This patch changes the encoder only for the ext-refs experiment. For each newly coded frame to refresh the LAST_FRAME, the decoder is notified that the LAST4_FRAME is to be refreshed, and read out the updated reference frame buffer vitural indexes for the next coded frame in a way that: LAST4_FRAME => LAST_FRAME, LAST_FRAME => LAST2_FRAME, LAST2_FRAME => LAST3_FRAME, and LAST3_FRAME => LAST4_FRAME. Compared against the original ext-refs experiment in TOT, a small gain is achieved in overall PSNR: lowres Avg: -0.154 lowres BDRate: -0.044 Change-Id: I648810c146a3cd915b408274a9373b7d38324864
		
			
				
	
	
		
			2685 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2685 lines
		
	
	
		
			96 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 *  Copyright (c) 2010 The WebM project authors. All Rights Reserved.
 | 
						|
 *
 | 
						|
 *  Use of this source code is governed by a BSD-style license
 | 
						|
 *  that can be found in the LICENSE file in the root of the source
 | 
						|
 *  tree. An additional intellectual property rights grant can be found
 | 
						|
 *  in the file PATENTS.  All contributing project authors may
 | 
						|
 *  be found in the AUTHORS file in the root of the source tree.
 | 
						|
 */
 | 
						|
 | 
						|
#include <limits.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdio.h>
 | 
						|
 | 
						|
#include "./vpx_dsp_rtcd.h"
 | 
						|
#include "./vpx_scale_rtcd.h"
 | 
						|
 | 
						|
#include "vpx_dsp/vpx_dsp_common.h"
 | 
						|
#include "vpx_mem/vpx_mem.h"
 | 
						|
#include "vpx_ports/mem.h"
 | 
						|
#include "vpx_ports/system_state.h"
 | 
						|
#include "vpx_scale/vpx_scale.h"
 | 
						|
#include "vpx_scale/yv12config.h"
 | 
						|
 | 
						|
#include "vp10/common/entropymv.h"
 | 
						|
#include "vp10/common/quant_common.h"
 | 
						|
#include "vp10/common/reconinter.h"  // vp10_setup_dst_planes()
 | 
						|
#include "vp10/encoder/aq_variance.h"
 | 
						|
#include "vp10/encoder/block.h"
 | 
						|
#include "vp10/encoder/encodeframe.h"
 | 
						|
#include "vp10/encoder/encodemb.h"
 | 
						|
#include "vp10/encoder/encodemv.h"
 | 
						|
#include "vp10/encoder/encoder.h"
 | 
						|
#include "vp10/encoder/extend.h"
 | 
						|
#include "vp10/encoder/firstpass.h"
 | 
						|
#include "vp10/encoder/mcomp.h"
 | 
						|
#include "vp10/encoder/quantize.h"
 | 
						|
#include "vp10/encoder/rd.h"
 | 
						|
#include "vpx_dsp/variance.h"
 | 
						|
 | 
						|
#define OUTPUT_FPF          0
 | 
						|
#define ARF_STATS_OUTPUT    0
 | 
						|
 | 
						|
#define GROUP_ADAPTIVE_MAXQ 1
 | 
						|
 | 
						|
#define BOOST_BREAKOUT      12.5
 | 
						|
#define BOOST_FACTOR        12.5
 | 
						|
#define ERR_DIVISOR         128.0
 | 
						|
#define FACTOR_PT_LOW       0.70
 | 
						|
#define FACTOR_PT_HIGH      0.90
 | 
						|
#define FIRST_PASS_Q        10.0
 | 
						|
#define GF_MAX_BOOST        96.0
 | 
						|
#define INTRA_MODE_PENALTY  1024
 | 
						|
#define KF_MAX_BOOST        128.0
 | 
						|
#define MIN_ARF_GF_BOOST    240
 | 
						|
#define MIN_DECAY_FACTOR    0.01
 | 
						|
#define MIN_KF_BOOST        300
 | 
						|
#define NEW_MV_MODE_PENALTY 32
 | 
						|
#define DARK_THRESH         64
 | 
						|
#define DEFAULT_GRP_WEIGHT  1.0
 | 
						|
#define RC_FACTOR_MIN       0.75
 | 
						|
#define RC_FACTOR_MAX       1.75
 | 
						|
 | 
						|
 | 
						|
#define NCOUNT_INTRA_THRESH 8192
 | 
						|
#define NCOUNT_INTRA_FACTOR 3
 | 
						|
#define NCOUNT_FRAME_II_THRESH 5.0
 | 
						|
 | 
						|
#define DOUBLE_DIVIDE_CHECK(x) ((x) < 0 ? (x) - 0.000001 : (x) + 0.000001)
 | 
						|
 | 
						|
#if ARF_STATS_OUTPUT
 | 
						|
unsigned int arf_count = 0;
 | 
						|
#endif
 | 
						|
 | 
						|
// Resets the first pass file to the given position using a relative seek from
 | 
						|
// the current position.
 | 
						|
static void reset_fpf_position(TWO_PASS *p,
 | 
						|
                               const FIRSTPASS_STATS *position) {
 | 
						|
  p->stats_in = position;
 | 
						|
}
 | 
						|
 | 
						|
// Read frame stats at an offset from the current position.
