vpx/vp9/decoder/vp9_decodframe.c
Dmitry Kovalev 0b44624c37 Finally removing BOOL_DECODER and using vp9_reader instead.
Change-Id: I03d5b6f22f0930893709c6db5f1b06762ad3354e
2013-04-19 10:37:24 -07:00

1731 lines
58 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vp9/decoder/vp9_onyxd_int.h"
#include "vp9/common/vp9_common.h"
#include "vp9/common/vp9_header.h"
#include "vp9/common/vp9_reconintra.h"
#include "vp9/common/vp9_reconinter.h"
#include "vp9/common/vp9_entropy.h"
#include "vp9/decoder/vp9_decodframe.h"
#include "vp9/decoder/vp9_detokenize.h"
#include "vp9/common/vp9_invtrans.h"
#include "vp9/common/vp9_alloccommon.h"
#include "vp9/common/vp9_entropymode.h"
#include "vp9/common/vp9_quant_common.h"
#include "vpx_scale/vpx_scale.h"
#include "vp9/common/vp9_setupintrarecon.h"
#include "vp9/decoder/vp9_decodemv.h"
#include "vp9/common/vp9_extend.h"
#include "vp9/common/vp9_modecont.h"
#include "vpx_mem/vpx_mem.h"
#include "vp9/decoder/vp9_dboolhuff.h"
#include "vp9/common/vp9_seg_common.h"
#include "vp9/common/vp9_tile_common.h"
#include "vp9_rtcd.h"
#include <assert.h>
#include <stdio.h>
#define COEFCOUNT_TESTING
// #define DEC_DEBUG
#ifdef DEC_DEBUG
int dec_debug = 0;
#endif
static int read_le16(const uint8_t *p) {
return (p[1] << 8) | p[0];
}
static int read_le32(const uint8_t *p) {
return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0];
}
// len == 0 is not allowed
static int read_is_valid(const uint8_t *start, size_t len,
const uint8_t *end) {
return start + len > start && start + len <= end;
}
static TXFM_MODE read_txfm_mode(vp9_reader *r) {
TXFM_MODE mode = vp9_read_literal(r, 2);
if (mode == ALLOW_32X32)
mode += vp9_read_bit(r);
return mode;
}
static int get_unsigned_bits(unsigned int num_values) {
int cat = 0;
if (num_values <= 1)
return 0;
num_values--;
while (num_values > 0) {
cat++;
num_values >>= 1;
}
return cat;
}
static int inv_recenter_nonneg(int v, int m) {
if (v > (m << 1))
return v;
else if ((v & 1) == 0)
return (v >> 1) + m;
else
return m - ((v + 1) >> 1);
}
static int decode_uniform(vp9_reader *r, int n) {
int v;
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
if (!l)
return 0;
v = vp9_read_literal(r, l - 1);
return v < m ? v : (v << 1) - m + vp9_read_bit(r);
}
static int decode_term_subexp(vp9_reader *r, int k, int num_syms) {
int i = 0, mk = 0, word;
while (1) {
const int b = i ? k + i - 1 : k;
const int a = 1 << b;
if (num_syms <= mk + 3 * a) {
word = decode_uniform(r, num_syms - mk) + mk;
break;
} else {
if (vp9_read_bit(r)) {
i++;
mk += a;
} else {
word = vp9_read_literal(r, b) + mk;
break;
}
}
}
return word;
}
static int decode_unsigned_max(vp9_reader *r, int max) {
int data = 0, bit = 0, lmax = max;
while (lmax) {
data |= vp9_read_bit(r) << bit++;
lmax >>= 1;
}
return data > max ? max : data;
}
static int merge_index(int v, int n, int modulus) {
int max1 = (n - 1 - modulus / 2) / modulus + 1;
if (v < max1) v = v * modulus + modulus / 2;
else {
int w;
v -= max1;
w = v;
v += (v + modulus - modulus / 2) / modulus;
while (v % modulus == modulus / 2 ||
w != v - (v + modulus - modulus / 2) / modulus) v++;
}
return v;
}
static int inv_remap_prob(int v, int m) {
const int n = 256;
const int modulus = MODULUS_PARAM;
v = merge_index(v, n - 1, modulus);
if ((m << 1) <= n) {
return inv_recenter_nonneg(v + 1, m);
} else {
return n - 1 - inv_recenter_nonneg(v + 1, n - 1 - m);
}
}
static vp9_prob read_prob_diff_update(vp9_reader *r, int oldp) {
int delp = decode_term_subexp(r, SUBEXP_PARAM, 255);
return (vp9_prob)inv_remap_prob(delp, oldp);
}
void vp9_init_de_quantizer(VP9D_COMP *pbi) {
int i;
int q;
VP9_COMMON *const pc = &pbi->common;
for (q = 0; q < QINDEX_RANGE; q++) {
pc->y_dequant[q][0] = (int16_t)vp9_dc_quant(q, pc->y_dc_delta_q);
pc->uv_dequant[q][0] = (int16_t)vp9_dc_uv_quant(q, pc->uv_dc_delta_q);
/* all the ac values =; */
for (i = 1; i < 16; i++) {
const int rc = vp9_default_zig_zag1d_4x4[i];
pc->y_dequant[q][rc] = (int16_t)vp9_ac_yquant(q);
pc->uv_dequant[q][rc] = (int16_t)vp9_ac_uv_quant(q, pc->uv_ac_delta_q);
}
}
}
static int get_qindex(MACROBLOCKD *mb, int segment_id, int base_qindex) {
// Set the Q baseline allowing for any segment level adjustment
if (vp9_segfeature_active(mb, segment_id, SEG_LVL_ALT_Q)) {
const int data = vp9_get_segdata(mb, segment_id, SEG_LVL_ALT_Q);
return mb->mb_segment_abs_delta == SEGMENT_ABSDATA ?
