01cafaab1d
Adds an error-resilient mode where frames can be continued to be decoded even when there are errors (due to network losses) on a prior frame. Specifically, backward updates are turned off and probabilities of various symbols are reset to defaults at the beginning of each frame. Further, the last frame's mvs are not used for the mv reference list, and the sorting of the initial list based on search on previous frames is turned off as well. Also adds a test where an arbitrary set of frames are skipped from decoding to simulate errors. The test verifies (1) that if the error frames are droppable - i.e. frame buffer updates have been turned off - there are no mismatch errors for the remaining frames after the error frames; and (2) if the error-frames are non droppable, there are not only no decoding errors but the mismatch PSNR between the decoder's version of the post-error frames and the encoder's version is at least 20 dB. Change-Id: Ie6e2bcd436b1e8643270356d3a930e8989ff52a5
678 lines
22 KiB
C
678 lines
22 KiB
C
/*
|
|
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <assert.h>
|
|
|
|
#include "math.h"
|
|
#include "vp9/common/vp9_alloccommon.h"
|
|
#include "vp9/common/vp9_modecont.h"
|
|
#include "vp9/common/vp9_common.h"
|
|
#include "vp9/encoder/vp9_ratectrl.h"
|
|
#include "vp9/common/vp9_entropymode.h"
|
|
#include "vpx_mem/vpx_mem.h"
|
|
#include "vp9/common/vp9_systemdependent.h"
|
|
#include "vp9/encoder/vp9_encodemv.h"
|
|
#include "vp9/common/vp9_quant_common.h"
|
|
#include "vp9/common/vp9_seg_common.h"
|
|
|
|
#define MIN_BPB_FACTOR 0.005
|
|
#define MAX_BPB_FACTOR 50
|
|
|
|
#ifdef MODE_STATS
|
|
extern unsigned int y_modes[VP9_YMODES];
|
|
extern unsigned int uv_modes[VP9_UV_MODES];
|
|
extern unsigned int b_modes[B_MODE_COUNT];
|
|
|
|
extern unsigned int inter_y_modes[MB_MODE_COUNT];
|
|
extern unsigned int inter_uv_modes[VP9_UV_MODES];
|
|
extern unsigned int inter_b_modes[B_MODE_COUNT];
|
|
#endif
|
|
|
|
// Bits Per MB at different Q (Multiplied by 512)
|
|
#define BPER_MB_NORMBITS 9
|
|
|
|
// % adjustment to target kf size based on seperation from previous frame
|
|
static const int kf_boost_seperation_adjustment[16] = {
|
|
30, 40, 50, 55, 60, 65, 70, 75,
|
|
80, 85, 90, 95, 100, 100, 100, 100,
|
|
};
|
|
|
|
static const int gf_adjust_table[101] = {
|
|
100,
|
|
115, 130, 145, 160, 175, 190, 200, 210, 220, 230,
|
|
240, 260, 270, 280, 290, 300, 310, 320, 330, 340,
|
|
350, 360, 370, 380, 390, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
400, 400, 400, 400, 400, 400, 400, 400, 400, 400,
|
|
};
|
|
|
|
static const int gf_intra_usage_adjustment[20] = {
|
|
125, 120, 115, 110, 105, 100, 95, 85, 80, 75,
|
|
70, 65, 60, 55, 50, 50, 50, 50, 50, 50,
|
|
};
|
|
|
|
static const int gf_interval_table[101] = {
|
|
7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
|
|
11, 11, 11, 11, 11, 11, 11, 11, 11, 11,
|
|
};
|
|
|
|
static const unsigned int prior_key_frame_weight[KEY_FRAME_CONTEXT] = { 1, 2, 3, 4, 5 };
|
|
|
|
// These functions use formulaic calculations to make playing with the
|
|
// quantizer tables easier. If necessary they can be replaced by lookup
|
|
// tables if and when things settle down in the experimental bitstream
|
|
double vp9_convert_qindex_to_q(int qindex) {
|
|
// Convert the index to a real Q value (scaled down to match old Q values)
|
|
return (double)vp9_ac_yquant(qindex) / 4.0;
|
|
}
|
|
|
|
int vp9_gfboost_qadjust(int qindex) {
|
|
int retval;
|
|
double q;
|
|
|
|
q = vp9_convert_qindex_to_q(qindex);
|
|
retval = (int)((0.00000828 * q * q * q) +
|
|
(-0.0055 * q * q) +
|
|
(1.32 * q) + 79.3);
|
|
return retval;
|
|
}
|
|
|
|
static int kfboost_qadjust(int qindex) {
|
|
int retval;
|
|
double q;
|
|
|
|
q = vp9_convert_qindex_to_q(qindex);
|
|
retval = (int)((0.00000973 * q * q * q) +
|
|
(-0.00613 * q * q) +
|
|
(1.316 * q) + 121.2);
|
|
return retval;
|
|
}
|
|
|
|
int vp9_bits_per_mb(FRAME_TYPE frame_type, int qindex) {
|
|
if (frame_type == KEY_FRAME)
|
|
return (int)(4500000 / vp9_convert_qindex_to_q(qindex));
|
|
else
|
|
return (int)(2850000 / vp9_convert_qindex_to_q(qindex));
|
|
}
|
|
|
|
|
|
void vp9_save_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
// Stores a snapshot of key state variables which can subsequently be
|
|
// restored with a call to vp9_restore_coding_context. These functions are
|
|
// intended for use in a re-code loop in vp9_compress_frame where the
|
|
// quantizer value is adjusted between loop iterations.