 | 
						|
static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, int offset) {
 | 
						|
  if ((offset >= 0 && p->stats_in + offset >= p->stats_in_end) ||
 | 
						|
      (offset < 0 && p->stats_in + offset < p->stats_in_start)) {
 | 
						|
    return NULL;
 | 
						|
  }
 | 
						|
 | 
						|
  return &p->stats_in[offset];
 | 
						|
}
 | 
						|
 | 
						|
static int input_stats(TWO_PASS *p, FIRSTPASS_STATS *fps) {
 | 
						|
  if (p->stats_in >= p->stats_in_end)
 | 
						|
    return EOF;
 | 
						|
 | 
						|
  *fps = *p->stats_in;
 | 
						|
  ++p->stats_in;
 | 
						|
  return 1;
 | 
						|
}
 | 
						|
 | 
						|
static void output_stats(FIRSTPASS_STATS *stats,
 | 
						|
                         struct vpx_codec_pkt_list *pktlist) {
 | 
						|
  struct vpx_codec_cx_pkt pkt;
 | 
						|
  pkt.kind = VPX_CODEC_STATS_PKT;
 | 
						|
  pkt.data.twopass_stats.buf = stats;
 | 
						|
  pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS);
 | 
						|
  vpx_codec_pkt_list_add(pktlist, &pkt);
 | 
						|
 | 
						|
// TEMP debug code
 | 
						|
#if OUTPUT_FPF
 | 
						|
  {
 | 
						|
    FILE *fpfile;
 | 
						|
    fpfile = fopen("firstpass.stt", "a");
 | 
						|
 | 
						|
    fprintf(fpfile, "%12.0lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf %12.4lf"
 | 
						|
            "%12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf %12.4lf"
 | 
						|
            "%12.4lf %12.4lf %12.0lf %12.0lf %12.0lf %12.4lf\n",
 | 
						|
            stats->frame,
 | 
						|
            stats->weight,
 | 
						|
            stats->intra_error,
 | 
						|
            stats->coded_error,
 | 
						|
            stats->sr_coded_error,
 | 
						|
            stats->pcnt_inter,
 | 
						|
            stats->pcnt_motion,
 | 
						|
            stats->pcnt_second_ref,
 | 
						|
            stats->pcnt_neutral,
 | 
						|
            stats->intra_skip_pct,
 | 
						|
            stats->inactive_zone_rows,
 | 
						|
            stats->inactive_zone_cols,
 | 
						|
            stats->MVr,
 | 
						|
            stats->mvr_abs,
 | 
						|
            stats->MVc,
 | 
						|
            stats->mvc_abs,
 | 
						|
            stats->MVrv,
 | 
						|
            stats->MVcv,
 | 
						|
            stats->mv_in_out_count,
 | 
						|
            stats->new_mv_count,
 | 
						|
            stats->count,
 | 
						|
            stats->duration);
 | 
						|
    fclose(fpfile);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
static void output_fpmb_stats(uint8_t *this_frame_mb_stats,
 | 
						|
                              VP10_COMMON *cm,
 | 
						|
                              struct vpx_codec_pkt_list *pktlist) {
 | 
						|
  struct vpx_codec_cx_pkt pkt;
 | 
						|
  pkt.kind = VPX_CODEC_FPMB_STATS_PKT;
 | 
						|
  pkt.data.firstpass_mb_stats.buf = this_frame_mb_stats;
 | 
						|
  pkt.data.firstpass_mb_stats.sz = cm->initial_mbs * sizeof(uint8_t);
 | 
						|
  vpx_codec_pkt_list_add(pktlist, &pkt);
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static void zero_stats(FIRSTPASS_STATS *section) {
 | 
						|
  section->frame = 0.0;
 | 
						|
  section->weight = 0.0;
 | 
						|
  section->intra_error = 0.0;
 | 
						|
  section->coded_error = 0.0;
 | 
						|
  section->sr_coded_error = 0.0;
 | 
						|
  section->pcnt_inter  = 0.0;
 | 
						|
  section->pcnt_motion  = 0.0;
 | 
						|
  section->pcnt_second_ref = 0.0;
 | 
						|
  section->pcnt_neutral = 0.0;
 | 
						|
  section->intra_skip_pct = 0.0;
 | 
						|
  section->inactive_zone_rows = 0.0;
 | 
						|
  section->inactive_zone_cols = 0.0;
 | 
						|
  section->MVr = 0.0;
 | 
						|
  section->mvr_abs     = 0.0;
 | 
						|
  section->MVc        = 0.0;
 | 
						|
  section->mvc_abs     = 0.0;
 | 
						|
  section->MVrv       = 0.0;
 | 
						|
  section->MVcv       = 0.0;
 | 
						|
  section->mv_in_out_count  = 0.0;
 | 
						|
  section->new_mv_count = 0.0;
 | 
						|
  section->count      = 0.0;
 | 
						|
  section->duration   = 1.0;
 | 
						|
}
 | 
						|
 | 
						|
static void accumulate_stats(FIRSTPASS_STATS *section,
 | 
						|
                             const FIRSTPASS_STATS *frame) {
 | 
						|
  section->frame += frame->frame;
 | 
						|
  section->weight += frame->weight;
 | 
						|
  section->intra_error += frame->intra_error;
 | 
						|
  section->coded_error += frame->coded_error;
 | 
						|
  section->sr_coded_error += frame->sr_coded_error;
 | 
						|
  section->pcnt_inter  += frame->pcnt_inter;
 | 
						|
  section->pcnt_motion += frame->pcnt_motion;
 | 
						|
  section->pcnt_second_ref += frame->pcnt_second_ref;
 | 
						|
  section->pcnt_neutral += frame->pcnt_neutral;
 | 
						|
  section->intra_skip_pct += frame->intra_skip_pct;
 | 
						|
  section->inactive_zone_rows += frame->inactive_zone_rows;
 | 
						|
  section->inactive_zone_cols += frame->inactive_zone_cols;
 | 
						|
  section->MVr += frame->MVr;
 | 
						|
  section->mvr_abs     += frame->mvr_abs;
 | 
						|
  section->MVc        += frame->MVc;
 | 
						|
  section->mvc_abs     += frame->mvc_abs;
 | 
						|
  section->MVrv       += frame->MVrv;
 | 
						|
  section->MVcv       += frame->MVcv;
 | 
						|
  section->mv_in_out_count  += frame->mv_in_out_count;
 | 
						|
  section->new_mv_count += frame->new_mv_count;
 | 
						|
  section->count      += frame->count;
 | 
						|
  section->duration   += frame->duration;
 | 
						|
}
 | 
						|
 | 
						|
static void subtract_stats(FIRSTPASS_STATS *section,
 | 
						|
                           const FIRSTPASS_STATS *frame) {
 | 
						|
  section->frame -= frame->frame;
 | 
						|
  section->weight -= frame->weight;
 | 
						|
  section->intra_error -= frame->intra_error;
 | 
						|
  section->coded_error -= frame->coded_error;
 | 
						|
  section->sr_coded_error -= frame->sr_coded_error;
 | 
						|
  section->pcnt_inter  -= frame->pcnt_inter;
 | 
						|
  section->pcnt_motion -= frame->pcnt_motion;
 | 
						|
  section->pcnt_second_ref -= frame->pcnt_second_ref;
 | 
						|
  section->pcnt_neutral -= frame->pcnt_neutral;
 | 
						|
  section->intra_skip_pct -= frame->intra_skip_pct;
 | 
						|
  section->inactive_zone_rows -= frame->inactive_zone_rows;
 | 
						|
  section->inactive_zone_cols -= frame->inactive_zone_cols;
 | 
						|
  section->MVr -= frame->MVr;
 | 
						|
  section->mvr_abs     -= frame->mvr_abs;
 | 
						|
  section->MVc        -= frame->MVc;
 | 
						|
  section->mvc_abs     -= frame->mvc_abs;
 | 
						|
  section->MVrv       -= frame->MVrv;
 | 
						|
  section->MVcv       -= frame->MVcv;
 | 
						|
  section->mv_in_out_count  -= frame->mv_in_out_count;
 | 
						|
  section->new_mv_count -= frame->new_mv_count;
 | 
						|
  section->count      -= frame->count;
 | 
						|
  section->duration   -= frame->duration;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate an active area of the image that discounts formatting
 | 
						|
// bars and partially discounts other 0 energy areas.
