92963df086
Change-Id: If6e11ba3d681e831d7d98662c0abdd2ac16b3811
1563 lines
56 KiB
C
1563 lines
56 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include "math.h"
|
|
#include "vp8/common/common.h"
|
|
#include "ratectrl.h"
|
|
#include "vp8/common/entropymode.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp8/common/systemdependent.h"
|
|
#include "encodemv.h"
|
|
|
|
|
|
#define MIN_BPB_FACTOR 0.01
|
|
#define MAX_BPB_FACTOR 50
|
|
|
|
extern const MB_PREDICTION_MODE vp8_mode_order[MAX_MODES];
|
|
|
|
|
|
|
|
#ifdef MODE_STATS
|
|
extern int y_modes[5];
|
|
extern int uv_modes[4];
|
|
extern int b_modes[10];
|
|
|
|
extern int inter_y_modes[10];
|
|
extern int inter_uv_modes[4];
|
|
extern int inter_b_modes[10];
|
|
#endif
|
|
|
|
// Bits Per MB at different Q (Multiplied by 512)
|
|
#define BPER_MB_NORMBITS 9
|
|
|
|
// Work in progress recalibration of baseline rate tables based on
|
|
// the assumption that bits per mb is inversely proportional to the
|
|
// quantizer value.
|
|
const int vp8_bits_per_mb[2][QINDEX_RANGE] =
|
|
{
|
|
// Intra case 450000/Qintra
|
|
{
|
|
1125000,900000, 750000, 642857, 562500, 500000, 450000, 450000,
|
|
409090, 375000, 346153, 321428, 300000, 281250, 264705, 264705,
|
|
250000, 236842, 225000, 225000, 214285, 214285, 204545, 204545,
|
|
195652, 195652, 187500, 180000, 180000, 173076, 166666, 160714,
|
|
155172, 150000, 145161, 140625, 136363, 132352, 128571, 125000,
|
|
121621, 121621, 118421, 115384, 112500, 109756, 107142, 104651,
|
|
102272, 100000, 97826, 97826, 95744, 93750, 91836, 90000,
|
|
88235, 86538, 84905, 83333, 81818, 80357, 78947, 77586,
|
|
76271, 75000, 73770, 72580, 71428, 70312, 69230, 68181,
|
|
67164, 66176, 65217, 64285, 63380, 62500, 61643, 60810,
|
|
60000, 59210, 59210, 58441, 57692, 56962, 56250, 55555,
|
|
54878, 54216, 53571, 52941, 52325, 51724, 51136, 50561,
|
|
49450, 48387, 47368, 46875, 45918, 45000, 44554, 44117,
|
|
43269, 42452, 41666, 40909, 40178, 39473, 38793, 38135,
|
|
36885, 36290, 35714, 35156, 34615, 34090, 33582, 33088,
|
|
32608, 32142, 31468, 31034, 30405, 29801, 29220, 28662,
|
|
},
|
|
// Inter case 285000/Qinter
|
|
{
|
|
712500, 570000, 475000, 407142, 356250, 316666, 285000, 259090,
|
|
237500, 219230, 203571, 190000, 178125, 167647, 158333, 150000,
|
|
142500, 135714, 129545, 123913, 118750, 114000, 109615, 105555,
|
|
101785, 98275, 95000, 91935, 89062, 86363, 83823, 81428,
|
|
79166, 77027, 75000, 73076, 71250, 69512, 67857, 66279,
|
|
64772, 63333, 61956, 60638, 59375, 58163, 57000, 55882,
|
|
54807, 53773, 52777, 51818, 50892, 50000, 49137, 47500,
|
|
45967, 44531, 43181, 41911, 40714, 39583, 38513, 37500,
|
|
36538, 35625, 34756, 33928, 33139, 32386, 31666, 30978,
|
|
30319, 29687, 29081, 28500, 27941, 27403, 26886, 26388,
|
|
25909, 25446, 25000, 24568, 23949, 23360, 22800, 22265,
|
|
21755, 21268, 20802, 20357, 19930, 19520, 19127, 18750,
|
|
18387, 18037, 17701, 17378, 17065, 16764, 16473, 16101,
|
|
15745, 15405, 15079, 14766, 14467, 14179, 13902, 13636,
|
|
13380, 13133, 12895, 12666, 12445, 12179, 11924, 11632,
|
|
11445, 11220, 11003, 10795, 10594, 10401, 10215, 10035,
|
|
}
|
|
};
|
|
|
|
static const int kf_boost_qadjustment[QINDEX_RANGE] =
|
|
{
|
|
128, 129, 130, 131, 132, 133, 134, 135,
|
|
136, 137, 138, 139, 140, 141, 142, 143,
|
|
144, 145, 146, 147, 148, 149, 150, 151,
|
|
152, 153, 154, 155, 156, 157, 158, 159,
|
|
160, 161, 162, 163, 164, 165, 166, 167,
|
|
168, 169, 170, 171, 172, 173, 174, 175,
|
|
176, 177, 178, 179, 180, 181, 182, 183,
|
|
184, 185, 186, 187, 188, 189, 190, 191,
|
|
192, 193, 194, 195, 196, 197, 198, 199,
|
|
200, 200, 201, 201, 202, 203, 203, 203,
|
|
204, 204, 205, 205, 206, 206, 207, 207,
|
|
208, 208, 209, 209, 210, 210, 211, 211,
|
|
212, 212, 213, 213, 214, 214, 215, 215,
|
|
216, 216, 217, 217, 218, 218, 219, 219,
|
|
220, 220, 220, 220, 220, 220, 220, 220,
|
|
220, 220, 220, 220, 220, 220, 220, 220,
|
|
};
|
|
|
|
//#define GFQ_ADJUSTMENT (Q+100)
|
|
#define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q]
|
|
const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
|
|
{
|
|
80, 82, 84, 86, 88, 90, 92, 94,
|
|
96, 97, 98, 99, 100, 101, 102, 103,
|
|
104, 105, 106, 107, 108, 109, 110, 111,
|
|
112, 113, 114, 115, 116, 117, 118, 119,
|
|
120, 121, 122, 123, 124, 125, 126, 127,
|
|
128, 129, 130, 131, 132, 133, 134, 135,
|
|
136, 137, 138, 139, 140, 141, 142, 143,
|
|
144, 145, 146, 147, 148, 149, 150, 151,
|
|
152, 153, 154, 155, 156, 157, 158, 159,
|
|
160, 161, 162, 163, 164, 165, 166, 167,
|
|
168, 169, 170, 171, 172, 173, 174, 175,
|
|
176, 177, 178, 179, 180, 181, 182, 183,
|
|
184, 184, 185, 185, 186, 186, 187, 187,
|
|
188, 188, 189, 189, 190, 190, 191, 191,
|
|
192, 192, 193, 193, 194, 194, 194, 194,
|
|
195, 195, 196, 196, 197, 197, 198, 198
|
|
};
|
|
|
|
/*
|
|
const int vp8_gf_boost_qadjustment[QINDEX_RANGE] =
|
|
{
|
|
100,101,102,103,104,105,105,106,
|
|
106,107,107,108,109,109,110,111,
|
|
112,113,114,115,116,117,118,119,
|
|
120,121,122,123,124,125,126,127,
|
|
128,129,130,131,132,133,134,135,
|
|
136,137,138,139,140,141,142,143,
|
|
144,145,146,147,148,149,150,151,
|
|