|
|
|
|
cc->nmvc = cm->fc.nmvc;
|
|
vp9_copy(cc->nmvjointcost, cpi->mb.nmvjointcost);
|
|
vp9_copy(cc->nmvcosts, cpi->mb.nmvcosts);
|
|
vp9_copy(cc->nmvcosts_hp, cpi->mb.nmvcosts_hp);
|
|
|
|
vp9_copy(cc->vp9_mode_contexts, cm->fc.vp9_mode_contexts);
|
|
|
|
vp9_copy(cc->ymode_prob, cm->fc.ymode_prob);
|
|
vp9_copy(cc->sb_ymode_prob, cm->fc.sb_ymode_prob);
|
|
vp9_copy(cc->bmode_prob, cm->fc.bmode_prob);
|
|
vp9_copy(cc->uv_mode_prob, cm->fc.uv_mode_prob);
|
|
vp9_copy(cc->i8x8_mode_prob, cm->fc.i8x8_mode_prob);
|
|
vp9_copy(cc->sub_mv_ref_prob, cm->fc.sub_mv_ref_prob);
|
|
vp9_copy(cc->mbsplit_prob, cm->fc.mbsplit_prob);
|
|
|
|
// Stats
|
|
#ifdef MODE_STATS
|
|
vp9_copy(cc->y_modes, y_modes);
|
|
vp9_copy(cc->uv_modes, uv_modes);
|
|
vp9_copy(cc->b_modes, b_modes);
|
|
vp9_copy(cc->inter_y_modes, inter_y_modes);
|
|
vp9_copy(cc->inter_uv_modes, inter_uv_modes);
|
|
vp9_copy(cc->inter_b_modes, inter_b_modes);
|
|
#endif
|
|
|
|
vp9_copy(cc->segment_pred_probs, cm->segment_pred_probs);
|
|
vp9_copy(cc->ref_pred_probs_update, cpi->ref_pred_probs_update);
|
|
vp9_copy(cc->ref_pred_probs, cm->ref_pred_probs);
|
|
vp9_copy(cc->prob_comppred, cm->prob_comppred);
|
|
|
|
vpx_memcpy(cpi->coding_context.last_frame_seg_map_copy,
|
|
cm->last_frame_seg_map, (cm->mb_rows * cm->mb_cols));
|
|
|
|
vp9_copy(cc->last_ref_lf_deltas, xd->last_ref_lf_deltas);
|
|
vp9_copy(cc->last_mode_lf_deltas, xd->last_mode_lf_deltas);
|
|
|
|
vp9_copy(cc->coef_probs_4x4, cm->fc.coef_probs_4x4);
|
|
vp9_copy(cc->hybrid_coef_probs_4x4, cm->fc.hybrid_coef_probs_4x4);
|
|
vp9_copy(cc->coef_probs_8x8, cm->fc.coef_probs_8x8);
|
|
vp9_copy(cc->hybrid_coef_probs_8x8, cm->fc.hybrid_coef_probs_8x8);
|
|
vp9_copy(cc->coef_probs_16x16, cm->fc.coef_probs_16x16);
|
|
vp9_copy(cc->hybrid_coef_probs_16x16, cm->fc.hybrid_coef_probs_16x16);
|
|
vp9_copy(cc->coef_probs_32x32, cm->fc.coef_probs_32x32);
|
|
vp9_copy(cc->switchable_interp_prob, cm->fc.switchable_interp_prob);
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
cc->interintra_prob = cm->fc.interintra_prob;
|
|
#endif
|
|
}
|
|
|
|
void vp9_restore_coding_context(VP9_COMP *cpi) {
|
|
CODING_CONTEXT *const cc = &cpi->coding_context;
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
// Restore key state variables to the snapshot state stored in the
|
|
// previous call to vp9_save_coding_context.