 | 
						|
#define MIN_ACTIVE_AREA 0.5
 | 
						|
#define MAX_ACTIVE_AREA 1.0
 | 
						|
static double calculate_active_area(const VP10_COMP *cpi,
 | 
						|
                                    const FIRSTPASS_STATS *this_frame)
 | 
						|
{
 | 
						|
  double active_pct;
 | 
						|
 | 
						|
  active_pct = 1.0 -
 | 
						|
    ((this_frame->intra_skip_pct / 2) +
 | 
						|
     ((this_frame->inactive_zone_rows * 2) / (double)cpi->common.mb_rows));
 | 
						|
  return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA);
 | 
						|
}
 | 
						|
 | 
						|
// Calculate a modified Error used in distributing bits between easier and
 | 
						|
// harder frames.
 | 
						|
#define ACT_AREA_CORRECTION 0.5
 | 
						|
static double calculate_modified_err(const VP10_COMP *cpi,
 | 
						|
                                     const TWO_PASS *twopass,
 | 
						|
                                     const VP10EncoderConfig *oxcf,
 | 
						|
                                     const FIRSTPASS_STATS *this_frame) {
 | 
						|
  const FIRSTPASS_STATS *const stats = &twopass->total_stats;
 | 
						|
  const double av_weight = stats->weight / stats->count;
 | 
						|
  const double av_err = (stats->coded_error * av_weight) / stats->count;
 | 
						|
  double modified_error =
 | 
						|
    av_err * pow(this_frame->coded_error * this_frame->weight /
 | 
						|
                 DOUBLE_DIVIDE_CHECK(av_err), oxcf->two_pass_vbrbias / 100.0);
 | 
						|
 | 
						|
  // Correction for active area. Frames with a reduced active area
 | 
						|
  // (eg due to formatting bars) have a higher error per mb for the
 | 
						|
  // remaining active MBs. The correction here assumes that coding
 | 
						|
  // 0.5N blocks of complexity 2X is a little easier than coding N
 | 
						|
  // blocks of complexity X.
 | 
						|
  modified_error *=
 | 
						|
    pow(calculate_active_area(cpi, this_frame), ACT_AREA_CORRECTION);
 | 
						|
 | 
						|
  return fclamp(modified_error,
 | 
						|
                twopass->modified_error_min, twopass->modified_error_max);
 | 
						|
}
 | 
						|
 | 
						|
// This function returns the maximum target rate per frame.
 | 
						|
static int frame_max_bits(const RATE_CONTROL *rc,
 | 
						|
                          const VP10EncoderConfig *oxcf) {
 | 
						|
  int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth *
 | 
						|
                          (int64_t)oxcf->two_pass_vbrmax_section) / 100;
 | 
						|
  if (max_bits < 0)
 | 
						|
    max_bits = 0;
 | 
						|
  else if (max_bits > rc->max_frame_bandwidth)
 | 
						|
    max_bits = rc->max_frame_bandwidth;
 | 
						|
 | 
						|
  return (int)max_bits;
 | 
						|
}
 | 
						|
 | 
						|
void vp10_init_first_pass(VP10_COMP *cpi) {
 | 
						|
  zero_stats(&cpi->twopass.total_stats);
 | 
						|
}
 | 
						|
 | 
						|
void vp10_end_first_pass(VP10_COMP *cpi) {
 | 
						|
  output_stats(&cpi->twopass.total_stats, cpi->output_pkt_list);
 | 
						|
}
 | 
						|
 | 
						|
static vpx_variance_fn_t get_block_variance_fn(BLOCK_SIZE bsize) {
 | 
						|
  switch (bsize) {
 | 
						|
    case BLOCK_8X8:
 | 
						|
      return vpx_mse8x8;
 | 
						|
    case BLOCK_16X8:
 | 
						|
      return vpx_mse16x8;
 | 
						|
    case BLOCK_8X16:
 | 
						|
      return vpx_mse8x16;
 | 
						|
    default:
 | 
						|
      return vpx_mse16x16;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int get_prediction_error(BLOCK_SIZE bsize,
 | 
						|
                                         const struct buf_2d *src,
 | 
						|
                                         const struct buf_2d *ref) {
 | 
						|
  unsigned int sse;
 | 
						|
  const vpx_variance_fn_t fn = get_block_variance_fn(bsize);
 | 
						|
  fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
 | 
						|
  return sse;
 | 
						|
}
 | 
						|
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
static vpx_variance_fn_t highbd_get_block_variance_fn(BLOCK_SIZE bsize,
 | 
						|
                                                      int bd) {
 | 
						|
  switch (bd) {
 | 
						|
    default:
 | 
						|
      switch (bsize) {
 | 
						|
        case BLOCK_8X8:
 | 
						|
          return vpx_highbd_8_mse8x8;
 | 
						|
        case BLOCK_16X8:
 | 
						|
          return vpx_highbd_8_mse16x8;
 | 
						|
        case BLOCK_8X16:
 | 
						|
          return vpx_highbd_8_mse8x16;
 | 
						|
        default:
 | 
						|
          return vpx_highbd_8_mse16x16;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 10:
 | 
						|
      switch (bsize) {
 | 
						|
        case BLOCK_8X8:
 | 
						|
          return vpx_highbd_10_mse8x8;
 | 
						|
        case BLOCK_16X8:
 | 
						|
          return vpx_highbd_10_mse16x8;
 | 
						|
        case BLOCK_8X16:
 | 
						|
          return vpx_highbd_10_mse8x16;
 | 
						|
        default:
 | 
						|
          return vpx_highbd_10_mse16x16;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
    case 12:
 | 
						|
      switch (bsize) {
 | 
						|
        case BLOCK_8X8:
 | 
						|
          return vpx_highbd_12_mse8x8;
 | 
						|
        case BLOCK_16X8:
 | 
						|
          return vpx_highbd_12_mse16x8;
 | 
						|
        case BLOCK_8X16:
 | 
						|
          return vpx_highbd_12_mse8x16;
 | 
						|
        default:
 | 
						|
          return vpx_highbd_12_mse16x16;
 | 
						|
      }
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int highbd_get_prediction_error(BLOCK_SIZE bsize,
 | 
						|
                                                const struct buf_2d *src,
 | 
						|
                                                const struct buf_2d *ref,
 | 
						|
                                                int bd) {
 | 
						|
  unsigned int sse;
 | 
						|
  const vpx_variance_fn_t fn = highbd_get_block_variance_fn(bsize, bd);
 | 
						|
  fn(src->buf, src->stride, ref->buf, ref->stride, &sse);
 | 
						|
  return sse;
 | 
						|
}
 | 
						|
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
						|
 | 
						|
// Refine the motion search range according to the frame dimension
 | 
						|
// for first pass test.
