vpx/vp9/common/vp9_pred_common.c
Ronald S. Bultje 1407bdc243 [WIP] Add column-based tiling.
This patch adds column-based tiling. The idea is to make each tile
independently decodable (after reading the common frame header) and
also independendly encodable (minus within-frame cost adjustments in
the RD loop) to speed-up hardware & software en/decoders if they used
multi-threading. Column-based tiling has the added advantage (over
other tiling methods) that it minimizes realtime use-case latency,
since all threads can start encoding data as soon as the first SB-row
worth of data is available to the encoder.

There is some test code that does random tile ordering in the decoder,
to confirm that each tile is indeed independently decodable from other
tiles in the same frame. At tile edges, all contexts assume default
values (i.e. 0, 0 motion vector, no coefficients, DC intra4x4 mode),
and motion vector search and ordering do not cross tiles in the same
frame.
t log

Tile independence is not maintained between frames ATM, i.e. tile 0 of
frame 1 is free to use motion vectors that point into any tile of frame
0. We support 1 (i.e. no tiling), 2 or 4 column-tiles.

The loopfilter crosses tile boundaries. I discussed this briefly with Aki
and he says that's OK. An in-loop loopfilter would need to do some sync
between tile threads, but that shouldn't be a big issue.

Resuls: with tiling disabled, we go up slightly because of improved edge
use in the intra4x4 prediction. With 2 tiles, we lose about ~1% on derf,
~0.35% on HD and ~0.55% on STD/HD. With 4 tiles, we lose another ~1.5%
on derf ~0.77% on HD and ~0.85% on STD/HD. Most of this loss is
concentrated in the low-bitrate end of clips, and most of it is because
of the loss of edges at tile boundaries and the resulting loss of intra
predictors.

TODO:
- more tiles (perhaps allow row-based tiling also, and max. 8 tiles)?
- maybe optionally (for EC purposes), motion vectors themselves
  should not cross tile edges, or we should emulate such borders as
  if they were off-frame, to limit error propagation to within one
  tile only. This doesn't have to be the default behaviour but could
  be an optional bitstream flag.

