vpx/vp9/decoder/vp9_decodemv.c
Yaowu Xu 12180c8329 Remove unnecessary copying of probs.
Change-Id: Ic924f07c6ab0c929c6cdf11880d3c625806e272c
2013-06-18 23:02:27 -07:00

824 lines
29 KiB
C

/*
Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/decoder/vp9_treereader.h"
#include "vp9/common/vp9_entropymv.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_findnearmv.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_pred_common.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/common/vp9_mvref_common.h"
#if CONFIG_DEBUG
#include <assert.h>
#endif
// #define DEBUG_DEC_MV
#ifdef DEBUG_DEC_MV
int dec_mvcount = 0;
#endif
// #define DEC_DEBUG
#ifdef DEC_DEBUG
extern int dec_debug;
#endif
static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) {
MB_PREDICTION_MODE m = treed_read(r, vp9_intra_mode_tree, p);
return m;
}
static int read_mb_segid(vp9_reader *r, MACROBLOCKD *xd) {
return treed_read(r, vp9_segment_tree, xd->mb_segment_tree_probs);
}
static void set_segment_id(VP9_COMMON *cm, MB_MODE_INFO *mbmi,
int mi_row, int mi_col, int segment_id) {
const int mi_index = mi_row * cm->mi_cols + mi_col;
const BLOCK_SIZE_TYPE sb_type = mbmi->sb_type;
const int bw = 1 << mi_width_log2(sb_type);
const int bh = 1 << mi_height_log2(sb_type);
const int ymis = MIN(cm->mi_rows - mi_row, bh);
const int xmis = MIN(cm->mi_cols - mi_col, bw);
int x, y;
for (y = 0; y < ymis; y++) {
for (x = 0; x < xmis; x++) {
const int index = mi_index + (y * cm->mi_cols + x);
cm->last_frame_seg_map[index] = segment_id;
}
}
}
static TX_SIZE select_txfm_size(VP9_COMMON *cm, MACROBLOCKD *xd,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
const int context = vp9_get_pred_context(cm, xd, PRED_TX_SIZE);
const vp9_prob *tx_probs = vp9_get_pred_probs(cm, xd, PRED_TX_SIZE);
TX_SIZE txfm_size = vp9_read(r, tx_probs[0]);
if (txfm_size != TX_4X4 && bsize >= BLOCK_SIZE_MB16X16) {
txfm_size += vp9_read(r, tx_probs[1]);
if (txfm_size != TX_8X8 && bsize >= BLOCK_SIZE_SB32X32)
txfm_size += vp9_read(r, tx_probs[2]);
}
if (bsize >= BLOCK_SIZE_SB32X32) {
cm->fc.tx_count_32x32p[context][txfm_size]++;
} else if (bsize >= BLOCK_SIZE_MB16X16) {
cm->fc.tx_count_16x16p[context][txfm_size]++;
} else {
cm->fc.tx_count_8x8p[context][txfm_size]++;
}
return txfm_size;
}
static void kfread_modes(VP9D_COMP *pbi, MODE_INFO *m,
int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mis = cm->mode_info_stride;
// Read segmentation map if it is being updated explicitly this frame
m->mbmi.segment_id = 0;
if (xd->segmentation_enabled && xd->update_mb_segmentation_map) {
m->mbmi.segment_id = read_mb_segid(r, xd);
set_segment_id(cm, &m->mbmi, mi_row, mi_col, m->mbmi.segment_id);
}
m->mbmi.mb_skip_coeff = vp9_segfeature_active(xd, m->mbmi.segment_id,
SEG_LVL_SKIP);
if (!m->mbmi.mb_skip_coeff) {
m->mbmi.mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
cm->fc.mbskip_count[vp9_get_pred_context(cm, xd, PRED_MBSKIP)]
[m->mbmi.mb_skip_coeff]++;
}
if (cm->txfm_mode == TX_MODE_SELECT &&
m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
m->mbmi.txfm_size = select_txfm_size(cm, xd, r, m->mbmi.sb_type);
} else if (cm->txfm_mode >= ALLOW_32X32 &&
m->mbmi.sb_type >= BLOCK_SIZE_SB32X32) {
m->mbmi.txfm_size = TX_32X32;
} else if (cm->txfm_mode >= ALLOW_16X16 &&
m->mbmi.sb_type >= BLOCK_SIZE_MB16X16) {
m->mbmi.txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 &&
m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
m->mbmi.txfm_size = TX_8X8;
} else {
m->mbmi.txfm_size = TX_4X4;
}
// luma mode
m->mbmi.ref_frame[0] = INTRA_FRAME;
if (m->mbmi.sb_type >= BLOCK_SIZE_SB8X8) {
const MB_PREDICTION_MODE A = above_block_mode(m, 0, mis);
const MB_PREDICTION_MODE L = xd->left_available ?