 | 
						|
static int get_search_range(const VP10_COMP *cpi) {
 | 
						|
  int sr = 0;
 | 
						|
  const int dim = VPXMIN(cpi->initial_width, cpi->initial_height);
 | 
						|
 | 
						|
  while ((dim << sr) < MAX_FULL_PEL_VAL)
 | 
						|
    ++sr;
 | 
						|
  return sr;
 | 
						|
}
 | 
						|
 | 
						|
static void first_pass_motion_search(VP10_COMP *cpi, MACROBLOCK *x,
 | 
						|
                                     const MV *ref_mv, MV *best_mv,
 | 
						|
                                     int *best_motion_err) {
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  MV tmp_mv = {0, 0};
 | 
						|
  MV ref_mv_full = {ref_mv->row >> 3, ref_mv->col >> 3};
 | 
						|
  int num00, tmp_err, n;
 | 
						|
  const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
 | 
						|
  vp10_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[bsize];
 | 
						|
  const int new_mv_mode_penalty = NEW_MV_MODE_PENALTY;
 | 
						|
 | 
						|
  int step_param = 3;
 | 
						|
  int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param;
 | 
						|
  const int sr = get_search_range(cpi);
 | 
						|
  step_param += sr;
 | 
						|
  further_steps -= sr;
 | 
						|
 | 
						|
  // Override the default variance function to use MSE.
 | 
						|
  v_fn_ptr.vf = get_block_variance_fn(bsize);
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
  if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
    v_fn_ptr.vf = highbd_get_block_variance_fn(bsize, xd->bd);
 | 
						|
  }
 | 
						|
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
						|
 | 
						|
  // Center the initial step/diamond search on best mv.
 | 
						|
  tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
 | 
						|
                                    step_param,
 | 
						|
                                    x->sadperbit16, &num00, &v_fn_ptr, ref_mv);
 | 
						|
  if (tmp_err < INT_MAX)
 | 
						|
    tmp_err = vp10_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
 | 
						|
  if (tmp_err < INT_MAX - new_mv_mode_penalty)
 | 
						|
    tmp_err += new_mv_mode_penalty;
 | 
						|
 | 
						|
  if (tmp_err < *best_motion_err) {
 | 
						|
    *best_motion_err = tmp_err;
 | 
						|
    *best_mv = tmp_mv;
 | 
						|
  }
 | 
						|
 | 
						|
  // Carry out further step/diamond searches as necessary.
 | 
						|
  n = num00;
 | 
						|
  num00 = 0;
 | 
						|
 | 
						|
  while (n < further_steps) {
 | 
						|
    ++n;
 | 
						|
 | 
						|
    if (num00) {
 | 
						|
      --num00;
 | 
						|
    } else {
 | 
						|
      tmp_err = cpi->diamond_search_sad(x, &cpi->ss_cfg, &ref_mv_full, &tmp_mv,
 | 
						|
                                        step_param + n, x->sadperbit16,
 | 
						|
                                        &num00, &v_fn_ptr, ref_mv);
 | 
						|
      if (tmp_err < INT_MAX)
 | 
						|
        tmp_err = vp10_get_mvpred_var(x, &tmp_mv, ref_mv, &v_fn_ptr, 1);
 | 
						|
      if (tmp_err < INT_MAX - new_mv_mode_penalty)
 | 
						|
        tmp_err += new_mv_mode_penalty;
 | 
						|
 | 
						|
      if (tmp_err < *best_motion_err) {
 | 
						|
        *best_motion_err = tmp_err;
 | 
						|
        *best_mv = tmp_mv;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static BLOCK_SIZE get_bsize(const VP10_COMMON *cm, int mb_row, int mb_col) {
 | 
						|
  if (2 * mb_col + 1 < cm->mi_cols) {
 | 
						|
    return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_16X16
 | 
						|
                                        : BLOCK_16X8;
 | 
						|
  } else {
 | 
						|
    return 2 * mb_row + 1 < cm->mi_rows ? BLOCK_8X16
 | 
						|
                                        : BLOCK_8X8;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static int find_fp_qindex(vpx_bit_depth_t bit_depth) {
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = 0; i < QINDEX_RANGE; ++i)
 | 
						|
    if (vp10_convert_qindex_to_q(i, bit_depth) >= FIRST_PASS_Q)
 | 
						|
      break;
 | 
						|
 | 
						|
  if (i == QINDEX_RANGE)
 | 
						|
    i--;
 | 
						|
 | 
						|
  return i;
 | 
						|
}
 | 
						|
 | 
						|
static void set_first_pass_params(VP10_COMP *cpi) {
 | 
						|
  VP10_COMMON *const cm = &cpi->common;
 | 
						|
  if (!cpi->refresh_alt_ref_frame &&
 | 
						|
      (cm->current_video_frame == 0 ||
 | 
						|
       (cpi->frame_flags & FRAMEFLAGS_KEY))) {
 | 
						|
    cm->frame_type = KEY_FRAME;
 | 
						|
  } else {
 | 
						|
    cm->frame_type = INTER_FRAME;
 | 
						|
  }
 | 
						|
  // Do not use periodic key frames.
 | 
						|
  cpi->rc.frames_to_key = INT_MAX;
 | 
						|
}
 | 
						|
 | 
						|
#define UL_INTRA_THRESH 50
 | 
						|
#define INVALID_ROW -1
 | 
						|
void vp10_first_pass(VP10_COMP *cpi, const struct lookahead_entry *source) {
 | 
						|
  int mb_row, mb_col;
 | 
						|
  MACROBLOCK *const x = &cpi->td.mb;
 | 
						|
  VP10_COMMON *const cm = &cpi->common;
 | 
						|
  MACROBLOCKD *const xd = &x->e_mbd;
 | 
						|
  TileInfo tile;
 | 
						|
  struct macroblock_plane *const p = x->plane;
 | 
						|
  struct macroblockd_plane *const pd = xd->plane;
 | 
						|
  const PICK_MODE_CONTEXT *ctx =
 | 
						|
      &cpi->td.pc_root[MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2]->none;
 | 
						|
  int i;
 | 
						|
 | 
						|
  int recon_yoffset, recon_uvoffset;
 | 
						|
  int64_t intra_error = 0;
 | 
						|
  int64_t coded_error = 0;
 | 
						|
  int64_t sr_coded_error = 0;
 | 
						|
 | 
						|
  int sum_mvr = 0, sum_mvc = 0;
 | 
						|
  int sum_mvr_abs = 0, sum_mvc_abs = 0;
 | 
						|
  int64_t sum_mvrs = 0, sum_mvcs = 0;
 | 
						|
  int mvcount = 0;
 | 
						|
  int intercount = 0;
 | 
						|
  int second_ref_count = 0;
 | 
						|
  const int intrapenalty = INTRA_MODE_PENALTY;
 | 
						|
  double neutral_count;
 | 
						|
  int intra_skip_count = 0;
 | 
						|
  int image_data_start_row = INVALID_ROW;
 | 
						|
  int new_mv_count = 0;
 | 
						|
  int sum_in_vectors = 0;
 | 
						|
  MV lastmv = {0, 0};
 | 
						|
  TWO_PASS *twopass = &cpi->twopass;
 | 
						|
  const MV zero_mv = {0, 0};
 | 
						|
  int recon_y_stride, recon_uv_stride, uv_mb_height;
 | 
						|
 | 
						|
  YV12_BUFFER_CONFIG *const lst_yv12 = get_ref_frame_buffer(cpi, LAST_FRAME);
 | 
						|
  YV12_BUFFER_CONFIG *gld_yv12 = get_ref_frame_buffer(cpi, GOLDEN_FRAME);
 | 
						|
  YV12_BUFFER_CONFIG *const new_yv12 = get_frame_new_buffer(cm);
 | 
						|
  const YV12_BUFFER_CONFIG *first_ref_buf = lst_yv12;
 | 
						|
  double intra_factor;
 | 
						|
  double brightness_factor;
 | 
						|
  BufferPool *const pool = cm->buffer_pool;
 | 
						|
 | 
						|
  // First pass code requires valid last and new frame buffers.