|
|
|
|
cm->fc.nmvc = cc->nmvc;
|
|
vp9_copy(cpi->mb.nmvjointcost, cc->nmvjointcost);
|
|
vp9_copy(cpi->mb.nmvcosts, cc->nmvcosts);
|
|
vp9_copy(cpi->mb.nmvcosts_hp, cc->nmvcosts_hp);
|
|
|
|
vp9_copy(cm->fc.vp9_mode_contexts, cc->vp9_mode_contexts);
|
|
|
|
vp9_copy(cm->fc.ymode_prob, cc->ymode_prob);
|
|
vp9_copy(cm->fc.sb_ymode_prob, cc->sb_ymode_prob);
|
|
vp9_copy(cm->fc.bmode_prob, cc->bmode_prob);
|
|
vp9_copy(cm->fc.i8x8_mode_prob, cc->i8x8_mode_prob);
|
|
vp9_copy(cm->fc.uv_mode_prob, cc->uv_mode_prob);
|
|
vp9_copy(cm->fc.sub_mv_ref_prob, cc->sub_mv_ref_prob);
|
|
vp9_copy(cm->fc.mbsplit_prob, cc->mbsplit_prob);
|
|
|
|
// Stats
|
|
#ifdef MODE_STATS
|
|
vp9_copy(y_modes, cc->y_modes);
|
|
vp9_copy(uv_modes, cc->uv_modes);
|
|
vp9_copy(b_modes, cc->b_modes);
|
|
vp9_copy(inter_y_modes, cc->inter_y_modes);
|
|
vp9_copy(inter_uv_modes, cc->inter_uv_modes);
|
|
vp9_copy(inter_b_modes, cc->inter_b_modes);
|
|
#endif
|
|
|
|
vp9_copy(cm->segment_pred_probs, cc->segment_pred_probs);
|
|
vp9_copy(cpi->ref_pred_probs_update, cc->ref_pred_probs_update);
|
|
vp9_copy(cm->ref_pred_probs, cc->ref_pred_probs);
|
|
vp9_copy(cm->prob_comppred, cc->prob_comppred);
|
|
|
|
vpx_memcpy(cm->last_frame_seg_map,
|
|
cpi->coding_context.last_frame_seg_map_copy,
|
|
(cm->mb_rows * cm->mb_cols));
|
|
|
|
vp9_copy(xd->last_ref_lf_deltas, cc->last_ref_lf_deltas);
|
|
vp9_copy(xd->last_mode_lf_deltas, cc->last_mode_lf_deltas);
|
|
|
|
vp9_copy(cm->fc.coef_probs_4x4, cc->coef_probs_4x4);
|
|
vp9_copy(cm->fc.hybrid_coef_probs_4x4, cc->hybrid_coef_probs_4x4);
|
|
vp9_copy(cm->fc.coef_probs_8x8, cc->coef_probs_8x8);
|
|
vp9_copy(cm->fc.hybrid_coef_probs_8x8, cc->hybrid_coef_probs_8x8);
|
|
vp9_copy(cm->fc.coef_probs_16x16, cc->coef_probs_16x16);
|
|
vp9_copy(cm->fc.hybrid_coef_probs_16x16, cc->hybrid_coef_probs_16x16);
|
|
vp9_copy(cm->fc.coef_probs_32x32, cc->coef_probs_32x32);
|
|
vp9_copy(cm->fc.switchable_interp_prob, cc->switchable_interp_prob);
|
|
#if CONFIG_COMP_INTERINTRA_PRED
|
|
cm->fc.interintra_prob = cc->interintra_prob;
|
|
#endif
|
|
}
|
|
|
|
void vp9_setup_key_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
|
|
vp9_setup_past_independence(cm, xd);
|
|
|
|
// interval before next GF
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
/* All buffers are implicitly updated on key frames. */
|
|
cpi->refresh_golden_frame = TRUE;
|
|
cpi->refresh_alt_ref_frame = TRUE;
|
|
}
|
|
|
|
void vp9_setup_inter_frame(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &cpi->mb.e_mbd;
|
|
if (cm->error_resilient_mode) {
|
|
vp9_setup_past_independence(cm, xd);
|
|
}
|
|
assert(cm->frame_context_idx < NUM_FRAME_CONTEXTS);
|
|
vpx_memcpy(&cm->fc, &cm->frame_contexts[cm->frame_context_idx],
|
|
sizeof(cm->fc));
|
|
}
|
|
|
|
static int estimate_bits_at_q(int frame_kind, int Q, int MBs,
|
|
double correction_factor) {
|
|
int Bpm = (int)(.5 + correction_factor * vp9_bits_per_mb(frame_kind, Q));
|
|
|
|
/* Attempt to retain reasonable accuracy without overflow. The cutoff is
|
|
* chosen such that the maximum product of Bpm and MBs fits 31 bits. The
|
|
* largest Bpm takes 20 bits.
