vpx/vp8/encoder/denoising.c
Stefan Holmer d850034443 Added another denoising threshold for finding DC shifts.
Compares the sum of differences between the input block and the averaged
block. If they differ too much the block will not be filtered. Negligible
perfomance hit.

Change-Id: Ib1c31a265efd4d100b3abc4a1ea6675038c8ddde
2012-05-30 16:50:21 +02:00

334 lines
11 KiB
C

/*
* Copyright (c) 2012 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "denoising.h"
#include "vp8/common/reconinter.h"
#include "vpx/vpx_integer.h"
#include "vpx_mem/vpx_mem.h"
#include "vpx_rtcd.h"
static const unsigned int NOISE_MOTION_THRESHOLD = 25 * 25;
// SSE_DIFF_THRESHOLD is selected as ~95% confidence assuming var(noise) ~= 100.
static const unsigned int SSE_DIFF_THRESHOLD = 16 * 16 * 20;
static const unsigned int SSE_THRESHOLD = 16 * 16 * 40;
// The filtering coefficients used for denoizing are adjusted for static
// blocks, or blocks with very small motion vectors. This is done through
// the motion magnitude parameter.
//
// There are currently 2048 possible mapping from absolute difference to
// filter coefficient depending on the motion magnitude. Each mapping is
// in a LUT table. All these tables are staticly allocated but they are only
// filled on their first use.
//
// Each entry is a pair of 16b values, the coefficient and its complement
// to 256. Each of these value should only be 8b but they are 16b wide to
// avoid slow partial register manipulations.
enum {num_motion_magnitude_adjustments = 2048};
static union coeff_pair filter_coeff_LUT[num_motion_magnitude_adjustments][256];
static uint8_t filter_coeff_LUT_initialized[num_motion_magnitude_adjustments] =
{ 0 };
union coeff_pair *vp8_get_filter_coeff_LUT(unsigned int motion_magnitude)
{
union coeff_pair *LUT;
unsigned int motion_magnitude_adjustment = motion_magnitude >> 3;
if (motion_magnitude_adjustment >= num_motion_magnitude_adjustments)
{
motion_magnitude_adjustment = num_motion_magnitude_adjustments - 1;
}
LUT = filter_coeff_LUT[motion_magnitude_adjustment];
if (!filter_coeff_LUT_initialized[motion_magnitude_adjustment])
{
int absdiff;
for (absdiff = 0; absdiff < 256; ++absdiff)
{
unsigned int filter_coefficient;
filter_coefficient = (255 << 8) / (256 + ((absdiff * 330) >> 3));
filter_coefficient += filter_coefficient /
(3 + motion_magnitude_adjustment);
if (filter_coefficient > 255)
{
filter_coefficient = 255;
}
LUT[absdiff].as_short[0] = filter_coefficient ;
LUT[absdiff].as_short[1] = 256 - filter_coefficient;
}
filter_coeff_LUT_initialized[motion_magnitude_adjustment] = 1;
}
return LUT;
}
int vp8_denoiser_filter_c(YV12_BUFFER_CONFIG *mc_running_avg,
YV12_BUFFER_CONFIG *running_avg,
MACROBLOCK *signal,
unsigned int motion_magnitude,
int y_offset,
int uv_offset)
{
unsigned char filtered_buf[16*16];
unsigned char *filtered = filtered_buf;
unsigned char *sig = signal->thismb;
int sig_stride = 16;
unsigned char *mc_running_avg_y = mc_running_avg->y_buffer + y_offset;
int mc_avg_y_stride = mc_running_avg->y_stride;
unsigned char *running_avg_y = running_avg->y_buffer + y_offset;
int avg_y_stride = running_avg->y_stride;
const union coeff_pair *LUT = vp8_get_filter_coeff_LUT(motion_magnitude);
int r, c;
int sum_diff = 0;
for (r = 0; r < 16; ++r)
{
// Calculate absolute differences
unsigned char abs_diff[16];
union coeff_pair filter_coefficient[16];
for (c = 0; c < 16; ++c)
{
int absdiff = sig[c] - mc_running_avg_y[c];
absdiff = absdiff > 0 ? absdiff : -absdiff;
abs_diff[c] = absdiff;
}
// Use LUT to get filter coefficients (two 16b value; f and 256-f)
for (c = 0; c < 16; ++c)
{
filter_coefficient[c] = LUT[abs_diff[c]];
}
// Filtering...
