vpx/vp8/encoder/ethreading.c
Peter Boström d42e876164 Add atomics to vp8 synchronization primitives.
Fixes issue on iPad Pro 10.5 (and probably other places) where threads
are not properly synchronized. On x86 this data race was benign as load
and store instructions are atomic, they were being atomic in practice as
the program hasn't been observed to be miscompiled.

Such guarantees are not made outside x86, and real problems manifested
where libvpx reliably reproduced a broken bitstream for even just the
initial keyframe. This was detected in WebRTC where this device started
using multithreading (as its CPU count is higher than earlier devices,
where the problem did not manifest as single-threading was used in
practice).

This issue was not detected under thread-sanitizer bots as mutexes were
conditionally used under this platform to simulate the protected read
and write semantics that were in practice provided on x86 platforms.

This change also removes several mutexes, so encoder/decoder state is
lighter-weight after this change and we do not need to initialize so
many mutexes (this was done even on non-thread-sanitizer platforms where
they were unused).

Change-Id: If41fcb0d99944f7bbc8ec40877cdc34d672ae72a
2017-08-31 17:55:57 -07:00

640 lines
22 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "onyx_int.h"
#include "vp8/common/threading.h"
#include "vp8/common/common.h"
#include "vp8/common/extend.h"
#include "bitstream.h"
#include "encodeframe.h"
#include "ethreading.h"
#if CONFIG_MULTITHREAD
extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x,
int ok_to_skip);
static THREAD_FUNCTION thread_loopfilter(void *p_data) {
VP8_COMP *cpi = (VP8_COMP *)(((LPFTHREAD_DATA *)p_data)->ptr1);
VP8_COMMON *cm = &cpi->common;
while (1) {
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break;
if (sem_wait(&cpi->h_event_start_lpf) == 0) {
/* we're shutting down */
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break;
vp8_loopfilter_frame(cpi, cm);
sem_post(&cpi->h_event_end_lpf);
}
}
return 0;
}
static THREAD_FUNCTION thread_encoding_proc(void *p_data) {
int ithread = ((ENCODETHREAD_DATA *)p_data)->ithread;
VP8_COMP *cpi = (VP8_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr1);
MB_ROW_COMP *mbri = (MB_ROW_COMP *)(((ENCODETHREAD_DATA *)p_data)->ptr2);
ENTROPY_CONTEXT_PLANES mb_row_left_context;
while (1) {
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break;
if (sem_wait(&cpi->h_event_start_encoding[ithread]) == 0) {
const int nsync = cpi->mt_sync_range;
VP8_COMMON *cm = &cpi->common;
int mb_row;
MACROBLOCK *x = &mbri->mb;
MACROBLOCKD *xd = &x->e_mbd;
TOKENEXTRA *tp;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
TOKENEXTRA *tp_start = cpi->tok + (1 + ithread) * (16 * 24);
const int num_part = (1 << cm->multi_token_partition);
#endif
int *segment_counts = mbri->segment_counts;
int *totalrate = &mbri->totalrate;
/* we're shutting down */
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) == 0) break;
xd->mode_info_context = cm->mi + cm->mode_info_stride * (ithread + 1);
xd->mode_info_stride = cm->mode_info_stride;
for (mb_row = ithread + 1; mb_row < cm->mb_rows;
mb_row += (cpi->encoding_thread_count + 1)) {
int recon_yoffset, recon_uvoffset;
int mb_col;
int ref_fb_idx = cm->lst_fb_idx;
int dst_fb_idx = cm->new_fb_idx;
int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride;
int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride;
int map_index = (mb_row * cm->mb_cols);
const vpx_atomic_int *last_row_current_mb_col;
vpx_atomic_int *current_mb_col = &cpi->mt_current_mb_col[mb_row];
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
vp8_writer *w = &cpi->bc[1 + (mb_row % num_part)];
#else
tp = cpi->tok + (mb_row * (cm->mb_cols * 16 * 24));
cpi->tplist[mb_row].start = tp;
#endif
last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1];
/* reset above block coeffs */
xd->above_context = cm->above_context;
xd->left_context = &mb_row_left_context;
vp8_zero(mb_row_left_context);
xd->up_available = (mb_row != 0);
recon_yoffset = (mb_row * recon_y_stride * 16);
recon_uvoffset = (mb_row * recon_uv_stride * 8);
/* Set the mb activity pointer to the start of the row. */
x->mb_activity_ptr = &cpi->mb_activity_map[map_index];
/* for each macroblock col in image */
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
if (((mb_col - 1) % nsync) == 0) {
vpx_atomic_store_release(current_mb_col, mb_col - 1);
}
if (mb_row && !(mb_col & (nsync - 1))) {
vp8_atomic_spin_wait(mb_col, last_row_current_mb_col, nsync);
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
tp = tp_start;
#endif
/* Distance of Mb to the various image edges.