152,153,154,155,156,157,158,159,
|
|
160,161,162,163,164,165,166,167,
|
|
168,169,170,170,171,171,172,172,
|
|
173,173,173,174,174,174,175,175,
|
|
175,176,176,176,177,177,177,177,
|
|
178,178,179,179,180,180,181,181,
|
|
182,182,183,183,184,184,185,185,
|
|
186,186,187,187,188,188,189,189,
|
|
190,190,191,191,192,192,193,193,
|
|
};
|
|
*/
|
|
|
|
static const int kf_gf_boost_qlimits[QINDEX_RANGE] =
|
|
{
|
|
150, 155, 160, 165, 170, 175, 180, 185,
|
|
190, 195, 200, 205, 210, 215, 220, 225,
|
|
230, 235, 240, 245, 250, 255, 260, 265,
|
|
270, 275, 280, 285, 290, 295, 300, 305,
|
|
310, 320, 330, 340, 350, 360, 370, 380,
|
|
390, 400, 410, 420, 430, 440, 450, 460,
|
|
470, 480, 490, 500, 510, 520, 530, 540,
|
|
550, 560, 570, 580, 590, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
600, 600, 600, 600, 600, 600, 600, 600,
|
|
};
|
|
|
|
// % adjustment to target kf size based on seperation from previous frame
|
|
static const int kf_boost_seperation_adjustment[16] =
|
|
{
|
|
30, 40, 50, 55, 60, 65, 70, 75,
|
|
80, 85, 90, 95, 100, 100, 100, 100,
|
|
};
|
|
|
|
|
|
static const int gf_adjust_table[101] =
|
|
{
|
|
100,
|
|
115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
|
|
240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
|
|
350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
};
|
|
|
|
static const int gf_intra_usage_adjustment[20] =
|
|
{
|
|
125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
|
|
70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
|
|
};
|
|
|
|
static const int gf_interval_table[101] =
|
|
{
|
|
7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
|
};
|
|
|
|
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
|
|
|
|
|
|
void vp8_save_coding_context(VP8_COMP *cpi)
|
|
{
|
|
CODING_CONTEXT *const cc = & cpi->coding_context;
|
|
|
|
// Stores a snapshot of key state variables which can subsequently be
|
|
// restored with a call to vp8_restore_coding_context. These functions are
|
|
// intended for use in a re-code loop in vp8_compress_frame where the
|
|
// quantizer value is adjusted between loop iterations.
|
|
|
|
cc->frames_since_key = cpi->frames_since_key;
|
|
cc->filter_level = cpi->common.filter_level;
|
|
cc->frames_till_gf_update_due = cpi->frames_till_gf_update_due;
|
|
cc->frames_since_golden = cpi->common.frames_since_golden;
|
|
|
|
vp8_copy(cc->mvc, cpi->common.fc.mvc);
|
|
vp8_copy(cc->mvcosts, cpi->rd_costs.mvcosts);
|
|
|
|
vp8_copy(cc->ymode_prob, cpi->common.fc.ymode_prob);
|
|
vp8_copy(cc->uv_mode_prob, cpi->common.fc.uv_mode_prob);
|
|
|
|
vp8_copy(cc->ymode_count, cpi->ymode_count);
|
|
vp8_copy(cc->uv_mode_count, cpi->uv_mode_count);
|
|
|
|
|
|
// Stats
|
|
#ifdef MODE_STATS
|
|
vp8_copy(cc->y_modes, y_modes);
|
|
vp8_copy(cc->uv_modes, uv_modes);
|
|
vp8_copy(cc->b_modes, b_modes);
|
|
vp8_copy(cc->inter_y_modes, inter_y_modes);
|
|
vp8_copy(cc->inter_uv_modes, inter_uv_modes);
|
|
vp8_copy(cc->inter_b_modes, inter_b_modes);
|
|
#endif
|
|
|
|
cc->this_frame_percent_intra = cpi->this_frame_percent_intra;
|
|
}
|
|
|
|
|
|
void vp8_restore_coding_context(VP8_COMP *cpi)
|
|
{
|
|
CODING_CONTEXT *const cc = & cpi->coding_context;
|
|
|
|
// Restore key state variables to the snapshot state stored in the
|
|
// previous call to vp8_save_coding_context.
|
|
|
|
cpi->frames_since_key = cc->frames_since_key;
|
|
cpi->common.filter_level = cc->filter_level;
|
|
cpi->frames_till_gf_update_due = cc->frames_till_gf_update_due;
|
|
cpi->common.frames_since_golden = cc->frames_since_golden;
|
|
|
|
vp8_copy(cpi->common.fc.mvc, cc->mvc);
|
|
|
|
vp8_copy(cpi->rd_costs.mvcosts, cc->mvcosts);
|
|
|
|
vp8_copy(cpi->common.fc.ymode_prob, cc->ymode_prob);
|
|
vp8_copy(cpi->common.fc.uv_mode_prob, cc->uv_mode_prob);
|
|
|
|
vp8_copy(cpi->ymode_count, cc->ymode_count);
|
|
vp8_copy(cpi->uv_mode_count, cc->uv_mode_count);
|
|
|
|
// Stats
|
|
#ifdef MODE_STATS
|
|
vp8_copy(y_modes, cc->y_modes);
|
|
vp8_copy(uv_modes, cc->uv_modes);
|
|
vp8_copy(b_modes, cc->b_modes);
|
|
vp8_copy(inter_y_modes, cc->inter_y_modes);
|
|
vp8_copy(inter_uv_modes, cc->inter_uv_modes);
|
|
vp8_copy(inter_b_modes, cc->inter_b_modes);
|
|
#endif
|
|
|
|
|
|
cpi->this_frame_percent_intra = cc->this_frame_percent_intra;
|
|
}
|
|
|
|
|
|
void vp8_setup_key_frame(VP8_COMP *cpi)
|
|
{
|
|
// Setup for Key frame:
|
|
|
|
vp8_default_coef_probs(& cpi->common);
|
|
|
|
vpx_memcpy(cpi->common.fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context));
|
|
{
|
|
int flag[2] = {1, 1};
|
|
vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cpi->common.fc.mvc, flag);
|
|
}
|
|
|
|
vpx_memset(cpi->common.fc.pre_mvc, 0, sizeof(cpi->common.fc.pre_mvc)); //initialize pre_mvc to all zero.
|
|
|
|
// Make sure we initialize separate contexts for altref,gold, and normal.
|
|
// TODO shouldn't need 3 different copies of structure to do this!
|
|
vpx_memcpy(&cpi->lfc_a, &cpi->common.fc, sizeof(cpi->common.fc));
|
|
vpx_memcpy(&cpi->lfc_g, &cpi->common.fc, sizeof(cpi->common.fc));
|
|
vpx_memcpy(&cpi->lfc_n, &cpi->common.fc, sizeof(cpi->common.fc));
|
|
|
|
//cpi->common.filter_level = 0; // Reset every key frame.