data : // Abs value
clamp(base_qindex + data, 0, MAXQ); // Delta value
} else {
return base_qindex;
}
}
static void mb_init_dequantizer(VP9D_COMP *pbi, MACROBLOCKD *mb) {
int i;
VP9_COMMON *const pc = &pbi->common;
const int segment_id = mb->mode_info_context->mbmi.segment_id;
const int qindex = get_qindex(mb, segment_id, pc->base_qindex);
mb->q_index = qindex;
for (i = 0; i < 16; i++)
mb->block[i].dequant = pc->y_dequant[qindex];
for (i = 16; i < 24; i++)
mb->block[i].dequant = pc->uv_dequant[qindex];
if (mb->lossless) {
assert(qindex == 0);
mb->inv_txm4x4_1 = vp9_short_iwalsh4x4_1;
mb->inv_txm4x4 = vp9_short_iwalsh4x4;
mb->itxm_add = vp9_dequant_idct_add_lossless_c;
mb->itxm_add_y_block = vp9_dequant_idct_add_y_block_lossless_c;
mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block_lossless_c;
} else {
mb->inv_txm4x4_1 = vp9_short_idct4x4_1;
mb->inv_txm4x4 = vp9_short_idct4x4;
mb->itxm_add = vp9_dequant_idct_add;
mb->itxm_add_y_block = vp9_dequant_idct_add_y_block;
mb->itxm_add_uv_block = vp9_dequant_idct_add_uv_block;
}
}
#if CONFIG_CODE_NONZEROCOUNT
static void propagate_nzcs(VP9_COMMON *cm, MACROBLOCKD *xd) {
MODE_INFO *m = xd->mode_info_context;
BLOCK_SIZE_TYPE sb_type = m->mbmi.sb_type;
const int mis = cm->mode_info_stride;
int n;
if (sb_type == BLOCK_SIZE_SB64X64) {
for (n = 0; n < 16; ++n) {
int i = n >> 2;
int j = n & 3;
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
} else if (sb_type == BLOCK_SIZE_SB32X32) {
for (n = 0; n < 4; ++n) {
int i = n >> 1;
int j = n & 1;
if (i == 0 && j == 0) continue;
vpx_memcpy((m + j + mis * i)->mbmi.nzcs, m->mbmi.nzcs,
384 * sizeof(m->mbmi.nzcs[0]));
}
}
}
#endif
static void decode_16x16(MACROBLOCKD *xd) {
const TX_TYPE tx_type = get_tx_type_16x16(xd, 0);
vp9_dequant_iht_add_16x16_c(tx_type, xd->plane[0].qcoeff,
xd->block[0].dequant, xd->dst.y_buffer,
xd->dst.y_stride, xd->plane[0].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride,
xd->plane[1].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[2].qcoeff, xd->block[20].dequant,
xd->dst.v_buffer, xd->dst.uv_stride,
xd->plane[2].eobs[0]);
}
static void decode_8x8(MACROBLOCKD *xd) {
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
// luma
// if the first one is DCT_DCT assume all the rest are as well
TX_TYPE tx_type = get_tx_type_8x8(xd, 0);
if (tx_type != DCT_DCT || mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
int idx = (ib & 0x02) ? (ib + 2) : ib;
int16_t *q = BLOCK_OFFSET(xd->plane[0].qcoeff, idx, 16);
int16_t *dq = xd->block[0].dequant;
uint8_t *dst = *(xd->block[ib].base_dst) + xd->block[ib].dst;
int stride = xd->dst.y_stride;
if (mode == I8X8_PRED) {
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, dst, stride);
}
tx_type = get_tx_type_8x8(xd, ib);
vp9_dequant_iht_add_8x8_c(tx_type, q, dq, dst, stride,
xd->plane[0].eobs[idx]);
}
} else {
vp9_dequant_idct_add_y_block_8x8(xd->plane[0].qcoeff,
xd->block[0].dequant, xd->dst.y_buffer,
xd->dst.y_stride, xd);
}
// chroma
if (mode == I8X8_PRED) {
int i;
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[1].eobs[i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[2].eobs[i]);
}
} else if (mode == SPLITMV) {
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride, xd->plane[2].eobs);
} else {
vp9_dequant_idct_add_8x8(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride,
xd->plane[1].eobs[0]);
vp9_dequant_idct_add_8x8(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride,
xd->plane[2].eobs[0]);
}
}
static INLINE void dequant_add_y(MACROBLOCKD *xd, TX_TYPE tx_type, int idx) {
BLOCKD *const b = &xd->block[idx];
struct mb_plane *const y = &xd->plane[0];
if (tx_type != DCT_DCT) {
vp9_dequant_iht_add_c(tx_type,
BLOCK_OFFSET(y->qcoeff, idx, 16),
b->dequant, *(b->base_dst) + b->dst,
b->dst_stride, y->eobs[idx]);
} else {
xd->itxm_add(BLOCK_OFFSET(y->qcoeff, idx, 16),
b->dequant, *(b->base_dst) + b->dst,
b->dst_stride, y->eobs[idx]);
}
}
static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, vp9_reader *r) {
TX_TYPE tx_type;
int i = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
if (mode == I8X8_PRED) {
for (i = 0; i < 4; i++) {
int ib = vp9_i8x8_block[i];
const int iblock[4] = {0, 1, 4, 5};
int j;
BLOCKD *b = &xd->block[ib];
int i8x8mode = b->bmi.as_mode.first;
vp9_intra8x8_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
for (j = 0; j < 4; j++) {
tx_type = get_tx_type_4x4(xd, ib + iblock[j]);
dequant_add_y(xd, tx_type, ib + iblock[j]);
}
b = &xd->block[16 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[1].eobs[i]);
b = &xd->block[20 + i];
vp9_intra_uv4x4_predict(xd, b, i8x8mode, *(b->base_dst) + b->dst,
b->dst_stride);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16),
b->dequant, *(b->base_dst) + b->dst, b->dst_stride,
xd->plane[2].eobs[i]);
}
} else if (mode == I4X4_PRED) {
for (i = 0; i < 16; i++) {
BLOCKD *b = &xd->block[i];
int b_mode = xd->mode_info_context->bmi[i].as_mode.first;
#if CONFIG_NEWBINTRAMODES
xd->mode_info_context->bmi[i].as_mode.context = b->bmi.as_mode.context =
vp9_find_bpred_context(xd, b);
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_coefs_4x4(pbi, xd, r, PLANE_TYPE_Y_WITH_DC, i);
#endif
vp9_intra4x4_predict(xd, b, b_mode, *(b->base_dst) + b->dst,
b->dst_stride);
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i);
}
#if CONFIG_NEWBINTRAMODES
if (!xd->mode_info_context->mbmi.mb_skip_coeff)
vp9_decode_mb_tokens_4x4_uv(pbi, xd, r);
#endif
vp9_build_intra_predictors_sbuv_s(xd, BLOCK_SIZE_MB16X16);
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride, xd->plane[2].eobs);
} else if (mode == SPLITMV || get_tx_type_4x4(xd, 0) == DCT_DCT) {
xd->itxm_add_y_block(xd->plane[0].qcoeff,
xd->block[0].dequant,
xd->dst.y_buffer, xd->dst.y_stride, xd);
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride, xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride, xd->plane[2].eobs);
} else {
for (i = 0; i < 16; i++) {
tx_type = get_tx_type_4x4(xd, i);
dequant_add_y(xd, tx_type, i);
}
xd->itxm_add_uv_block(xd->plane[1].qcoeff, xd->block[16].dequant,
xd->dst.u_buffer, xd->dst.uv_stride,
xd->plane[1].eobs);
xd->itxm_add_uv_block(xd->plane[2].qcoeff, xd->block[16].dequant,
xd->dst.v_buffer, xd->dst.uv_stride,
xd->plane[2].eobs);
}
}
static INLINE void decode_sby_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) - 1, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 32) * mb->dst.y_stride + (x_idx * 32);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[0].qcoeff, n, 1024),
mb->block[0].dequant ,
mb->dst.y_buffer + y_offset, mb->dst.y_stride,
mb->plane[0].eobs[n * 64]);
}
}
static INLINE void decode_sbuv_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) - 1, bw = (1 << bwl) / 2;