Change-Id: I5951c3a0742a767b20bc9fb5af685d9892c2c96f
2013-02-05 15:43:03 -08:00

462 lines
15 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_treecoder.h"
// TBD prediction functions for various bitstream signals
// Returns a context number for the given MB prediction signal
unsigned char vp9_get_pred_context(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
PRED_ID pred_id) {
int pred_context;
MODE_INFO *m = xd->mode_info_context;
// Note:
// The mode info data structure has a one element border above and to the
// left of the entries correpsonding to real macroblocks.
// The prediction flags in these dummy entries are initialised to 0.
switch (pred_id) {
case PRED_SEG_ID:
pred_context = (m - cm->mode_info_stride)->mbmi.seg_id_predicted;
if (xd->left_available)
pred_context += (m - 1)->mbmi.seg_id_predicted;
break;
case PRED_REF:
pred_context = (m - cm->mode_info_stride)->mbmi.ref_predicted;
if (xd->left_available)
pred_context += (m - 1)->mbmi.ref_predicted;
break;
case PRED_COMP:
// Context based on use of comp pred flag by neighbours
// pred_context =
// ((m - 1)->mbmi.second_ref_frame > INTRA_FRAME) +
// ((m - cm->mode_info_stride)->mbmi.second_ref_frame > INTRA_FRAME);
// Context based on mode and reference frame
// if ( m->mbmi.ref_frame == LAST_FRAME )
// pred_context = 0 + (m->mbmi.mode != ZEROMV);
// else if ( m->mbmi.ref_frame == GOLDEN_FRAME )
// pred_context = 2 + (m->mbmi.mode != ZEROMV);
// else
// pred_context = 4 + (m->mbmi.mode != ZEROMV);
if (m->mbmi.ref_frame == LAST_FRAME)
pred_context = 0;
else
pred_context = 1;
break;
case PRED_MBSKIP:
pred_context = (m - cm->mode_info_stride)->mbmi.mb_skip_coeff;
if (xd->left_available)
pred_context += (m - 1)->mbmi.mb_skip_coeff;
break;
case PRED_SWITCHABLE_INTERP:
{
int left_in_image = xd->left_available && (m - 1)->mbmi.mb_in_image;
int above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
int left_mode = (m - 1)->mbmi.mode;
int above_mode = (m - cm->mode_info_stride)->mbmi.mode;
int left_interp, above_interp;
if (left_in_image && left_mode >= NEARESTMV && left_mode <= SPLITMV)
left_interp = vp9_switchable_interp_map[(m - 1)->mbmi.interp_filter];
else
left_interp = VP9_SWITCHABLE_FILTERS;
assert(left_interp != -1);
if (above_in_image && above_mode >= NEARESTMV && above_mode <= SPLITMV)
above_interp = vp9_switchable_interp_map[
(m - cm->mode_info_stride)->mbmi.interp_filter];
else
above_interp = VP9_SWITCHABLE_FILTERS;
assert(above_interp != -1);
if (left_interp == above_interp)
pred_context = left_interp;
else if (left_interp == VP9_SWITCHABLE_FILTERS &&
above_interp != VP9_SWITCHABLE_FILTERS)
pred_context = above_interp;
else if (left_interp != VP9_SWITCHABLE_FILTERS &&
above_interp == VP9_SWITCHABLE_FILTERS)
pred_context = left_interp;
else
pred_context = VP9_SWITCHABLE_FILTERS;
}
break;
default:
// TODO *** add error trap code.
pred_context = 0;
break;
}
return pred_context;
}
// This function returns a context probability for coding a given
// prediction signal
vp9_prob vp9_get_pred_prob(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
PRED_ID pred_id) {
vp9_prob pred_probability;
int pred_context;
// Get the appropriate prediction context
pred_context = vp9_get_pred_context(cm, xd, pred_id);
switch (pred_id) {
case PRED_SEG_ID:
pred_probability = cm->segment_pred_probs[pred_context];
break;
case PRED_REF:
pred_probability = cm->ref_pred_probs[pred_context];
break;
case PRED_COMP:
// In keeping with convention elsewhre the probability returned is
// the probability of a "0" outcome which in this case means the
// probability of comp pred off.
pred_probability = cm->prob_comppred[pred_context];
break;
case PRED_MBSKIP:
pred_probability = cm->mbskip_pred_probs[pred_context];
break;
default:
// TODO *** add error trap code.
pred_probability = 128;
break;
}
return pred_probability;
}
// This function returns a context probability ptr for coding a given
// prediction signal
const vp9_prob *vp9_get_pred_probs(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd,
PRED_ID pred_id) {
const vp9_prob *pred_probability;
int pred_context;
// Get the appropriate prediction context
pred_context = vp9_get_pred_context(cm, xd, pred_id);
switch (pred_id) {