|
|
*/
|
|
if (MBs > (1 << 11))
|
|
return (Bpm >> BPER_MB_NORMBITS) * MBs;
|
|
else
|
|
return (Bpm * MBs) >> BPER_MB_NORMBITS;
|
|
}
|
|
|
|
|
|
static void calc_iframe_target_size(VP9_COMP *cpi) {
|
|
// boost defaults to half second
|
|
int target;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
// New Two pass RC
|
|
target = cpi->per_frame_bandwidth;
|
|
|
|
if (cpi->oxcf.rc_max_intra_bitrate_pct) {
|
|
int max_rate = cpi->per_frame_bandwidth
|
|
* cpi->oxcf.rc_max_intra_bitrate_pct / 100;
|
|
|
|
if (target > max_rate)
|
|
target = max_rate;
|
|
}
|
|
|
|
cpi->this_frame_target = target;
|
|
|
|
}
|
|
|
|
|
|
// Do the best we can to define the parameteres for the next GF based
|
|
// on what information we have available.
|
|
//
|
|
// In this experimental code only two pass is supported
|
|
// so we just use the interval determined in the two pass code.
|
|
static void calc_gf_params(VP9_COMP *cpi) {
|
|
// Set the gf interval
|
|
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
|
|
}
|
|
|
|
|
|
static void calc_pframe_target_size(VP9_COMP *cpi) {
|
|
int min_frame_target;
|
|
|
|
min_frame_target = 0;
|
|
|
|
min_frame_target = cpi->min_frame_bandwidth;
|
|
|
|
if (min_frame_target < (cpi->av_per_frame_bandwidth >> 5))
|
|
min_frame_target = cpi->av_per_frame_bandwidth >> 5;
|
|
|
|
|
|
// Special alt reference frame case
|
|
if (cpi->refresh_alt_ref_frame) {
|
|
// Per frame bit target for the alt ref frame
|
|
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
}
|
|
|
|
// Normal frames (gf,and inter)
|
|
else {
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
}
|
|
|
|
// Sanity check that the total sum of adjustments is not above the maximum allowed
|
|
// That is that having allowed for KF and GF penalties we have not pushed the
|
|
// current interframe target to low. If the adjustment we apply here is not capable of recovering
|
|
// all the extra bits we have spent in the KF or GF then the remainder will have to be recovered over
|
|
// a longer time span via other buffer / rate control mechanisms.
|
|
if (cpi->this_frame_target < min_frame_target)
|
|
cpi->this_frame_target = min_frame_target;
|
|
|
|
if (!cpi->refresh_alt_ref_frame)
|
|
// Note the baseline target data rate for this inter frame.