const int bhl = mb_height_log2(bsize) - 1, bh = (1 << bhl) / 2;
const int uv_count = bw * bh;
int n;
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 32) * mb->dst.uv_stride + (x_idx * 32);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[1].qcoeff, n, 1024),
mb->block[16].dequant,
mb->dst.u_buffer + uv_offset,
mb->dst.uv_stride, mb->plane[1].eobs[n * 64]);
vp9_dequant_idct_add_32x32(BLOCK_OFFSET(mb->plane[2].qcoeff, n, 1024),
mb->block[20].dequant,
mb->dst.v_buffer + uv_offset,
mb->dst.uv_stride, mb->plane[2].eobs[n * 64]);
}
}
static INLINE void decode_sby_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = 1 << bwl;
const int bhl = mb_height_log2(bsize), bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 16) * mb->dst.y_stride + (x_idx * 16);
const TX_TYPE tx_type = get_tx_type_16x16(mb,
(y_idx * (4 * bw) + x_idx) * 4);
vp9_dequant_iht_add_16x16_c(tx_type,
BLOCK_OFFSET(mb->plane[0].qcoeff, n, 256),
mb->block[0].dequant,
mb->dst.y_buffer + y_offset,
mb->dst.y_stride,
mb->plane[0].eobs[n * 16]);
}
}
static INLINE void decode_sbuv_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bw = (1 << bwl) / 2;
const int bhl = mb_height_log2(bsize), bh = (1 << bhl) / 2;
const int uv_count = bw * bh;
int n;
assert(bsize >= BLOCK_SIZE_SB32X32);
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 16) * mb->dst.uv_stride + (x_idx * 16);
vp9_dequant_idct_add_16x16(BLOCK_OFFSET(mb->plane[1].qcoeff, n, 256),
mb->block[16].dequant,
mb->dst.u_buffer + uv_offset, mb->dst.uv_stride,
mb->plane[1].eobs[n * 16]);
vp9_dequant_idct_add_16x16(BLOCK_OFFSET(mb->plane[2].qcoeff, n, 256),
mb->block[20].dequant,
mb->dst.v_buffer + uv_offset, mb->dst.uv_stride,
mb->plane[2].eobs[n * 16]);
}
}
static INLINE void decode_sby_8x8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) + 1, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
// luma
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 8) * xd->dst.y_stride + (x_idx * 8);
const TX_TYPE tx_type = get_tx_type_8x8(xd,
(y_idx * (2 * bw) + x_idx) * 2);
vp9_dequant_iht_add_8x8_c(tx_type,
BLOCK_OFFSET(xd->plane[0].qcoeff, n, 64),
xd->block[0].dequant,
xd->dst.y_buffer + y_offset, xd->dst.y_stride,
xd->plane[0].eobs[n * 4]);
}
}
static INLINE void decode_sbuv_8x8(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 1, bw = 1 << (bwl - 1);
const int bhl = mb_height_log2(bsize) + 1, bh = 1 << (bhl - 1);
const int uv_count = bw * bh;
int n;
// chroma
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 8) * xd->dst.uv_stride + (x_idx * 8);
vp9_dequant_idct_add_8x8(BLOCK_OFFSET(xd->plane[1].qcoeff, n, 64),
xd->block[16].dequant,
xd->dst.u_buffer + uv_offset, xd->dst.uv_stride,
xd->plane[1].eobs[n * 4]);
vp9_dequant_idct_add_8x8(BLOCK_OFFSET(xd->plane[2].qcoeff, n, 64),
xd->block[20].dequant,
xd->dst.v_buffer + uv_offset, xd->dst.uv_stride,
xd->plane[2].eobs[n * 4]);
}
}
static INLINE void decode_sby_4x4(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << bwl;
const int bhl = mb_height_log2(bsize) + 2, bh = 1 << bhl;
const int y_count = bw * bh;
int n;
for (n = 0; n < y_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> bwl;
const int y_offset = (y_idx * 4) * xd->dst.y_stride + (x_idx * 4);
const TX_TYPE tx_type = get_tx_type_4x4(xd, n);
if (tx_type == DCT_DCT) {
xd->itxm_add(BLOCK_OFFSET(xd->plane[0].qcoeff, n, 16),
xd->block[0].dequant,
xd->dst.y_buffer + y_offset, xd->dst.y_stride,
xd->plane[0].eobs[n]);
} else {
vp9_dequant_iht_add_c(tx_type,
BLOCK_OFFSET(xd->plane[0].qcoeff, n, 16),
xd->block[0].dequant, xd->dst.y_buffer + y_offset,
xd->dst.y_stride, xd->plane[0].eobs[n]);
}
}
}
static INLINE void decode_sbuv_4x4(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize) + 2, bw = 1 << (bwl - 1);
const int bhl = mb_height_log2(bsize) + 2, bh = 1 << (bhl - 1);
const int uv_count = bw * bh;
int n;
for (n = 0; n < uv_count; n++) {
const int x_idx = n & (bw - 1);
const int y_idx = n >> (bwl - 1);
const int uv_offset = (y_idx * 4) * xd->dst.uv_stride + (x_idx * 4);
xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, n, 16),
xd->block[16].dequant,
xd->dst.u_buffer + uv_offset, xd->dst.uv_stride, xd->plane[1].eobs[n]);
xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, n, 16),
xd->block[20].dequant,
xd->dst.v_buffer + uv_offset, xd->dst.uv_stride, xd->plane[2].eobs[n]);
}
}
// TODO(jingning): combine luma and chroma dequantization and inverse
// transform into a single function looping over planes.
static void decode_sb_32x32(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
decode_sby_32x32(mb, bsize);
if (bsize == BLOCK_SIZE_SB64X64)
decode_sbuv_32x32(mb, bsize);
else
decode_sbuv_16x16(mb, bsize);
}
static void decode_sb_16x16(MACROBLOCKD *mb, BLOCK_SIZE_TYPE bsize) {
decode_sby_16x16(mb, bsize);
if (bsize >= BLOCK_SIZE_SB32X32)
decode_sbuv_16x16(mb, bsize);
else
decode_sbuv_8x8(mb, bsize);
}
static void decode_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
const int bwl = mb_width_log2(bsize), bhl = mb_height_log2(bsize);
const int bw = 1 << bwl, bh = 1 << bhl;
int n, eobtotal;
VP9_COMMON *const pc = &pbi->common;
MODE_INFO *mi = xd->mode_info_context;
const int mis = pc->mode_info_stride;
assert(mi->mbmi.sb_type == bsize);
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, mi->mbmi.interp_filter, pc);
// generate prediction
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
vp9_build_intra_predictors_sby_s(xd, bsize);
vp9_build_intra_predictors_sbuv_s(xd, bsize);
} else {
vp9_build_inter_predictors_sb(xd, mb_row, mb_col, bsize);
}
if (mi->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, bsize);
#if CONFIG_CODE_NONZEROCOUNT
vpx_memset(mi->mbmi.nzcs, 0, 384 * sizeof(mi->mbmi.nzcs[0]));
#endif
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
// dequantization and idct
eobtotal = vp9_decode_tokens(pbi, xd, r, bsize);
if (eobtotal == 0) { // skip loopfilter
for (n = 0; n < bw * bh; n++) {
const int x_idx = n & (bw - 1), y_idx = n >> bwl;
if (mb_col + x_idx < pc->mb_cols && mb_row + y_idx < pc->mb_rows)
mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = 1;
}
} else {
switch (xd->mode_info_context->mbmi.txfm_size) {
case TX_32X32:
decode_sb_32x32(xd, bsize);
break;
case TX_16X16:
decode_sb_16x16(xd, bsize);
break;
case TX_8X8:
decode_sby_8x8(xd, bsize);
decode_sbuv_8x8(xd, bsize);
break;
case TX_4X4:
decode_sby_4x4(xd, bsize);
decode_sbuv_4x4(xd, bsize);
break;
default: assert(0);
}
}
}
#if CONFIG_CODE_NONZEROCOUNT
propagate_nzcs(&pbi->common, xd);
#endif
}
// TODO(jingning): Need to merge SB and MB decoding. The MB decoding currently
// couples special handles on I8x8, B_PRED, and splitmv modes.