case PRED_SEG_ID:
pred_probability = &cm->segment_pred_probs[pred_context];
break;
case PRED_REF:
pred_probability = &cm->ref_pred_probs[pred_context];
break;
case PRED_COMP:
// In keeping with convention elsewhre the probability returned is
// the probability of a "0" outcome which in this case means the
// probability of comp pred off.
pred_probability = &cm->prob_comppred[pred_context];
break;
case PRED_MBSKIP:
pred_probability = &cm->mbskip_pred_probs[pred_context];
break;
case PRED_SWITCHABLE_INTERP:
pred_probability = &cm->fc.switchable_interp_prob[pred_context][0];
break;
default:
// TODO *** add error trap code.
pred_probability = NULL;
break;
}
return pred_probability;
}
// This function returns the status of the given prediction signal.
// I.e. is the predicted value for the given signal correct.
unsigned char vp9_get_pred_flag(const MACROBLOCKD *const xd,
PRED_ID pred_id) {
unsigned char pred_flag = 0;
switch (pred_id) {
case PRED_SEG_ID:
pred_flag = xd->mode_info_context->mbmi.seg_id_predicted;
break;
case PRED_REF:
pred_flag = xd->mode_info_context->mbmi.ref_predicted;
break;
case PRED_MBSKIP:
pred_flag = xd->mode_info_context->mbmi.mb_skip_coeff;
break;
default:
// TODO *** add error trap code.
pred_flag = 0;
break;
}
return pred_flag;
}
// This function sets the status of the given prediction signal.
// I.e. is the predicted value for the given signal correct.
void vp9_set_pred_flag(MACROBLOCKD *const xd,
PRED_ID pred_id,
unsigned char pred_flag) {
const int mis = xd->mode_info_stride;
switch (pred_id) {
case PRED_SEG_ID:
xd->mode_info_context->mbmi.seg_id_predicted = pred_flag;
if (xd->mode_info_context->mbmi.sb_type) {
#define sub(a, b) (b) < 0 ? (a) + (b) : (a)
const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type;
const int x_mbs = sub(n_mbs, xd->mb_to_right_edge >> 7);
const int y_mbs = sub(n_mbs, xd->mb_to_bottom_edge >> 7);
int x, y;
for (y = 0; y < y_mbs; y++) {
for (x = !y; x < x_mbs; x++) {
xd->mode_info_context[y * mis + x].mbmi.seg_id_predicted =
pred_flag;
}
}
}
break;
case PRED_REF:
xd->mode_info_context->mbmi.ref_predicted = pred_flag;
if (xd->mode_info_context->mbmi.sb_type) {
const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type;
const int x_mbs = sub(n_mbs, xd->mb_to_right_edge >> 7);
const int y_mbs = sub(n_mbs, xd->mb_to_bottom_edge >> 7);
int x, y;
for (y = 0; y < y_mbs; y++) {
for (x = !y; x < x_mbs; x++) {
xd->mode_info_context[y * mis + x].mbmi.ref_predicted = pred_flag;
}
}
}
break;
case PRED_MBSKIP:
xd->mode_info_context->mbmi.mb_skip_coeff = pred_flag;
if (xd->mode_info_context->mbmi.sb_type) {
const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type;
const int x_mbs = sub(n_mbs, xd->mb_to_right_edge >> 7);
const int y_mbs = sub(n_mbs, xd->mb_to_bottom_edge >> 7);
int x, y;
for (y = 0; y < y_mbs; y++) {
for (x = !y; x < x_mbs; x++) {
xd->mode_info_context[y * mis + x].mbmi.mb_skip_coeff = pred_flag;
}
}
}
break;
default:
// TODO *** add error trap code.
break;
}
}
// The following contain the guts of the prediction code used to
// peredict various bitstream signals.
// Macroblock segment id prediction function
unsigned char vp9_get_pred_mb_segid(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd, int MbIndex) {
// Currently the prediction for the macroblock segment ID is
// the value stored for this macroblock in the previous frame.
if (!xd->mode_info_context->mbmi.sb_type) {
return cm->last_frame_seg_map[MbIndex];
} else {
const int n_mbs = 1 << xd->mode_info_context->mbmi.sb_type;
const int mb_col = MbIndex % cm->mb_cols;
const int mb_row = MbIndex / cm->mb_cols;
const int x_mbs = MIN(n_mbs, cm->mb_cols - mb_col);
const int y_mbs = MIN(n_mbs, cm->mb_rows - mb_row);
int x, y;
unsigned seg_id = -1;
for (y = mb_row; y < mb_row + y_mbs; y++) {
for (x = mb_col; x < mb_col + x_mbs; x++) {
seg_id = MIN(seg_id, cm->last_frame_seg_map[cm->mb_cols * y + x]);
}
}
return seg_id;
}
}
MV_REFERENCE_FRAME vp9_get_pred_ref(const VP9_COMMON *const cm,
const MACROBLOCKD *const xd) {
MODE_INFO *m = xd->mode_info_context;
MV_REFERENCE_FRAME left;
MV_REFERENCE_FRAME above;
MV_REFERENCE_FRAME above_left;
MV_REFERENCE_FRAME pred_ref = LAST_FRAME;