|
|
cpi->common.filter_level = cpi->common.base_qindex * 3 / 8 ;
|
|
|
|
// Provisional interval before next GF
|
|
if (cpi->auto_gold)
|
|
//cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
else
|
|
cpi->frames_till_gf_update_due = cpi->goldfreq;
|
|
|
|
cpi->common.refresh_golden_frame = 1;
|
|
cpi->common.refresh_alt_ref_frame = 1;
|
|
}
|
|
|
|
|
|
static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
|
|
double correction_factor)
|
|
{
|
|
int Bpm = (int)(.5 + correction_factor * vp8_bits_per_mb[frame_kind][Q]);
|
|
|
|
/* Attempt to retain reasonable accuracy without overflow. The cutoff is
|
|
* chosen such that the maximum product of Bpm and MBs fits 31 bits. The
|
|
* largest Bpm takes 20 bits.
|
|
*/
|
|
if (MBs > (1 << 11))
|
|
return (Bpm >> BPER_MB_NORMBITS) * MBs;
|
|
else
|
|
return (Bpm * MBs) >> BPER_MB_NORMBITS;
|
|
}
|
|
|
|
|
|
static void calc_iframe_target_size(VP8_COMP *cpi)
|
|
{
|
|
// boost defaults to half second
|
|
int kf_boost;
|
|
unsigned int target;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
int Q = cpi->oxcf.key_q;
|
|
|
|
target = estimate_bits_at_q(INTRA_FRAME, Q, cpi->common.MBs,
|
|
cpi->key_frame_rate_correction_factor);
|
|
}
|
|
else if (cpi->pass == 2)
|
|
{
|
|
// New Two pass RC
|
|
target = cpi->per_frame_bandwidth;
|
|
}
|
|
// First Frame is a special case
|
|
else if (cpi->common.current_video_frame == 0)
|
|
{
|
|
/* 1 Pass there is no information on which to base size so use
|
|
* bandwidth per second * fraction of the initial buffer
|
|
* level
|
|
*/
|
|
target = cpi->oxcf.starting_buffer_level / 2;
|
|
|
|
if(target > cpi->oxcf.target_bandwidth * 3 / 2)
|
|
target = cpi->oxcf.target_bandwidth * 3 / 2;
|
|
}
|
|
else
|
|
{
|
|
// if this keyframe was forced, use a more recent Q estimate
|
|
int Q = (cpi->common.frame_flags & FRAMEFLAGS_KEY)
|
|
? cpi->avg_frame_qindex : cpi->ni_av_qi;
|
|
|
|
int initial_boost = 24; // Corresponds to: |2.5 * per_frame_bandwidth|
|
|
// Boost depends somewhat on frame rate: only used for 1 layer case.
|
|
if (cpi->oxcf.number_of_layers == 1) {
|
|
kf_boost = MAX(initial_boost, (int)(2 * cpi->output_frame_rate - 16));
|
|
}
|
|
else {
|
|
// Initial factor: set target size to: |2.5 * per_frame_bandwidth|.
|
|
kf_boost = initial_boost;
|
|
}
|
|
|
|
// adjustment up based on q: this factor ranges from ~1.2 to 2.2.
|
|
kf_boost = kf_boost * kf_boost_qadjustment[Q] / 100;
|
|
|
|
// frame separation adjustment ( down)
|
|
if (cpi->frames_since_key < cpi->output_frame_rate / 2)
|
|
kf_boost = (int)(kf_boost
|
|
* cpi->frames_since_key / (cpi->output_frame_rate / 2));
|
|
|
|
// Minimal target size is |2* per_frame_bandwidth|.
|
|
if (kf_boost < 16)
|
|
kf_boost = 16;
|
|
|
|
target = ((16 + kf_boost) * cpi->per_frame_bandwidth) >> 4;
|
|
}
|
|
|
|
|
|
if (cpi->oxcf.rc_max_intra_bitrate_pct)
|
|
{
|
|
unsigned int max_rate = cpi->per_frame_bandwidth
|
|
* cpi->oxcf.rc_max_intra_bitrate_pct / 100;
|
|
|
|
if (target > max_rate)
|
|
target = max_rate;
|
|
}
|
|
|
|
cpi->this_frame_target = target;
|
|
|
|
// TODO: if we separate rate targeting from Q targetting, move this.
|
|
// Reset the active worst quality to the baseline value for key frames.
|
|
if (cpi->pass != 2)
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
|
|
#if 0
|
|
{
|
|
FILE *f;
|
|
|
|
f = fopen("kf_boost.stt", "a");
|
|
//fprintf(f, " %8d %10d %10d %10d %10d %10d %10d\n",
|
|
// cpi->common.current_video_frame, cpi->target_bandwidth, cpi->frames_to_key, kf_boost_qadjustment[cpi->ni_av_qi], cpi->kf_boost, (cpi->this_frame_target *100 / cpi->per_frame_bandwidth), cpi->this_frame_target );
|
|
|
|
fprintf(f, " %8u %10d %10d %10d\n",
|
|
cpi->common.current_video_frame, cpi->gfu_boost, cpi->baseline_gf_interval, cpi->source_alt_ref_pending);
|
|
|
|
fclose(f);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
// Do the best we can to define the parameters for the next GF based on what
|
|
// information we have available.
|
|
static void calc_gf_params(VP8_COMP *cpi)
|
|
{
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
int Boost = 0;
|
|
|
|
int gf_frame_useage = 0; // Golden frame useage since last GF
|
|
int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] +
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] +
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME];
|
|
|
|
int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols);
|
|
|
|
// Reset the last boost indicator
|
|
//cpi->last_boost = 100;
|
|
|
|
if (tot_mbs)
|
|
gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs;
|
|
|
|
if (pct_gf_active > gf_frame_useage)
|
|
gf_frame_useage = pct_gf_active;
|
|
|
|
// Not two pass
|
|
if (cpi->pass != 2)
|
|
{
|
|
// Single Pass lagged mode: TBD
|
|
if (0)
|
|
{
|
|
}
|
|
|
|
// Single Pass compression: Has to use current and historical data
|
|
else
|
|
{
|
|
#if 0
|
|
// Experimental code
|
|
int index = cpi->one_pass_frame_index;
|
|
int frames_to_scan = (cpi->max_gf_interval <= MAX_LAG_BUFFERS) ? cpi->max_gf_interval : MAX_LAG_BUFFERS;
|
|
|
|
/*
|
|
// *************** Experimental code - incomplete
|
|
double decay_val = 1.0;
|
|
double IIAccumulator = 0.0;
|
|
double last_iiaccumulator = 0.0;
|
|
double IIRatio;
|
|
|
|
cpi->one_pass_frame_index = cpi->common.current_video_frame%MAX_LAG_BUFFERS;
|
|
|
|
for ( i = 0; i < (frames_to_scan - 1); i++ )
|
|
{
|
|
if ( index < 0 )
|
|
index = MAX_LAG_BUFFERS;
|
|
index --;
|
|
|
|
if ( cpi->one_pass_frame_stats[index].frame_coded_error > 0.0 )
|
|
{
|
|
IIRatio = cpi->one_pass_frame_stats[index].frame_intra_error / cpi->one_pass_frame_stats[index].frame_coded_error;
|
|
|
|
if ( IIRatio > 30.0 )
|
|
IIRatio = 30.0;
|
|
}
|
|
else
|
|
IIRatio = 30.0;
|
|
|
|
IIAccumulator += IIRatio * decay_val;
|
|
|
|
decay_val = decay_val * cpi->one_pass_frame_stats[index].frame_pcnt_inter;
|
|
|
|
if ( (i > MIN_GF_INTERVAL) &&
|
|
((IIAccumulator - last_iiaccumulator) < 2.0) )
|
|
{
|
|
break;
|
|
}
|
|
last_iiaccumulator = IIAccumulator;
|
|
}
|
|
|
|
Boost = IIAccumulator*100.0/16.0;
|
|
cpi->baseline_gf_interval = i;
|
|
|
|
*/
|
|
#else
|
|
|
|
/*************************************************************/
|
|
// OLD code
|
|
|
|
// Adjust boost based upon ambient Q
|
|
Boost = GFQ_ADJUSTMENT;
|
|
|
|
// Adjust based upon most recently measure intra useage
|
|
Boost = Boost * gf_intra_usage_adjustment[(cpi->this_frame_percent_intra < 15) ? cpi->this_frame_percent_intra : 14] / 100;
|
|
|
|
// Adjust gf boost based upon GF usage since last GF
|
|
Boost = Boost * gf_adjust_table[gf_frame_useage] / 100;
|
|
#endif
|
|
}
|
|
|
|
// golden frame boost without recode loop often goes awry. be safe by keeping numbers down.