 | 
						|
  assert(new_yv12 != NULL);
 | 
						|
  assert(frame_is_intra_only(cm) || (lst_yv12 != NULL));
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
  if (cpi->use_fp_mb_stats) {
 | 
						|
    vp10_zero_array(cpi->twopass.frame_mb_stats_buf, cm->initial_mbs);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  vpx_clear_system_state();
 | 
						|
 | 
						|
  intra_factor = 0.0;
 | 
						|
  brightness_factor = 0.0;
 | 
						|
  neutral_count = 0.0;
 | 
						|
 | 
						|
  set_first_pass_params(cpi);
 | 
						|
  vp10_set_quantizer(cm, find_fp_qindex(cm->bit_depth));
 | 
						|
 | 
						|
  vp10_setup_block_planes(&x->e_mbd, cm->subsampling_x, cm->subsampling_y);
 | 
						|
 | 
						|
  vp10_setup_src_planes(x, cpi->Source, 0, 0);
 | 
						|
  vp10_setup_dst_planes(xd->plane, new_yv12, 0, 0);
 | 
						|
 | 
						|
  if (!frame_is_intra_only(cm)) {
 | 
						|
    vp10_setup_pre_planes(xd, 0, first_ref_buf, 0, 0, NULL);
 | 
						|
  }
 | 
						|
 | 
						|
  xd->mi = cm->mi_grid_visible;
 | 
						|
  xd->mi[0] = cm->mi;
 | 
						|
 | 
						|
  vp10_frame_init_quantizer(cpi);
 | 
						|
 | 
						|
  for (i = 0; i < MAX_MB_PLANE; ++i) {
 | 
						|
    p[i].coeff = ctx->coeff_pbuf[i][1];
 | 
						|
    p[i].qcoeff = ctx->qcoeff_pbuf[i][1];
 | 
						|
    pd[i].dqcoeff = ctx->dqcoeff_pbuf[i][1];
 | 
						|
    p[i].eobs = ctx->eobs_pbuf[i][1];
 | 
						|
  }
 | 
						|
  x->skip_recode = 0;
 | 
						|
 | 
						|
  vp10_init_mv_probs(cm);
 | 
						|
  vp10_initialize_rd_consts(cpi);
 | 
						|
 | 
						|
  // Tiling is ignored in the first pass.
 | 
						|
  vp10_tile_init(&tile, cm, 0, 0);
 | 
						|
 | 
						|
  recon_y_stride = new_yv12->y_stride;
 | 
						|
  recon_uv_stride = new_yv12->uv_stride;
 | 
						|
  uv_mb_height = 16 >> (new_yv12->y_height > new_yv12->uv_height);
 | 
						|
 | 
						|
  for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
 | 
						|
    MV best_ref_mv = {0, 0};
 | 
						|
 | 
						|
    // Reset above block coeffs.
 | 
						|
    xd->up_available = (mb_row != 0);
 | 
						|
    recon_yoffset = (mb_row * recon_y_stride * 16);
 | 
						|
    recon_uvoffset = (mb_row * recon_uv_stride * uv_mb_height);
 | 
						|
 | 
						|
    // Set up limit values for motion vectors to prevent them extending
 | 
						|
    // outside the UMV borders.
 | 
						|
    x->mv_row_min = -((mb_row * 16) + BORDER_MV_PIXELS_B16);
 | 
						|
    x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16)
 | 
						|
                    + BORDER_MV_PIXELS_B16;
 | 
						|
 | 
						|
    for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
 | 
						|
      int this_error;
 | 
						|
      const int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row);
 | 
						|
      const BLOCK_SIZE bsize = get_bsize(cm, mb_row, mb_col);
 | 
						|
      double log_intra;
 | 
						|
      int level_sample;
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
      const int mb_index = mb_row * cm->mb_cols + mb_col;
 | 
						|
#endif
 | 
						|
 | 
						|
      vpx_clear_system_state();
 | 
						|
 | 
						|
      xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset;
 | 
						|
      xd->plane[1].dst.buf = new_yv12->u_buffer + recon_uvoffset;
 | 
						|
      xd->plane[2].dst.buf = new_yv12->v_buffer + recon_uvoffset;
 | 
						|
      xd->left_available = (mb_col != 0);
 | 
						|
      xd->mi[0]->mbmi.sb_type = bsize;
 | 
						|
      xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
 | 
						|
      set_mi_row_col(xd, &tile,
 | 
						|
                     mb_row << 1, num_8x8_blocks_high_lookup[bsize],
 | 
						|
                     mb_col << 1, num_8x8_blocks_wide_lookup[bsize],
 | 
						|
                     cm->mi_rows, cm->mi_cols);
 | 
						|
 | 
						|
      // Do intra 16x16 prediction.
 | 
						|
      xd->mi[0]->mbmi.segment_id = 0;
 | 
						|
      xd->mi[0]->mbmi.mode = DC_PRED;
 | 
						|
      xd->mi[0]->mbmi.tx_size = use_dc_pred ?
 | 
						|
         (bsize >= BLOCK_16X16 ? TX_16X16 : TX_8X8) : TX_4X4;
 | 
						|
      vp10_encode_intra_block_plane(x, bsize, 0, 0);
 | 
						|
      this_error = vpx_get_mb_ss(x->plane[0].src_diff);
 | 
						|
 | 
						|
      // Keep a record of blocks that have almost no intra error residual
 | 
						|
      // (i.e. are in effect completely flat and untextured in the intra
 | 
						|
      // domain). In natural videos this is uncommon, but it is much more
 | 
						|
      // common in animations, graphics and screen content, so may be used
 | 
						|
      // as a signal to detect these types of content.