|
|
cpi->inter_frame_target = cpi->this_frame_target;
|
|
|
|
// Adjust target frame size for Golden Frames:
|
|
if (cpi->frames_till_gf_update_due == 0) {
|
|
// int Boost = 0;
|
|
int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q;
|
|
|
|
cpi->refresh_golden_frame = TRUE;
|
|
|
|
calc_gf_params(cpi);
|
|
|
|
// If we are using alternate ref instead of gf then do not apply the boost
|
|
// It will instead be applied to the altref update
|
|
// Jims modified boost
|
|
if (!cpi->source_alt_ref_active) {
|
|
if (cpi->oxcf.fixed_q < 0) {
|
|
// The spend on the GF is defined in the two pass code
|
|
// for two pass encodes
|
|
cpi->this_frame_target = cpi->per_frame_bandwidth;
|
|
} else
|
|
cpi->this_frame_target =
|
|
(estimate_bits_at_q(1, Q, cpi->common.MBs, 1.0)
|
|
* cpi->last_boost) / 100;
|
|
|
|
}
|
|
// If there is an active ARF at this location use the minimum
|
|
// bits on this frame even if it is a contructed arf.
|
|
// The active maximum quantizer insures that an appropriate
|
|
// number of bits will be spent if needed for contstructed ARFs.
|
|
else {
|
|
cpi->this_frame_target = 0;
|
|
}
|
|
|
|
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
|
|
}
|
|
}
|
|
|
|
|
|
void vp9_update_rate_correction_factors(VP9_COMP *cpi, int damp_var) {
|
|
int Q = cpi->common.base_qindex;
|
|
int correction_factor = 100;
|
|
double rate_correction_factor;
|
|
double adjustment_limit;
|
|
|
|
int projected_size_based_on_q = 0;
|
|
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state(); // __asm emms;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
rate_correction_factor = cpi->key_frame_rate_correction_factor;
|
|
} else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
|
rate_correction_factor = cpi->gf_rate_correction_factor;
|
|
else
|
|
rate_correction_factor = cpi->rate_correction_factor;
|
|
}
|
|
|
|
// Work out how big we would have expected the frame to be at this Q given the current correction factor.
|
|
// Stay in double to avoid int overflow when values are large
|
|
projected_size_based_on_q =
|
|
(int)(((.5 + rate_correction_factor *
|
|
vp9_bits_per_mb(cpi->common.frame_type, Q)) *
|
|
cpi->common.MBs) / (1 << BPER_MB_NORMBITS));
|
|
|
|
// Make some allowance for cpi->zbin_over_quant
|
|
if (cpi->zbin_over_quant > 0) {
|
|
int Z = cpi->zbin_over_quant;
|
|
double Factor = 0.99;
|
|
double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
|
|
|
|
while (Z > 0) {
|
|
Z--;
|
|
projected_size_based_on_q =
|
|
(int)(Factor * projected_size_based_on_q);
|
|
Factor += factor_adjustment;
|
|
|
|
if (Factor >= 0.999)
|
|
Factor = 0.999;
|
|
}
|
|
}
|
|
|
|
// Work out a size correction factor.
|
|
// if ( cpi->this_frame_target > 0 )
|
|
// correction_factor = (100 * cpi->projected_frame_size) / cpi->this_frame_target;
|
|
if (projected_size_based_on_q > 0)
|
|
correction_factor = (100 * cpi->projected_frame_size) / projected_size_based_on_q;
|
|
|
|
// More heavily damped adjustment used if we have been oscillating either side of target
|
|
switch (damp_var) {
|
|
case 0:
|
|
adjustment_limit = 0.75;
|
|
break;
|
|
case 1:
|
|
adjustment_limit = 0.375;
|
|
break;
|
|
case 2:
|
|
default:
|
|
adjustment_limit = 0.25;
|
|
break;
|
|
}
|
|
|
|
// if ( (correction_factor > 102) && (Q < cpi->active_worst_quality) )
|
|
if (correction_factor > 102) {
|
|
// We are not already at the worst allowable quality
|
|
correction_factor = (int)(100.5 + ((correction_factor - 100) * adjustment_limit));
|
|
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor > MAX_BPB_FACTOR)
|
|
rate_correction_factor = MAX_BPB_FACTOR;
|
|
}
|
|
// else if ( (correction_factor < 99) && (Q > cpi->active_best_quality) )
|
|
else if (correction_factor < 99) {
|
|
// We are not already at the best allowable quality
|
|
correction_factor = (int)(100.5 - ((100 - correction_factor) * adjustment_limit));
|
|
rate_correction_factor = ((rate_correction_factor * correction_factor) / 100);
|
|
|
|
// Keep rate_correction_factor within limits
|
|
if (rate_correction_factor < MIN_BPB_FACTOR)
|
|
rate_correction_factor = MIN_BPB_FACTOR;
|
|
}
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
cpi->key_frame_rate_correction_factor = rate_correction_factor;
|
|
else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
|
cpi->gf_rate_correction_factor = rate_correction_factor;
|
|
else
|
|
cpi->rate_correction_factor = rate_correction_factor;
|
|
}
|
|
}
|
|
|
|
|
|
int vp9_regulate_q(VP9_COMP *cpi, int target_bits_per_frame) {
|
|
int Q = cpi->active_worst_quality;
|
|
|
|
int i;
|
|
int last_error = INT_MAX;
|
|
int target_bits_per_mb;
|
|
int bits_per_mb_at_this_q;
|
|
double correction_factor;
|
|
|
|
// Reset Zbin OQ value
|
|
cpi->zbin_over_quant = 0;
|
|
|
|
// Select the appropriate correction factor based upon type of frame.