|
|
if (!cpi->sf.recode_loop)
|
|
{
|
|
if (cpi->compressor_speed == 2)
|
|
Boost = Boost / 2;
|
|
}
|
|
|
|
// Apply an upper limit based on Q for 1 pass encodes
|
|
if (Boost > kf_gf_boost_qlimits[Q] && (cpi->pass == 0))
|
|
Boost = kf_gf_boost_qlimits[Q];
|
|
|
|
// Apply lower limits to boost.
|
|
else if (Boost < 110)
|
|
Boost = 110;
|
|
|
|
// Note the boost used
|
|
cpi->last_boost = Boost;
|
|
|
|
}
|
|
|
|
// Estimate next interval
|
|
// This is updated once the real frame size/boost is known.
|
|
if (cpi->oxcf.fixed_q == -1)
|
|
{
|
|
if (cpi->pass == 2) // 2 Pass
|
|
{
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
else // 1 Pass
|
|
{
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
|
|
if (cpi->last_boost > 750)
|
|
cpi->frames_till_gf_update_due++;
|
|
|
|
if (cpi->last_boost > 1000)
|
|
cpi->frames_till_gf_update_due++;
|
|
|
|
if (cpi->last_boost > 1250)
|
|
cpi->frames_till_gf_update_due++;
|
|
|
|
if (cpi->last_boost >= 1500)
|
|
cpi->frames_till_gf_update_due ++;
|
|
|
|
if (gf_interval_table[gf_frame_useage] > cpi->frames_till_gf_update_due)
|
|
cpi->frames_till_gf_update_due = gf_interval_table[gf_frame_useage];
|
|
|
|
if (cpi->frames_till_gf_update_due > cpi->max_gf_interval)
|
|
cpi->frames_till_gf_update_due = cpi->max_gf_interval;
|
|
}
|
|
}
|
|
else
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
|
|
// ARF on or off
|
|
if (cpi->pass != 2)
|
|
{
|
|
// For now Alt ref is not allowed except in 2 pass modes.
|
|
cpi->source_alt_ref_pending = 0;
|
|
|
|
/*if ( cpi->oxcf.fixed_q == -1)
|
|
{
|
|
if ( cpi->oxcf.play_alternate && (cpi->last_boost > (100 + (AF_THRESH*cpi->frames_till_gf_update_due)) ) )
|
|
cpi->source_alt_ref_pending = 1;
|
|
else
|
|
cpi->source_alt_ref_pending = 0;
|
|
}*/
|
|
}
|
|
}
|
|
|
|
|
|
static void calc_pframe_target_size(VP8_COMP *cpi)
|
|
{
|
|
int min_frame_target;
|
|
int Adjustment;
|
|
int old_per_frame_bandwidth = cpi->per_frame_bandwidth;
|
|
|
|
if ( cpi->current_layer > 0)
|
|
cpi->per_frame_bandwidth =
|
|
cpi->layer_context[cpi->current_layer].avg_frame_size_for_layer;
|
|
|
|
min_frame_target = 0;
|
|
|
|
if (cpi->pass == 2)
|
|
{
|
|
min_frame_target = cpi->min_frame_bandwidth;
|
|
|
|
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
|
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
|
}
|
|
else if (min_frame_target < cpi->per_frame_bandwidth / 4)
|
|
min_frame_target = cpi->per_frame_bandwidth / 4;
|
|
|
|
|
|
// Special alt reference frame case
|
|
if((cpi->common.refresh_alt_ref_frame) && (cpi->oxcf.number_of_layers == 1))
|
|
{
|
|
if (cpi->pass == 2)
|
|
{
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits; // Per frame bit target for the alt ref frame
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
}
|
|
|
|
/* One Pass ??? TBD */
|
|
/*else
|
|
{
|
|
int frames_in_section;
|
|
int allocation_chunks;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
int alt_boost;
|
|
int max_arf_rate;
|
|
|
|
alt_boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100);
|
|
alt_boost += (cpi->frames_till_gf_update_due * 50);
|
|
|
|
// If alt ref is not currently active then we have a pottential double hit with GF and ARF so reduce the boost a bit.
|
|
// A similar thing is done on GFs that preceed a arf update.
|
|
if ( !cpi->source_alt_ref_active )
|
|
alt_boost = alt_boost * 3 / 4;
|
|
|
|
frames_in_section = cpi->frames_till_gf_update_due+1; // Standard frames + GF
|
|
allocation_chunks = (frames_in_section * 100) + alt_boost;
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while ( alt_boost > 1000 )
|
|
{
|
|
alt_boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
else
|
|
{
|
|
int bits_in_section;
|
|
|
|
if ( cpi->kf_overspend_bits > 0 )
|
|
{
|
|
Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits;
|
|
|
|
if ( Adjustment > (cpi->per_frame_bandwidth - min_frame_target) )
|
|
Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
|
|
|
|
cpi->kf_overspend_bits -= Adjustment;
|
|
|
|
// Calculate an inter frame bandwidth target for the next few frames designed to recover
|
|
// any extra bits spent on the key frame.
|
|
cpi->inter_frame_target = cpi->per_frame_bandwidth - Adjustment;
|
|
if ( cpi->inter_frame_target < min_frame_target )
|
|
cpi->inter_frame_target = min_frame_target;
|
|
}
|
|
else
|
|
cpi->inter_frame_target = cpi->per_frame_bandwidth;
|
|
|
|
bits_in_section = cpi->inter_frame_target * frames_in_section;
|
|
|
|
// Avoid loss of precision but avoid overflow
|
|
if ( (bits_in_section>>7) > allocation_chunks )
|
|
cpi->this_frame_target = alt_boost * (bits_in_section / allocation_chunks);
|
|
else
|
|
cpi->this_frame_target = (alt_boost * bits_in_section) / allocation_chunks;
|
|
}
|
|
}
|
|
*/
|
|
}
|
|
|
|
// Normal frames (gf,and inter)
|
|
else
|
|
{
|
|
// 2 pass
|
|
if (cpi->pass == 2)
|
|
{
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
}
|
|
// 1 pass
|
|
else
|
|
{
|
|
// Make rate adjustment to recover bits spent in key frame
|
|
// Test to see if the key frame inter data rate correction should still be in force
|
|
if (cpi->kf_overspend_bits > 0)
|
|
{
|
|
Adjustment = (cpi->kf_bitrate_adjustment <= cpi->kf_overspend_bits) ? cpi->kf_bitrate_adjustment : cpi->kf_overspend_bits;
|
|
|
|
if (Adjustment > (cpi->per_frame_bandwidth - min_frame_target))
|
|
Adjustment = (cpi->per_frame_bandwidth - min_frame_target);
|
|
|
|
cpi->kf_overspend_bits -= Adjustment;
|
|
|
|
// Calculate an inter frame bandwidth target for the next few frames designed to recover
|
|
// any extra bits spent on the key frame.
