vpx/vp8/encoder/rdopt.c
2010-12-08 13:08:04 -08:00

2482 lines
81 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <stdio.h>
#include <math.h>
#include <limits.h>
#include <assert.h>
#include "pragmas.h"
#include "tokenize.h"
#include "treewriter.h"
#include "onyx_int.h"
#include "modecosts.h"
#include "encodeintra.h"
#include "entropymode.h"
#include "reconinter.h"
#include "reconintra.h"
#include "reconintra4x4.h"
#include "findnearmv.h"
#include "encodemb.h"
#include "quantize.h"
#include "idct.h"
#include "g_common.h"
#include "variance.h"
#include "mcomp.h"
#include "vpx_mem/vpx_mem.h"
#include "dct.h"
#include "systemdependent.h"
#define DIAMONDSEARCH 1
#if CONFIG_RUNTIME_CPU_DETECT
#define IF_RTCD(x) (x)
#else
#define IF_RTCD(x) NULL
#endif
void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x);
#define RDFUNC(RM,DM,R,D,target_rd) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) )
/*int RDFUNC( int RM,int DM, int R, int D, int target_r )
{
int rd_value;
rd_value = ( ((128+(R)*(RM)) >> 8) + (DM)*(D) );
return rd_value;
}*/
#define UVRDFUNC(RM,DM,R,D,target_r) RDFUNC(RM,DM,R,D,target_r)
#define RDCOST(RM,DM,R,D) ( ((128+(R)*(RM)) >> 8) + (DM)*(D) )
#define MAXF(a,b) (((a) > (b)) ? (a) : (b))
const int vp8_auto_speed_thresh[17] =
{
1000,
200,
150,
130,
150,
125,
120,
115,
115,
115,
115,
115,
115,
115,
115,
115,
105
};
const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES] =
{
ZEROMV,
DC_PRED,
NEARESTMV,
NEARMV,
ZEROMV,
NEARESTMV,
ZEROMV,
NEARESTMV,
NEARMV,
NEARMV,
V_PRED,
H_PRED,
TM_PRED,
NEWMV,
NEWMV,
NEWMV,
SPLITMV,
SPLITMV,
SPLITMV,
B_PRED,
};
const MV_REFERENCE_FRAME vp8_ref_frame_order[MAX_MODES] =
{
LAST_FRAME,
INTRA_FRAME,
LAST_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
ALTREF_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
INTRA_FRAME,
INTRA_FRAME,
INTRA_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
LAST_FRAME,
GOLDEN_FRAME,
ALTREF_FRAME,
INTRA_FRAME,
};
static void fill_token_costs(
unsigned int c [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens],
const vp8_prob p [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1]
)
{
int i, j, k;
for (i = 0; i < BLOCK_TYPES; i++)
for (j = 0; j < COEF_BANDS; j++)
for (k = 0; k < PREV_COEF_CONTEXTS; k++)
vp8_cost_tokens((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree);
}
static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
};
// The values in this table should be reviewed
static int sad_per_bit16lut[128] =
{
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 4, 4, 4, 4, 4, 4, // 1
4, 4, 4, 4, 4, 4, 4, 4, // 2
4, 4, 4, 4, 4, 4, 4, 4, // 3
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 12, 12, 13, 13, 14, 14, // 5
14, 14, 14, 15, 15, 15, 15, 15, // 6
15, 15, 15, 15, 15, 15, 15, 15, // 7
15, 15, 15, 15, 15, 16, 16, 16, // 8
16, 16, 18, 18, 18, 18, 19, 19, // 9
19, 19, 19, 19, 19, 19, 19, 19, // 10
20, 20, 22, 22, 22, 22, 21, 21, // 11
22, 22, 22, 22, 22, 22, 22, 22, // 12
22, 22, 22, 22, 22, 22, 22, 22, // 13
22, 22, 22, 22, 22, 22, 22, 22, // 14
22, 22, 22, 22, 22, 22, 22, 22, // 15
};
static int sad_per_bit4lut[128] =
{
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 4, 4, 4, 4, 4, 4, // 1
4, 4, 4, 4, 4, 4, 4, 4, // 2
4, 4, 4, 4, 4, 4, 4, 4, // 3
4, 4, 4, 4, 4, 4, 4, 4, // 4
4, 4, 15, 15, 15, 15, 16, 16, // 5
16, 17, 17, 17, 17, 17, 17, 17, // 6
17, 17, 19, 19, 22, 22, 21, 21, // 7
23, 23, 23, 23, 23, 24, 24, 24, // 8
25, 25, 27, 27, 27, 27, 28, 28, // 9
28, 28, 29, 29, 29, 29, 29, 29, // 10
30, 30, 31, 31, 31, 31, 32, 32, // 11
34, 34, 34, 34, 34, 34, 34, 34, // 12
34, 34, 34, 34, 34, 34, 34, 34, // 13
34, 34, 34, 34, 34, 34, 34, 34, // 14
34, 34, 34, 34, 34, 34, 34, 34, // 15
};
void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex)
{
cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex];
cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex];
}
void vp8_initialize_rd_consts(VP8_COMP *cpi, int Qvalue)
{
int q;
int i;
int *thresh;
int threshmult;
double capped_q = (Qvalue < 160) ? (double)Qvalue : 160.0;
double rdconst = 3.00;
vp8_clear_system_state(); //__asm emms;
// Further tests required to see if optimum is different
// for key frames, golden frames and arf frames.
// if (cpi->common.refresh_golden_frame ||
// cpi->common.refresh_alt_ref_frame)
cpi->RDMULT = (int)(rdconst * (capped_q * capped_q));
// Extend rate multiplier along side quantizer zbin increases
if (cpi->zbin_over_quant > 0)
{
double oq_factor;
double modq;
// Experimental code using the same basic equation as used for Q above
// The units of cpi->zbin_over_quant are 1/128 of Q bin size
oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant);
modq = (int)((double)capped_q * oq_factor);
cpi->RDMULT = (int)(rdconst * (modq * modq));
}
if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME))
{
if (cpi->next_iiratio > 31)
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4;
else
cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->next_iiratio]) >> 4;
}
if (cpi->RDMULT < 125)
cpi->RDMULT = 125;
cpi->mb.errorperbit = (cpi->RDMULT / 100);
if (cpi->mb.errorperbit < 1)
cpi->mb.errorperbit = 1;
vp8_set_speed_features(cpi);
if (cpi->common.simpler_lpf)
cpi->common.filter_type = SIMPLE_LOOPFILTER;
q = (int)pow(Qvalue, 1.25);
if (q < 8)
q = 8;
if (cpi->ref_frame_flags == VP8_ALT_FLAG)
{
thresh = &cpi->rd_threshes[THR_NEWA];
threshmult = cpi->sf.thresh_mult[THR_NEWA];
}
else if (cpi->ref_frame_flags == VP8_GOLD_FLAG)
{
thresh = &cpi->rd_threshes[THR_NEWG];
threshmult = cpi->sf.thresh_mult[THR_NEWG];
}
else
{
thresh = &cpi->rd_threshes[THR_NEWMV];
threshmult = cpi->sf.thresh_mult[THR_NEWMV];
}
if (cpi->RDMULT > 1000)
{
cpi->RDDIV = 1;
cpi->RDMULT /= 100;
for (i = 0; i < MAX_MODES; i++)
{
if (cpi->sf.thresh_mult[i] < INT_MAX)
{
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100;
}
else
{
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
else
{
cpi->RDDIV = 100;
for (i = 0; i < MAX_MODES; i++)
{
if (cpi->sf.thresh_mult[i] < (INT_MAX / q))
{
cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q;
}
else
{
cpi->rd_threshes[i] = INT_MAX;
}
cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i];
}
}
fill_token_costs(
cpi->mb.token_costs,
(const vp8_prob( *)[8][3][11]) cpi->common.fc.coef_probs
);
vp8_init_mode_costs(cpi);
}
void vp8_auto_select_speed(VP8_COMP *cpi)
{
int used = cpi->oxcf.cpu_used;
int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate);
milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16;
#if 0
if (0)
{
FILE *f;
f = fopen("speed.stt", "a");
fprintf(f, " %8ld %10ld %10ld %10ld\n",
cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time);
fclose(f);
}
#endif
/*
// this is done during parameter valid check
if( used > 16)
used = 16;
if( used < -16)
used = -16;
*/
if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress)
{
if (cpi->avg_pick_mode_time == 0)
{
cpi->Speed = 4;
}
else
{
if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95)
{
cpi->Speed += 2;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
if (cpi->Speed > 16)
{
cpi->Speed = 16;
}
}
if (milliseconds_for_compress * 100 > cpi->avg_encode_time * vp8_auto_speed_thresh[cpi->Speed])
{
cpi->Speed -= 1;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
// In real-time mode, cpi->speed is in [4, 16].