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
correction_factor = cpi->key_frame_rate_correction_factor;
|
|
else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame)
|
|
correction_factor = cpi->gf_rate_correction_factor;
|
|
else
|
|
correction_factor = cpi->rate_correction_factor;
|
|
}
|
|
|
|
// Calculate required scaling factor based on target frame size and size of frame produced using previous Q
|
|
if (target_bits_per_frame >= (INT_MAX >> BPER_MB_NORMBITS))
|
|
target_bits_per_mb = (target_bits_per_frame / cpi->common.MBs) << BPER_MB_NORMBITS; // Case where we would overflow int
|
|
else
|
|
target_bits_per_mb = (target_bits_per_frame << BPER_MB_NORMBITS) / cpi->common.MBs;
|
|
|
|
i = cpi->active_best_quality;
|
|
|
|
do {
|
|
bits_per_mb_at_this_q =
|
|
(int)(.5 + correction_factor *
|
|
vp9_bits_per_mb(cpi->common.frame_type, i));
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) {
|
|
if ((target_bits_per_mb - bits_per_mb_at_this_q) <= last_error)
|
|
Q = i;
|
|
else
|
|
Q = i - 1;
|
|
|
|
break;
|
|
} else
|
|
last_error = bits_per_mb_at_this_q - target_bits_per_mb;
|
|
} while (++i <= cpi->active_worst_quality);
|
|
|
|
|
|
// If we are at MAXQ then enable Q over-run which seeks to claw back additional bits through things like
|
|
// the RD multiplier and zero bin size.
|
|
if (Q >= MAXQ) {
|
|
int zbin_oqmax;
|
|
|
|
double Factor = 0.99;
|
|
double factor_adjustment = 0.01 / 256.0; // (double)ZBIN_OQ_MAX;
|
|
|
|
if (cpi->common.frame_type == KEY_FRAME)
|
|
zbin_oqmax = 0; // ZBIN_OQ_MAX/16
|
|
else if (cpi->refresh_alt_ref_frame
|
|
|| (cpi->refresh_golden_frame && !cpi->source_alt_ref_active))
|
|
zbin_oqmax = 16;
|
|
else
|
|
zbin_oqmax = ZBIN_OQ_MAX;
|
|
|
|
// Each incrment in the zbin is assumed to have a fixed effect on bitrate. This is not of course true.
|
|
// The effect will be highly clip dependent and may well have sudden steps.
|
|
// The idea here is to acheive higher effective quantizers than the normal maximum by expanding the zero
|
|
// bin and hence decreasing the number of low magnitude non zero coefficients.
|
|
while (cpi->zbin_over_quant < zbin_oqmax) {
|
|
cpi->zbin_over_quant++;
|
|
|
|
if (cpi->zbin_over_quant > zbin_oqmax)
|
|
cpi->zbin_over_quant = zbin_oqmax;
|
|
|
|
// Adjust bits_per_mb_at_this_q estimate
|
|
bits_per_mb_at_this_q = (int)(Factor * bits_per_mb_at_this_q);
|
|
Factor += factor_adjustment;
|
|
|
|
if (Factor >= 0.999)
|
|
Factor = 0.999;
|
|
|
|
if (bits_per_mb_at_this_q <= target_bits_per_mb) // Break out if we get down to the target rate
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
return Q;
|
|
}
|
|
|
|
|
|
static int estimate_keyframe_frequency(VP9_COMP *cpi) {
|
|
int i;
|
|
|
|
// Average key frame frequency
|
|
int av_key_frame_frequency = 0;
|
|
|
|
/* First key frame at start of sequence is a special case. We have no
|
|
* frequency data.