 | 
						|
      if (this_error < UL_INTRA_THRESH) {
 | 
						|
        ++intra_skip_count;
 | 
						|
      } else if ((mb_col > 0) && (image_data_start_row == INVALID_ROW)) {
 | 
						|
        image_data_start_row = mb_row;
 | 
						|
      }
 | 
						|
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
      if (cm->use_highbitdepth) {
 | 
						|
        switch (cm->bit_depth) {
 | 
						|
          case VPX_BITS_8:
 | 
						|
            break;
 | 
						|
          case VPX_BITS_10:
 | 
						|
            this_error >>= 4;
 | 
						|
            break;
 | 
						|
          case VPX_BITS_12:
 | 
						|
            this_error >>= 8;
 | 
						|
            break;
 | 
						|
          default:
 | 
						|
            assert(0 && "cm->bit_depth should be VPX_BITS_8, "
 | 
						|
                        "VPX_BITS_10 or VPX_BITS_12");
 | 
						|
            return;
 | 
						|
        }
 | 
						|
      }
 | 
						|
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
						|
 | 
						|
      vpx_clear_system_state();
 | 
						|
      log_intra = log(this_error + 1.0);
 | 
						|
      if (log_intra < 10.0)
 | 
						|
        intra_factor += 1.0 + ((10.0 - log_intra) * 0.05);
 | 
						|
      else
 | 
						|
        intra_factor += 1.0;
 | 
						|
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
      if (cm->use_highbitdepth)
 | 
						|
        level_sample = CONVERT_TO_SHORTPTR(x->plane[0].src.buf)[0];
 | 
						|
      else
 | 
						|
        level_sample = x->plane[0].src.buf[0];
 | 
						|
#else
 | 
						|
      level_sample = x->plane[0].src.buf[0];
 | 
						|
#endif
 | 
						|
      if ((level_sample < DARK_THRESH) && (log_intra < 9.0))
 | 
						|
        brightness_factor += 1.0 + (0.01 * (DARK_THRESH - level_sample));
 | 
						|
      else
 | 
						|
        brightness_factor += 1.0;
 | 
						|
 | 
						|
      // Intrapenalty below deals with situations where the intra and inter
 | 
						|
      // error scores are very low (e.g. a plain black frame).
 | 
						|
      // We do not have special cases in first pass for 0,0 and nearest etc so
 | 
						|
      // all inter modes carry an overhead cost estimate for the mv.
 | 
						|
      // When the error score is very low this causes us to pick all or lots of
 | 
						|
      // INTRA modes and throw lots of key frames.
 | 
						|
      // This penalty adds a cost matching that of a 0,0 mv to the intra case.
 | 
						|
      this_error += intrapenalty;
 | 
						|
 | 
						|
      // Accumulate the intra error.
 | 
						|
      intra_error += (int64_t)this_error;
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
      if (cpi->use_fp_mb_stats) {
 | 
						|
        // initialization
 | 
						|
        cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
 | 
						|
      }
 | 
						|
#endif
 | 
						|
 | 
						|
      // Set up limit values for motion vectors to prevent them extending
 | 
						|
      // outside the UMV borders.
 | 
						|
      x->mv_col_min = -((mb_col * 16) + BORDER_MV_PIXELS_B16);
 | 
						|
      x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + BORDER_MV_PIXELS_B16;
 | 
						|
 | 
						|
      // Other than for the first frame do a motion search.
 | 
						|
      if (cm->current_video_frame > 0) {
 | 
						|
        int tmp_err, motion_error, raw_motion_error;
 | 
						|
        // Assume 0,0 motion with no mv overhead.
 | 
						|
        MV mv = {0, 0} , tmp_mv = {0, 0};
 | 
						|
        struct buf_2d unscaled_last_source_buf_2d;
 | 
						|
 | 
						|
        xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
          motion_error = highbd_get_prediction_error(
 | 
						|
              bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
 | 
						|
        } else {
 | 
						|
          motion_error = get_prediction_error(
 | 
						|
              bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        motion_error = get_prediction_error(
 | 
						|
            bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
 | 
						|
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
						|
 | 
						|
        // Compute the motion error of the 0,0 motion using the last source
 | 
						|
        // frame as the reference. Skip the further motion search on
 | 
						|
        // reconstructed frame if this error is small.
 | 
						|
        unscaled_last_source_buf_2d.buf =
 | 
						|
            cpi->unscaled_last_source->y_buffer + recon_yoffset;
 | 
						|
        unscaled_last_source_buf_2d.stride =
 | 
						|
            cpi->unscaled_last_source->y_stride;
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
        if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
          raw_motion_error = highbd_get_prediction_error(
 | 
						|
              bsize, &x->plane[0].src, &unscaled_last_source_buf_2d, xd->bd);
 | 
						|
        } else {
 | 
						|
          raw_motion_error = get_prediction_error(
 | 
						|
              bsize, &x->plane[0].src, &unscaled_last_source_buf_2d);
 | 
						|
        }
 | 
						|
#else
 | 
						|
        raw_motion_error = get_prediction_error(
 | 
						|
            bsize, &x->plane[0].src, &unscaled_last_source_buf_2d);
 | 
						|
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
						|
 | 
						|
        // TODO(pengchong): Replace the hard-coded threshold
 | 
						|
        if (raw_motion_error > 25) {
 | 
						|
          // Test last reference frame using the previous best mv as the
 | 
						|
          // starting point (best reference) for the search.
 | 
						|
          first_pass_motion_search(cpi, x, &best_ref_mv, &mv, &motion_error);
 | 
						|
 | 
						|
          // If the current best reference mv is not centered on 0,0 then do a
 | 
						|
          // 0,0 based search as well.
 | 
						|
          if (!is_zero_mv(&best_ref_mv)) {
 | 
						|
            tmp_err = INT_MAX;
 | 
						|
            first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv, &tmp_err);
 | 
						|
 | 
						|
            if (tmp_err < motion_error) {
 | 
						|
              motion_error = tmp_err;
 | 
						|
              mv = tmp_mv;
 | 
						|
            }
 | 
						|
          }
 | 
						|
 | 
						|
          // Search in an older reference frame.
 | 
						|
          if ((cm->current_video_frame > 1) && gld_yv12 != NULL) {
 | 
						|
            // Assume 0,0 motion with no mv overhead.