if (cpi->Speed < 4) //if ( cpi->Speed < 0 )
{
cpi->Speed = 4; //cpi->Speed = 0;
}
}
}
}
else
{
cpi->Speed += 4;
if (cpi->Speed > 16)
cpi->Speed = 16;
cpi->avg_pick_mode_time = 0;
cpi->avg_encode_time = 0;
}
}
int vp8_block_error_c(short *coeff, short *dqcoeff)
{
int i;
int error = 0;
for (i = 0; i < 16; i++)
{
int this_diff = coeff[i] - dqcoeff[i];
error += this_diff * this_diff;
}
return error;
}
int vp8_mbblock_error_c(MACROBLOCK *mb, int dc)
{
BLOCK *be;
BLOCKD *bd;
int i, j;
int berror, error = 0;
for (i = 0; i < 16; i++)
{
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
berror = 0;
for (j = dc; j < 16; j++)
{
int this_diff = be->coeff[j] - bd->dqcoeff[j];
berror += this_diff * this_diff;
}
error += berror;
}
return error;
}
int vp8_mbuverror_c(MACROBLOCK *mb)
{
BLOCK *be;
BLOCKD *bd;
int i;
int error = 0;
for (i = 16; i < 24; i++)
{
be = &mb->block[i];
bd = &mb->e_mbd.block[i];
error += vp8_block_error_c(be->coeff, bd->dqcoeff);
}
return error;
}
int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd)
{
unsigned char *uptr, *vptr;
unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src);
unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src);
int uv_stride = x->block[16].src_stride;
unsigned int sse1 = 0;
unsigned int sse2 = 0;
int mv_row;
int mv_col;
int offset;
int pre_stride = x->e_mbd.block[16].pre_stride;
vp8_build_uvmvs(&x->e_mbd, 0);
mv_row = x->e_mbd.block[16].bmi.mv.as_mv.row;
mv_col = x->e_mbd.block[16].bmi.mv.as_mv.col;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->e_mbd.pre.u_buffer + offset;
vptr = x->e_mbd.pre.v_buffer + offset;
if ((mv_row | mv_col) & 7)
{
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
else
{
VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, uv_stride, &sse2);
VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, uv_stride, &sse1);
sse2 += sse1;
}
return sse2;
}
#if !(CONFIG_REALTIME_ONLY)
static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l)
{
int c = !type; /* start at coef 0, unless Y with Y2 */
int eob = b->eob;
int pt ; /* surrounding block/prev coef predictor */
int cost = 0;
short *qcoeff_ptr = b->qcoeff;
VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l);
# define QC( I) ( qcoeff_ptr [vp8_default_zig_zag1d[I]] )
for (; c < eob; c++)
{
int v = QC(c);
int t = vp8_dct_value_tokens_ptr[v].Token;
cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [t];
cost += vp8_dct_value_cost_ptr[v];
pt = vp8_prev_token_class[t];
}
# undef QC
if (c < 16)
cost += mb->token_costs [type] [vp8_coef_bands[c]] [pt] [DCT_EOB_TOKEN];
pt = (c != !type); // is eob first coefficient;
*a = *l = pt;
return cost;
}
static int vp8_rdcost_mby(MACROBLOCK *mb)
{
int cost = 0;
int b;
MACROBLOCKD *x = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 0; b < 16; b++)
cost += cost_coeffs(mb, x->block + b, 0,
ta + vp8_block2above[b], tl + vp8_block2left[b]);
cost += cost_coeffs(mb, x->block + 24, 1,
ta + vp8_block2above[24], tl + vp8_block2left[24]);
return cost;
}
static void rd_pick_intra4x4block(
VP8_COMP *cpi,
MACROBLOCK *x,
BLOCK *be,
BLOCKD *b,
B_PREDICTION_MODE *best_mode,
B_PREDICTION_MODE above,
B_PREDICTION_MODE left,
ENTROPY_CONTEXT *a,
ENTROPY_CONTEXT *l,
int *bestrate,
int *bestratey,
int *bestdistortion)
{
B_PREDICTION_MODE mode;
int best_rd = INT_MAX; // 1<<30
int rate = 0;
int distortion;
unsigned int *mode_costs;
ENTROPY_CONTEXT ta = *a, tempa = *a;
ENTROPY_CONTEXT tl = *l, templ = *l;
if (x->e_mbd.frame_type == KEY_FRAME)
{
mode_costs = x->bmode_costs[above][left];
}
else
{
mode_costs = x->inter_bmode_costs;
}
for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++)
{
int this_rd;
int ratey;
rate = mode_costs[mode];
vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, mode);
tempa = ta;
templ = tl;
ratey = cost_coeffs(x, b, 3, &tempa, &templ);
rate += ratey;
distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)(be->coeff, b->dqcoeff) >> 2;
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd)
{
*bestrate = rate;
*bestratey = ratey;
*bestdistortion = distortion;
best_rd = this_rd;
*best_mode = mode;
*a = tempa;
*l = templ;
}
}
b->bmi.mode = (B_PREDICTION_MODE)(*best_mode);
vp8_encode_intra4x4block_rd(IF_RTCD(&cpi->rtcd), x, be, b, b->bmi.mode);
}
int vp8_rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion)
{
MACROBLOCKD *const xd = &mb->e_mbd;
int i;
int cost = mb->mbmode_cost [xd->frame_type] [B_PRED];
int distortion = 0;
int tot_rate_y = 0;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
vp8_intra_prediction_down_copy(xd);
for (i = 0; i < 16; i++)
{
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
const B_PREDICTION_MODE A = vp8_above_bmi(mic, i, mis)->mode;
const B_PREDICTION_MODE L = vp8_left_bmi(mic, i)->mode;
B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode);
int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d);
rd_pick_intra4x4block(
cpi, mb, mb->block + i, xd->block + i, &best_mode, A, L,
ta + vp8_block2above[i],
tl + vp8_block2left[i], &r, &ry, &d);
cost += r;
distortion += d;
tot_rate_y += ry;
mic->bmi[i].mode = xd->block[i].bmi.mode = best_mode;
}
*Rate = cost;
*rate_y += tot_rate_y;
*Distortion = distortion;
return RDCOST(mb->rdmult, mb->rddiv, cost, distortion);
}
int vp8_rd_pick_intra16x16mby_mode(VP8_COMP *cpi, MACROBLOCK *x, int *Rate, int *rate_y, int *Distortion)
{
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int rate, ratey;
unsigned int distortion;
int best_rd = INT_MAX;
//Y Search for 16x16 intra prediction mode
for (mode = DC_PRED; mode <= TM_PRED; mode++)
{
int this_rd;
int dummy;
rate = 0;
x->e_mbd.mode_info_context->mbmi.mode = mode;
rate += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode];
vp8_encode_intra16x16mbyrd(IF_RTCD(&cpi->rtcd), x);
ratey = vp8_rdcost_mby(x);
rate += ratey;
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.dst.y_buffer, x->e_mbd.dst.y_stride, &distortion, &dummy);
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
if (this_rd < best_rd)
{
mode_selected = mode;
best_rd = this_rd;
*Rate = rate;
*rate_y = ratey;
*Distortion = (int)distortion;
}
}
x->e_mbd.mode_info_context->mbmi.mode = mode_selected;
return best_rd;
}
static int rd_cost_mbuv(MACROBLOCK *mb)
{
int b;
int cost = 0;
MACROBLOCKD *x = &mb->e_mbd;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
vpx_memcpy(&t_above, mb->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, mb->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
for (b = 16; b < 20; b++)
cost += cost_coeffs(mb, x->block + b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b]);
for (b = 20; b < 24; b++)
cost += cost_coeffs(mb, x->block + b, vp8_block2type[b],
ta + vp8_block2above[b], tl + vp8_block2left[b]);
return cost;
}
unsigned int vp8_get_mbuvrecon_error(const vp8_variance_rtcd_vtable_t *rtcd, const MACROBLOCK *x) // sum of squares
{
unsigned int sse0, sse1;
int sum0, sum1;
VARIANCE_INVOKE(rtcd, get8x8var)(x->src.u_buffer, x->src.uv_stride, x->e_mbd.dst.u_buffer, x->e_mbd.dst.uv_stride, &sse0, &sum0);
VARIANCE_INVOKE(rtcd, get8x8var)(x->src.v_buffer, x->src.uv_stride, x->e_mbd.dst.v_buffer, x->e_mbd.dst.uv_stride, &sse1, &sum1);
return (sse0 + sse1);
}
static int vp8_rd_inter_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel)
{
vp8_build_uvmvs(&x->e_mbd, fullpixel);
vp8_encode_inter16x16uvrd(IF_RTCD(&cpi->rtcd), x);
*rate = rd_cost_mbuv(x);
*distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4;
return UVRDFUNC(x->rdmult, x->rddiv, *rate, *distortion, cpi->target_bits_per_mb);
}
int vp8_rd_pick_intra_mbuv_mode(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion)
{
MB_PREDICTION_MODE mode;
MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected);
int best_rd = INT_MAX;