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth - Adjustment;
|
|
|
|
if (cpi->this_frame_target < min_frame_target)
|
|
cpi->this_frame_target = min_frame_target;
|
|
}
|
|
else
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
|
|
// If appropriate make an adjustment to recover bits spent on a recent GF
|
|
if ((cpi->gf_overspend_bits > 0) && (cpi->this_frame_target > min_frame_target))
|
|
{
|
|
int Adjustment = (cpi->non_gf_bitrate_adjustment <= cpi->gf_overspend_bits) ? cpi->non_gf_bitrate_adjustment : cpi->gf_overspend_bits;
|
|
|
|
if (Adjustment > (cpi->this_frame_target - min_frame_target))
|
|
Adjustment = (cpi->this_frame_target - min_frame_target);
|
|
|
|
cpi->gf_overspend_bits -= Adjustment;
|
|
cpi->this_frame_target -= Adjustment;
|
|
}
|
|
|
|
// Apply small + and - boosts for non gf frames
|
|
if ((cpi->last_boost > 150) && (cpi->frames_till_gf_update_due > 0) &&
|
|
(cpi->current_gf_interval >= (MIN_GF_INTERVAL << 1)))
|
|
{
|
|
// % Adjustment limited to the range 1% to 10%
|
|
Adjustment = (cpi->last_boost - 100) >> 5;
|
|
|
|
if (Adjustment < 1)
|
|
Adjustment = 1;
|
|
else if (Adjustment > 10)
|
|
Adjustment = 10;
|
|
|
|
// Convert to bits
|
|
Adjustment = (cpi->this_frame_target * Adjustment) / 100;
|
|
|
|
if (Adjustment > (cpi->this_frame_target - min_frame_target))
|
|
Adjustment = (cpi->this_frame_target - min_frame_target);
|
|
|
|
if (cpi->common.frames_since_golden == (cpi->current_gf_interval >> 1))
|
|
cpi->this_frame_target += ((cpi->current_gf_interval - 1) * Adjustment);
|
|
else
|
|
cpi->this_frame_target -= Adjustment;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sanity check that the total sum of adjustments is not above the maximum allowed
|
|
// That is that having allowed for KF and GF penalties we have not pushed the
|
|
// current interframe target to low. If the adjustment we apply here is not capable of recovering
|
|
// all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
|
|
// a longer time span via other buffer / rate control mechanisms.
|
|
if (cpi->this_frame_target < min_frame_target)
|
|
cpi->this_frame_target = min_frame_target;
|
|
|
|
if (!cpi->common.refresh_alt_ref_frame)
|
|
// Note the baseline target data rate for this inter frame.
|
|
cpi->inter_frame_target = cpi->this_frame_target;
|
|
|
|
// One Pass specific code
|
|
if (cpi->pass == 0)
|
|
{
|
|
// Adapt target frame size with respect to any buffering constraints:
|
|
if (cpi->buffered_mode)
|
|
{
|
|
int one_percent_bits = 1 + cpi->oxcf.optimal_buffer_level / 100;
|
|
|
|
if ((cpi->buffer_level < cpi->oxcf.optimal_buffer_level) ||
|
|
(cpi->bits_off_target < cpi->oxcf.optimal_buffer_level))
|
|
{
|
|
int percent_low = 0;
|
|
|
|
// Decide whether or not we need to adjust the frame data rate target.
|
|
//
|
|
// If we are are below the optimal buffer fullness level and adherence
|
|
// to buffering constraints is important to the end usage then adjust
|
|
// the per frame target.
|
|
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
(cpi->buffer_level < cpi->oxcf.optimal_buffer_level))
|
|
{
|
|
percent_low =
|
|
(cpi->oxcf.optimal_buffer_level - cpi->buffer_level) /
|
|
one_percent_bits;
|
|
}
|
|
// Are we overshooting the long term clip data rate...
|
|
else if (cpi->bits_off_target < 0)
|
|
{
|
|
// Adjust per frame data target downwards to compensate.
|
|
percent_low = (int)(100 * -cpi->bits_off_target /
|
|
(cpi->total_byte_count * 8));
|
|
}
|
|
|
|
if (percent_low > cpi->oxcf.under_shoot_pct)
|
|
percent_low = cpi->oxcf.under_shoot_pct;
|
|
else if (percent_low < 0)
|
|
percent_low = 0;
|
|
|
|
// lower the target bandwidth for this frame.
|
|
cpi->this_frame_target -=
|
|
(cpi->this_frame_target * percent_low) / 200;
|
|
|
|
// Are we using allowing control of active_worst_allowed_q
|
|
// according to buffer level.
|
|
if (cpi->auto_worst_q && cpi->ni_frames > 150)
|
|
{
|
|
int critical_buffer_level;
|
|
|
|
// For streaming applications the most important factor is
|
|
// cpi->buffer_level as this takes into account the
|
|
// specified short term buffering constraints. However,
|
|
// hitting the long term clip data rate target is also
|
|
// important.
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
// Take the smaller of cpi->buffer_level and
|
|
// cpi->bits_off_target
|
|
critical_buffer_level =
|
|
(cpi->buffer_level < cpi->bits_off_target)
|
|
? cpi->buffer_level : cpi->bits_off_target;
|
|
}
|
|
// For local file playback short term buffering constraints
|
|
// are less of an issue
|
|
else
|
|
{
|
|
// Consider only how we are doing for the clip as a
|
|
// whole
|
|
critical_buffer_level = cpi->bits_off_target;
|
|
}
|
|
|
|
// Set the active worst quality based upon the selected
|
|
// buffer fullness number.
|
|
if (critical_buffer_level < cpi->oxcf.optimal_buffer_level)
|
|
{
|
|
if ( critical_buffer_level >
|
|
(cpi->oxcf.optimal_buffer_level >> 2) )
|
|
{
|
|
int64_t qadjustment_range =
|
|
cpi->worst_quality - cpi->ni_av_qi;
|
|
int64_t above_base =
|
|
(critical_buffer_level -
|
|
(cpi->oxcf.optimal_buffer_level >> 2));
|
|
|
|
// Step active worst quality down from
|
|
// cpi->ni_av_qi when (critical_buffer_level ==
|
|
// cpi->optimal_buffer_level) to
|
|
// cpi->worst_quality when
|
|
// (critical_buffer_level ==
|
|
// cpi->optimal_buffer_level >> 2)
|
|
cpi->active_worst_quality =
|
|
cpi->worst_quality -
|
|
((qadjustment_range * above_base) /
|
|
(cpi->oxcf.optimal_buffer_level*3>>2));
|
|
}
|
|
else
|
|
{
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->active_worst_quality = cpi->ni_av_qi;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
int percent_high = 0;
|
|
|
|
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
&& (cpi->buffer_level > cpi->oxcf.optimal_buffer_level))
|
|
{
|
|
percent_high = (cpi->buffer_level
|
|
- cpi->oxcf.optimal_buffer_level)
|
|
/ one_percent_bits;
|
|
}
|
|
else if (cpi->bits_off_target > cpi->oxcf.optimal_buffer_level)
|
|
{
|
|
percent_high = (int)((100 * cpi->bits_off_target)
|
|
/ (cpi->total_byte_count * 8));
|
|
}
|
|
|
|
if (percent_high > cpi->oxcf.over_shoot_pct)
|
|
percent_high = cpi->oxcf.over_shoot_pct;
|
|
else if (percent_high < 0)
|
|
percent_high = 0;
|
|
|
|
cpi->this_frame_target += (cpi->this_frame_target *
|
|
percent_high) / 200;
|
|
|
|
// Are we allowing control of active_worst_allowed_q according
|
|
// to buffer level.