 | 
						|
            int gf_motion_error;
 | 
						|
 | 
						|
            xd->plane[0].pre[0].buf = gld_yv12->y_buffer + recon_yoffset;
 | 
						|
#if CONFIG_VP9_HIGHBITDEPTH
 | 
						|
            if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
 | 
						|
              gf_motion_error = highbd_get_prediction_error(
 | 
						|
                  bsize, &x->plane[0].src, &xd->plane[0].pre[0], xd->bd);
 | 
						|
            } else {
 | 
						|
              gf_motion_error = get_prediction_error(
 | 
						|
                  bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
 | 
						|
            }
 | 
						|
#else
 | 
						|
            gf_motion_error = get_prediction_error(
 | 
						|
                bsize, &x->plane[0].src, &xd->plane[0].pre[0]);
 | 
						|
#endif  // CONFIG_VP9_HIGHBITDEPTH
 | 
						|
 | 
						|
            first_pass_motion_search(cpi, x, &zero_mv, &tmp_mv,
 | 
						|
                                     &gf_motion_error);
 | 
						|
 | 
						|
            if (gf_motion_error < motion_error && gf_motion_error < this_error)
 | 
						|
              ++second_ref_count;
 | 
						|
 | 
						|
            // Reset to last frame as reference buffer.
 | 
						|
            xd->plane[0].pre[0].buf = first_ref_buf->y_buffer + recon_yoffset;
 | 
						|
            xd->plane[1].pre[0].buf = first_ref_buf->u_buffer + recon_uvoffset;
 | 
						|
            xd->plane[2].pre[0].buf = first_ref_buf->v_buffer + recon_uvoffset;
 | 
						|
 | 
						|
            // In accumulating a score for the older reference frame take the
 | 
						|
            // best of the motion predicted score and the intra coded error
 | 
						|
            // (just as will be done for) accumulation of "coded_error" for
 | 
						|
            // the last frame.
 | 
						|
            if (gf_motion_error < this_error)
 | 
						|
              sr_coded_error += gf_motion_error;
 | 
						|
            else
 | 
						|
              sr_coded_error += this_error;
 | 
						|
          } else {
 | 
						|
            sr_coded_error += motion_error;
 | 
						|
          }
 | 
						|
        } else {
 | 
						|
          sr_coded_error += motion_error;
 | 
						|
        }
 | 
						|
 | 
						|
        // Start by assuming that intra mode is best.
 | 
						|
        best_ref_mv.row = 0;
 | 
						|
        best_ref_mv.col = 0;
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
        if (cpi->use_fp_mb_stats) {
 | 
						|
          // intra predication statistics
 | 
						|
          cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
 | 
						|
          cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_DCINTRA_MASK;
 | 
						|
          cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
 | 
						|
          if (this_error > FPMB_ERROR_LARGE_TH) {
 | 
						|
            cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_LARGE_MASK;
 | 
						|
          } else if (this_error < FPMB_ERROR_SMALL_TH) {
 | 
						|
            cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_ERROR_SMALL_MASK;
 | 
						|
          }
 | 
						|
        }
 | 
						|
#endif
 | 
						|
 | 
						|
        if (motion_error <= this_error) {
 | 
						|
          vpx_clear_system_state();
 | 
						|
 | 
						|
          // Keep a count of cases where the inter and intra were very close
 | 
						|
          // and very low. This helps with scene cut detection for example in
 | 
						|
          // cropped clips with black bars at the sides or top and bottom.
 | 
						|
          if (((this_error - intrapenalty) * 9 <= motion_error * 10) &&
 | 
						|
              (this_error < (2 * intrapenalty))) {
 | 
						|
            neutral_count += 1.0;
 | 
						|
          // Also track cases where the intra is not much worse than the inter
 | 
						|
          // and use this in limiting the GF/arf group length.
 | 
						|
          } else if ((this_error > NCOUNT_INTRA_THRESH) &&
 | 
						|
                     (this_error < (NCOUNT_INTRA_FACTOR * motion_error))) {
 | 
						|
            neutral_count += (double)motion_error /
 | 
						|
                             DOUBLE_DIVIDE_CHECK((double)this_error);
 | 
						|
          }
 | 
						|
 | 
						|
          mv.row *= 8;
 | 
						|
          mv.col *= 8;
 | 
						|
          this_error = motion_error;
 | 
						|
          xd->mi[0]->mbmi.mode = NEWMV;
 | 
						|
          xd->mi[0]->mbmi.mv[0].as_mv = mv;
 | 
						|
          xd->mi[0]->mbmi.tx_size = TX_4X4;
 | 
						|
          xd->mi[0]->mbmi.ref_frame[0] = LAST_FRAME;
 | 
						|
          xd->mi[0]->mbmi.ref_frame[1] = NONE;
 | 
						|
          vp10_build_inter_predictors_sby(xd, mb_row << 1, mb_col << 1, bsize);
 | 
						|
          vp10_encode_sby_pass1(x, bsize);
 | 
						|
          sum_mvr += mv.row;
 | 
						|
          sum_mvr_abs += abs(mv.row);
 | 
						|
          sum_mvc += mv.col;
 | 
						|
          sum_mvc_abs += abs(mv.col);
 | 
						|
          sum_mvrs += mv.row * mv.row;
 | 
						|
          sum_mvcs += mv.col * mv.col;
 | 
						|
          ++intercount;
 | 
						|
 | 
						|
          best_ref_mv = mv;
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
          if (cpi->use_fp_mb_stats) {
 | 
						|
            // inter predication statistics
 | 
						|
            cpi->twopass.frame_mb_stats_buf[mb_index] = 0;
 | 
						|
            cpi->twopass.frame_mb_stats_buf[mb_index] &= ~FPMB_DCINTRA_MASK;
 | 
						|
            cpi->twopass.frame_mb_stats_buf[mb_index] |= FPMB_MOTION_ZERO_MASK;
 | 
						|
            if (this_error > FPMB_ERROR_LARGE_TH) {
 | 
						|
              cpi->twopass.frame_mb_stats_buf[mb_index] |=
 | 
						|
                  FPMB_ERROR_LARGE_MASK;
 | 
						|
            } else if (this_error < FPMB_ERROR_SMALL_TH) {
 | 
						|
              cpi->twopass.frame_mb_stats_buf[mb_index] |=
 | 
						|
                  FPMB_ERROR_SMALL_MASK;
 | 
						|
            }
 | 
						|
          }
 | 
						|
#endif
 | 
						|
 | 
						|
          if (!is_zero_mv(&mv)) {
 | 
						|
            ++mvcount;
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
            if (cpi->use_fp_mb_stats) {
 | 
						|
              cpi->twopass.frame_mb_stats_buf[mb_index] &=
 | 
						|
                  ~FPMB_MOTION_ZERO_MASK;
 | 
						|
              // check estimated motion direction
 | 
						|
              if (mv.as_mv.col > 0 && mv.as_mv.col >= abs(mv.as_mv.row)) {
 | 
						|
                // right direction
 | 
						|
                cpi->twopass.frame_mb_stats_buf[mb_index] |=
 | 
						|
                    FPMB_MOTION_RIGHT_MASK;
 | 
						|
              } else if (mv.as_mv.row < 0 &&
 | 
						|
                         abs(mv.as_mv.row) >= abs(mv.as_mv.col)) {
 | 
						|
                // up direction
 | 
						|
                cpi->twopass.frame_mb_stats_buf[mb_index] |=
 | 
						|
                    FPMB_MOTION_UP_MASK;
 | 
						|
              } else if (mv.as_mv.col < 0 &&
 | 
						|
                         abs(mv.as_mv.col) >= abs(mv.as_mv.row)) {
 | 
						|
                // left direction
 | 
						|
                cpi->twopass.frame_mb_stats_buf[mb_index] |=
 | 
						|
                    FPMB_MOTION_LEFT_MASK;
 | 
						|
              } else {
 | 
						|
                // down direction
 | 
						|
                cpi->twopass.frame_mb_stats_buf[mb_index] |=
 | 
						|
                    FPMB_MOTION_DOWN_MASK;
 | 
						|
              }
 | 
						|
            }
 | 
						|
#endif
 | 
						|
 | 
						|
            // Non-zero vector, was it different from the last non zero vector?