int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r);
int rate_to;
for (mode = DC_PRED; mode <= TM_PRED; mode++)
{
int rate;
int distortion;
int this_rd;
x->e_mbd.mode_info_context->mbmi.uv_mode = mode;
vp8_encode_intra16x16mbuvrd(IF_RTCD(&cpi->rtcd), x);
rate_to = rd_cost_mbuv(x);
rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.uv_mode];
distortion = vp8_get_mbuvrecon_error(IF_RTCD(&cpi->rtcd.variance), x);
this_rd = UVRDFUNC(x->rdmult, x->rddiv, rate, distortion, cpi->target_bits_per_mb);
if (this_rd < best_rd)
{
best_rd = this_rd;
d = distortion;
r = rate;
*rate_tokenonly = rate_to;
mode_selected = mode;
}
}
*rate = r;
*distortion = d;
x->e_mbd.mode_info_context->mbmi.uv_mode = mode_selected;
return best_rd;
}
#endif
int vp8_cost_mv_ref(MB_PREDICTION_MODE m, const int near_mv_ref_ct[4])
{
vp8_prob p [VP8_MVREFS-1];
assert(NEARESTMV <= m && m <= SPLITMV);
vp8_mv_ref_probs(p, near_mv_ref_ct);
return vp8_cost_token(vp8_mv_ref_tree, p,
vp8_mv_ref_encoding_array - NEARESTMV + m);
}
void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, MV *mv)
{
int i;
x->e_mbd.mode_info_context->mbmi.mode = mb;
x->e_mbd.mode_info_context->mbmi.mv.as_mv.row = mv->row;
x->e_mbd.mode_info_context->mbmi.mv.as_mv.col = mv->col;
for (i = 0; i < 16; i++)
{
B_MODE_INFO *bmi = &x->e_mbd.block[i].bmi;
bmi->mode = (B_PREDICTION_MODE) mb;
bmi->mv.as_mv.row = mv->row;
bmi->mv.as_mv.col = mv->col;
}
}
#if !(CONFIG_REALTIME_ONLY)
static int labels2mode(
MACROBLOCK *x,
int const *labelings, int which_label,
B_PREDICTION_MODE this_mode,
MV *this_mv, MV *best_ref_mv,
int *mvcost[2]
)
{
MACROBLOCKD *const xd = & x->e_mbd;
MODE_INFO *const mic = xd->mode_info_context;
const int mis = xd->mode_info_stride;
int cost = 0;
int thismvcost = 0;
/* We have to be careful retrieving previously-encoded motion vectors.
Ones from this macroblock have to be pulled from the BLOCKD array
as they have not yet made it to the bmi array in our MB_MODE_INFO. */
int i = 0;
do
{
BLOCKD *const d = xd->block + i;
const int row = i >> 2, col = i & 3;
B_PREDICTION_MODE m;
if (labelings[i] != which_label)
continue;
if (col && labelings[i] == labelings[i-1])
m = LEFT4X4;
else if (row && labelings[i] == labelings[i-4])
m = ABOVE4X4;
else
{
// the only time we should do costing for new motion vector or mode
// is when we are on a new label (jbb May 08, 2007)
switch (m = this_mode)
{
case NEW4X4 :
thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102);
break;
case LEFT4X4:
*this_mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv;
break;
case ABOVE4X4:
*this_mv = row ? d[-4].bmi.mv.as_mv : vp8_above_bmi(mic, i, mis)->mv.as_mv;
break;
case ZERO4X4:
this_mv->row = this_mv->col = 0;
break;
default:
break;
}
if (m == ABOVE4X4) // replace above with left if same
{
const MV mv = col ? d[-1].bmi.mv.as_mv : vp8_left_bmi(mic, i)->mv.as_mv;
if (mv.row == this_mv->row && mv.col == this_mv->col)
m = LEFT4X4;
}
cost = x->inter_bmode_costs[ m];
}
d->bmi.mode = m;
d->bmi.mv.as_mv = *this_mv;
}
while (++i < 16);
cost += thismvcost ;
return cost;
}
static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels,
int which_label, ENTROPY_CONTEXT *ta,
ENTROPY_CONTEXT *tl)
{
int cost = 0;
int b;
MACROBLOCKD *x = &mb->e_mbd;
for (b = 0; b < 16; b++)
if (labels[ b] == which_label)
cost += cost_coeffs(mb, x->block + b, 3,
ta + vp8_block2above[b],
tl + vp8_block2left[b]);
return cost;
}
static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels, int which_label, const vp8_encodemb_rtcd_vtable_t *rtcd)
{
int i;
unsigned int distortion = 0;
for (i = 0; i < 16; i++)
{
if (labels[i] == which_label)
{
BLOCKD *bd = &x->e_mbd.block[i];
BLOCK *be = &x->block[i];
vp8_build_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict);
ENCODEMB_INVOKE(rtcd, subb)(be, bd, 16);
x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32);
// set to 0 no way to account for 2nd order DC so discount
//be->coeff[0] = 0;
x->quantize_b(be, bd);
distortion += ENCODEMB_INVOKE(rtcd, berr)(be->coeff, bd->dqcoeff);
}
}
return distortion;
}
static void macro_block_yrd(MACROBLOCK *mb, int *Rate, int *Distortion, const vp8_encodemb_rtcd_vtable_t *rtcd)
{
int b;
MACROBLOCKD *const x = &mb->e_mbd;
BLOCK *const mb_y2 = mb->block + 24;
BLOCKD *const x_y2 = x->block + 24;
short *Y2DCPtr = mb_y2->src_diff;
BLOCK *beptr;
int d;
ENCODEMB_INVOKE(rtcd, submby)(mb->src_diff, mb->src.y_buffer, mb->e_mbd.predictor, mb->src.y_stride);
// Fdct and building the 2nd order block
for (beptr = mb->block; beptr < mb->block + 16; beptr += 2)
{
mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32);
*Y2DCPtr++ = beptr->coeff[0];
*Y2DCPtr++ = beptr->coeff[16];
}
// 2nd order fdct
mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8);
// Quantization
for (b = 0; b < 16; b++)
{
mb->quantize_b(&mb->block[b], &mb->e_mbd.block[b]);
}
// DC predication and Quantization of 2nd Order block
mb->quantize_b(mb_y2, x_y2);
// Distortion
d = ENCODEMB_INVOKE(rtcd, mberr)(mb, 1) << 2;
d += ENCODEMB_INVOKE(rtcd, berr)(mb_y2->coeff, x_y2->dqcoeff);
*Distortion = (d >> 4);
// rate
*Rate = vp8_rdcost_mby(mb);
}
unsigned char vp8_mbsplit_offset2[4][16] = {
{ 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 2, 8, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
};
static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0};
typedef struct
{
MV *ref_mv;
int segment_rd;
int segment_num;
int r;
int d;
int segment_yrate;
B_PREDICTION_MODE modes[16];
MV mvs[16];
unsigned char eobs[16];
int mvthresh;
int *mdcounts;
} BEST_SEG_INFO;
void vp8_rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi,
unsigned int segmentation)
{
int i;
int const *labels;
int br = 0;
int bd = 0;
B_PREDICTION_MODE this_mode;
int label_count;
int this_segment_rd = 0;
int label_mv_thresh;
int rate = 0;
int sbr = 0;
int sbd = 0;
int segmentyrate = 0;
vp8_variance_fn_ptr_t *v_fn_ptr;
ENTROPY_CONTEXT_PLANES t_above, t_left;
ENTROPY_CONTEXT *ta;
ENTROPY_CONTEXT *tl;
ENTROPY_CONTEXT_PLANES t_above_b, t_left_b;
ENTROPY_CONTEXT *ta_b;
ENTROPY_CONTEXT *tl_b;
vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES));
ta = (ENTROPY_CONTEXT *)&t_above;
tl = (ENTROPY_CONTEXT *)&t_left;
ta_b = (ENTROPY_CONTEXT *)&t_above_b;
tl_b = (ENTROPY_CONTEXT *)&t_left_b;
br = 0;
bd = 0;
v_fn_ptr = &cpi->fn_ptr[segmentation];
labels = vp8_mbsplits[segmentation];
label_count = vp8_mbsplit_count[segmentation];
// 64 makes this threshold really big effectively
// making it so that we very rarely check mvs on
// segments. setting this to 1 would make mv thresh
// roughly equal to what it is for macroblocks
label_mv_thresh = 1 * bsi->mvthresh / label_count ;
// Segmentation method overheads
rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation);
rate += vp8_cost_mv_ref(SPLITMV, bsi->mdcounts);
this_segment_rd += RDFUNC(x->rdmult, x->rddiv, rate, 0, cpi->target_bits_per_mb);
br += rate;
for (i = 0; i < label_count; i++)
{
MV mode_mv[B_MODE_COUNT];
int best_label_rd = INT_MAX;
B_PREDICTION_MODE mode_selected = ZERO4X4;
int bestlabelyrate = 0;
// search for the best motion vector on this segment
for (this_mode = LEFT4X4; this_mode <= NEW4X4 ; this_mode ++)
{
int this_rd;
int distortion;
int labelyrate;
ENTROPY_CONTEXT_PLANES t_above_s, t_left_s;
ENTROPY_CONTEXT *ta_s;
ENTROPY_CONTEXT *tl_s;
vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES));
ta_s = (ENTROPY_CONTEXT *)&t_above_s;
tl_s = (ENTROPY_CONTEXT *)&t_left_s;
if (this_mode == NEW4X4)
{
int sseshift;
int num00;
int step_param = 0;
int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
int n;
int thissme;
int bestsme = INT_MAX;
MV temp_mv;
BLOCK *c;
BLOCKD *e;
// Is the best so far sufficiently good that we cant justify doing and new motion search.
