5259744145
Allows for swtiching/setting interpolation filters at the MB level. A frame level flag indicates whether to use a specifc filter for the entire frame or to signal the interpolation filter for each MB. When switchable filters are used, the encoder chooses between 8-tap and 8-tap sharp filters. The code currently has options to explore other variations as well, which will be cleaned up subsequently. One issue with the framework is that encoding is slow. I tried to do some tricks to speed things up but it is still slow. Decoding speed should not be affected since the number of filter taps remain unchanged. With the current version, we are up 0.5% on derf on average but some videos city/mobile improve by close to 4 and 2% respectively. If we did a full-search by turning the SEARCH_BEST_FILTER flag on, the results are somewhat better. The framework can be combined with filtered prediction, and I seek feedback regarding that. Rebased. Change-Id: I8f632cb2c111e76284140a2bd480945d6d42b77a
117 lines
4.3 KiB
C
117 lines
4.3 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#ifndef __INC_ENTROPY_H
|
|
#define __INC_ENTROPY_H
|
|
|
|
#include "treecoder.h"
|
|
#include "blockd.h"
|
|
#include "common.h"
|
|
#include "coefupdateprobs.h"
|
|
|
|
|
|
//#define SUBMVREF_COUNT 5
|
|
//#define VP8_NUMMBSPLITS 4
|
|
|
|
/* Coefficient token alphabet */
|
|
|
|
#define ZERO_TOKEN 0 /* 0 Extra Bits 0+0 */
|
|
#define ONE_TOKEN 1 /* 1 Extra Bits 0+1 */
|
|
#define TWO_TOKEN 2 /* 2 Extra Bits 0+1 */
|
|
#define THREE_TOKEN 3 /* 3 Extra Bits 0+1 */
|
|
#define FOUR_TOKEN 4 /* 4 Extra Bits 0+1 */
|
|
#define DCT_VAL_CATEGORY1 5 /* 5-6 Extra Bits 1+1 */
|
|
#define DCT_VAL_CATEGORY2 6 /* 7-10 Extra Bits 2+1 */
|
|
#define DCT_VAL_CATEGORY3 7 /* 11-18 Extra Bits 3+1 */
|
|
#define DCT_VAL_CATEGORY4 8 /* 19-34 Extra Bits 4+1 */
|
|
#define DCT_VAL_CATEGORY5 9 /* 35-66 Extra Bits 5+1 */
|
|
#define DCT_VAL_CATEGORY6 10 /* 67+ Extra Bits 13+1 */
|
|
#define DCT_EOB_TOKEN 11 /* EOB Extra Bits 0+0 */
|
|
|
|
#define MAX_ENTROPY_TOKENS 12
|
|
#define ENTROPY_NODES 11
|
|
|
|
extern const vp8_tree_index vp8_coef_tree[];
|
|
|
|
extern struct vp8_token_struct vp8_coef_encodings[MAX_ENTROPY_TOKENS];
|
|
|
|
typedef struct {
|
|
vp8_tree_p tree;
|
|
const vp8_prob *prob;
|
|
int Len;
|
|
int base_val;
|
|
} vp8_extra_bit_struct;
|
|
|
|
extern vp8_extra_bit_struct vp8_extra_bits[12]; /* indexed by token value */
|
|
|
|
#define PROB_UPDATE_BASELINE_COST 7
|
|
|
|
#define MAX_PROB 255
|
|
#define DCT_MAX_VALUE 8192
|
|
|
|
/* Coefficients are predicted via a 3-dimensional probability table. */
|
|
|
|
/* Outside dimension. 0 = Y no DC, 1 = Y2, 2 = UV, 3 = Y with DC */
|
|
|
|
#define BLOCK_TYPES 4
|
|
|
|
#define BLOCK_TYPES_8X8 3
|
|
|
|
/* Middle dimension is a coarsening of the coefficient's
|
|
position within the 4x4 DCT. */
|
|
|
|
#define COEF_BANDS 8
|
|
extern DECLARE_ALIGNED(16, const unsigned char, vp8_coef_bands[16]);
|
|
extern DECLARE_ALIGNED(64, const unsigned char, vp8_coef_bands_8x8[64]);
|
|
|
|
/* Inside dimension is 3-valued measure of nearby complexity, that is,
|
|
the extent to which nearby coefficients are nonzero. For the first
|
|
coefficient (DC, unless block type is 0), we look at the (already encoded)
|
|
blocks above and to the left of the current block. The context index is
|
|
then the number (0,1,or 2) of these blocks having nonzero coefficients.
|
|
After decoding a coefficient, the measure is roughly the size of the
|
|
most recently decoded coefficient (0 for 0, 1 for 1, 2 for >1).
|
|
Note that the intuitive meaning of this measure changes as coefficients
|
|
are decoded, e.g., prior to the first token, a zero means that my neighbors
|
|
are empty while, after the first token, because of the use of end-of-block,
|
|
a zero means we just decoded a zero and hence guarantees that a non-zero
|
|
coefficient will appear later in this block. However, this shift
|
|
in meaning is perfectly OK because our context depends also on the
|
|
coefficient band (and since zigzag positions 0, 1, and 2 are in
|
|
distinct bands). */
|
|
|
|
/*# define DC_TOKEN_CONTEXTS 3*/ /* 00, 0!0, !0!0 */
|
|
#define PREV_COEF_CONTEXTS 4
|
|
|
|
#define SUBEXP_PARAM 4 /* Subexponential code parameter */
|
|
#define MODULUS_PARAM 13 /* Modulus parameter */
|
|
#define COEFUPDATETYPE 1 /* coef update type to use (1/2/3) */
|
|
|
|
|
|
extern DECLARE_ALIGNED(16, const unsigned char, vp8_prev_token_class[MAX_ENTROPY_TOKENS]);
|
|
|
|
struct VP8Common;
|
|
void vp8_default_coef_probs(struct VP8Common *);
|
|
extern DECLARE_ALIGNED(16, const int, vp8_default_zig_zag1d[16]);
|
|
|
|
#if CONFIG_HYBRIDTRANSFORM
|
|
extern DECLARE_ALIGNED(16, const int, vp8_col_scan[16]);
|
|
extern DECLARE_ALIGNED(16, const int, vp8_row_scan[16]);
|
|
#endif
|
|
|
|
extern short vp8_default_zig_zag_mask[16];
|
|
extern DECLARE_ALIGNED(64, const int, vp8_default_zig_zag1d_8x8[64]);
|
|
extern short vp8_default_zig_zag_mask_8x8[64];// int64_t
|
|
void vp8_coef_tree_initialize(void);
|
|
|
|
void vp8_adapt_coef_probs(struct VP8Common *);
|
|
#endif
|