left_block_mode(m, 0) : DC_PRED;
m->mbmi.mode = read_intra_mode(r, cm->kf_y_mode_prob[A][L]);
} else {
int idx, idy;
int bw = 1 << b_width_log2(m->mbmi.sb_type);
int bh = 1 << b_height_log2(m->mbmi.sb_type);
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
int ib = idy * 2 + idx;
int k;
const MB_PREDICTION_MODE A = above_block_mode(m, ib, mis);
const MB_PREDICTION_MODE L = (xd->left_available || idx) ?
left_block_mode(m, ib) : DC_PRED;
m->bmi[ib].as_mode.first =
read_intra_mode(r, cm->kf_y_mode_prob[A][L]);
for (k = 1; k < bh; ++k)
m->bmi[ib + k * 2].as_mode.first = m->bmi[ib].as_mode.first;
for (k = 1; k < bw; ++k)
m->bmi[ib + k].as_mode.first = m->bmi[ib].as_mode.first;
}
}
m->mbmi.mode = m->bmi[3].as_mode.first;
}
m->mbmi.uv_mode = read_intra_mode(r, cm->kf_uv_mode_prob[m->mbmi.mode]);
}
static int read_mv_component(vp9_reader *r,
const nmv_component *mvcomp, int usehp) {
int mag, d, fr, hp;
const int sign = vp9_read(r, mvcomp->sign);
const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes);
// Integer part
if (mv_class == MV_CLASS_0) {
d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0);
} else {
int i;
const int n = mv_class + CLASS0_BITS - 1; // number of bits
d = 0;
for (i = 0; i < n; ++i)
d |= vp9_read(r, mvcomp->bits[i]) << i;
}
// Fractional part
fr = treed_read(r, vp9_mv_fp_tree,
mv_class == MV_CLASS_0 ? mvcomp->class0_fp[d] : mvcomp->fp);
// High precision part (if hp is not used, the default value of the hp is 1)
hp = usehp ? vp9_read(r,
mv_class == MV_CLASS_0 ? mvcomp->class0_hp : mvcomp->hp)
: 1;
// result
mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1;
return sign ? -mag : mag;
}
static void update_nmv(vp9_reader *r, vp9_prob *const p,
const vp9_prob upd_p) {
if (vp9_read(r, upd_p)) {
#ifdef LOW_PRECISION_MV_UPDATE
*p = (vp9_read_literal(r, 7) << 1) | 1;
#else
*p = (vp9_read_literal(r, 8));
#endif
}
}
static void read_nmvprobs(vp9_reader *r, nmv_context *mvctx,
int usehp) {
int i, j, k;
#ifdef MV_GROUP_UPDATE
if (!vp9_read_bit(r))
return;
#endif
for (j = 0; j < MV_JOINTS - 1; ++j)
update_nmv(r, &mvctx->joints[j], VP9_NMV_UPDATE_PROB);
for (i = 0; i < 2; ++i) {
update_nmv(r, &mvctx->comps[i].sign, VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_CLASSES - 1; ++j)
update_nmv(r, &mvctx->comps[i].classes[j], VP9_NMV_UPDATE_PROB);
for (j = 0; j < CLASS0_SIZE - 1; ++j)
update_nmv(r, &mvctx->comps[i].class0[j], VP9_NMV_UPDATE_PROB);
for (j = 0; j < MV_OFFSET_BITS; ++j)
update_nmv(r, &mvctx->comps[i].bits[j], VP9_NMV_UPDATE_PROB);
}
for (i = 0; i < 2; ++i) {
for (j = 0; j < CLASS0_SIZE; ++j)
for (k = 0; k < 3; ++k)
update_nmv(r, &mvctx->comps[i].class0_fp[j][k], VP9_NMV_UPDATE_PROB);
for (j = 0; j < 3; ++j)
update_nmv(r, &mvctx->comps[i].fp[j], VP9_NMV_UPDATE_PROB);
}
if (usehp) {
for (i = 0; i < 2; ++i) {
update_nmv(r, &mvctx->comps[i].class0_hp, VP9_NMV_UPDATE_PROB);
update_nmv(r, &mvctx->comps[i].hp, VP9_NMV_UPDATE_PROB);
}
}
}
// Read the referncence frame
static void read_ref_frame(VP9D_COMP *pbi, vp9_reader *r,
int segment_id, MV_REFERENCE_FRAME ref_frame[2]) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int seg_ref_active = vp9_segfeature_active(xd, segment_id,
SEG_LVL_REF_FRAME);
// Segment reference frame features not available.