if (best_label_rd < label_mv_thresh)
break;
{
int sadpb = x->sadperbit4;
// find first label
n = vp8_mbsplit_offset2[segmentation][i];
c = &x->block[n];
e = &x->e_mbd.block[n];
if (cpi->sf.search_method == HEX)
bestsme = vp8_hex_search(x, c, e, bsi->ref_mv,
&mode_mv[NEW4X4], step_param, sadpb, &num00, v_fn_ptr, x->mvsadcost, x->mvcost);
else
{
bestsme = cpi->diamond_search_sad(x, c, e, bsi->ref_mv,
&mode_mv[NEW4X4], step_param,
sadpb / 2, &num00, v_fn_ptr, x->mvsadcost, x->mvcost, bsi->ref_mv);
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
thissme = cpi->diamond_search_sad(x, c, e, bsi->ref_mv,
&temp_mv, step_param + n,
sadpb / 2, &num00, v_fn_ptr, x->mvsadcost, x->mvcost, bsi->ref_mv);
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEW4X4].row = temp_mv.row;
mode_mv[NEW4X4].col = temp_mv.col;
}
}
}
}
sseshift = segmentation_to_sseshift[segmentation];
// Should we do a full search (best quality only)
if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000)
{
thissme = cpi->full_search_sad(x, c, e, bsi->ref_mv,
sadpb / 4, 16, v_fn_ptr, x->mvcost, x->mvsadcost,bsi->ref_mv);
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEW4X4] = e->bmi.mv.as_mv;
}
else
{
// The full search result is actually worse so re-instate the previous best vector
e->bmi.mv.as_mv = mode_mv[NEW4X4];
}
}
}
if (bestsme < INT_MAX)
{
if (!cpi->common.full_pixel)
cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit / 2, v_fn_ptr, x->mvcost);
else
vp8_skip_fractional_mv_step(x, c, e, &mode_mv[NEW4X4],
bsi->ref_mv, x->errorperbit, v_fn_ptr, x->mvcost);
}
} /* NEW4X4 */
rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode],
bsi->ref_mv, x->mvcost);
// Trap vectors that reach beyond the UMV borders
if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max))
{
continue;
}
distortion = vp8_encode_inter_mb_segment(x, labels, i, IF_RTCD(&cpi->rtcd.encodemb)) / 4;
labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s);
rate += labelyrate;
this_rd = RDFUNC(x->rdmult, x->rddiv, rate, distortion, cpi->target_bits_per_mb);
if (this_rd < best_label_rd)
{
sbr = rate;
sbd = distortion;
bestlabelyrate = labelyrate;
mode_selected = this_mode;
best_label_rd = this_rd;
vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES));
}
} /*for each 4x4 mode*/
vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES));
vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES));
labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected],
bsi->ref_mv, x->mvcost);
br += sbr;
bd += sbd;
segmentyrate += bestlabelyrate;
this_segment_rd += best_label_rd;
if (this_segment_rd > bsi->segment_rd)
break;
} /* for each label */
if (this_segment_rd < bsi->segment_rd)
{
bsi->r = br;
bsi->d = bd;
bsi->segment_yrate = segmentyrate;
bsi->segment_rd = this_segment_rd;
bsi->segment_num = segmentation;
// store everything needed to come back to this!!
for (i = 0; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
bsi->mvs[i] = bd->bmi.mv.as_mv;
bsi->modes[i] = bd->bmi.mode;
bsi->eobs[i] = bd->eob;
}
}
}
static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x,
MV *best_ref_mv, int best_rd,
int *mdcounts, int *returntotrate,
int *returnyrate, int *returndistortion,
int mvthresh)
{
int i;
BEST_SEG_INFO bsi;
BEST_SEG_INFO bsi_8x8;
int check_8x16 = 0;
int check_16x8 = 0;
vpx_memset(&bsi, 0, sizeof(bsi));
bsi.segment_rd = best_rd;
bsi.ref_mv = best_ref_mv;
bsi.mvthresh = mvthresh;
bsi.mdcounts = mdcounts;
for(i = 0; i < 16; i++)
{
bsi.modes[i] = ZERO4X4;
}
/* original */
vp8_rd_check_segment(cpi, x, &bsi, 0);
vp8_rd_check_segment(cpi, x, &bsi, 1);
vp8_rd_check_segment(cpi, x, &bsi, 2);
vp8_rd_check_segment(cpi, x, &bsi, 3);
/* set it to the best */
for (i = 0; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
bd->bmi.mv.as_mv = bsi.mvs[i];
bd->bmi.mode = bsi.modes[i];
bd->eob = bsi.eobs[i];
}
*returntotrate = bsi.r;
*returndistortion = bsi.d;
*returnyrate = bsi.segment_yrate;
/* save partitions */
x->e_mbd.mode_info_context->mbmi.partitioning = bsi.segment_num;
x->partition_info->count = vp8_mbsplit_count[bsi.segment_num];
for (i = 0; i < x->partition_info->count; i++)
{
int j;
j = vp8_mbsplit_offset2[bsi.segment_num][i];
x->partition_info->bmi[i].mode = x->e_mbd.block[j].bmi.mode;
x->partition_info->bmi[i].mv.as_mv = x->e_mbd.block[j].bmi.mv.as_mv;
}
return bsi.segment_rd;
}
/////////////////////////
static void mv_bias(const MODE_INFO *x, int refframe, int_mv *mvp, const int *ref_frame_sign_bias)
{
MV xmv;
xmv = x->mbmi.mv.as_mv;
if (ref_frame_sign_bias[x->mbmi.ref_frame] != ref_frame_sign_bias[refframe])
{
xmv.row *= -1;
xmv.col *= -1;
}
mvp->as_mv = xmv;
}
static void lf_mv_bias(const int lf_ref_frame_sign_bias, int refframe, int_mv *mvp, const int *ref_frame_sign_bias)
{
MV xmv;
xmv = mvp->as_mv;
if (lf_ref_frame_sign_bias != ref_frame_sign_bias[refframe])
{
xmv.row *= -1;
xmv.col *= -1;
}
mvp->as_mv = xmv;
}
static void vp8_clamp_mv(MV *mv, const MACROBLOCKD *xd)
{
if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
}
static void swap(int *x,int *y)
{
int tmp;
tmp = *x;
*x = *y;
*y = tmp;
}
static void quicksortmv(int arr[],int left, int right)
{
int lidx,ridx,pivot;
lidx = left;
ridx = right;
if( left < right)
{
pivot = (left + right)/2;
while(lidx <=pivot && ridx >=pivot)
{
while(arr[lidx] < arr[pivot] && lidx <= pivot)
lidx++;
while(arr[ridx] > arr[pivot] && ridx >= pivot)
ridx--;
swap(&arr[lidx], &arr[ridx]);
lidx++;
ridx--;
if(lidx-1 == pivot)
{
ridx++;
pivot = ridx;
}
else if(ridx+1 == pivot)
{
lidx--;
pivot = lidx;
}
}
quicksortmv(arr, left, pivot - 1);
quicksortmv(arr, pivot + 1, right);
}
}
static void quicksortsad(int arr[],int idx[], int left, int right)
{
int lidx,ridx,pivot;
lidx = left;
ridx = right;
if( left < right)
{
pivot = (left + right)/2;
while(lidx <=pivot && ridx >=pivot)
{
while(arr[lidx] < arr[pivot] && lidx <= pivot)
lidx++;
while(arr[ridx] > arr[pivot] && ridx >= pivot)
ridx--;
swap(&arr[lidx], &arr[ridx]);
swap(&idx[lidx], &idx[ridx]);
lidx++;
ridx--;
if(lidx-1 == pivot)
{
ridx++;
pivot = ridx;
}
else if(ridx+1 == pivot)
{
lidx--;
pivot = lidx;
}
}
quicksortsad(arr, idx, left, pivot - 1);
quicksortsad(arr, idx, pivot + 1, right);
}
}
//The improved MV prediction
static void vp8_mv_pred
(
VP8_COMP *cpi,
MACROBLOCKD *xd,