* These specified to 8th pel as they are always compared
* to values that are in 1/8th pel units
*/
xd->mb_to_left_edge = -((mb_col * 16) << 3);
xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3;
xd->mb_to_top_edge = -((mb_row * 16) << 3);
xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3;
/* Set up limit values for motion vectors used to prevent
* them extending outside the UMV borders
*/
x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16));
x->mv_col_max =
((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16);
x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16));
x->mv_row_max =
((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16);
xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset;
xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset;
xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset;
xd->left_available = (mb_col != 0);
x->rddiv = cpi->RDDIV;
x->rdmult = cpi->RDMULT;
/* Copy current mb to a buffer */
vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16);
if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x);
/* Is segmentation enabled */
/* MB level adjustment to quantizer */
if (xd->segmentation_enabled) {
/* Code to set segment id in xd->mbmi.segment_id for
* current MB (with range checking)
*/
if (cpi->segmentation_map[map_index + mb_col] <= 3) {
xd->mode_info_context->mbmi.segment_id =
cpi->segmentation_map[map_index + mb_col];
} else {
xd->mode_info_context->mbmi.segment_id = 0;
}
vp8cx_mb_init_quantizer(cpi, x, 1);
} else {
/* Set to Segment 0 by default */
xd->mode_info_context->mbmi.segment_id = 0;
}
x->active_ptr = cpi->active_map + map_index + mb_col;
if (cm->frame_type == KEY_FRAME) {
*totalrate += vp8cx_encode_intra_macroblock(cpi, x, &tp);
#ifdef MODE_STATS
y_modes[xd->mbmi.mode]++;
#endif
} else {
*totalrate += vp8cx_encode_inter_macroblock(
cpi, x, &tp, recon_yoffset, recon_uvoffset, mb_row, mb_col);
#ifdef MODE_STATS
inter_y_modes[xd->mbmi.mode]++;
if (xd->mbmi.mode == SPLITMV) {
int b;
for (b = 0; b < xd->mbmi.partition_count; ++b) {
inter_b_modes[x->partition->bmi[b].mode]++;
}
}
#endif
// Keep track of how many (consecutive) times a block
// is coded as ZEROMV_LASTREF, for base layer frames.
// Reset to 0 if its coded as anything else.
if (cpi->current_layer == 0) {
if (xd->mode_info_context->mbmi.mode == ZEROMV &&
xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) {
// Increment, check for wrap-around.
if (cpi->consec_zero_last[map_index + mb_col] < 255) {
cpi->consec_zero_last[map_index + mb_col] += 1;
}
if (cpi->consec_zero_last_mvbias[map_index + mb_col] < 255) {
cpi->consec_zero_last_mvbias[map_index + mb_col] += 1;
}
} else {
cpi->consec_zero_last[map_index + mb_col] = 0;
cpi->consec_zero_last_mvbias[map_index + mb_col] = 0;
}
if (x->zero_last_dot_suppress) {
cpi->consec_zero_last_mvbias[map_index + mb_col] = 0;
}
}
/* Special case code for cyclic refresh
* If cyclic update enabled then copy
* xd->mbmi.segment_id; (which may have been updated
* based on mode during
* vp8cx_encode_inter_macroblock()) back into the
* global segmentation map
*/
if ((cpi->current_layer == 0) &&
(cpi->cyclic_refresh_mode_enabled &&
xd->segmentation_enabled)) {
const MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi;
cpi->segmentation_map[map_index + mb_col] = mbmi->segment_id;
/* If the block has been refreshed mark it as clean
* (the magnitude of the -ve influences how long it
* will be before we consider another refresh):
* Else if it was coded (last frame 0,0) and has
* not already been refreshed then mark it as a
* candidate for cleanup next time (marked 0) else
* mark it as dirty (1).