if (!seg_ref_active) {
int is_comp;
int comp_ctx = vp9_get_pred_context(cm, xd, PRED_COMP_INTER_INTER);
if (cm->comp_pred_mode == HYBRID_PREDICTION) {
is_comp = vp9_read(r, cm->fc.comp_inter_prob[comp_ctx]);
cm->fc.comp_inter_count[comp_ctx][is_comp]++;
} else {
is_comp = cm->comp_pred_mode == COMP_PREDICTION_ONLY;
}
// FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding
if (is_comp) {
int b, fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref];
int ref_ctx = vp9_get_pred_context(cm, xd, PRED_COMP_REF_P);
ref_frame[fix_ref_idx] = cm->comp_fixed_ref;
b = vp9_read(r, cm->fc.comp_ref_prob[ref_ctx]);
cm->fc.comp_ref_count[ref_ctx][b]++;
ref_frame[!fix_ref_idx] = cm->comp_var_ref[b];
} else {
int ref1_ctx = vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P1);
ref_frame[1] = NONE;
if (vp9_read(r, cm->fc.single_ref_prob[ref1_ctx][0])) {
int ref2_ctx = vp9_get_pred_context(cm, xd, PRED_SINGLE_REF_P2);
int b2 = vp9_read(r, cm->fc.single_ref_prob[ref2_ctx][1]);
ref_frame[0] = b2 ? ALTREF_FRAME : GOLDEN_FRAME;
cm->fc.single_ref_count[ref1_ctx][0][1]++;
cm->fc.single_ref_count[ref2_ctx][1][b2]++;
} else {
ref_frame[0] = LAST_FRAME;
cm->fc.single_ref_count[ref1_ctx][0][0]++;
}
}
} else {
ref_frame[0] = vp9_get_segdata(xd, segment_id, SEG_LVL_REF_FRAME);
ref_frame[1] = NONE;
}
}
static MB_PREDICTION_MODE read_sb_mv_ref(vp9_reader *r, const vp9_prob *p) {
return (MB_PREDICTION_MODE) treed_read(r, vp9_sb_mv_ref_tree, p);
}
#ifdef VPX_MODE_COUNT
unsigned int vp9_mv_cont_count[5][4] = {
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 },
{ 0, 0, 0, 0 }
};
#endif
static void read_switchable_interp_probs(VP9_COMMON* const cm, vp9_reader *r) {
int i, j;
for (j = 0; j <= VP9_SWITCHABLE_FILTERS; ++j)
for (i = 0; i < VP9_SWITCHABLE_FILTERS - 1; ++i) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
cm->fc.switchable_interp_prob[j][i] =
// vp9_read_prob(r);
vp9_read_prob_diff_update(r, cm->fc.switchable_interp_prob[j][i]);
}
}
}
static void read_inter_mode_probs(VP9_COMMON *const cm, vp9_reader *r) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < VP9_INTER_MODES - 1; ++j) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
// cm->fc.inter_mode_probs[i][j] = vp9_read_prob(r);
cm->fc.inter_mode_probs[i][j] =
vp9_read_prob_diff_update(r, cm->fc.inter_mode_probs[i][j]);
}
}
}
static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) {
COMPPREDMODE_TYPE mode = vp9_read_bit(r);
if (mode)
mode += vp9_read_bit(r);
return mode;
}
static void mb_mode_mv_init(VP9D_COMP *pbi, vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
if ((cm->frame_type != KEY_FRAME) && (!cm->intra_only)) {
nmv_context *const nmvc = &pbi->common.fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
int i, j;
read_inter_mode_probs(cm, r);
if (cm->mcomp_filter_type == SWITCHABLE)
read_switchable_interp_probs(cm, r);
for (i = 0; i < INTRA_INTER_CONTEXTS; i++) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
cm->fc.intra_inter_prob[i] =
vp9_read_prob_diff_update(r, cm->fc.intra_inter_prob[i]);
}
if (cm->allow_comp_inter_inter) {
cm->comp_pred_mode = read_comp_pred_mode(r);
if (cm->comp_pred_mode == HYBRID_PREDICTION)
for (i = 0; i < COMP_INTER_CONTEXTS; i++)
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