const MODE_INFO *here,
MV *mvp,
int refframe,
int *ref_frame_sign_bias,
int *sr,
int near_sadidx[]
)
{
const MODE_INFO *above = here - xd->mode_info_stride;
const MODE_INFO *left = here - 1;
const MODE_INFO *aboveleft = above - 1;
int_mv near_mvs[7];
int near_ref[7];
int_mv mv;
int vcnt=0;
int find=0;
int mb_offset;
int mvx[7];
int mvy[7];
int i;
mv.as_int = 0;
if(here->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = near_mvs[6].as_int = 0;
near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = near_ref[5] = near_ref[6] = 0;
// read in 3 nearby block's MVs from current frame as prediction candidates.
if (above->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[vcnt].as_int = above->mbmi.mv.as_int;
mv_bias(above, refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = above->mbmi.ref_frame;
}
vcnt++;
if (left->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[vcnt].as_int = left->mbmi.mv.as_int;
mv_bias(left, refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = left->mbmi.ref_frame;
}
vcnt++;
if (aboveleft->mbmi.ref_frame != INTRA_FRAME)
{
near_mvs[vcnt].as_int = aboveleft->mbmi.mv.as_int;
mv_bias(aboveleft, refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = aboveleft->mbmi.ref_frame;
}
vcnt++;
// read in 4 nearby block's MVs from last frame.
if(cpi->common.last_frame_type != KEY_FRAME)
{
mb_offset = (-xd->mb_to_top_edge/128 + 1) * (xd->mode_info_stride) + (-xd->mb_to_left_edge/128 +1) ;
// current in last frame
if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int;
lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset];
}
vcnt++;
// above in last frame
if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride].as_int;
lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride];
}
vcnt++;
// left in last frame
if (cpi->lf_ref_frame[mb_offset-1] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset -1].as_int;
lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset -1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1];
}
vcnt++;
// aboveleft in last frame
if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride -1] != INTRA_FRAME)
{
near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride -1].as_int;
lf_mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride -1], refframe, &near_mvs[vcnt], ref_frame_sign_bias);
near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride -1];
}
vcnt++;
}
for(i=0; i< vcnt; i++)
{
if(near_ref[near_sadidx[i]] != INTRA_FRAME)
{
if(here->mbmi.ref_frame == near_ref[near_sadidx[i]])
{
mv.as_int = near_mvs[near_sadidx[i]].as_int;
find = 1;
if(vcnt<2)
*sr = 4;
else if (vcnt<4)
*sr = 3;
else
*sr = 2;
break;
}
}
}
if(!find)
{
for(i=0; i<vcnt; i++)
{
mvx[i] = near_mvs[i].as_mv.row;
mvy[i] = near_mvs[i].as_mv.col;
}
quicksortmv (mvx, 0, vcnt-1);
quicksortmv (mvy, 0, vcnt-1);
mv.as_mv.row = mvx[vcnt/2];
mv.as_mv.col = mvy[vcnt/2];
find = 1;
//sr is set to 0 to allow calling function to decide the search range.
*sr = 0;
}
}
/* Set up return values */
*mvp = mv.as_mv;
vp8_clamp_mv(mvp, xd);
}
int vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int *returnintra)
{
BLOCK *b = &x->block[0];
BLOCKD *d = &x->e_mbd.block[0];
MACROBLOCKD *xd = &x->e_mbd;
B_MODE_INFO best_bmodes[16];
MB_MODE_INFO best_mbmode;
PARTITION_INFO best_partition;
MV best_ref_mv;
MV mode_mv[MB_MODE_COUNT];
MB_PREDICTION_MODE this_mode;
int num00;
int best_mode_index = 0;
int i;
int mode_index;
int mdcounts[4];
int rate;
int distortion;
int best_rd = INT_MAX; // 1 << 30;
int ref_frame_cost[MAX_REF_FRAMES];
int rate2, distortion2;
int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly;
int rate_y, UNINITIALIZED_IS_SAFE(rate_uv);
//int all_rds[MAX_MODES]; // Experimental debug code.
//int all_rates[MAX_MODES];
//int all_dist[MAX_MODES];
//int intermodecost[MAX_MODES];
MB_PREDICTION_MODE uv_intra_mode;
int sse;
int sum;
int uvintra_eob = 0;
int tteob = 0;
int force_no_skip = 0;
MV mvp;
int near_sad[7]; // 0-cf above, 1-cf left, 2-cf aboveleft, 3-lf current, 4-lf above, 5-lf left, 6-lf aboveleft
int near_sadidx[7] = {0, 1, 2, 3, 4, 5, 6};
int saddone=0;
int sr=0; //search range got from mv_pred(). It uses step_param levels. (0-7)
*returnintra = INT_MAX;
vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); // clean
cpi->mbs_tested_so_far++; // Count of the number of MBs tested so far this frame
x->skip = 0;
ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded);
// Experimental code
// Adjust the RD multiplier based on the best case distortion we saw in the most recently coded mb
//if ( (cpi->last_mb_distortion) > 0 && (cpi->target_bits_per_mb > 0) )
/*{
int tmprdmult;
//tmprdmult = (cpi->last_mb_distortion * 256) / ((cpi->av_per_frame_bandwidth*256)/cpi->common.MBs);
tmprdmult = (cpi->last_mb_distortion * 256) / cpi->target_bits_per_mb;
//tmprdmult = tmprdmult;
//if ( tmprdmult > cpi->RDMULT * 2 )
// tmprdmult = cpi->RDMULT * 2;
//else if ( tmprdmult < cpi->RDMULT / 2 )
// tmprdmult = cpi->RDMULT / 2;
//tmprdmult = (tmprdmult < 25) ? 25 : tmprdmult;
//x->rdmult = tmprdmult;
}*/
// Special case treatment when GF and ARF are not sensible options for reference
if (cpi->ref_frame_flags == VP8_LAST_FLAG)
{
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(255);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_zero(128);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(255)
+ vp8_cost_one(128);
}
else
{
ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_zero(cpi->prob_last_coded);
ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_zero(cpi->prob_gf_coded);
ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded)
+ vp8_cost_one(cpi->prob_last_coded)
+ vp8_cost_one(cpi->prob_gf_coded);
}
vpx_memset(mode_mv, 0, sizeof(mode_mv));
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
vp8_rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate, &uv_intra_rate_tokenonly, &uv_intra_distortion);
uv_intra_mode = x->e_mbd.mode_info_context->mbmi.uv_mode;
{
uvintra_eob = 0;
for (i = 16; i < 24; i++)
uvintra_eob += x->e_mbd.block[i].eob;
}
for (mode_index = 0; mode_index < MAX_MODES; mode_index++)
{
int frame_cost;
int this_rd = INT_MAX;
int lf_or_gf = 0; // Lat Frame (01) or gf/arf (1)
int disable_skip = 0;
force_no_skip = 0;
// Experimental debug code.