*/
if (mbmi->segment_id) {
cpi->cyclic_refresh_map[map_index + mb_col] = -1;
} else if ((mbmi->mode == ZEROMV) &&
(mbmi->ref_frame == LAST_FRAME)) {
if (cpi->cyclic_refresh_map[map_index + mb_col] == 1) {
cpi->cyclic_refresh_map[map_index + mb_col] = 0;
}
} else {
cpi->cyclic_refresh_map[map_index + mb_col] = 1;
}
}
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
/* pack tokens for this MB */
{
int tok_count = tp - tp_start;
vp8_pack_tokens(w, tp_start, tok_count);
}
#else
cpi->tplist[mb_row].stop = tp;
#endif
/* Increment pointer into gf usage flags structure. */
x->gf_active_ptr++;
/* Increment the activity mask pointers. */
x->mb_activity_ptr++;
/* adjust to the next column of macroblocks */
x->src.y_buffer += 16;
x->src.u_buffer += 8;
x->src.v_buffer += 8;
recon_yoffset += 16;
recon_uvoffset += 8;
/* Keep track of segment usage */
segment_counts[xd->mode_info_context->mbmi.segment_id]++;
/* skip to next mb */
xd->mode_info_context++;
x->partition_info++;
xd->above_context++;
}
vp8_extend_mb_row(&cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16,
xd->dst.u_buffer + 8, xd->dst.v_buffer + 8);
vpx_atomic_store_release(current_mb_col, mb_col + nsync);
/* this is to account for the border */
xd->mode_info_context++;
x->partition_info++;
x->src.y_buffer +=
16 * x->src.y_stride * (cpi->encoding_thread_count + 1) -
16 * cm->mb_cols;
x->src.u_buffer +=
8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) -
8 * cm->mb_cols;
x->src.v_buffer +=
8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) -
8 * cm->mb_cols;
xd->mode_info_context +=
xd->mode_info_stride * cpi->encoding_thread_count;
x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count;
x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count;
}
/* Signal that this thread has completed processing its rows. */
sem_post(&cpi->h_event_end_encoding[ithread]);
}
}
/* printf("exit thread %d\n", ithread); */
return 0;
}
static void setup_mbby_copy(MACROBLOCK *mbdst, MACROBLOCK *mbsrc) {
MACROBLOCK *x = mbsrc;
MACROBLOCK *z = mbdst;
int i;
z->ss = x->ss;
z->ss_count = x->ss_count;
z->searches_per_step = x->searches_per_step;
z->errorperbit = x->errorperbit;
z->sadperbit16 = x->sadperbit16;
z->sadperbit4 = x->sadperbit4;
/*
z->mv_col_min = x->mv_col_min;
z->mv_col_max = x->mv_col_max;
z->mv_row_min = x->mv_row_min;
z->mv_row_max = x->mv_row_max;
*/
z->short_fdct4x4 = x->short_fdct4x4;
z->short_fdct8x4 = x->short_fdct8x4;
z->short_walsh4x4 = x->short_walsh4x4;
z->quantize_b = x->quantize_b;
z->optimize = x->optimize;
/*
z->mvc = x->mvc;
z->src.y_buffer = x->src.y_buffer;