for (c = 0; c < 16; ++c)
{
const uint16_t state = (uint16_t)(mc_running_avg_y[c]);
const uint16_t sample = (uint16_t)(sig[c]);
running_avg_y[c] = (filter_coefficient[c].as_short[0] * state +
filter_coefficient[c].as_short[1] * sample + 128) >> 8;
}
// Depending on the magnitude of the difference between the signal and
// filtered version, either replace the signal by the filtered one or
// update the filter state with the signal when the change in a pixel
// isn't classified as noise.
for (c = 0; c < 16; ++c)
{
const int diff = sig[c] - running_avg_y[c];
sum_diff += diff;
if (diff * diff < NOISE_DIFF2_THRESHOLD)
{
filtered[c] = running_avg_y[c];
}
else
{
filtered[c] = sig[c];
running_avg_y[c] = sig[c];
}
}
// Update pointers for next iteration.
sig += sig_stride;
filtered += 16;
mc_running_avg_y += mc_avg_y_stride;
running_avg_y += avg_y_stride;
}
if (abs(sum_diff) > SUM_DIFF_THRESHOLD)
{
return COPY_BLOCK;
}
vp8_copy_mem16x16(filtered_buf, 16, signal->thismb, sig_stride);
return FILTER_BLOCK;
}
int vp8_denoiser_allocate(VP8_DENOISER *denoiser, int width, int height)
{
int i;
assert(denoiser);
/* don't need one for intra start at 1 */
for (i = 1; i < MAX_REF_FRAMES; i++)
{
denoiser->yv12_running_avg[i].flags = 0;
if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_running_avg[i]), width,
height, VP8BORDERINPIXELS)
< 0)
{
vp8_denoiser_free(denoiser);
return 1;
}
vpx_memset(denoiser->yv12_running_avg[i].buffer_alloc, 0,
denoiser->yv12_running_avg[i].frame_size);
}
denoiser->yv12_mc_running_avg.flags = 0;
if (vp8_yv12_alloc_frame_buffer(&(denoiser->yv12_mc_running_avg), width,
height, VP8BORDERINPIXELS) < 0)
{
vp8_denoiser_free(denoiser);
return 1;
}
vpx_memset(denoiser->yv12_mc_running_avg.buffer_alloc, 0,
denoiser->yv12_mc_running_avg.frame_size);
return 0;
}
void vp8_denoiser_free(VP8_DENOISER *denoiser)
{
int i;
assert(denoiser);
/* we don't have one for intra ref frame */
for (i = 1; i < MAX_REF_FRAMES ; i++)
{
vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_running_avg[i]);
}
vp8_yv12_de_alloc_frame_buffer(&denoiser->yv12_mc_running_avg);
}
void vp8_denoiser_denoise_mb(VP8_DENOISER *denoiser,
MACROBLOCK *x,
unsigned int best_sse,
unsigned int zero_mv_sse,
int recon_yoffset,
int recon_uvoffset)
{
int mv_row;
int mv_col;
unsigned int motion_magnitude2;
MV_REFERENCE_FRAME frame = x->best_reference_frame;
MV_REFERENCE_FRAME zero_frame = x->best_zeromv_reference_frame;
enum vp8_denoiser_decision decision = FILTER_BLOCK;
// Motion compensate the running average.