static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd,
int mb_row, int mb_col,
vp9_reader *r) {
int eobtotal = 0;
const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode;
const int tx_size = xd->mode_info_context->mbmi.txfm_size;
assert(!xd->mode_info_context->mbmi.sb_type);
//mode = xd->mode_info_context->mbmi.mode;
if (pbi->common.frame_type != KEY_FRAME)
vp9_setup_interp_filters(xd, xd->mode_info_context->mbmi.interp_filter,
&pbi->common);
// do prediction
if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) {
if (mode != I8X8_PRED) {
vp9_build_intra_predictors_sbuv_s(xd, BLOCK_SIZE_MB16X16);
if (mode != I4X4_PRED)
vp9_build_intra_predictors_sby_s(xd, BLOCK_SIZE_MB16X16);
}
} else {
#if 0 // def DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d interp %d\n",
xd->mode_info_context->mbmi.mode, tx_size,
xd->mode_info_context->mbmi.interp_filter);
#endif
vp9_build_inter_predictors_mb(xd, mb_row, mb_col);
}
if (xd->mode_info_context->mbmi.mb_skip_coeff) {
vp9_reset_sb_tokens_context(xd, BLOCK_SIZE_MB16X16);
} else {
// re-initialize macroblock dequantizer before detokenization
if (xd->segmentation_enabled)
mb_init_dequantizer(pbi, xd);
if (!vp9_reader_has_error(r)) {
#if CONFIG_NEWBINTRAMODES
if (mode != I4X4_PRED)
#endif
eobtotal = vp9_decode_tokens(pbi, xd, r, BLOCK_SIZE_MB16X16);
}
}
if (eobtotal == 0 &&
mode != I4X4_PRED &&
mode != SPLITMV &&
mode != I8X8_PRED &&
!vp9_reader_has_error(r)) {
xd->mode_info_context->mbmi.mb_skip_coeff = 1;
} else {
#if 0 // def DEC_DEBUG
if (dec_debug)
printf("Decoding mb: %d %d\n", xd->mode_info_context->mbmi.mode, tx_size);
#endif
if (tx_size == TX_16X16) {
decode_16x16(xd);
} else if (tx_size == TX_8X8) {
decode_8x8(xd);
} else {
decode_4x4(pbi, xd, r);
}
}
#ifdef DEC_DEBUG
if (dec_debug) {
int i, j;
printf("\n");
printf("predictor y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->predictor[i * 16 + j]);
printf("\n");
}
printf("\n");
printf("final y\n");
for (i = 0; i < 16; i++) {
for (j = 0; j < 16; j++)
printf("%3d ", xd->dst.y_buffer[i * xd->dst.y_stride + j]);
printf("\n");
}
printf("\n");
printf("final u\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.u_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
printf("\n");
printf("final v\n");
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++)
printf("%3d ", xd->dst.v_buffer[i * xd->dst.uv_stride + j]);
printf("\n");
}
fflush(stdout);
}
#endif
}
static int get_delta_q(vp9_reader *r, int *dq) {
const int old_value = *dq;
if (vp9_read_bit(r)) { // Update bit
const int value = vp9_read_literal(r, 4);
*dq = vp9_read_and_apply_sign(r, value);
}
// Trigger a quantizer update if the delta-q value has changed
return old_value != *dq;
}
#ifdef PACKET_TESTING
#include <stdio.h>
FILE *vpxlog = 0;
#endif
static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize,
int mb_row, int mb_col) {
const int bh = 1 << mb_height_log2(bsize);
const int bw = 1 << mb_width_log2(bsize);
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const int mb_idx = mb_row * cm->mode_info_stride + mb_col;
const YV12_BUFFER_CONFIG *dst_fb = &cm->yv12_fb[cm->new_fb_idx];
const int recon_yoffset = (16 * mb_row) * dst_fb->y_stride + (16 * mb_col);
const int recon_uvoffset = (8 * mb_row) * dst_fb->uv_stride + (8 * mb_col);
xd->mode_info_context = cm->mi + mb_idx;
xd->mode_info_context->mbmi.sb_type = bsize;
xd->prev_mode_info_context = cm->prev_mi + mb_idx;
xd->above_context = cm->above_context + mb_col;
xd->left_context = cm->left_context + mb_row % 4;
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mb_row(cm, xd, mb_row, bh);
set_mb_col(cm, xd, mb_col, bw);
xd->dst.y_buffer = dst_fb->y_buffer + recon_yoffset;
xd->dst.u_buffer = dst_fb->u_buffer + recon_uvoffset;
xd->dst.v_buffer = dst_fb->v_buffer + recon_uvoffset;
}
static void set_refs(VP9D_COMP *pbi, int mb_row, int mb_col) {
VP9_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi;
if (mbmi->ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1];
const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx];
xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1];
setup_pred_block(&xd->pre, cfg, mb_row, mb_col,
&xd->scale_factor[0], &xd->scale_factor_uv[0]);
xd->corrupted |= cfg->corrupted;
if (mbmi->second_ref_frame > INTRA_FRAME) {
// Select the appropriate reference frame for this MB
const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1];
const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx];
xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1];
setup_pred_block(&xd->second_pre, second_cfg, mb_row, mb_col,
&xd->scale_factor[1], &xd->scale_factor_uv[1]);
xd->corrupted |= second_cfg->corrupted;
}
}
}
static void decode_modes_b(VP9D_COMP *pbi, int mb_row, int mb_col,
vp9_reader *r, BLOCK_SIZE_TYPE bsize) {
MACROBLOCKD *const xd = &pbi->mb;
set_offsets(pbi, bsize, mb_row, mb_col);
vp9_decode_mb_mode_mv(pbi, xd, mb_row, mb_col, r);
set_refs(pbi, mb_row, mb_col);
// TODO(jingning): merge decode_sb_ and decode_mb_
if (bsize > BLOCK_SIZE_MB16X16)
decode_sb(pbi, xd, mb_row, mb_col, r, bsize);
else
decode_mb(pbi, xd, mb_row, mb_col, r);
xd->corrupted |= vp9_reader_has_error(r);
}
static void decode_modes_sb(VP9D_COMP *pbi, int mb_row, int mb_col,
vp9_reader* r, BLOCK_SIZE_TYPE bsize) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
int bsl = mb_width_log2(bsize), bs = (1 << bsl) / 2;
int n;
PARTITION_TYPE partition = PARTITION_NONE;
BLOCK_SIZE_TYPE subsize;
if (mb_row >= pc->mb_rows || mb_col >= pc->mb_cols)
return;