z->src.u_buffer = x->src.u_buffer;
z->src.v_buffer = x->src.v_buffer;
*/
z->mvcost[0] = x->mvcost[0];
z->mvcost[1] = x->mvcost[1];
z->mvsadcost[0] = x->mvsadcost[0];
z->mvsadcost[1] = x->mvsadcost[1];
z->token_costs = x->token_costs;
z->inter_bmode_costs = x->inter_bmode_costs;
z->mbmode_cost = x->mbmode_cost;
z->intra_uv_mode_cost = x->intra_uv_mode_cost;
z->bmode_costs = x->bmode_costs;
for (i = 0; i < 25; ++i) {
z->block[i].quant = x->block[i].quant;
z->block[i].quant_fast = x->block[i].quant_fast;
z->block[i].quant_shift = x->block[i].quant_shift;
z->block[i].zbin = x->block[i].zbin;
z->block[i].zrun_zbin_boost = x->block[i].zrun_zbin_boost;
z->block[i].round = x->block[i].round;
z->block[i].src_stride = x->block[i].src_stride;
}
z->q_index = x->q_index;
z->act_zbin_adj = x->act_zbin_adj;
z->last_act_zbin_adj = x->last_act_zbin_adj;
{
MACROBLOCKD *xd = &x->e_mbd;
MACROBLOCKD *zd = &z->e_mbd;
/*
zd->mode_info_context = xd->mode_info_context;
zd->mode_info = xd->mode_info;
zd->mode_info_stride = xd->mode_info_stride;
zd->frame_type = xd->frame_type;
zd->up_available = xd->up_available ;
zd->left_available = xd->left_available;
zd->left_context = xd->left_context;
zd->last_frame_dc = xd->last_frame_dc;
zd->last_frame_dccons = xd->last_frame_dccons;
zd->gold_frame_dc = xd->gold_frame_dc;
zd->gold_frame_dccons = xd->gold_frame_dccons;
zd->mb_to_left_edge = xd->mb_to_left_edge;
zd->mb_to_right_edge = xd->mb_to_right_edge;
zd->mb_to_top_edge = xd->mb_to_top_edge ;
zd->mb_to_bottom_edge = xd->mb_to_bottom_edge;
zd->gf_active_ptr = xd->gf_active_ptr;
zd->frames_since_golden = xd->frames_since_golden;
zd->frames_till_alt_ref_frame = xd->frames_till_alt_ref_frame;
*/
zd->subpixel_predict = xd->subpixel_predict;
zd->subpixel_predict8x4 = xd->subpixel_predict8x4;
zd->subpixel_predict8x8 = xd->subpixel_predict8x8;
zd->subpixel_predict16x16 = xd->subpixel_predict16x16;
zd->segmentation_enabled = xd->segmentation_enabled;
zd->mb_segement_abs_delta = xd->mb_segement_abs_delta;
memcpy(zd->segment_feature_data, xd->segment_feature_data,
sizeof(xd->segment_feature_data));
memcpy(zd->dequant_y1_dc, xd->dequant_y1_dc, sizeof(xd->dequant_y1_dc));
memcpy(zd->dequant_y1, xd->dequant_y1, sizeof(xd->dequant_y1));
memcpy(zd->dequant_y2, xd->dequant_y2, sizeof(xd->dequant_y2));
memcpy(zd->dequant_uv, xd->dequant_uv, sizeof(xd->dequant_uv));
#if 1
/*TODO: Remove dequant from BLOCKD. This is a temporary solution until
* the quantizer code uses a passed in pointer to the dequant constants.
* This will also require modifications to the x86 and neon assembly.