// Record of rd values recorded for this MB. -1 indicates not measured
//all_rds[mode_index] = -1;
//all_rates[mode_index] = -1;
//all_dist[mode_index] = -1;
//intermodecost[mode_index] = -1;
// Test best rd so far against threshold for trying this mode.
if (best_rd <= cpi->rd_threshes[mode_index])
continue;
// These variables hold are rolling total cost and distortion for this mode
rate2 = 0;
distortion2 = 0;
// Where skip is allowable add in the default per mb cost for the no skip case.
// where we then decide to skip we have to delete this and replace it with the
// cost of signallying a skip
if (cpi->common.mb_no_coeff_skip)
{
rate2 += vp8_cost_bit(cpi->prob_skip_false, 0);
}
this_mode = vp8_mode_order[mode_index];
x->e_mbd.mode_info_context->mbmi.mode = this_mode;
x->e_mbd.mode_info_context->mbmi.uv_mode = DC_PRED;
x->e_mbd.mode_info_context->mbmi.ref_frame = vp8_ref_frame_order[mode_index];
//Only consider ZEROMV/ALTREF_FRAME for alt ref frame.
if (cpi->is_src_frame_alt_ref)
{
if (this_mode != ZEROMV || x->e_mbd.mode_info_context->mbmi.ref_frame != ALTREF_FRAME)
continue;
}
if (x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME)
{
YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx];
if (!(cpi->ref_frame_flags & VP8_LAST_FLAG))
continue;
lf_or_gf = 0; // Local last frame vs Golden frame flag
// Set up pointers for this macro block into the previous frame recon buffer
x->e_mbd.pre.y_buffer = lst_yv12->y_buffer + recon_yoffset;
x->e_mbd.pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset;
x->e_mbd.pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset;
}
else if (x->e_mbd.mode_info_context->mbmi.ref_frame == GOLDEN_FRAME)
{
YV12_BUFFER_CONFIG *gld_yv12 = &cpi->common.yv12_fb[cpi->common.gld_fb_idx];
// not supposed to reference gold frame
if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG))
continue;
lf_or_gf = 1; // Local last frame vs Golden frame flag
// Set up pointers for this macro block into the previous frame recon buffer
x->e_mbd.pre.y_buffer = gld_yv12->y_buffer + recon_yoffset;
x->e_mbd.pre.u_buffer = gld_yv12->u_buffer + recon_uvoffset;
x->e_mbd.pre.v_buffer = gld_yv12->v_buffer + recon_uvoffset;
}
else if (x->e_mbd.mode_info_context->mbmi.ref_frame == ALTREF_FRAME)
{
YV12_BUFFER_CONFIG *alt_yv12 = &cpi->common.yv12_fb[cpi->common.alt_fb_idx];
// not supposed to reference alt ref frame
if (!(cpi->ref_frame_flags & VP8_ALT_FLAG))
continue;
//if ( !cpi->source_alt_ref_active )
// continue;
lf_or_gf = 1; // Local last frame vs Golden frame flag
// Set up pointers for this macro block into the previous frame recon buffer
x->e_mbd.pre.y_buffer = alt_yv12->y_buffer + recon_yoffset;
x->e_mbd.pre.u_buffer = alt_yv12->u_buffer + recon_uvoffset;
x->e_mbd.pre.v_buffer = alt_yv12->v_buffer + recon_uvoffset;
}
vp8_find_near_mvs(&x->e_mbd,
x->e_mbd.mode_info_context,
&mode_mv[NEARESTMV], &mode_mv[NEARMV], &best_ref_mv,
mdcounts, x->e_mbd.mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias);
if(x->e_mbd.mode_info_context->mbmi.mode == NEWMV)
{
if(!saddone)
{
//calculate sad for current frame 3 nearby MBs.
if( xd->mb_to_top_edge==0 && xd->mb_to_left_edge ==0)
{
near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX;
}else if(xd->mb_to_top_edge==0)
{ //only has left MB for sad calculation.
near_sad[0] = near_sad[2] = INT_MAX;
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - 16,xd->dst.y_stride, 0x7fffffff);
}else if(xd->mb_to_left_edge ==0)
{ //only has left MB for sad calculation.
near_sad[1] = near_sad[2] = INT_MAX;
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16,xd->dst.y_stride, 0x7fffffff);
}else
{
near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16,xd->dst.y_stride, 0x7fffffff);
near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - 16,xd->dst.y_stride, 0x7fffffff);
near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, xd->dst.y_buffer - xd->dst.y_stride *16 -16,xd->dst.y_stride, 0x7fffffff);
}
if(cpi->common.last_frame_type != KEY_FRAME)
{
//calculate sad for last frame 4 nearby MBs.
unsigned char *pre_y_buffer = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset;
int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride;
if( xd->mb_to_top_edge==0 && xd->mb_to_left_edge ==0)
{
near_sad[4] = near_sad[5] = near_sad[6] = INT_MAX;
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
}else if(xd->mb_to_top_edge==0)
{ //only has left MB for sad calculation.
near_sad[4] = near_sad[6] = INT_MAX;
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff);
}else if(xd->mb_to_left_edge ==0)
{ //only has left MB for sad calculation.
near_sad[5] = near_sad[6] = INT_MAX;
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16, pre_y_stride, 0x7fffffff);
}else
{
near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer, pre_y_stride, 0x7fffffff);
near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16, pre_y_stride, 0x7fffffff);
near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff);
near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf(x->src.y_buffer, x->src.y_stride, pre_y_buffer - pre_y_stride *16 -16, pre_y_stride, 0x7fffffff);
}
}
if(cpi->common.last_frame_type != KEY_FRAME)
{
quicksortsad(near_sad, near_sadidx, 0, 6);
}else
{
quicksortsad(near_sad, near_sadidx, 0, 2);
}
saddone = 1;
}
vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp,
x->e_mbd.mode_info_context->mbmi.ref_frame, cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]);
}
// Estimate the reference frame signaling cost and add it to the rolling cost variable.
frame_cost = ref_frame_cost[x->e_mbd.mode_info_context->mbmi.ref_frame];
rate2 += frame_cost;
// Check to see if the testing frequency for this mode is at its max
// If so then prevent it from being tested and increase the threshold for its testing
if (cpi->mode_test_hit_counts[mode_index] && (cpi->mode_check_freq[mode_index] > 1))
{
if (cpi->mbs_tested_so_far <= cpi->mode_check_freq[mode_index] * cpi->mode_test_hit_counts[mode_index])
{
// Increase the threshold for coding this mode to make it less likely to be chosen
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
continue;
}
}
// We have now reached the point where we are going to test the current mode so increment the counter for the number of times it has been tested
cpi->mode_test_hit_counts[mode_index] ++;
// Experimental code. Special case for gf and arf zeromv modes. Increase zbin size to supress noise
if (cpi->zbin_mode_boost_enabled)
{
if ( vp8_ref_frame_order[mode_index] == INTRA_FRAME )
cpi->zbin_mode_boost = 0;
else
{
if (vp8_mode_order[mode_index] == ZEROMV)
{
if (vp8_ref_frame_order[mode_index] != LAST_FRAME)
cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST;
else
cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST;
}
else if (vp8_ref_frame_order[mode_index] == SPLITMV)
cpi->zbin_mode_boost = 0;
else
cpi->zbin_mode_boost = MV_ZBIN_BOOST;
}
vp8cx_mb_init_quantizer(cpi, x);
}
switch (this_mode)
{
case B_PRED:
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
// Note the rate value returned here includes the cost of coding the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED];
vp8_rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion);
rate2 += rate;
//rate_y = rate;
distortion2 += distortion;
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
break;
case SPLITMV:
{
int frame_cost_rd = RDFUNC(x->rdmult, x->rddiv, frame_cost, 0, cpi->target_bits_per_mb);
int saved_rate = rate2;
// vp8_rd_pick_best_mbsegmentation looks only at Y and does not account for frame_cost.