if (bsize > BLOCK_SIZE_MB16X16) {
// read the partition information
partition = treed_read(r, vp9_partition_tree,
pc->fc.partition_prob[bsl - 1]);
pc->fc.partition_counts[bsl - 1][partition]++;
}
switch (partition) {
case PARTITION_NONE:
subsize = bsize;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
break;
#if CONFIG_SBSEGMENT
case PARTITION_HORZ:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB64X32 :
BLOCK_SIZE_SB32X16;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
if ((mb_row + bs) < pc->mb_rows)
decode_modes_b(pbi, mb_row + bs, mb_col, r, subsize);
break;
case PARTITION_VERT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X64 :
BLOCK_SIZE_SB16X32;
decode_modes_b(pbi, mb_row, mb_col, r, subsize);
if ((mb_col + bs) < pc->mb_cols)
decode_modes_b(pbi, mb_row, mb_col + bs, r, subsize);
break;
#endif
case PARTITION_SPLIT:
subsize = (bsize == BLOCK_SIZE_SB64X64) ? BLOCK_SIZE_SB32X32 :
BLOCK_SIZE_MB16X16;
for (n = 0; n < 4; n++) {
int j = n >> 1, i = n & 0x01;
if (subsize == BLOCK_SIZE_SB32X32)
xd->sb_index = n;
else
xd->mb_index = n;
decode_modes_sb(pbi, mb_row + j * bs, mb_col + i * bs, r, subsize);
}
break;
default:
assert(0);
}
}
/* Decode a row of Superblocks (4x4 region of MBs) */
static void decode_tile(VP9D_COMP *pbi, vp9_reader* r) {
VP9_COMMON *const pc = &pbi->common;
int mb_row, mb_col;
for (mb_row = pc->cur_tile_mb_row_start;
mb_row < pc->cur_tile_mb_row_end; mb_row += 4) {
// For a SB there are 2 left contexts, each pertaining to a MB row within
vpx_memset(pc->left_context, 0, sizeof(pc->left_context));
for (mb_col = pc->cur_tile_mb_col_start;
mb_col < pc->cur_tile_mb_col_end; mb_col += 4) {
decode_modes_sb(pbi, mb_row, mb_col, r, BLOCK_SIZE_SB64X64);
}
}
}
static void setup_token_decoder(VP9D_COMP *pbi,
const uint8_t *data,
vp9_reader *r) {
VP9_COMMON *pc = &pbi->common;
const uint8_t *data_end = pbi->source + pbi->source_sz;
const size_t partition_size = data_end - data;
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition "
"%d length", 1);
if (vp9_reader_init(r, data, partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
}
static void init_frame(VP9D_COMP *pbi) {
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (pc->frame_type == KEY_FRAME) {
vp9_setup_past_independence(pc, xd);
// All buffers are implicitly updated on key frames.
pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
} else if (pc->error_resilient_mode) {
vp9_setup_past_independence(pc, xd);
}
xd->mode_info_context = pc->mi;
xd->prev_mode_info_context = pc->prev_mi;
xd->frame_type = pc->frame_type;
xd->mode_info_context->mbmi.mode = DC_PRED;
xd->mode_info_stride = pc->mode_info_stride;
xd->corrupted = 0;
}
#if CONFIG_CODE_NONZEROCOUNT
static void read_nzc_probs_common(VP9_COMMON *cm,
vp9_reader *rd,
TX_SIZE tx_size) {
int c, r, b, t;
int tokens, nodes;
vp9_prob *nzc_probs;
vp9_prob upd;
if (!get_nzc_used(tx_size)) return;
if (!vp9_read_bit(rd)) return;
if (tx_size == TX_32X32) {
tokens = NZC32X32_TOKENS;
nzc_probs = cm->fc.nzc_probs_32x32[0][0][0];
upd = NZC_UPDATE_PROB_32X32;
} else if (tx_size == TX_16X16) {
tokens = NZC16X16_TOKENS;
nzc_probs = cm->fc.nzc_probs_16x16[0][0][0];
upd = NZC_UPDATE_PROB_16X16;
} else if (tx_size == TX_8X8) {
tokens = NZC8X8_TOKENS;
nzc_probs = cm->fc.nzc_probs_8x8[0][0][0];
upd = NZC_UPDATE_PROB_8X8;
} else {
tokens = NZC4X4_TOKENS;
nzc_probs = cm->fc.nzc_probs_4x4[0][0][0];
upd = NZC_UPDATE_PROB_4X4;
}
nodes = tokens - 1;
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (r = 0; r < REF_TYPES; ++r) {
for (b = 0; b < BLOCK_TYPES; ++b) {
int offset = c * REF_TYPES * BLOCK_TYPES + r * BLOCK_TYPES + b;
int offset_nodes = offset * nodes;
for (t = 0; t < nodes; ++t) {
vp9_prob *p = &nzc_probs[offset_nodes + t];
if (vp9_read(rd, upd)) {
*p = read_prob_diff_update(rd, *p);
}
}
}
}
}
}
static void read_nzc_pcat_probs(VP9_COMMON *cm, vp9_reader *r) {
int c, t, b;
vp9_prob upd = NZC_UPDATE_PROB_PCAT;
if (!(get_nzc_used(TX_4X4) || get_nzc_used(TX_8X8) ||
get_nzc_used(TX_16X16) || get_nzc_used(TX_32X32)))
return;
if (!vp9_read_bit(r)) {
return;
}
for (c = 0; c < MAX_NZC_CONTEXTS; ++c) {
for (t = 0; t < NZC_TOKENS_EXTRA; ++t) {
int bits = vp9_extranzcbits[t + NZC_TOKENS_NOEXTRA];
for (b = 0; b < bits; ++b) {
vp9_prob *p = &cm->fc.nzc_pcat_probs[c][t][b];
if (vp9_read(r, upd)) {
*p = read_prob_diff_update(r, *p);
}
}
}
}
}
static void read_nzc_probs(VP9_COMMON *cm, vp9_reader *r) {
read_nzc_probs_common(cm, r, TX_4X4);
if (cm->txfm_mode != ONLY_4X4)
read_nzc_probs_common(cm, r, TX_8X8);
if (cm->txfm_mode > ALLOW_8X8)
read_nzc_probs_common(cm, r, TX_16X16);
if (cm->txfm_mode > ALLOW_16X16)
read_nzc_probs_common(cm, r, TX_32X32);
#ifdef NZC_PCAT_UPDATE
read_nzc_pcat_probs(cm, r);
#endif
}
#endif // CONFIG_CODE_NONZEROCOUNT
static void read_coef_probs_common(VP9D_COMP *pbi,
vp9_reader *r,
vp9_coeff_probs *coef_probs,
TX_SIZE tx_size) {
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES;
#else
const int entropy_nodes_update = ENTROPY_NODES;
#endif
int i, j, k, l, m;
if (vp9_read_bit(r)) {
for (i = 0; i < BLOCK_TYPES; i++) {
for (j = 0; j < REF_TYPES; j++) {
for (k = 0; k < COEF_BANDS; k++) {
for (l = 0; l < PREV_COEF_CONTEXTS; l++) {
#if CONFIG_CODE_NONZEROCOUNT
const int mstart = get_nzc_used(tx_size);
#else
const int mstart = 0;
#endif
if (l >= 3 && k == 0)
continue;
for (m = mstart; m < entropy_nodes_update; m++) {
vp9_prob *const p = coef_probs[i][j][k][l] + m;
if (vp9_read(r, vp9_coef_update_prob[m])) {
*p = read_prob_diff_update(r, *p);
#if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE
if (m == UNCONSTRAINED_NODES - 1)
vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j);
#endif
}
}
}
}
}
}
}
}
static void read_coef_probs(VP9D_COMP *pbi, vp9_reader *r) {
const TXFM_MODE mode = pbi->common.txfm_mode;
FRAME_CONTEXT *const fc = &pbi->common.fc;
read_coef_probs_common(pbi, r, fc->coef_probs_4x4, TX_4X4);
if (mode != ONLY_4X4)
read_coef_probs_common(pbi, r, fc->coef_probs_8x8, TX_8X8);
if (mode > ALLOW_8X8)
read_coef_probs_common(pbi, r, fc->coef_probs_16x16, TX_16X16);
if (mode > ALLOW_16X16)
read_coef_probs_common(pbi, r, fc->coef_probs_32x32, TX_32X32);
}
static void update_frame_size(VP9D_COMP *pbi) {
VP9_COMMON *cm = &pbi->common;
const int width = multiple16(cm->width);
const int height = multiple16(cm->height);
cm->mb_rows = height / 16;
cm->mb_cols = width / 16;
cm->MBs = cm->mb_rows * cm->mb_cols;
cm->mode_info_stride = cm->mb_cols + 1;
memset(cm->mip, 0,
(cm->mb_cols + 1) * (cm->mb_rows + 1) * sizeof(MODE_INFO));
vp9_update_mode_info_border(cm, cm->mip);
cm->mi = cm->mip + cm->mode_info_stride + 1;
cm->prev_mi = cm->prev_mip + cm->mode_info_stride + 1;
vp9_update_mode_info_in_image(cm, cm->mi);
}
static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
int i, j;
xd->segmentation_enabled = vp9_read_bit(r);
if (xd->segmentation_enabled) {
// Read whether or not the segmentation map is being explicitly updated
// this frame.
xd->update_mb_segmentation_map = vp9_read_bit(r);
if (xd->update_mb_segmentation_map) {
// Which macro block level features are enabled. Read the probs used to
// decode the segment id for each macro block.
for (i = 0; i < MB_FEATURE_TREE_PROBS; i++)
xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255;
// Read the prediction probs needed to decode the segment id
pc->temporal_update = vp9_read_bit(r);
if (pc->temporal_update) {
const vp9_prob *p = xd->mb_segment_tree_probs;
vp9_prob *p_mod = xd->mb_segment_mispred_tree_probs;
const int c0 = p[0] * p[1];
const int c1 = p[0] * (256 - p[1]);
const int c2 = (256 - p[0]) * p[2];
const int c3 = (256 - p[0]) * (256 - p[2]);
p_mod[0] = get_binary_prob(c1, c2 + c3);
p_mod[1] = get_binary_prob(c0, c2 + c3);
p_mod[2] = get_binary_prob(c0 + c1, c3);
p_mod[3] = get_binary_prob(c0 + c1, c2);
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : 255;
} else {
for (i = 0; i < PREDICTION_PROBS; i++)
pc->segment_pred_probs[i] = 255;
}
}
xd->update_mb_segmentation_data = vp9_read_bit(r);
if (xd->update_mb_segmentation_data) {
xd->mb_segment_abs_delta = vp9_read_bit(r);
vp9_clearall_segfeatures(xd);
for (i = 0; i < MAX_MB_SEGMENTS; i++) {
for (j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = vp9_read_bit(r);
if (feature_enabled) {
vp9_enable_segfeature(xd, i, j);
data = decode_unsigned_max(r, vp9_seg_feature_data_max(j));
if (vp9_is_segfeature_signed(j))
data = vp9_read_and_apply_sign(r, data);
}
vp9_set_segdata(xd, i, j, data);
}
}
}
}
}
static void setup_pred_probs(VP9_COMMON *pc, vp9_reader *r) {
// Read common prediction model status flag probability updates for the
// reference frame
if (pc->frame_type == KEY_FRAME) {
// Set the prediction probabilities to defaults
pc->ref_pred_probs[0] = DEFAULT_PRED_PROB_0;
pc->ref_pred_probs[1] = DEFAULT_PRED_PROB_1;
pc->ref_pred_probs[2] = DEFAULT_PRED_PROB_2;
} else {
int i;
for (i = 0; i < PREDICTION_PROBS; ++i)
if (vp9_read_bit(r))
pc->ref_pred_probs[i] = vp9_read_prob(r);
}
}
static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) {
pc->filter_type = (LOOPFILTER_TYPE) vp9_read_bit(r);
pc->filter_level = vp9_read_literal(r, 6);
pc->sharpness_level = vp9_read_literal(r, 3);
#if CONFIG_LOOP_DERING
if (vp9_read_bit(r))
pc->dering_enabled = 1 + vp9_read_literal(r, 4);
else
pc->dering_enabled = 0;
#endif
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
xd->mode_ref_lf_delta_update = 0;
xd->mode_ref_lf_delta_enabled = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_enabled) {
xd->mode_ref_lf_delta_update = vp9_read_bit(r);
if (xd->mode_ref_lf_delta_update) {
int i;
for (i = 0; i < MAX_REF_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->ref_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
for (i = 0; i < MAX_MODE_LF_DELTAS; i++) {
if (vp9_read_bit(r)) {
const int value = vp9_read_literal(r, 6);
xd->mode_lf_deltas[i] = vp9_read_and_apply_sign(r, value);
}
}
}
}
}
static void setup_quantization(VP9D_COMP *pbi, vp9_reader *r) {
// Read the default quantizers
VP9_COMMON *const pc = &pbi->common;
pc->base_qindex = vp9_read_literal(r, QINDEX_BITS);
if (get_delta_q(r, &pc->y_dc_delta_q) |
get_delta_q(r, &pc->uv_dc_delta_q) |
get_delta_q(r, &pc->uv_ac_delta_q))
vp9_init_de_quantizer(pbi);
mb_init_dequantizer(pbi, &pbi->mb); // MB level dequantizer setup
}
static const uint8_t *read_frame_size(VP9_COMMON *const pc, const uint8_t *data,
const uint8_t *data_end,
int *width, int *height) {
if (data + 4 < data_end) {
const int w = read_le16(data);
const int h = read_le16(data + 2);
if (w <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame width");
if (h <= 0)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Invalid frame height");
*width = w;
*height = h;
data += 4;
} else {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Failed to read frame size");
}
return data;
}
static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active,
const uint8_t *data,
const uint8_t *data_end) {
// If error concealment is enabled we should only parse the new size
// if we have enough data. Otherwise we will end up with the wrong size.