cm->fc.comp_inter_prob[i] =
vp9_read_prob_diff_update(r, cm->fc.comp_inter_prob[i]);
} else {
cm->comp_pred_mode = SINGLE_PREDICTION_ONLY;
}
if (cm->comp_pred_mode != COMP_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
cm->fc.single_ref_prob[i][0] =
vp9_read_prob_diff_update(r, cm->fc.single_ref_prob[i][0]);
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
cm->fc.single_ref_prob[i][1] =
vp9_read_prob_diff_update(r, cm->fc.single_ref_prob[i][1]);
}
if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY)
for (i = 0; i < REF_CONTEXTS; i++)
if (vp9_read(r, VP9_MODE_UPDATE_PROB))
cm->fc.comp_ref_prob[i] =
vp9_read_prob_diff_update(r, cm->fc.comp_ref_prob[i]);
// VP9_INTRA_MODES
for (j = 0; j < BLOCK_SIZE_GROUPS; j++) {
for (i = 0; i < VP9_INTRA_MODES - 1; ++i) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
cm->fc.y_mode_prob[j][i] =
vp9_read_prob_diff_update(r, cm->fc.y_mode_prob[j][i]);
}
}
}
for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) {
for (i = 0; i < PARTITION_TYPES - 1; ++i) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
cm->fc.partition_prob[INTER_FRAME][j][i] =
vp9_read_prob_diff_update(r,
cm->fc.partition_prob[INTER_FRAME][j][i]);
}
}
}
read_nmvprobs(r, nmvc, xd->allow_high_precision_mv);
}
}
// This function either reads the segment id for the current macroblock from
// the bitstream or if the value is temporally predicted asserts the predicted
// value
static int read_mb_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MODE_INFO *const mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if (!xd->segmentation_enabled)
return 0; // Default for disabled segmentation
if (xd->update_mb_segmentation_map) {
int segment_id;
if (cm->temporal_update) {
// Temporal coding of the segment id for this mb is enabled.
// Get the context based probability for reading the
// prediction status flag
const vp9_prob pred_prob = vp9_get_pred_prob(cm, xd, PRED_SEG_ID);
const int pred_flag = vp9_read(r, pred_prob);
vp9_set_pred_flag(xd, PRED_SEG_ID, pred_flag);
// If the value is flagged as correctly predicted
// then use the predicted value, otherwise decode it explicitly
segment_id = pred_flag ? vp9_get_pred_mi_segid(cm, mbmi->sb_type,
mi_row, mi_col)
: read_mb_segid(r, xd);
} else {
segment_id = read_mb_segid(r, xd); // Normal unpredicted coding mode
}
set_segment_id(cm, mbmi, mi_row, mi_col, segment_id); // Side effect
return segment_id;
} else {
return vp9_get_pred_mi_segid(cm, mbmi->sb_type, mi_row, mi_col);
}
}
static INLINE void assign_and_clamp_mv(int_mv *dst, const int_mv *src,
int mb_to_left_edge,
int mb_to_right_edge,
int mb_to_top_edge,
int mb_to_bottom_edge) {
dst->as_int = src->as_int;
clamp_mv(dst, mb_to_left_edge, mb_to_right_edge, mb_to_top_edge,
mb_to_bottom_edge);
}
static INLINE void decode_mv(vp9_reader *r, MV *mv, const MV *ref,
const nmv_context *ctx,
nmv_context_counts *counts,
int usehp) {
const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints);
MV diff = {0, 0};
usehp = usehp && vp9_use_nmv_hp(ref);
if (mv_joint_vertical(j))
diff.row = read_mv_component(r, &ctx->comps[0], usehp);
if (mv_joint_horizontal(j))
diff.col = read_mv_component(r, &ctx->comps[1], usehp);
vp9_increment_nmv(&diff, ref, counts, usehp);