|
|
if (cpi->auto_worst_q && cpi->ni_frames > 150)
|
|
{
|
|
// When using the relaxed buffer model stick to the user specified value
|
|
cpi->active_worst_quality = cpi->ni_av_qi;
|
|
}
|
|
else
|
|
{
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
}
|
|
}
|
|
|
|
// Set active_best_quality to prevent quality rising too high
|
|
cpi->active_best_quality = cpi->best_quality;
|
|
|
|
// Worst quality obviously must not be better than best quality
|
|
if (cpi->active_worst_quality <= cpi->active_best_quality)
|
|
cpi->active_worst_quality = cpi->active_best_quality + 1;
|
|
|
|
if(cpi->active_worst_quality > 127)
|
|
cpi->active_worst_quality = 127;
|
|
}
|
|
// Unbuffered mode (eg. video conferencing)
|
|
else
|
|
{
|
|
// Set the active worst quality
|
|
cpi->active_worst_quality = cpi->worst_quality;
|
|
}
|
|
|
|
// Special trap for constrained quality mode
|
|
// "active_worst_quality" may never drop below cq level
|
|
// for any frame type.
|
|
if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY &&
|
|
cpi->active_worst_quality < cpi->cq_target_quality)
|
|
{
|
|
cpi->active_worst_quality = cpi->cq_target_quality;
|
|
}
|
|
}
|
|
|
|
// Test to see if we have to drop a frame
|
|
// The auto-drop frame code is only used in buffered mode.
|
|
// In unbufferd mode (eg vide conferencing) the descision to
|
|
// code or drop a frame is made outside the codec in response to real
|
|
// world comms or buffer considerations.
|
|
if (cpi->drop_frames_allowed && cpi->buffered_mode &&
|
|
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
|
|
((cpi->common.frame_type != KEY_FRAME))) //|| !cpi->oxcf.allow_spatial_resampling) )
|
|
{
|
|
// Check for a buffer underun-crisis in which case we have to drop a frame
|
|
if ((cpi->buffer_level < 0))
|
|
{
|
|
#if 0
|
|
FILE *f = fopen("dec.stt", "a");
|
|
fprintf(f, "%10d %10d %10d %10d ***** BUFFER EMPTY\n",
|
|
(int) cpi->common.current_video_frame,
|
|
cpi->decimation_factor, cpi->common.horiz_scale,
|
|
(cpi->buffer_level * 100) / cpi->oxcf.optimal_buffer_level);
|
|
fclose(f);
|
|
#endif
|
|
//vpx_log("Decoder: Drop frame due to bandwidth: %d \n",cpi->buffer_level, cpi->av_per_frame_bandwidth);
|
|
|
|
cpi->drop_frame = 1;
|
|
}
|
|
|
|
#if 0
|
|
// Check for other drop frame crtieria (Note 2 pass cbr uses decimation on whole KF sections)
|
|
else if ((cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) &&
|
|
(cpi->drop_count < cpi->max_drop_count) && (cpi->pass == 0))
|
|
{
|
|
cpi->drop_frame = 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->drop_frame)
|
|
{
|
|
// Update the buffer level variable.
|
|
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
|
|
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size)
|
|
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
|
|
cpi->buffer_level = cpi->bits_off_target;
|
|
}
|
|
else
|
|
cpi->drop_count = 0;
|
|
}
|
|
|
|
// Adjust target frame size for Golden Frames:
|
|
if (cpi->oxcf.error_resilient_mode == 0 &&
|
|
(cpi->frames_till_gf_update_due == 0) && !cpi->drop_frame)
|
|
{
|
|
//int Boost = 0;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
|
|
int gf_frame_useage = 0; // Golden frame useage since last GF
|
|
int tot_mbs = cpi->recent_ref_frame_usage[INTRA_FRAME] +
|
|
cpi->recent_ref_frame_usage[LAST_FRAME] +
|
|
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +
|
|
cpi->recent_ref_frame_usage[ALTREF_FRAME];
|
|
|
|
int pct_gf_active = (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols);
|
|
|
|
// Reset the last boost indicator
|
|
//cpi->last_boost = 100;
|
|
|
|
if (tot_mbs)
|
|
gf_frame_useage = (cpi->recent_ref_frame_usage[GOLDEN_FRAME] + cpi->recent_ref_frame_usage[ALTREF_FRAME]) * 100 / tot_mbs;
|
|
|
|
if (pct_gf_active > gf_frame_useage)
|
|
gf_frame_useage = pct_gf_active;
|
|
|
|
// Is a fixed manual GF frequency being used
|
|
if (cpi->auto_gold)
|
|
{
|
|
// For one pass throw a GF if recent frame intra useage is low or the GF useage is high
|
|
if ((cpi->pass == 0) && (cpi->this_frame_percent_intra < 15 || gf_frame_useage >= 5))
|
|
cpi->common.refresh_golden_frame = 1;
|
|
|
|
// Two pass GF descision
|
|
else if (cpi->pass == 2)
|
|
cpi->common.refresh_golden_frame = 1;
|
|
}
|
|
|
|
#if 0
|
|
|
|
// Debug stats
|
|
if (0)
|
|
{
|
|
FILE *f;
|
|
|
|
f = fopen("gf_useaget.stt", "a");
|
|
fprintf(f, " %8ld %10ld %10ld %10ld %10ld\n",
|
|
cpi->common.current_video_frame, cpi->gfu_boost, GFQ_ADJUSTMENT, cpi->gfu_boost, gf_frame_useage);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->common.refresh_golden_frame == 1)
|
|
{
|
|
#if 0
|
|
|
|
if (0) // p_gw
|
|
{
|
|
FILE *f;
|
|
|
|
f = fopen("GFexit.stt", "a");
|
|
fprintf(f, "%8ld GF coded\n", cpi->common.current_video_frame);
|
|
fclose(f);
|
|
}
|
|
|
|
#endif
|
|
|
|
if (cpi->auto_adjust_gold_quantizer)
|
|
{
|
|
calc_gf_params(cpi);
|
|
}
|
|
|
|
// If we are using alternate ref instead of gf then do not apply the boost
|
|
// It will instead be applied to the altref update
|
|
// Jims modified boost
|
|
if (!cpi->source_alt_ref_active)
|
|
{
|
|
if (cpi->oxcf.fixed_q < 0)
|
|
{
|
|
if (cpi->pass == 2)
|
|
{
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth; // The spend on the GF is defined in the two pass code for two pass encodes
|
|
}
|
|
else
|
|
{
|
|
int Boost = cpi->last_boost;
|
|
int frames_in_section = cpi->frames_till_gf_update_due + 1;
|
|
int allocation_chunks = (frames_in_section * 100) + (Boost - 100);
|
|
int bits_in_section = cpi->inter_frame_target * frames_in_section;
|
|
|
|
// Normalize Altboost and allocations chunck down to prevent overflow
|
|
while (Boost > 1000)
|
|
{
|
|
Boost /= 2;
|
|
allocation_chunks /= 2;
|
|
}
|
|
|
|
// Avoid loss of precision but avoid overflow
|
|
if ((bits_in_section >> 7) > allocation_chunks)
|
|
cpi->this_frame_target = Boost * (bits_in_section / allocation_chunks);
|
|
else
|
|
cpi->this_frame_target = (Boost * bits_in_section) / allocation_chunks;
|
|
}
|
|
}
|
|
else
|
|
cpi->this_frame_target =
|
|
(estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0)
|
|
* cpi->last_boost) / 100;
|
|
|
|
}
|
|
// If there is an active ARF at this location use the minimum
|
|
// bits on this frame even if it is a contructed arf.