VP9_COMMON *const pc = &pbi->common;
int display_width = pc->display_width;
int display_height = pc->display_height;
int width = pc->width;
int height = pc->height;
if (scaling_active)
data = read_frame_size(pc, data, data_end, &display_width, &display_height);
data = read_frame_size(pc, data, data_end, &width, &height);
if (pc->width != width || pc->height != height) {
if (!pbi->initial_width || !pbi->initial_height) {
if (vp9_alloc_frame_buffers(pc, width, height))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
pbi->initial_width = width;
pbi->initial_height = height;
} else {
if (width > pbi->initial_width)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame width too large");
if (height > pbi->initial_height)
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Frame height too large");
}
pc->width = width;
pc->height = height;
pc->display_width = scaling_active ? display_width : width;
pc->display_height = scaling_active ? display_height : height;
update_frame_size(pbi);
}
return data;
}
static void update_frame_context(VP9D_COMP *pbi) {
FRAME_CONTEXT *const fc = &pbi->common.fc;
vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4);
vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8);
vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16);
vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32);
vp9_copy(fc->pre_ymode_prob, fc->ymode_prob);
vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob);
vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob);
vp9_copy(fc->pre_bmode_prob, fc->bmode_prob);
vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob);
vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob);
vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob);
vp9_copy(fc->pre_partition_prob, fc->partition_prob);
fc->pre_nmvc = fc->nmvc;
vp9_zero(fc->coef_counts_4x4);
vp9_zero(fc->coef_counts_8x8);
vp9_zero(fc->coef_counts_16x16);
vp9_zero(fc->coef_counts_32x32);
vp9_zero(fc->eob_branch_counts);
vp9_zero(fc->ymode_counts);
vp9_zero(fc->sb_ymode_counts);
vp9_zero(fc->uv_mode_counts);
vp9_zero(fc->bmode_counts);
vp9_zero(fc->i8x8_mode_counts);
vp9_zero(fc->sub_mv_ref_counts);
vp9_zero(fc->mbsplit_counts);
vp9_zero(fc->NMVcount);
vp9_zero(fc->mv_ref_ct);
vp9_zero(fc->partition_counts);
#if CONFIG_COMP_INTERINTRA_PRED
fc->pre_interintra_prob = fc->interintra_prob;
vp9_zero(fc->interintra_counts);
#endif
#if CONFIG_CODE_NONZEROCOUNT
vp9_copy(fc->pre_nzc_probs_4x4, fc->nzc_probs_4x4);
vp9_copy(fc->pre_nzc_probs_8x8, fc->nzc_probs_8x8);
vp9_copy(fc->pre_nzc_probs_16x16, fc->nzc_probs_16x16);
vp9_copy(fc->pre_nzc_probs_32x32, fc->nzc_probs_32x32);
vp9_copy(fc->pre_nzc_pcat_probs, fc->nzc_pcat_probs);
vp9_zero(fc->nzc_counts_4x4);
vp9_zero(fc->nzc_counts_8x8);
vp9_zero(fc->nzc_counts_16x16);
vp9_zero(fc->nzc_counts_32x32);
vp9_zero(fc->nzc_pcat_counts);
#endif
}
static void decode_tiles(VP9D_COMP *pbi,
const uint8_t *data, int first_partition_size,
vp9_reader *header_bc, vp9_reader *residual_bc) {
VP9_COMMON *const pc = &pbi->common;
const uint8_t *data_ptr = data + first_partition_size;
int tile_row, tile_col, delta_log2_tiles;
vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles);
while (delta_log2_tiles--) {
if (vp9_read_bit(header_bc)) {
pc->log2_tile_columns++;
} else {
break;
}
}
pc->log2_tile_rows = vp9_read_bit(header_bc);
if (pc->log2_tile_rows)
pc->log2_tile_rows += vp9_read_bit(header_bc);
pc->tile_columns = 1 << pc->log2_tile_columns;
pc->tile_rows = 1 << pc->log2_tile_rows;
vpx_memset(pc->above_context, 0,
sizeof(ENTROPY_CONTEXT_PLANES) * pc->mb_cols);
if (pbi->oxcf.inv_tile_order) {
const int n_cols = pc->tile_columns;
const uint8_t *data_ptr2[4][1 << 6];
vp9_reader UNINITIALIZED_IS_SAFE(bc_bak);
// pre-initialize the offsets, we're going to read in inverse order
data_ptr2[0][0] = data_ptr;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
if (tile_row) {
const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]);
data_ptr2[tile_row - 1][n_cols - 1] += 4;
data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size;
}
for (tile_col = 1; tile_col < n_cols; tile_col++) {
const int size = read_le32(data_ptr2[tile_row][tile_col - 1]);
data_ptr2[tile_row][tile_col - 1] += 4;
data_ptr2[tile_row][tile_col] =
data_ptr2[tile_row][tile_col - 1] + size;
}
}
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) {
vp9_get_tile_col_offsets(pc, tile_col);
setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc);
decode_tile(pbi, residual_bc);
if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1)
bc_bak = *residual_bc;
}
}
*residual_bc = bc_bak;
} else {
int has_more;
for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) {
vp9_get_tile_row_offsets(pc, tile_row);
for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) {
vp9_get_tile_col_offsets(pc, tile_col);
has_more = tile_col < pc->tile_columns - 1 ||
tile_row < pc->tile_rows - 1;
setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc);
decode_tile(pbi, residual_bc);
if (has_more) {
const int size = read_le32(data_ptr);
data_ptr += 4 + size;
}
}
}
}
}
int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) {
vp9_reader header_bc, residual_bc;
VP9_COMMON *const pc = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
const uint8_t *data = pbi->source;
const uint8_t *data_end = data + pbi->source_sz;
size_t first_partition_size = 0;
int i, corrupt_tokens = 0;
// printf("Decoding frame %d\n", pc->current_video_frame);
xd->corrupted = 0; // start with no corruption of current frame
pc->yv12_fb[pc->new_fb_idx].corrupted = 0;
if (data_end - data < 3) {
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet");
} else {
int scaling_active;
pc->last_frame_type = pc->frame_type;
pc->frame_type = (FRAME_TYPE)(data[0] & 1);
pc->version = (data[0] >> 1) & 7;
pc->show_frame = (data[0] >> 4) & 1;
scaling_active = (data[0] >> 5) & 1;
first_partition_size = read_le16(data + 1);
if (!read_is_valid(data, first_partition_size, data_end))
vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt partition 0 length");
data += 3;
vp9_setup_version(pc);
if (pc->frame_type == KEY_FRAME) {
// When error concealment is enabled we should only check the sync
// code if we have enough bits available
if (data + 3 < data_end) {
if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a)
vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM,
"Invalid frame sync code");
}
data += 3;
}
data = setup_frame_size(pbi, scaling_active, data, data_end);
}
if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) ||
pc->width == 0 || pc->height == 0) {
return -1;
}
init_frame(pbi);
// Reset the frame pointers to the current frame size
vp8_yv12_realloc_frame_buffer(&pc->yv12_fb[pc->new_fb_idx],
pc->width, pc->height,
VP9BORDERINPIXELS);
if (vp9_reader_init(&header_bc, data, first_partition_size))
vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR,
"Failed to allocate bool decoder 0");
pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc);
pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc);
pc->error_resilient_mode = vp9_read_bit(&header_bc);
setup_segmentation(pc, xd, &header_bc);
setup_pred_probs(pc, &header_bc);
xd->lossless = vp9_read_bit(&header_bc);
pc->txfm_mode = xd->lossless ? ONLY_4X4 : read_txfm_mode(&header_bc);
if (pc->txfm_mode == TX_MODE_SELECT) {
pc->prob_tx[0] = vp9_read_prob(&header_bc);
pc->prob_tx[1] = vp9_read_prob(&header_bc);
pc->prob_tx[2] = vp9_read_prob(&header_bc);
}
setup_loopfilter(pc, xd, &header_bc);
// Dummy read for now
vp9_read_literal(&header_bc, 2);
setup_quantization(pbi, &header_bc);
// Determine if the golden frame or ARF buffer should be updated and how.
