sz |= (*x++) << (j * 8);
sizes[i] = this_sz;
}
*count = frames;
}
}
return VPX_CODEC_OK;
}
#endif
// Example pattern for spatial layers and 2 temporal layers used in the
// bypass/flexible mode. The pattern corresponds to the pattern
// VP9E_TEMPORAL_LAYERING_MODE_0101 (temporal_layering_mode == 2) used in
// non-flexible mode.
void set_frame_flags_bypass_mode(int sl, int tl, int num_spatial_layers,
int is_key_frame,
vpx_svc_ref_frame_config_t *ref_frame_config) {
for (sl = 0; sl < num_spatial_layers; ++sl) {
if (!tl) {
if (!sl) {
ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
} else {
if (is_key_frame) {
ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_LAST |
VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
} else {
ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_GF |
VP8_EFLAG_NO_UPD_ARF;
}
}
} else if (tl == 1) {
if (!sl) {
ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_GF |
VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_GF;
} else {
ref_frame_config->frame_flags[sl] = VP8_EFLAG_NO_REF_ARF |
VP8_EFLAG_NO_UPD_LAST |
VP8_EFLAG_NO_UPD_GF;
}
}
if (tl == 0) {
ref_frame_config->lst_fb_idx[sl] = sl;
if (sl)
ref_frame_config->gld_fb_idx[sl] = sl - 1;
else
ref_frame_config->gld_fb_idx[sl] = 0;
ref_frame_config->alt_fb_idx[sl] = 0;
} else if (tl == 1) {
ref_frame_config->lst_fb_idx[sl] = sl;
ref_frame_config->gld_fb_idx[sl] = num_spatial_layers + sl - 1;
ref_frame_config->alt_fb_idx[sl] = num_spatial_layers + sl;
}
}
}
int main(int argc, const char **argv) {
AppInput app_input = {0};
VpxVideoWriter *writer = NULL;
VpxVideoInfo info = {0};
vpx_codec_ctx_t codec;
vpx_codec_enc_cfg_t enc_cfg;
SvcContext svc_ctx;
uint32_t i;
uint32_t frame_cnt = 0;
vpx_image_t raw;
vpx_codec_err_t res;
int pts = 0; /* PTS starts at 0 */
int frame_duration = 1; /* 1 timebase tick per frame */
FILE *infile = NULL;
int end_of_stream = 0;
int frames_received = 0;
#if OUTPUT_RC_STATS
VpxVideoWriter *outfile[VPX_TS_MAX_LAYERS] = {NULL};
struct RateControlStats rc;
vpx_svc_layer_id_t layer_id;
vpx_svc_ref_frame_config_t ref_frame_config;
int sl, tl;
double sum_bitrate = 0.0;
double sum_bitrate2 = 0.0;
double framerate = 30.0;
#endif
struct vpx_usec_timer timer;
int64_t cx_time = 0;
memset(&svc_ctx, 0, sizeof(svc_ctx));
svc_ctx.log_print = 1;
exec_name = argv[0];
parse_command_line(argc, argv, &app_input, &svc_ctx, &enc_cfg);
// Allocate image buffer
#if CONFIG_VP9_HIGHBITDEPTH
if (!vpx_img_alloc(&raw, enc_cfg.g_input_bit_depth == 8 ?
VPX_IMG_FMT_I420 : VPX_IMG_FMT_I42016,
enc_cfg.g_w, enc_cfg.g_h, 32)) {
die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
}
#else
if (!vpx_img_alloc(&raw, VPX_IMG_FMT_I420, enc_cfg.g_w, enc_cfg.g_h, 32)) {
die("Failed to allocate image %dx%d\n", enc_cfg.g_w, enc_cfg.g_h);
}
#endif // CONFIG_VP9_HIGHBITDEPTH
if (!(infile = fopen(app_input.input_filename, "rb")))
die("Failed to open %s for reading\n", app_input.input_filename);
// Initialize codec
if (vpx_svc_init(&svc_ctx, &codec, vpx_codec_vp9_cx(), &enc_cfg) !=
VPX_CODEC_OK)
die("Failed to initialize encoder\n");
#if OUTPUT_RC_STATS
if (svc_ctx.output_rc_stat) {
set_rate_control_stats(&rc, &enc_cfg);
framerate = enc_cfg.g_timebase.den / enc_cfg.g_timebase.num;
}
#endif
info.codec_fourcc = VP9_FOURCC;
info.time_base.numerator = enc_cfg.g_timebase.num;
info.time_base.denominator = enc_cfg.g_timebase.den;
if (!(app_input.passes == 2 && app_input.pass == 1)) {
// We don't save the bitstream for the 1st pass on two pass rate control
writer = vpx_video_writer_open(app_input.output_filename, kContainerIVF,
&info);
if (!writer)
die("Failed to open %s for writing\n", app_input.output_filename);
}
#if OUTPUT_RC_STATS
// For now, just write temporal layer streams.