* */
for (i = 0; i < 16; ++i) zd->block[i].dequant = zd->dequant_y1;
for (i = 16; i < 24; ++i) zd->block[i].dequant = zd->dequant_uv;
zd->block[24].dequant = zd->dequant_y2;
#endif
memcpy(z->rd_threshes, x->rd_threshes, sizeof(x->rd_threshes));
memcpy(z->rd_thresh_mult, x->rd_thresh_mult, sizeof(x->rd_thresh_mult));
z->zbin_over_quant = x->zbin_over_quant;
z->zbin_mode_boost_enabled = x->zbin_mode_boost_enabled;
z->zbin_mode_boost = x->zbin_mode_boost;
memset(z->error_bins, 0, sizeof(z->error_bins));
}
}
void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x,
MB_ROW_COMP *mbr_ei, int count) {
VP8_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
int i;
for (i = 0; i < count; ++i) {
MACROBLOCK *mb = &mbr_ei[i].mb;
MACROBLOCKD *mbd = &mb->e_mbd;
mbd->subpixel_predict = xd->subpixel_predict;
mbd->subpixel_predict8x4 = xd->subpixel_predict8x4;
mbd->subpixel_predict8x8 = xd->subpixel_predict8x8;
mbd->subpixel_predict16x16 = xd->subpixel_predict16x16;
mb->gf_active_ptr = x->gf_active_ptr;
memset(mbr_ei[i].segment_counts, 0, sizeof(mbr_ei[i].segment_counts));
mbr_ei[i].totalrate = 0;
mb->partition_info = x->pi + x->e_mbd.mode_info_stride * (i + 1);
mbd->frame_type = cm->frame_type;
mb->src = *cpi->Source;
mbd->pre = cm->yv12_fb[cm->lst_fb_idx];
mbd->dst = cm->yv12_fb[cm->new_fb_idx];
mb->src.y_buffer += 16 * x->src.y_stride * (i + 1);
mb->src.u_buffer += 8 * x->src.uv_stride * (i + 1);
mb->src.v_buffer += 8 * x->src.uv_stride * (i + 1);
vp8_build_block_offsets(mb);
mbd->left_context = &cm->left_context;
mb->mvc = cm->fc.mvc;
setup_mbby_copy(&mbr_ei[i].mb, x);
mbd->fullpixel_mask = 0xffffffff;
if (cm->full_pixel) mbd->fullpixel_mask = 0xfffffff8;
vp8_zero(mb->coef_counts);
vp8_zero(x->ymode_count);
mb->skip_true_count = 0;
vp8_zero(mb->MVcount);
mb->prediction_error = 0;
mb->intra_error = 0;
vp8_zero(mb->count_mb_ref_frame_usage);
mb->mbs_tested_so_far = 0;
mb->mbs_zero_last_dot_suppress = 0;
}
}
int vp8cx_create_encoder_threads(VP8_COMP *cpi) {
const VP8_COMMON *cm = &cpi->common;
vpx_atomic_init(&cpi->b_multi_threaded, 0);
cpi->encoding_thread_count = 0;
cpi->b_lpf_running = 0;
if (cm->processor_core_count > 1 && cpi->oxcf.multi_threaded > 1) {
int ithread;
int th_count = cpi->oxcf.multi_threaded - 1;
int rc = 0;
/* don't allocate more threads than cores available */
if (cpi->oxcf.multi_threaded > cm->processor_core_count) {
th_count = cm->processor_core_count - 1;
}
/* we have th_count + 1 (main) threads processing one row each */
/* no point to have more threads than the sync range allows */
if (th_count > ((cm->mb_cols / cpi->mt_sync_range) - 1)) {
th_count = (cm->mb_cols / cpi->mt_sync_range) - 1;
}
if (th_count == 0) return 0;
CHECK_MEM_ERROR(cpi->h_encoding_thread,
vpx_malloc(sizeof(pthread_t) * th_count));
CHECK_MEM_ERROR(cpi->h_event_start_encoding,
vpx_malloc(sizeof(sem_t) * th_count));
CHECK_MEM_ERROR(cpi->h_event_end_encoding,
vpx_malloc(sizeof(sem_t) * th_count));
CHECK_MEM_ERROR(cpi->mb_row_ei,
vpx_memalign(32, sizeof(MB_ROW_COMP) * th_count));
memset(cpi->mb_row_ei, 0, sizeof(MB_ROW_COMP) * th_count);
CHECK_MEM_ERROR(cpi->en_thread_data,