mv->row = diff.row + ref->row;
mv->col = diff.col + ref->col;
}
static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type(
VP9D_COMP *pbi, vp9_reader *r) {
const int index = treed_read(r, vp9_switchable_interp_tree,
vp9_get_pred_probs(&pbi->common, &pbi->mb,
PRED_SWITCHABLE_INTERP));
++pbi->common.fc.switchable_interp_count
[vp9_get_pred_context(
&pbi->common, &pbi->mb, PRED_SWITCHABLE_INTERP)][index];
return vp9_switchable_interp[index];
}
static void read_mb_modes_mv(VP9D_COMP *pbi, MODE_INFO *mi, MB_MODE_INFO *mbmi,
int mi_row, int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
nmv_context *const nmvc = &cm->fc.nmvc;
MACROBLOCKD *const xd = &pbi->mb;
int_mv *const mv0 = &mbmi->mv[0];
int_mv *const mv1 = &mbmi->mv[1];
BLOCK_SIZE_TYPE bsize = mi->mbmi.sb_type;
int bw = 1 << b_width_log2(bsize);
int bh = 1 << b_height_log2(bsize);
int mb_to_left_edge, mb_to_right_edge, mb_to_top_edge, mb_to_bottom_edge;
int j, idx, idy;
mbmi->ref_frame[1] = NONE;
// Make sure the MACROBLOCKD mode info pointer is pointed at the
// correct entry for the current macroblock.
xd->mode_info_context = mi;
// Distance of Mb to the various image edges.
// These specified to 8th pel as they are always compared to MV values
// that are in 1/8th pel units
set_mi_row_col(cm, xd, mi_row, 1 << mi_height_log2(bsize),
mi_col, 1 << mi_width_log2(bsize));
mb_to_top_edge = xd->mb_to_top_edge - LEFT_TOP_MARGIN;
mb_to_bottom_edge = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN;
mb_to_left_edge = xd->mb_to_left_edge - LEFT_TOP_MARGIN;
mb_to_right_edge = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN;
// Read the macroblock segment id.
mbmi->segment_id = read_mb_segment_id(pbi, mi_row, mi_col, r);
mbmi->mb_skip_coeff = vp9_segfeature_active(xd, mbmi->segment_id,
SEG_LVL_SKIP);
if (!mbmi->mb_skip_coeff) {
mbmi->mb_skip_coeff = vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_MBSKIP));
cm->fc.mbskip_count[vp9_get_pred_context(cm, xd, PRED_MBSKIP)]
[mbmi->mb_skip_coeff]++;
}
// Read the reference frame
if (!vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_REF_FRAME)) {
mbmi->ref_frame[0] =
vp9_read(r, vp9_get_pred_prob(cm, xd, PRED_INTRA_INTER));
cm->fc.intra_inter_count[vp9_get_pred_context(cm, xd, PRED_INTRA_INTER)]
[mbmi->ref_frame[0] != INTRA_FRAME]++;
} else {
mbmi->ref_frame[0] =
vp9_get_segdata(xd, mbmi->segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME;
}
if (cm->txfm_mode == TX_MODE_SELECT &&
(mbmi->mb_skip_coeff == 0 || mbmi->ref_frame[0] == INTRA_FRAME) &&
bsize >= BLOCK_SIZE_SB8X8) {
mbmi->txfm_size = select_txfm_size(cm, xd, r, bsize);
} else if (bsize >= BLOCK_SIZE_SB32X32 &&
cm->txfm_mode >= ALLOW_32X32) {
mbmi->txfm_size = TX_32X32;
} else if (cm->txfm_mode >= ALLOW_16X16 &&
bsize >= BLOCK_SIZE_MB16X16) {
mbmi->txfm_size = TX_16X16;
} else if (cm->txfm_mode >= ALLOW_8X8 && (bsize >= BLOCK_SIZE_SB8X8)) {
mbmi->txfm_size = TX_8X8;
} else {
mbmi->txfm_size = TX_4X4;
}
// If reference frame is an Inter frame
if (mbmi->ref_frame[0] != INTRA_FRAME) {
int_mv nearest, nearby, best_mv;
int_mv nearest_second, nearby_second, best_mv_second;
vp9_prob *mv_ref_p;
read_ref_frame(pbi, r, mbmi->segment_id, mbmi->ref_frame);
{
#ifdef DEC_DEBUG
if (dec_debug)