|
|
// The active maximum quantizer insures that an appropriate
|
|
// number of bits will be spent if needed for contstructed ARFs.
|
|
else
|
|
{
|
|
cpi->this_frame_target = 0;
|
|
}
|
|
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
|
|
}
|
|
}
|
|
|
|
cpi->per_frame_bandwidth = old_per_frame_bandwidth;
|
|
}
|
|
|
|
|
|
void vp8_update_rate_correction_factors(VP8_COMP *cpi, int damp_var)
|
|
{
|
|
int Q = cpi->common.base_qindex;
|
|
int correction_factor = 100;
|
|
double rate_correction_factor;
|
|
double adjustment_limit;
|
|
|
|
int projected_size_based_on_q = 0;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp8_clear_system_state(); //__asm emms;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
{
|
|
rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
|
}
|
|
else
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
|
rate_correction_factor = cpi->gf_rate_correction_factor;
|
|
else
|
|
rate_correction_factor = cpi->rate_correction_factor;
|
|
}
|
|
|
|
// Work out how big we would have expected the frame to be at this Q given the current correction factor.
|
|
// Stay in double to avoid int overflow when values are large
|
|
//projected_size_based_on_q = ((int)(.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) >> BPER_MB_NORMBITS;
|
|
projected_size_based_on_q = (int)(((.5 + rate_correction_factor * vp8_bits_per_mb[cpi->common.frame_type][Q]) * cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
|
|
|
|
// Make some allowance for cpi->zbin_over_quant
|
|
if (cpi->zbin_over_quant > 0)
|
|
{
|
|
int Z = cpi->zbin_over_quant;
|
|
double Factor = 0.99;
|
|
double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;
|
|
|
|
while (Z > 0)
|
|
{
|
|
Z --;
|
|
projected_size_based_on_q =
|
|
(int)(Factor * projected_size_based_on_q);
|
|
Factor += factor_adjustment;
|
|
|
|
if (Factor >= 0.999)
|
|
Factor = 0.999;
|
|
}
|
|
}
|
|
|
|
// Work out a size correction factor.
|
|
//if ( cpi->this_frame_target > 0 )
|
|
// correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
|
|
if (projected_size_based_on_q > 0)
|
|
correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
|
|
|
|
// More heavily damped adjustment used if we have been oscillating either side of target
|
|
switch (damp_var)
|
|
{
|
|
case 0:
|
|
adjustment_limit = 0.75;
|
|
break;
|
|
case 1:
|
|
adjustment_limit = 0.375;
|
|
break;
|
|
case 2:
|
|
default:
|
|
adjustment_limit = 0.25;
|
|
break;
|
|
}
|
|
|
|
//if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
|
|
if (correction_factor > 102)
|
|
{
|
|
// We are not already at the worst allowable quality
|
|
correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
|
|
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor > MAX_BPB_FACTOR)
|
|
rate_correction_factor = MAX_BPB_FACTOR;
|
|
}
|
|
//else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
|
|
else if (correction_factor < 99)
|
|
{
|
|
// We are not already at the best allowable quality
|
|
correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
|
|
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor < MIN_BPB_FACTOR)
|
|
rate_correction_factor = MIN_BPB_FACTOR;
|
|
}
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
cpi->key_frame_rate_correction_factor = rate_correction_factor;
|
|
else
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
|
cpi->gf_rate_correction_factor = rate_correction_factor;
|
|
else
|
|
cpi->rate_correction_factor = rate_correction_factor;
|
|
}
|
|
}
|
|
|
|
|
|
int vp8_regulate_q(VP8_COMP *cpi, int target_bits_per_frame)
|
|
{
|
|
int Q = cpi->active_worst_quality;
|
|
|
|
// Reset Zbin OQ value
|
|
cpi->zbin_over_quant = 0;
|
|
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
Q = cpi->oxcf.fixed_q;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
{
|
|
Q = cpi->oxcf.key_q;
|
|
}
|
|
else if (cpi->common.refresh_alt_ref_frame)
|
|
{
|
|
Q = cpi->oxcf.alt_q;
|
|
}
|
|
else if (cpi->common.refresh_golden_frame)
|
|
{
|
|
Q = cpi->oxcf.gold_q;
|
|
}
|
|
|
|
}
|
|
else
|
|
{
|
|
int i;
|
|
int last_error = INT_MAX;
|
|
int target_bits_per_mb;
|
|
int bits_per_mb_at_this_q;
|
|
double correction_factor;
|
|
|
|
// Select the appropriate correction factor based upon type of frame.
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
correction_factor = cpi->key_frame_rate_correction_factor;
|
|
else
|
|
{
|
|
if (cpi->common.refresh_alt_ref_frame || cpi->common.refresh_golden_frame)
|
|
correction_factor = cpi->gf_rate_correction_factor;
|
|
else
|
|
correction_factor = cpi->rate_correction_factor;
|
|
}
|
|
|
|
// Calculate required scaling factor based on target frame size and size of frame produced using previous Q
|
|
if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
|
|
target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int
|
|
else
|
|
target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
|
|
|
|
i = cpi->active_best_quality;
|
|
|
|
do
|
|
{
|
|
bits_per_mb_at_this_q = (int)(.5 + correction_factor * vp8_bits_per_mb[cpi->common.frame_type][i]);
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb)
|
|
{
|
|
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
|
Q = i;
|
|
else
|
|
Q = i - 1;
|
|
|
|
break;
|
|
}
|
|
else
|
|
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
|
}
|
|
while (++i <= cpi->active_worst_quality);
|
|
|
|
|
|
// If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
|
|
// the RD multiplier and zero bin size.
|
|
if (Q >= MAXQ)
|
|
{
|
|
int zbin_oqmax;
|
|
|
|
double Factor = 0.99;
|
|
double factor_adjustment = 0.01 / 256.0; //(double)ZBIN_OQ_MAX;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
zbin_oqmax = 0; //ZBIN_OQ_MAX/16
|
|
else if (cpi->common.refresh_alt_ref_frame || (cpi->common.refresh_golden_frame && !cpi->source_alt_ref_active))
|
|
zbin_oqmax = 16;
|
|
else
|
|
zbin_oqmax = ZBIN_OQ_MAX;
|
|
|
|
/*{
|
|
double Factor = (double)target_bits_per_mb/(double)bits_per_mb_at_this_q;
|
|
double Oq;
|
|
|
|
Factor = Factor/1.2683;
|
|
|
|
Oq = pow( Factor, (1.0/-0.165) );
|
|
|
|
if ( Oq > zbin_oqmax )
|
|
Oq = zbin_oqmax;
|
|
|
|
cpi->zbin_over_quant = (int)Oq;
|
|
}*/
|
|
|
|
// Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
|
|
// The effect will be highly clip dependent and may well have sudden steps.