vpx_malloc(sizeof(ENCODETHREAD_DATA) * th_count));
vpx_atomic_store_release(&cpi->b_multi_threaded, 1);
cpi->encoding_thread_count = th_count;
/*
printf("[VP8:] multi_threaded encoding is enabled with %d threads\n\n",
(cpi->encoding_thread_count +1));
*/
for (ithread = 0; ithread < th_count; ++ithread) {
ENCODETHREAD_DATA *ethd = &cpi->en_thread_data[ithread];
/* Setup block ptrs and offsets */
vp8_setup_block_ptrs(&cpi->mb_row_ei[ithread].mb);
vp8_setup_block_dptrs(&cpi->mb_row_ei[ithread].mb.e_mbd);
sem_init(&cpi->h_event_start_encoding[ithread], 0, 0);
sem_init(&cpi->h_event_end_encoding[ithread], 0, 0);
ethd->ithread = ithread;
ethd->ptr1 = (void *)cpi;
ethd->ptr2 = (void *)&cpi->mb_row_ei[ithread];
rc = pthread_create(&cpi->h_encoding_thread[ithread], 0,
thread_encoding_proc, ethd);
if (rc) break;
}
if (rc) {
/* shutdown other threads */
vpx_atomic_store_release(&cpi->b_multi_threaded, 0);
for (--ithread; ithread >= 0; ithread--) {
pthread_join(cpi->h_encoding_thread[ithread], 0);
sem_destroy(&cpi->h_event_start_encoding[ithread]);
sem_destroy(&cpi->h_event_end_encoding[ithread]);
}
/* free thread related resources */
vpx_free(cpi->h_event_start_encoding);
vpx_free(cpi->h_event_end_encoding);
vpx_free(cpi->h_encoding_thread);
vpx_free(cpi->mb_row_ei);
vpx_free(cpi->en_thread_data);
return -1;
}
{
LPFTHREAD_DATA *lpfthd = &cpi->lpf_thread_data;
sem_init(&cpi->h_event_start_lpf, 0, 0);
sem_init(&cpi->h_event_end_lpf, 0, 0);
lpfthd->ptr1 = (void *)cpi;
rc = pthread_create(&cpi->h_filter_thread, 0, thread_loopfilter, lpfthd);
if (rc) {
/* shutdown other threads */
vpx_atomic_store_release(&cpi->b_multi_threaded, 0);
for (--ithread; ithread >= 0; ithread--) {
sem_post(&cpi->h_event_start_encoding[ithread]);
sem_post(&cpi->h_event_end_encoding[ithread]);
pthread_join(cpi->h_encoding_thread[ithread], 0);
sem_destroy(&cpi->h_event_start_encoding[ithread]);
sem_destroy(&cpi->h_event_end_encoding[ithread]);
}
sem_destroy(&cpi->h_event_end_lpf);
sem_destroy(&cpi->h_event_start_lpf);
/* free thread related resources */
vpx_free(cpi->h_event_start_encoding);
vpx_free(cpi->h_event_end_encoding);
vpx_free(cpi->h_encoding_thread);
vpx_free(cpi->mb_row_ei);
vpx_free(cpi->en_thread_data);
return -2;
}
}
}
return 0;
}
void vp8cx_remove_encoder_threads(VP8_COMP *cpi) {
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) {
/* shutdown other threads */
vpx_atomic_store_release(&cpi->b_multi_threaded, 0);
{
int i;
for (i = 0; i < cpi->encoding_thread_count; ++i) {
sem_post(&cpi->h_event_start_encoding[i]);
sem_post(&cpi->h_event_end_encoding[i]);
pthread_join(cpi->h_encoding_thread[i], 0);
sem_destroy(&cpi->h_event_start_encoding[i]);
sem_destroy(&cpi->h_event_end_encoding[i]);
}
sem_post(&cpi->h_event_start_lpf);
pthread_join(cpi->h_filter_thread, 0);
}
sem_destroy(&cpi->h_event_end_lpf);
sem_destroy(&cpi->h_event_start_lpf);
/* free thread related resources */
vpx_free(cpi->h_event_start_encoding);
vpx_free(cpi->h_event_end_encoding);
vpx_free(cpi->h_encoding_thread);
vpx_free(cpi->mb_row_ei);
vpx_free(cpi->en_thread_data);
}
}
#endif