// TODO(wonkap): do spatial by re-writing superframe.
if (svc_ctx.output_rc_stat) {
for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) {
char file_name[PATH_MAX];
snprintf(file_name, sizeof(file_name), "%s_t%d.ivf",
app_input.output_filename, tl);
outfile[tl] = vpx_video_writer_open(file_name, kContainerIVF, &info);
if (!outfile[tl])
die("Failed to open %s for writing", file_name);
}
}
#endif
// skip initial frames
for (i = 0; i < app_input.frames_to_skip; ++i)
vpx_img_read(&raw, infile);
if (svc_ctx.speed != -1)
vpx_codec_control(&codec, VP8E_SET_CPUUSED, svc_ctx.speed);
if (svc_ctx.threads)
vpx_codec_control(&codec, VP9E_SET_TILE_COLUMNS, (svc_ctx.threads >> 1));
if (svc_ctx.speed >= 5 && svc_ctx.aqmode == 1)
vpx_codec_control(&codec, VP9E_SET_AQ_MODE, 3);
// Encode frames
while (!end_of_stream) {
vpx_codec_iter_t iter = NULL;
const vpx_codec_cx_pkt_t *cx_pkt;
if (frame_cnt >= app_input.frames_to_code || !vpx_img_read(&raw, infile)) {
// We need one extra vpx_svc_encode call at end of stream to flush
// encoder and get remaining data
end_of_stream = 1;
}
// For BYPASS/FLEXIBLE mode, set the frame flags (reference and updates)
// and the buffer indices for each spatial layer of the current
// (super)frame to be encoded. The temporal layer_id for the current frame
// also needs to be set.
// TODO(marpan): Should rename the "VP9E_TEMPORAL_LAYERING_MODE_BYPASS"
// mode to "VP9E_LAYERING_MODE_BYPASS".
if (svc_ctx.temporal_layering_mode == VP9E_TEMPORAL_LAYERING_MODE_BYPASS) {
// Example for 2 temporal layers.
if (frame_cnt % 2 == 0)
layer_id.temporal_layer_id = 0;
else
layer_id.temporal_layer_id = 1;
// Note that we only set the temporal layer_id, since we are calling
// the encode for the whole superframe. The encoder will internally loop
// over all the spatial layers for the current superframe.
vpx_codec_control(&codec, VP9E_SET_SVC_LAYER_ID, &layer_id);
set_frame_flags_bypass_mode(sl, layer_id.temporal_layer_id,
svc_ctx.spatial_layers,
frame_cnt == 0,
&ref_frame_config);
vpx_codec_control(&codec, VP9E_SET_SVC_REF_FRAME_CONFIG,
&ref_frame_config);
}
vpx_usec_timer_start(&timer);
res = vpx_svc_encode(&svc_ctx, &codec, (end_of_stream ? NULL : &raw),
pts, frame_duration, svc_ctx.speed >= 5 ?
VPX_DL_REALTIME : VPX_DL_GOOD_QUALITY);
vpx_usec_timer_mark(&timer);
cx_time += vpx_usec_timer_elapsed(&timer);
printf("%s", vpx_svc_get_message(&svc_ctx));
if (res != VPX_CODEC_OK) {
die_codec(&codec, "Failed to encode frame");
}
while ((cx_pkt = vpx_codec_get_cx_data(&codec, &iter)) != NULL) {
switch (cx_pkt->kind) {
case VPX_CODEC_CX_FRAME_PKT: {
if (cx_pkt->data.frame.sz > 0) {
#if OUTPUT_RC_STATS
uint32_t sizes[8];
int count = 0;
#endif
vpx_video_writer_write_frame(writer,
cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz,
cx_pkt->data.frame.pts);
#if OUTPUT_RC_STATS
// TODO(marpan/wonkap): Put this (to line728) in separate function.