|
|
*/
|
|
if (cpi->key_frame_count == 1) {
|
|
/* Assume a default of 1 kf every 2 seconds, or the max kf interval,
|
|
* whichever is smaller.
|
|
*/
|
|
int key_freq = cpi->oxcf.key_freq > 0 ? cpi->oxcf.key_freq : 1;
|
|
av_key_frame_frequency = (int)cpi->output_frame_rate * 2;
|
|
|
|
if (cpi->oxcf.auto_key && av_key_frame_frequency > key_freq)
|
|
av_key_frame_frequency = cpi->oxcf.key_freq;
|
|
|
|
cpi->prior_key_frame_distance[KEY_FRAME_CONTEXT - 1]
|
|
= av_key_frame_frequency;
|
|
} else {
|
|
unsigned int total_weight = 0;
|
|
int last_kf_interval =
|
|
(cpi->frames_since_key > 0) ? cpi->frames_since_key : 1;
|
|
|
|
/* reset keyframe context and calculate weighted average of last
|
|
* KEY_FRAME_CONTEXT keyframes
|
|
*/
|
|
for (i = 0; i < KEY_FRAME_CONTEXT; i++) {
|
|
if (i < KEY_FRAME_CONTEXT - 1)
|
|
cpi->prior_key_frame_distance[i]
|
|
= cpi->prior_key_frame_distance[i + 1];
|
|
else
|
|
cpi->prior_key_frame_distance[i] = last_kf_interval;
|
|
|
|
av_key_frame_frequency += prior_key_frame_weight[i]
|
|
* cpi->prior_key_frame_distance[i];
|
|
total_weight += prior_key_frame_weight[i];
|
|
}
|
|
|
|
av_key_frame_frequency /= total_weight;
|
|
|
|
}
|
|
return av_key_frame_frequency;
|
|
}
|
|
|
|
|
|
void vp9_adjust_key_frame_context(VP9_COMP *cpi) {
|
|
// Clear down mmx registers to allow floating point in what follows
|
|
vp9_clear_system_state();
|
|
|
|
cpi->frames_since_key = 0;
|
|
cpi->key_frame_count++;
|
|
}
|
|
|
|
|
|
void vp9_compute_frame_size_bounds(VP9_COMP *cpi, int *frame_under_shoot_limit,
|
|
int *frame_over_shoot_limit) {
|
|
// Set-up bounds on acceptable frame size:
|
|
if (cpi->oxcf.fixed_q >= 0) {
|
|
// Fixed Q scenario: frame size never outranges target (there is no target!)
|
|
*frame_under_shoot_limit = 0;
|
|
*frame_over_shoot_limit = INT_MAX;
|
|
} else {
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
|
} else {
|
|
if (cpi->refresh_alt_ref_frame || cpi->refresh_golden_frame) {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 9 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 7 / 8;
|
|
} else {
|
|
// Stron overshoot limit for constrained quality
|
|
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 2 / 8;
|
|
} else {
|
|
*frame_over_shoot_limit = cpi->this_frame_target * 11 / 8;
|
|
*frame_under_shoot_limit = cpi->this_frame_target * 5 / 8;
|
|
}
|
|
}
|
|
}
|
|
|
|
// For very small rate targets where the fractional adjustment
|
|
// (eg * 7/8) may be tiny make sure there is at least a minimum
|
|
// range.
|
|
*frame_over_shoot_limit += 200;
|
|
*frame_under_shoot_limit -= 200;
|
|
if (*frame_under_shoot_limit < 0)
|
|
*frame_under_shoot_limit = 0;
|
|
}
|
|
}
|
|
|
|
|
|
// return of 0 means drop frame
|
|
int vp9_pick_frame_size(VP9_COMP *cpi) {
|
|
VP9_COMMON *cm = &cpi->common;
|
|
|
|
if (cm->frame_type == KEY_FRAME)
|
|
calc_iframe_target_size(cpi);
|
|
else
|
|
calc_pframe_target_size(cpi);
|
|
|
|
return 1;
|
|
}
|