int segment_id = xd->mode_info_context->mbmi.segment_id;
int seg_ref_active;
int i;
unsigned char frame_allowed[MAX_REF_FRAMES] = {1, 1, 1, 1};
unsigned char ref_score[MAX_REF_FRAMES];
unsigned char best_score = 0;
unsigned char left_in_image;
unsigned char above_in_image;
unsigned char above_left_in_image;
// Is segment coding ennabled
seg_ref_active = vp9_segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME);
// Special case treatment if segment coding is enabled.
// Dont allow prediction of a reference frame that the segment
// does not allow
if (seg_ref_active) {
for (i = 0; i < MAX_REF_FRAMES; i++) {
frame_allowed[i] =
vp9_check_segref(xd, segment_id, i);
// Score set to 0 if ref frame not allowed
ref_score[i] = cm->ref_scores[i] * frame_allowed[i];
}
} else
vpx_memcpy(ref_score, cm->ref_scores, sizeof(ref_score));
// Reference frames used by neighbours
left = (m - 1)->mbmi.ref_frame;
above = (m - cm->mode_info_stride)->mbmi.ref_frame;
above_left = (m - 1 - cm->mode_info_stride)->mbmi.ref_frame;
// Are neighbours in image
left_in_image = (m - 1)->mbmi.mb_in_image && xd->left_available;
above_in_image = (m - cm->mode_info_stride)->mbmi.mb_in_image;
above_left_in_image = (m - 1 - cm->mode_info_stride)->mbmi.mb_in_image &&
xd->left_available;
// Adjust scores for candidate reference frames based on neigbours
if (frame_allowed[left] && left_in_image) {
ref_score[left] += 16;
if (above_left_in_image && (left == above_left))
ref_score[left] += 4;
}
if (frame_allowed[above] && above_in_image) {
ref_score[above] += 16;
if (above_left_in_image && (above == above_left))
ref_score[above] += 4;
}
// Now choose the candidate with the highest score
for (i = 0; i < MAX_REF_FRAMES; i++) {
if (ref_score[i] > best_score) {
pred_ref = i;
best_score = ref_score[i];
}
}
return pred_ref;
}
// Functions to computes a set of modified reference frame probabilities
// to use when the prediction of the reference frame value fails
void vp9_calc_ref_probs(int *count, vp9_prob *probs) {
int tot_count;
tot_count = count[0] + count[1] + count[2] + count[3];
probs[0] = get_prob(count[0], tot_count);
tot_count -= count[0];
probs[1] = get_prob(count[1], tot_count);
tot_count -= count[1];
probs[2] = get_prob(count[2], tot_count);
}
// Computes a set of modified conditional probabilities for the reference frame
// Values willbe set to 0 for reference frame options that are not possible
// because wither they were predicted and prediction has failed or because
// they are not allowed for a given segment.
void vp9_compute_mod_refprobs(VP9_COMMON *const cm) {
int norm_cnt[MAX_REF_FRAMES];
int intra_count;
int inter_count;
int last_count;
int gfarf_count;
int gf_count;
int arf_count;
intra_count = cm->prob_intra_coded;
inter_count = (255 - intra_count);
last_count = (inter_count * cm->prob_last_coded) / 255;
gfarf_count = inter_count - last_count;
gf_count = (gfarf_count * cm->prob_gf_coded) / 255;
arf_count = gfarf_count - gf_count;
// Work out modified reference frame probabilities to use where prediction
// of the reference frame fails
norm_cnt[0] = 0;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[INTRA_FRAME]);
cm->mod_refprobs[INTRA_FRAME][0] = 0; // This branch implicit
norm_cnt[0] = intra_count;
norm_cnt[1] = 0;
norm_cnt[2] = gf_count;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[LAST_FRAME]);
cm->mod_refprobs[LAST_FRAME][1] = 0; // This branch implicit
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = 0;
norm_cnt[3] = arf_count;
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[GOLDEN_FRAME]);
cm->mod_refprobs[GOLDEN_FRAME][2] = 0; // This branch implicit
norm_cnt[0] = intra_count;
norm_cnt[1] = last_count;
norm_cnt[2] = gf_count;
norm_cnt[3] = 0;
vp9_calc_ref_probs(norm_cnt, cm->mod_refprobs[ALTREF_FRAME]);
cm->mod_refprobs[ALTREF_FRAME][2] = 0; // This branch implicit
// Score the reference frames based on overal frequency.
// These scores contribute to the prediction choices.
// Max score 17 min 1
cm->ref_scores[INTRA_FRAME] = 1 + (intra_count * 16 / 255);
cm->ref_scores[LAST_FRAME] = 1 + (last_count * 16 / 255);
cm->ref_scores[GOLDEN_FRAME] = 1 + (gf_count * 16 / 255);
cm->ref_scores[ALTREF_FRAME] = 1 + (arf_count * 16 / 255);
}