if (svc_ctx.output_rc_stat) {
vpx_codec_control(&codec, VP9E_GET_SVC_LAYER_ID, &layer_id);
parse_superframe_index(cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz, sizes, &count);
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
++rc.layer_input_frames[sl * enc_cfg.ts_number_layers +
layer_id.temporal_layer_id];
}
for (tl = layer_id.temporal_layer_id;
tl < enc_cfg.ts_number_layers; ++tl) {
vpx_video_writer_write_frame(outfile[tl],
cx_pkt->data.frame.buf,
cx_pkt->data.frame.sz,
cx_pkt->data.frame.pts);
}
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
for (tl = layer_id.temporal_layer_id;
tl < enc_cfg.ts_number_layers; ++tl) {
const int layer = sl * enc_cfg.ts_number_layers + tl;
++rc.layer_tot_enc_frames[layer];
rc.layer_encoding_bitrate[layer] += 8.0 * sizes[sl];
// Keep count of rate control stats per layer, for non-key
// frames.
if (tl == layer_id.temporal_layer_id &&
!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY)) {
rc.layer_avg_frame_size[layer] += 8.0 * sizes[sl];
rc.layer_avg_rate_mismatch[layer] +=
fabs(8.0 * sizes[sl] - rc.layer_pfb[layer]) /
rc.layer_pfb[layer];
++rc.layer_enc_frames[layer];
}
}
}
// Update for short-time encoding bitrate states, for moving
// window of size rc->window, shifted by rc->window / 2.
// Ignore first window segment, due to key frame.
if (frame_cnt > rc.window_size) {
tl = layer_id.temporal_layer_id;
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
sum_bitrate += 0.001 * 8.0 * sizes[sl] * framerate;
}
if (frame_cnt % rc.window_size == 0) {
rc.window_count += 1;
rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
rc.variance_st_encoding_bitrate +=
(sum_bitrate / rc.window_size) *
(sum_bitrate / rc.window_size);
sum_bitrate = 0.0;
}
}
// Second shifted window.
if (frame_cnt > rc.window_size + rc.window_size / 2) {
tl = layer_id.temporal_layer_id;
for (sl = 0; sl < enc_cfg.ss_number_layers; ++sl) {
sum_bitrate2 += 0.001 * 8.0 * sizes[sl] * framerate;
}
if (frame_cnt > 2 * rc.window_size &&
frame_cnt % rc.window_size == 0) {
rc.window_count += 1;
rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
rc.variance_st_encoding_bitrate +=
(sum_bitrate2 / rc.window_size) *
(sum_bitrate2 / rc.window_size);
sum_bitrate2 = 0.0;
}
}
}
#endif
}
printf("SVC frame: %d, kf: %d, size: %d, pts: %d\n", frames_received,
!!(cx_pkt->data.frame.flags & VPX_FRAME_IS_KEY),
(int)cx_pkt->data.frame.sz, (int)cx_pkt->data.frame.pts);
++frames_received;
break;
}
case VPX_CODEC_STATS_PKT: {
stats_write(&app_input.rc_stats,
cx_pkt->data.twopass_stats.buf,
cx_pkt->data.twopass_stats.sz);
break;
}
default: {
break;
}
}
}
if (!end_of_stream) {
++frame_cnt;
pts += frame_duration;
}
}
printf("Processed %d frames\n", frame_cnt);
fclose(infile);
#if OUTPUT_RC_STATS
if (svc_ctx.output_rc_stat) {
printout_rate_control_summary(&rc, &enc_cfg, frame_cnt);
printf("\n");
}
#endif
if (vpx_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
if (app_input.passes == 2)
stats_close(&app_input.rc_stats, 1);
if (writer) {
vpx_video_writer_close(writer);
}
#if OUTPUT_RC_STATS
if (svc_ctx.output_rc_stat) {
for (tl = 0; tl < enc_cfg.ts_number_layers; ++tl) {
vpx_video_writer_close(outfile[tl]);
}
}
#endif
printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
frame_cnt,
1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1000000 * (double)frame_cnt / (double)cx_time);
vpx_img_free(&raw);
// display average size, psnr
printf("%s", vpx_svc_dump_statistics(&svc_ctx));
vpx_svc_release(&svc_ctx);
return EXIT_SUCCESS;
}