// (best_rd - frame_cost_rd) is thus a conservative breakout number.
int breakout_rd = best_rd - frame_cost_rd;
int tmp_rd;
int this_rd_thresh;
this_rd_thresh = (x->e_mbd.mode_info_context->mbmi.ref_frame == LAST_FRAME) ? cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA];
this_rd_thresh = (x->e_mbd.mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ? cpi->rd_threshes[THR_NEWG]: this_rd_thresh;
tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv,
breakout_rd, mdcounts,
&rate, &rate_y, &distortion, this_rd_thresh) ;
rate2 += rate;
distortion2 += distortion;
// If even the 'Y' rd value of split is higher than best so far then dont bother looking at UV
if (tmp_rd < breakout_rd)
{
// Now work out UV cost and add it in
vp8_rd_inter_uv(cpi, x, &rate, &distortion, cpi->common.full_pixel);
rate2 += rate;
rate_uv = rate;
distortion2 += distortion;
}
else
{
this_rd = INT_MAX;
disable_skip = 1;
}
// Trap cases where the best split mode has all vectors coded 0,0 (or all the same)
if (0)
{
int allsame = 1;
for (i = 1; i < 16; i++)
{
BLOCKD *bd = &x->e_mbd.block[i];
if (bd->bmi.mv.as_int != x->e_mbd.block[0].bmi.mv.as_int) //(bmvs[i].col != bmvs[i-1].col) || (bmvs[i].row != bmvs[i-1].row ) )
{
allsame = 0;
break;
}
}
if (allsame)
{
// reset mode and mv and jump to newmv
this_mode = NEWMV;
distortion2 = 0;
rate2 = saved_rate;
mode_mv[NEWMV].row = x->e_mbd.block[0].bmi.mv.as_mv.row;
mode_mv[NEWMV].col = x->e_mbd.block[0].bmi.mv.as_mv.col;
rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96);
goto mv_selected;
}
}
// trap cases where the 8x8s can be promoted to 8x16s or 16x8s
if (0)//x->partition_info->count == 4)
{
if (x->partition_info->bmi[0].mv.as_int == x->partition_info->bmi[1].mv.as_int
&& x->partition_info->bmi[2].mv.as_int == x->partition_info->bmi[3].mv.as_int)
{
const int *labels = vp8_mbsplits[2];
x->e_mbd.mode_info_context->mbmi.partitioning = 0;
rate -= vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + 2);
rate += vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings);
//rate -= x->inter_bmode_costs[ x->partition_info->bmi[1]];
//rate -= x->inter_bmode_costs[ x->partition_info->bmi[3]];
x->partition_info->bmi[1] = x->partition_info->bmi[2];
}
}
}
break;
case DC_PRED:
case V_PRED:
case H_PRED:
case TM_PRED:
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.ref_frame = INTRA_FRAME;
vp8_build_intra_predictors_mby_ptr(&x->e_mbd);
{
macro_block_yrd(x, &rate, &distortion, IF_RTCD(&cpi->rtcd.encodemb)) ;
rate2 += rate;
rate_y = rate;
distortion2 += distortion;
rate2 += x->mbmode_cost[x->e_mbd.frame_type][x->e_mbd.mode_info_context->mbmi.mode];
rate2 += uv_intra_rate;
rate_uv = uv_intra_rate_tokenonly;
distortion2 += uv_intra_distortion;
}
break;
case NEWMV:
// Decrement full search counter
if (cpi->check_freq[lf_or_gf] > 0)
cpi->check_freq[lf_or_gf] --;
{
int thissme;
int bestsme = INT_MAX;
int step_param = cpi->sf.first_step;
int search_range;
int further_steps;
int n;
//adjust search range according to sr from mv prediction
if(sr > step_param)
step_param = sr;
// Work out how long a search we should do
search_range = MAXF(abs(best_ref_mv.col), abs(best_ref_mv.row)) >> 3;
if (search_range >= x->vector_range)
x->vector_range = search_range;
else if (x->vector_range > cpi->sf.min_fs_radius)
x->vector_range--;
// Initial step/diamond search
{
int sadpb = x->sadperbit16;
if (cpi->sf.search_method == HEX)
{
bestsme = vp8_hex_search(x, b, d, &best_ref_mv, &d->bmi.mv.as_mv, step_param, sadpb/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost);
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
}
else
{
bestsme = cpi->diamond_search_sad(x, b, d, &mvp, &d->bmi.mv.as_mv, step_param, sadpb / 2/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost, &best_ref_mv); //sadpb < 9
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
// Further step/diamond searches as necessary
n = 0;
further_steps = (cpi->sf.max_step_search_steps - 1) - step_param;
n = num00;
num00 = 0;
while (n < further_steps)
{
n++;
if (num00)
num00--;
else
{
thissme = cpi->diamond_search_sad(x, b, d, &mvp, &d->bmi.mv.as_mv, step_param + n, sadpb / 4/*x->errorperbit*/, &num00, &cpi->fn_ptr[BLOCK_16X16], x->mvsadcost, x->mvcost, &best_ref_mv); //sadpb = 9
if (thissme < bestsme)
{
bestsme = thissme;
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
}
else
{
d->bmi.mv.as_mv.row = mode_mv[NEWMV].row;
d->bmi.mv.as_mv.col = mode_mv[NEWMV].col;
}
}
}
}
}
// Should we do a full search
if (!cpi->check_freq[lf_or_gf] || cpi->do_full[lf_or_gf])
{
int thissme;
int full_flag_thresh = 0;
MV full_mvp;
full_mvp.row = d->bmi.mv.as_mv.row <<3; // use diamond search result as full search staring point
full_mvp.col = d->bmi.mv.as_mv.col <<3;
// Update x->vector_range based on best vector found in step search
search_range = MAXF(abs((mvp.row>>3) - d->bmi.mv.as_mv.row), abs((mvp.col>>3) - d->bmi.mv.as_mv.col));
//search_range *= 1.4; //didn't improve PSNR
if (search_range > x->vector_range)
x->vector_range = search_range;
else
search_range = x->vector_range;
// Apply limits
search_range = (search_range > cpi->sf.max_fs_radius) ? cpi->sf.max_fs_radius : search_range;
//add this to reduce full search range.
if(sr<=3 && search_range > 8) search_range = 8;
{
int sadpb = x->sadperbit16 >> 2;
thissme = cpi->full_search_sad(x, b, d, &full_mvp, sadpb, search_range, &cpi->fn_ptr[BLOCK_16X16], x->mvcost, x->mvsadcost,&best_ref_mv);
/*
MV dia_ref_mv;
dia_ref_mv.row = d->bmi.mv.as_mv.row << 3;
dia_ref_mv.col = d->bmi.mv.as_mv.col << 3;
thissme = cpi->full_search_sad(x, b, d, &dia_ref_mv, sadpb, search_range, &cpi->fn_ptr[BLOCK_16X16], x->mvcost, x->mvsadcost,&best_ref_mv);
*/
}
// Barrier threshold to initiating full search
// full_flag_thresh = 10 + (thissme >> 7);
if ((thissme + full_flag_thresh) < bestsme)
{
cpi->do_full[lf_or_gf] ++;
bestsme = thissme;
}
else if (thissme < bestsme)
bestsme = thissme;
else
{
cpi->do_full[lf_or_gf] = cpi->do_full[lf_or_gf] >> 1;
cpi->check_freq[lf_or_gf] = cpi->sf.full_freq[lf_or_gf];
// The full search result is actually worse so re-instate the previous best vector
d->bmi.mv.as_mv.row = mode_mv[NEWMV].row;
d->bmi.mv.as_mv.col = mode_mv[NEWMV].col;
}
}
if (bestsme < INT_MAX)
// cpi->find_fractional_mv_step(x,b,d,&d->bmi.mv.as_mv,&best_ref_mv,x->errorperbit/2,cpi->fn_ptr.svf,cpi->fn_ptr.vf,x->mvcost); // normal mvc=11
cpi->find_fractional_mv_step(x, b, d, &d->bmi.mv.as_mv, &best_ref_mv, x->errorperbit / 4, &cpi->fn_ptr[BLOCK_16X16], x->mvcost);
mode_mv[NEWMV].row = d->bmi.mv.as_mv.row;
mode_mv[NEWMV].col = d->bmi.mv.as_mv.col;
// Add the new motion vector cost to our rolling cost variable
rate2 += vp8_mv_bit_cost(&mode_mv[NEWMV], &best_ref_mv, x->mvcost, 96);
}
case NEARESTMV:
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
if (mode_mv[this_mode].col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN))
mode_mv[this_mode].col = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
else if (mode_mv[this_mode].col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN)
mode_mv[this_mode].col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
if (mode_mv[this_mode].row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN))
mode_mv[this_mode].row = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
else if (mode_mv[this_mode].row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN)
mode_mv[this_mode].row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
// Do not bother proceeding if the vector (from newmv,nearest or near) is 0,0 as this should then be coded using the zeromv mode.