// For all non key frames the GF and ARF refresh flags and sign bias
// flags must be set explicitly.
if (pc->frame_type == KEY_FRAME) {
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i)
pc->active_ref_idx[i] = pc->new_fb_idx;
} else {
// Should the GF or ARF be updated from the current frame
pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES);
// Select active reference frames
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
int ref_frame_num = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2);
pc->active_ref_idx[i] = pc->ref_frame_map[ref_frame_num];
}
pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp9_read_bit(&header_bc);
pc->ref_frame_sign_bias[ALTREF_FRAME] = vp9_read_bit(&header_bc);
// Is high precision mv allowed
xd->allow_high_precision_mv = vp9_read_bit(&header_bc);
// Read the type of subpel filter to use
pc->mcomp_filter_type = vp9_read_bit(&header_bc)
? SWITCHABLE
: vp9_read_literal(&header_bc, 2);
#if CONFIG_COMP_INTERINTRA_PRED
pc->use_interintra = vp9_read_bit(&header_bc);
#endif
// Calculate scaling factors for each of the 3 available references
for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) {
const int idx = pc->active_ref_idx[i];
struct scale_factors *sf = &pc->active_ref_scale[i];
if (idx >= NUM_YV12_BUFFERS)
memset(sf, 0, sizeof(*sf));
else
vp9_setup_scale_factors_for_frame(sf, &pc->yv12_fb[idx],
pc->width, pc->height);
}
// To enable choice of different interpolation filters
vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc);
}
if (!pc->error_resilient_mode) {
pc->refresh_entropy_probs = vp9_read_bit(&header_bc);
pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc);
} else {
pc->refresh_entropy_probs = 0;
pc->frame_parallel_decoding_mode = 1;
}
pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2);
vpx_memcpy(&pc->fc, &pc->frame_contexts[pc->frame_context_idx],
sizeof(pc->fc));
// Read inter mode probability context updates
if (pc->frame_type != KEY_FRAME) {
int i, j;
for (i = 0; i < INTER_MODE_CONTEXTS; ++i)
for (j = 0; j < 4; ++j)
if (vp9_read(&header_bc, 252))
pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc);
}
#if CONFIG_MODELCOEFPROB
if (pc->frame_type == KEY_FRAME) {
vp9_default_coef_probs(pc);
}
#endif
if (0) {
FILE *z = fopen("decodestats.stt", "a");
fprintf(z, "%6d F:%d,R:%d,Q:%d\n",
pc->current_video_frame,
pc->frame_type,
pbi->refresh_frame_flags,
pc->base_qindex);
fclose(z);
}
update_frame_context(pbi);
read_coef_probs(pbi, &header_bc);
#if CONFIG_CODE_NONZEROCOUNT
read_nzc_probs(&pbi->common, &header_bc);
#endif
// Initialize xd pointers. Any reference should do for xd->pre, so use 0.
vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->active_ref_idx[0]],
sizeof(YV12_BUFFER_CONFIG));
vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx],
sizeof(YV12_BUFFER_CONFIG));
// Create the segmentation map structure and set to 0
if (!pc->last_frame_seg_map)
CHECK_MEM_ERROR(pc->last_frame_seg_map,
vpx_calloc((pc->mb_rows * pc->mb_cols), 1));
// set up frame new frame for intra coded blocks
vp9_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]);
vp9_setup_block_dptrs(xd);
vp9_build_block_doffsets(xd);
// clear out the coeff buffer
vpx_memset(xd->plane[0].qcoeff, 0, sizeof(xd->plane[0].qcoeff));
vpx_memset(xd->plane[1].qcoeff, 0, sizeof(xd->plane[1].qcoeff));
vpx_memset(xd->plane[2].qcoeff, 0, sizeof(xd->plane[2].qcoeff));
vp9_read_bit(&header_bc); // unused
vp9_decode_mode_mvs_init(pbi, &header_bc);
decode_tiles(pbi, data, first_partition_size, &header_bc, &residual_bc);
corrupt_tokens |= xd->corrupted;
// keep track of the last coded dimensions
pc->last_width = pc->width;
pc->last_height = pc->height;
// Collect information about decoder corruption.
// 1. Check first boolean decoder for errors.
// 2. Check the macroblock information
pc->yv12_fb[pc->new_fb_idx].corrupted = vp9_reader_has_error(&header_bc) |
corrupt_tokens;
if (!pbi->decoded_key_frame) {
if (pc->frame_type == KEY_FRAME && !pc->yv12_fb[pc->new_fb_idx].corrupted)
pbi->decoded_key_frame = 1;
else
vpx_internal_error(&pbi->common.error, VPX_CODEC_CORRUPT_FRAME,
"A stream must start with a complete key frame");
}
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_coef_probs(pc);
#if CONFIG_CODE_NONZEROCOUNT
vp9_adapt_nzc_probs(pc);
#endif
}
if (pc->frame_type != KEY_FRAME) {
if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) {
vp9_adapt_mode_probs(pc);
vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv);
vp9_adapt_mode_context(&pbi->common);
}
}
if (pc->refresh_entropy_probs) {
vpx_memcpy(&pc->frame_contexts[pc->frame_context_idx], &pc->fc,
sizeof(pc->fc));
}
#ifdef PACKET_TESTING
{
FILE *f = fopen("decompressor.VP8", "ab");
unsigned int size = residual_bc.pos + header_bc.pos + 8;
fwrite((void *) &size, 4, 1, f);
fwrite((void *) pbi->Source, size, 1, f);
fclose(f);
}
#endif
*p_data_end = vp9_reader_find_end(&residual_bc);
return 0;
}