|
|
// The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
|
|
// bin and hence decreasing the number of low magnitude non zero coefficients.
|
|
while (cpi->zbin_over_quant < zbin_oqmax)
|
|
{
|
|
cpi->zbin_over_quant ++;
|
|
|
|
if (cpi->zbin_over_quant > zbin_oqmax)
|
|
cpi->zbin_over_quant = zbin_oqmax;
|
|
|
|
// Adjust bits_per_mb_at_this_q estimate
|
|
bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
|
|
Factor += factor_adjustment;
|
|
|
|
if (Factor >= 0.999)
|
|
Factor = 0.999;
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate
|
|
break;
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
|
|
static int estimate_keyframe_frequency(VP8_COMP *cpi)
|
|
{
|
|
int i;
|
|
|
|
// Average key frame frequency
|
|
int av_key_frame_frequency = 0;
|
|
|
|
/* First key frame at start of sequence is a special case. We have no
|
|
* frequency data.
|
|
*/
|
|
if (cpi->key_frame_count == 1)
|
|
{
|
|
/* Assume a default of 1 kf every 2 seconds, or the max kf interval,
|
|
* whichever is smaller.
|
|
*/
|
|
int key_freq = cpi->oxcf.key_freq>0 ? cpi->oxcf.key_freq : 1;
|
|
av_key_frame_frequency = (int)cpi->output_frame_rate * 2;
|
|
|
|
if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
|
|
av_key_frame_frequency = cpi->oxcf.key_freq;
|
|
|
|
cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
|
= av_key_frame_frequency;
|
|
}
|
|
else
|
|
{
|
|
unsigned int total_weight = 0;
|
|
int last_kf_interval =
|
|
(cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
|
|
|
|
/* reset keyframe context and calculate weighted average of last
|
|
* KEY_FRAME_CONTEXT keyframes
|
|
*/
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++)
|
|
{
|
|
if (i < KEY_FRAME_CONTEXT - 1)
|
|
cpi->prior_key_frame_distance[i]
|
|
= cpi->prior_key_frame_distance[i+1];
|
|
else
|
|
cpi->prior_key_frame_distance[i] = last_kf_interval;
|
|
|
|
av_key_frame_frequency += prior_key_frame_weight[i]
|
|
* cpi->prior_key_frame_distance[i];
|
|
total_weight += prior_key_frame_weight[i];
|
|
}
|
|
|
|
av_key_frame_frequency /= total_weight;
|
|
|
|
}
|
|
return av_key_frame_frequency;
|
|
}
|
|
|
|
|
|
void vp8_adjust_key_frame_context(VP8_COMP *cpi)
|
|
{
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp8_clear_system_state();
|
|
|
|
// Do we have any key frame overspend to recover?
|
|
// Two-pass overspend handled elsewhere.
|
|
if ((cpi->pass != 2)
|
|
&& (cpi->projected_frame_size > cpi->per_frame_bandwidth))
|
|
{
|
|
int overspend;
|
|
|
|
/* Update the count of key frame overspend to be recovered in
|
|
* subsequent frames. A portion of the KF overspend is treated as gf
|
|
* overspend (and hence recovered more quickly) as the kf is also a
|
|
* gf. Otherwise the few frames following each kf tend to get more
|
|
* bits allocated than those following other gfs.
|
|
*/
|
|
overspend = (cpi->projected_frame_size - cpi->per_frame_bandwidth);
|
|
|
|
if (cpi->oxcf.number_of_layers > 1)
|
|
cpi->kf_overspend_bits += overspend;
|
|
else
|
|
{
|
|
cpi->kf_overspend_bits += overspend * 7 / 8;
|
|
cpi->gf_overspend_bits += overspend * 1 / 8;
|
|
}
|
|
|
|
/* Work out how much to try and recover per frame. */
|
|
cpi->kf_bitrate_adjustment = cpi->kf_overspend_bits
|
|
/ estimate_keyframe_frequency(cpi);
|
|
}
|
|
|
|
cpi->frames_since_key = 0;
|
|
cpi->key_frame_count++;
|
|
}
|
|
|
|
|
|
void vp8_compute_frame_size_bounds(VP8_COMP *cpi, int *frame_under_shoot_limit, int *frame_over_shoot_limit)
|
|
{
|
|
// Set-up bounds on acceptable frame size:
|
|
if (cpi->oxcf.fixed_q >= 0)
|
|
{
|
|
// Fixed Q scenario: frame size never outranges target (there is no target!)
|
|
*frame_under_shoot_limit = 0;
|
|
*frame_over_shoot_limit = INT_MAX;
|
|
}
|
|
else
|
|
{
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
{
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
|
}
|
|
else
|
|
{
|
|
if (cpi->oxcf.number_of_layers > 1 ||
|
|
cpi->common.refresh_alt_ref_frame ||
|
|
cpi->common.refresh_golden_frame)
|
|
{
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
|
}
|
|
else
|
|
{
|
|
// For CBR take buffer fullness into account
|
|
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)
|
|
{
|
|
if (cpi->buffer_level >= ((cpi->oxcf.optimal_buffer_level + cpi->oxcf.maximum_buffer_size) >> 1))
|
|
{
|
|
// Buffer is too full so relax overshoot and tighten undershoot
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 12 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 6 / 8;
|
|
}
|
|
else if (cpi->buffer_level <= (cpi->oxcf.optimal_buffer_level >> 1))
|
|
{
|
|
// Buffer is too low so relax undershoot and tighten overshoot
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 10 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 4 / 8;
|
|
}
|
|
else
|
|
{
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
|
|
}
|
|
}
|
|
// VBR and CQ mode
|
|
// Note that tighter restrictions here can help quality but hurt encode speed
|
|
else
|
|
{
|
|
// Stron overshoot limit for constrained quality
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY)
|
|
{
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
|
|
}
|
|
else
|
|
{
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// For very small rate targets where the fractional adjustment
|
|
// (eg * 7/8) may be tiny make sure there is at least a minimum
|
|
// range.
|
|
*frame_over_shoot_limit += 200;
|
|
*frame_under_shoot_limit -= 200;
|
|
if ( *frame_under_shoot_limit < 0 )
|
|
*frame_under_shoot_limit = 0;
|
|
|
|
}
|
|
}
|
|
|
|
|
|
// return of 0 means drop frame
|
|
int vp8_pick_frame_size(VP8_COMP *cpi)
|
|
{
|
|
VP8_COMMON *cm = &cpi->common;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
calc_iframe_target_size(cpi);
|
|
else
|
|
{
|
|
calc_pframe_target_size(cpi);
|
|
|
|
// Check if we're dropping the frame:
|
|
if (cpi->drop_frame)
|
|
{
|
|
cpi->drop_frame = 0;
|
|
cpi->drop_count++;
|
|
return 0;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|