if (((this_mode == NEARMV) || (this_mode == NEARESTMV)) &&
((mode_mv[this_mode].row == 0) && (mode_mv[this_mode].col == 0)))
continue;
case ZEROMV:
mv_selected:
// Trap vectors that reach beyond the UMV borders
// Note that ALL New MV, Nearest MV Near MV and Zero MV code drops through to this point
// because of the lack of break statements in the previous two cases.
if (((mode_mv[this_mode].row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].row >> 3) > x->mv_row_max) ||
((mode_mv[this_mode].col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].col >> 3) > x->mv_col_max))
continue;
vp8_set_mbmode_and_mvs(x, this_mode, &mode_mv[this_mode]);
vp8_build_inter_predictors_mby(&x->e_mbd);
if(x->encode_breakout)
VARIANCE_INVOKE(&cpi->rtcd.variance, get16x16var)(x->src.y_buffer, x->src.y_stride, x->e_mbd.predictor, 16, (unsigned int *)(&sse), &sum);
if (cpi->active_map_enabled && x->active_ptr[0] == 0) {
x->skip = 1;
}
else if (sse < x->encode_breakout)
{
// Check u and v to make sure skip is ok
int sse2 = 0;
// add dc check
if (abs(sum) < (cpi->common.Y2dequant[0][0] << 2))
{
sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance));
if (sse2 * 2 < x->encode_breakout)
{
x->skip = 1;
distortion2 = sse;
rate2 = 500;
disable_skip = 1;
this_rd = RDFUNC(x->rdmult, x->rddiv, rate2,
distortion2, cpi->target_bits_per_mb);
break;
}
}
}
//intermodecost[mode_index] = vp8_cost_mv_ref(this_mode, mdcounts); // Experimental debug code
// Add in the Mv/mode cost
rate2 += vp8_cost_mv_ref(this_mode, mdcounts);
// Y cost and distortion
macro_block_yrd(x, &rate, &distortion, IF_RTCD(&cpi->rtcd.encodemb));
rate2 += rate;
rate_y = rate;
distortion2 += distortion;
// UV cost and distortion
vp8_rd_inter_uv(cpi, x, &rate, &distortion, cpi->common.full_pixel);
rate2 += rate;
rate_uv = rate;
distortion2 += distortion;
break;
default:
break;
}
if (!disable_skip)
{
// Test for the condition where skip block will be activated because there are no non zero coefficients and make any necessary adjustment for rate
if (cpi->common.mb_no_coeff_skip)
{
tteob = 0;
for (i = 0; i <= 24; i++)
{
tteob += x->e_mbd.block[i].eob;
}
if (tteob == 0)
{
#if 1
rate2 -= (rate_y + rate_uv);
// Back out no skip flag costing and add in skip flag costing
if (cpi->prob_skip_false)
{
rate2 += vp8_cost_bit(cpi->prob_skip_false, 1);
rate2 -= vp8_cost_bit(cpi->prob_skip_false, 0);
}
#else
int rateuseskip;
int ratenotuseskip;
ratenotuseskip = rate_y + rate_uv + vp8_cost_bit(cpi->prob_skip_false, 0);
rateuseskip = vp8_cost_bit(cpi->prob_skip_false, 1);
if (1) // rateuseskip<ratenotuseskip)
{
rate2 -= ratenotuseskip;
rate2 += rateuseskip;
force_no_skip = 0;
}
else
{
force_no_skip = 1;
}
#endif
}
}
// Calculate the final RD estimate for this mode
this_rd = RDFUNC(x->rdmult, x->rddiv, rate2, distortion2, cpi->target_bits_per_mb);
}
// Experimental debug code.
//all_rds[mode_index] = this_rd;
//all_rates[mode_index] = rate2;
//all_dist[mode_index] = distortion2;
if ((x->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) && (this_rd < *returnintra))
{
*returnintra = this_rd ;
}
// Did this mode help.. i.i is it the new best mode
if (this_rd < best_rd || x->skip)
{
// Note index of best mode so far
best_mode_index = mode_index;
x->e_mbd.mode_info_context->mbmi.force_no_skip = force_no_skip;
if (this_mode <= B_PRED)
{
x->e_mbd.mode_info_context->mbmi.uv_mode = uv_intra_mode;
}
*returnrate = rate2;
*returndistortion = distortion2;
best_rd = this_rd;
vpx_memcpy(&best_mbmode, &x->e_mbd.mode_info_context->mbmi, sizeof(MB_MODE_INFO));
vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++)
{
vpx_memcpy(&best_bmodes[i], &x->e_mbd.block[i].bmi, sizeof(B_MODE_INFO));
}
// Testing this mode gave rise to an improvement in best error score. Lower threshold a bit for next time
cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
// If the mode did not help improve the best error case then raise the threshold for testing that mode next time around.
else
{
cpi->rd_thresh_mult[mode_index] += 4;
if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT)
cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT;
cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index];
}
if (x->skip)
break;
}
// Reduce the activation RD thresholds for the best choice mode
if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2)))
{
int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2);
cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT;
cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index];
// If we chose a split mode then reset the new MV thresholds as well
/*if ( vp8_mode_order[best_mode_index] == SPLITMV )
{
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWMV] >> 4);
cpi->rd_thresh_mult[THR_NEWMV] = (cpi->rd_thresh_mult[THR_NEWMV] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWMV]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWMV] = (cpi->rd_baseline_thresh[THR_NEWMV] >> 7) * cpi->rd_thresh_mult[THR_NEWMV];
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWG] >> 4);
cpi->rd_thresh_mult[THR_NEWG] = (cpi->rd_thresh_mult[THR_NEWG] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWG]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWG] = (cpi->rd_baseline_thresh[THR_NEWG] >> 7) * cpi->rd_thresh_mult[THR_NEWG];
best_adjustment = 4; //(cpi->rd_thresh_mult[THR_NEWA] >> 4);
cpi->rd_thresh_mult[THR_NEWA] = (cpi->rd_thresh_mult[THR_NEWA] >= (MIN_THRESHMULT+best_adjustment)) ? cpi->rd_thresh_mult[THR_NEWA]-best_adjustment: MIN_THRESHMULT;
cpi->rd_threshes[THR_NEWA] = (cpi->rd_baseline_thresh[THR_NEWA] >> 7) * cpi->rd_thresh_mult[THR_NEWA];
}*/
}
// If we have chosen new mv or split then decay the full search check count more quickly.
if ((vp8_mode_order[best_mode_index] == NEWMV) || (vp8_mode_order[best_mode_index] == SPLITMV))
{
int lf_or_gf = (vp8_ref_frame_order[best_mode_index] == LAST_FRAME) ? 0 : 1;
if (cpi->check_freq[lf_or_gf] && !cpi->do_full[lf_or_gf])
{
cpi->check_freq[lf_or_gf] --;
}
}
// Keep a record of best mode index that we chose
cpi->last_best_mode_index = best_mode_index;
// Note how often each mode chosen as best
cpi->mode_chosen_counts[best_mode_index] ++;
if (cpi->is_src_frame_alt_ref && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME))
{
best_mbmode.mode = ZEROMV;
best_mbmode.ref_frame = ALTREF_FRAME;
best_mbmode.mv.as_int = 0;
best_mbmode.uv_mode = 0;
best_mbmode.mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0;
best_mbmode.partitioning = 0;
best_mbmode.dc_diff = 0;
vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++)
{
vpx_memset(&x->e_mbd.block[i].bmi, 0, sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.mv.as_int = 0;
return best_rd;
}
// macroblock modes
vpx_memcpy(&x->e_mbd.mode_info_context->mbmi, &best_mbmode, sizeof(MB_MODE_INFO));
vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO));
for (i = 0; i < 16; i++)
{
vpx_memcpy(&x->e_mbd.block[i].bmi, &best_bmodes[i], sizeof(B_MODE_INFO));
}
x->e_mbd.mode_info_context->mbmi.mv.as_mv = x->e_mbd.block[15].bmi.mv.as_mv;
return best_rd;
}
#endif