printf("%d %d\n", xd->mode_info_context->mbmi.mv[0].as_mv.row,
xd->mode_info_context->mbmi.mv[0].as_mv.col);
#endif
vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context,
mbmi->ref_frame[0], mbmi->ref_mvs[mbmi->ref_frame[0]],
cm->ref_frame_sign_bias);
mv_ref_p = cm->fc.inter_mode_probs[
mbmi->mb_mode_context[mbmi->ref_frame[0]]];
// If the segment level skip mode enabled
if (vp9_segfeature_active(xd, mbmi->segment_id, SEG_LVL_SKIP)) {
mbmi->mode = ZEROMV;
} else if (bsize >= BLOCK_SIZE_SB8X8) {
mbmi->mode = read_sb_mv_ref(r, mv_ref_p);
vp9_accum_mv_refs(cm, mbmi->mode,
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
}
if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[mbmi->ref_frame[0]],
&nearest, &nearby);
best_mv.as_int = mbmi->ref_mvs[mbmi->ref_frame[0]][0].as_int;
}
#ifdef DEC_DEBUG
if (dec_debug)
printf("[D %d %d] %d %d %d %d\n", ref_frame,
mbmi->mb_mode_context[ref_frame],
mv_ref_p[0], mv_ref_p[1], mv_ref_p[2], mv_ref_p[3]);
#endif
}
mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE
? read_switchable_filter_type(pbi, r)
: cm->mcomp_filter_type;
if (mbmi->ref_frame[1] > INTRA_FRAME) {
vp9_find_mv_refs(cm, xd, mi, xd->prev_mode_info_context,
mbmi->ref_frame[1],
mbmi->ref_mvs[mbmi->ref_frame[1]],
cm->ref_frame_sign_bias);
if (bsize < BLOCK_SIZE_SB8X8 || mbmi->mode != ZEROMV) {
vp9_find_best_ref_mvs(xd,
mbmi->ref_mvs[mbmi->ref_frame[1]],
&nearest_second,
&nearby_second);
best_mv_second.as_int = mbmi->ref_mvs[mbmi->ref_frame[1]][0].as_int;
}
}
mbmi->uv_mode = DC_PRED;
if (mbmi->sb_type < BLOCK_SIZE_SB8X8) {
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
int_mv blockmv, secondmv;
int blockmode;
int i;
j = idy * 2 + idx;
blockmode = read_sb_mv_ref(r, mv_ref_p);
vp9_accum_mv_refs(cm, blockmode,
mbmi->mb_mode_context[mbmi->ref_frame[0]]);
if (blockmode == NEARESTMV || blockmode == NEARMV) {
MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1];
vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest, &nearby, j, 0);
if (rf2 > 0) {
vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest_second,
&nearby_second, j, 1);
}
}
switch (blockmode) {
case NEWMV:
decode_mv(r, &blockmv.as_mv, &best_mv.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
if (mbmi->ref_frame[1] > 0)
decode_mv(r, &secondmv.as_mv, &best_mv_second.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][3]++;
#endif
break;
case NEARESTMV:
blockmv.as_int = nearest.as_int;
if (mbmi->ref_frame[1] > 0)
secondmv.as_int = nearest_second.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][0]++;
#endif
break;
case NEARMV:
blockmv.as_int = nearby.as_int;
if (mbmi->ref_frame[1] > 0)
secondmv.as_int = nearby_second.as_int;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][1]++;
#endif
break;
case ZEROMV:
blockmv.as_int = 0;
if (mbmi->ref_frame[1] > 0)
secondmv.as_int = 0;
#ifdef VPX_MODE_COUNT
vp9_mv_cont_count[mv_contz][2]++;
#endif
break;
default:
break;
}
mi->bmi[j].as_mv[0].as_int = blockmv.as_int;
if (mbmi->ref_frame[1] > 0)
mi->bmi[j].as_mv[1].as_int = secondmv.as_int;
for (i = 1; i < bh; ++i)
vpx_memcpy(&mi->bmi[j + i * 2], &mi->bmi[j], sizeof(mi->bmi[j]));
for (i = 1; i < bw; ++i)
vpx_memcpy(&mi->bmi[j + i], &mi->bmi[j], sizeof(mi->bmi[j]));
mi->mbmi.mode = blockmode;