if (zero_frame)
{
YV12_BUFFER_CONFIG *src = &denoiser->yv12_running_avg[frame];
YV12_BUFFER_CONFIG *dst = &denoiser->yv12_mc_running_avg;
YV12_BUFFER_CONFIG saved_pre,saved_dst;
MB_MODE_INFO saved_mbmi;
MACROBLOCKD *filter_xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &filter_xd->mode_info_context->mbmi;
int mv_col;
int mv_row;
int sse_diff = zero_mv_sse - best_sse;
saved_mbmi = *mbmi;
// Use the best MV for the compensation.
mbmi->ref_frame = x->best_reference_frame;
mbmi->mode = x->best_sse_inter_mode;
mbmi->mv = x->best_sse_mv;
mbmi->need_to_clamp_mvs = x->need_to_clamp_best_mvs;
mv_col = x->best_sse_mv.as_mv.col;
mv_row = x->best_sse_mv.as_mv.row;
if (frame == INTRA_FRAME ||
(mv_row *mv_row + mv_col *mv_col <= NOISE_MOTION_THRESHOLD &&
sse_diff < SSE_DIFF_THRESHOLD))
{
// Handle intra blocks as referring to last frame with zero motion
// and let the absolute pixel difference affect the filter factor.
// Also consider small amount of motion as being random walk due to
// noise, if it doesn't mean that we get a much bigger error.
// Note that any changes to the mode info only affects the denoising.
mbmi->ref_frame =
x->best_zeromv_reference_frame;
src = &denoiser->yv12_running_avg[zero_frame];
mbmi->mode = ZEROMV;
mbmi->mv.as_int = 0;
x->best_sse_inter_mode = ZEROMV;
x->best_sse_mv.as_int = 0;
best_sse = zero_mv_sse;
}
saved_pre = filter_xd->pre;
saved_dst = filter_xd->dst;
// Compensate the running average.
filter_xd->pre.y_buffer = src->y_buffer + recon_yoffset;
filter_xd->pre.u_buffer = src->u_buffer + recon_uvoffset;
filter_xd->pre.v_buffer = src->v_buffer + recon_uvoffset;
// Write the compensated running average to the destination buffer.
filter_xd->dst.y_buffer = dst->y_buffer + recon_yoffset;
filter_xd->dst.u_buffer = dst->u_buffer + recon_uvoffset;
filter_xd->dst.v_buffer = dst->v_buffer + recon_uvoffset;
if (!x->skip)
{
vp8_build_inter_predictors_mb(filter_xd);
}
else
{
vp8_build_inter16x16_predictors_mb(filter_xd,
filter_xd->dst.y_buffer,
filter_xd->dst.u_buffer,
filter_xd->dst.v_buffer,
filter_xd->dst.y_stride,
filter_xd->dst.uv_stride);
}
filter_xd->pre = saved_pre;
filter_xd->dst = saved_dst;
*mbmi = saved_mbmi;
}
mv_row = x->best_sse_mv.as_mv.row;
mv_col = x->best_sse_mv.as_mv.col;
motion_magnitude2 = mv_row * mv_row + mv_col * mv_col;
if (best_sse > SSE_THRESHOLD || motion_magnitude2
> 8 * NOISE_MOTION_THRESHOLD)
{
decision = COPY_BLOCK;
}
if (decision == FILTER_BLOCK)
{
// Filter.
decision = vp8_denoiser_filter(&denoiser->yv12_mc_running_avg,
&denoiser->yv12_running_avg[LAST_FRAME],
x,
motion_magnitude2,
recon_yoffset, recon_uvoffset);
}
if (decision == COPY_BLOCK)
{
// No filtering of this block; it differs too much from the predictor,
// or the motion vector magnitude is considered too big.
vp8_copy_mem16x16(
x->thismb, 16,
denoiser->yv12_running_avg[LAST_FRAME].y_buffer + recon_yoffset,
denoiser->yv12_running_avg[LAST_FRAME].y_stride);
}
}