}
}
mv0->as_int = mi->bmi[3].as_mv[0].as_int;
mv1->as_int = mi->bmi[3].as_mv[1].as_int;
} else {
switch (mbmi->mode) {
case NEARMV:
// Clip "next_nearest" so that it does not extend to far out of image
assign_and_clamp_mv(mv0, &nearby, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->ref_frame[1] > 0)
assign_and_clamp_mv(mv1, &nearby_second, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
case NEARESTMV:
// Clip "next_nearest" so that it does not extend to far out of image
assign_and_clamp_mv(mv0, &nearest, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
if (mbmi->ref_frame[1] > 0)
assign_and_clamp_mv(mv1, &nearest_second, mb_to_left_edge,
mb_to_right_edge,
mb_to_top_edge,
mb_to_bottom_edge);
break;
case ZEROMV:
mv0->as_int = 0;
if (mbmi->ref_frame[1] > 0)
mv1->as_int = 0;
break;
case NEWMV:
decode_mv(r, &mv0->as_mv, &best_mv.as_mv, nmvc, &cm->fc.NMVcount,
xd->allow_high_precision_mv);
if (mbmi->ref_frame[1] > 0)
decode_mv(r, &mv1->as_mv, &best_mv_second.as_mv, nmvc,
&cm->fc.NMVcount, xd->allow_high_precision_mv);
break;
default:
#if CONFIG_DEBUG
assert(0);
#endif
break;
}
}
} else {
// required for left and above block mv
mv0->as_int = 0;
if (bsize >= BLOCK_SIZE_SB8X8) {
const BLOCK_SIZE_TYPE bsize = xd->mode_info_context->mbmi.sb_type;
const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize);
const int bsl = MIN(bwl, bhl);
mbmi->mode = read_intra_mode(r, cm->fc.y_mode_prob[MIN(3, bsl)]);
cm->fc.y_mode_counts[MIN(3, bsl)][mbmi->mode]++;
} else {
int idx, idy;
for (idy = 0; idy < 2; idy += bh) {
for (idx = 0; idx < 2; idx += bw) {
int ib = idy * 2 + idx, k;
int m = read_intra_mode(r, cm->fc.y_mode_prob[0]);
mi->bmi[ib].as_mode.first = m;
cm->fc.y_mode_counts[0][m]++;
for (k = 1; k < bh; ++k)
mi->bmi[ib + k * 2].as_mode.first = m;
for (k = 1; k < bw; ++k)
mi->bmi[ib + k].as_mode.first = m;
}
}
mbmi->mode = mi->bmi[3].as_mode.first;
}
mbmi->uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[mbmi->mode]);
cm->fc.uv_mode_counts[mbmi->mode][mbmi->uv_mode]++;
}
}
void vp9_decode_mode_mvs_init(VP9D_COMP* const pbi, vp9_reader *r) {
VP9_COMMON *cm = &pbi->common;
int k;
// TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove.
// vpx_memset(cm->fc.mbskip_probs, 0, sizeof(cm->fc.mbskip_probs));
for (k = 0; k < MBSKIP_CONTEXTS; ++k) {
if (vp9_read(r, VP9_MODE_UPDATE_PROB)) {
cm->fc.mbskip_probs[k] =
vp9_read_prob_diff_update(r, cm->fc.mbskip_probs[k]);
}
// cm->fc.mbskip_probs[k] = vp9_read_prob(r);
}
mb_mode_mv_init(pbi, r);
}
void vp9_decode_mb_mode_mv(VP9D_COMP* const pbi,
MACROBLOCKD* const xd,
int mi_row,
int mi_col,
vp9_reader *r) {
VP9_COMMON *const cm = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
MB_MODE_INFO *const mbmi = &mi->mbmi;
if ((cm->frame_type == KEY_FRAME) || cm->intra_only) {
kfread_modes(pbi, mi, mi_row, mi_col, r);
} else {
read_mb_modes_mv(pbi, mi, &mi->mbmi, mi_row, mi_col, r);
}
if (1) {
const int bw = 1 << mi_width_log2(mbmi->sb_type);
const int bh = 1 << mi_height_log2(mbmi->sb_type);
const int y_mis = MIN(bh, cm->mi_rows - mi_row);
const int x_mis = MIN(bw, cm->mi_cols - mi_col);
const int mis = cm->mode_info_stride;
int x, y;
for (y = 0; y < y_mis; y++)
for (x = !y; x < x_mis; x++)
mi[y * mis + x] = *mi;
}
}