 | 
						|
            if (!is_equal_mv(&mv, &lastmv))
 | 
						|
              ++new_mv_count;
 | 
						|
            lastmv = mv;
 | 
						|
 | 
						|
            // Does the row vector point inwards or outwards?
 | 
						|
            if (mb_row < cm->mb_rows / 2) {
 | 
						|
              if (mv.row > 0)
 | 
						|
                --sum_in_vectors;
 | 
						|
              else if (mv.row < 0)
 | 
						|
                ++sum_in_vectors;
 | 
						|
            } else if (mb_row > cm->mb_rows / 2) {
 | 
						|
              if (mv.row > 0)
 | 
						|
                ++sum_in_vectors;
 | 
						|
              else if (mv.row < 0)
 | 
						|
                --sum_in_vectors;
 | 
						|
            }
 | 
						|
 | 
						|
            // Does the col vector point inwards or outwards?
 | 
						|
            if (mb_col < cm->mb_cols / 2) {
 | 
						|
              if (mv.col > 0)
 | 
						|
                --sum_in_vectors;
 | 
						|
              else if (mv.col < 0)
 | 
						|
                ++sum_in_vectors;
 | 
						|
            } else if (mb_col > cm->mb_cols / 2) {
 | 
						|
              if (mv.col > 0)
 | 
						|
                ++sum_in_vectors;
 | 
						|
              else if (mv.col < 0)
 | 
						|
                --sum_in_vectors;
 | 
						|
            }
 | 
						|
          }
 | 
						|
        }
 | 
						|
      } else {
 | 
						|
        sr_coded_error += (int64_t)this_error;
 | 
						|
      }
 | 
						|
      coded_error += (int64_t)this_error;
 | 
						|
 | 
						|
      // Adjust to the next column of MBs.
 | 
						|
      x->plane[0].src.buf += 16;
 | 
						|
      x->plane[1].src.buf += uv_mb_height;
 | 
						|
      x->plane[2].src.buf += uv_mb_height;
 | 
						|
 | 
						|
      recon_yoffset += 16;
 | 
						|
      recon_uvoffset += uv_mb_height;
 | 
						|
    }
 | 
						|
 | 
						|
    // Adjust to the next row of MBs.
 | 
						|
    x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols;
 | 
						|
    x->plane[1].src.buf += uv_mb_height * x->plane[1].src.stride -
 | 
						|
                           uv_mb_height * cm->mb_cols;
 | 
						|
    x->plane[2].src.buf += uv_mb_height * x->plane[1].src.stride -
 | 
						|
                           uv_mb_height * cm->mb_cols;
 | 
						|
 | 
						|
    vpx_clear_system_state();
 | 
						|
  }
 | 
						|
 | 
						|
  // Clamp the image start to rows/2. This number of rows is discarded top
 | 
						|
  // and bottom as dead data so rows / 2 means the frame is blank.
 | 
						|
  if ((image_data_start_row > cm->mb_rows / 2) ||
 | 
						|
      (image_data_start_row == INVALID_ROW)) {
 | 
						|
    image_data_start_row = cm->mb_rows / 2;
 | 
						|
  }
 | 
						|
  // Exclude any image dead zone
 | 
						|
  if (image_data_start_row > 0) {
 | 
						|
    intra_skip_count =
 | 
						|
        VPXMAX(0, intra_skip_count - (image_data_start_row * cm->mb_cols * 2));
 | 
						|
  }
 | 
						|
 | 
						|
  {
 | 
						|
    FIRSTPASS_STATS fps;
 | 
						|
    // The minimum error here insures some bit allocation to frames even
 | 
						|
    // in static regions. The allocation per MB declines for larger formats
 | 
						|
    // where the typical "real" energy per MB also falls.
 | 
						|
    // Initial estimate here uses sqrt(mbs) to define the min_err, where the
 | 
						|
    // number of mbs is proportional to the image area.
 | 
						|
    const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
 | 
						|
                        ? cpi->initial_mbs : cpi->common.MBs;
 | 
						|
    const double min_err = 200 * sqrt(num_mbs);
 | 
						|
 | 
						|
    intra_factor = intra_factor / (double)num_mbs;
 | 
						|
    brightness_factor = brightness_factor / (double)num_mbs;
 | 
						|
    fps.weight = intra_factor * brightness_factor;
 | 
						|
 | 
						|
    fps.frame = cm->current_video_frame;
 | 
						|
    fps.coded_error = (double)(coded_error >> 8) + min_err;
 | 
						|
    fps.sr_coded_error = (double)(sr_coded_error >> 8) + min_err;
 | 
						|
    fps.intra_error = (double)(intra_error >> 8) + min_err;
 | 
						|
    fps.count = 1.0;
 | 
						|
    fps.pcnt_inter = (double)intercount / num_mbs;
 | 
						|
    fps.pcnt_second_ref = (double)second_ref_count / num_mbs;
 | 
						|
    fps.pcnt_neutral = (double)neutral_count / num_mbs;
 | 
						|
    fps.intra_skip_pct = (double)intra_skip_count / num_mbs;
 | 
						|
    fps.inactive_zone_rows = (double)image_data_start_row;
 | 
						|
    fps.inactive_zone_cols = (double)0;  // TODO(paulwilkins): fix
 | 
						|
 | 
						|
    if (mvcount > 0) {
 | 
						|
      fps.MVr = (double)sum_mvr / mvcount;
 | 
						|
      fps.mvr_abs = (double)sum_mvr_abs / mvcount;
 | 
						|
      fps.MVc = (double)sum_mvc / mvcount;
 | 
						|
      fps.mvc_abs = (double)sum_mvc_abs / mvcount;
 | 
						|
      fps.MVrv = ((double)sum_mvrs -
 | 
						|
                  ((double)sum_mvr * sum_mvr / mvcount)) / mvcount;
 | 
						|
      fps.MVcv = ((double)sum_mvcs -
 | 
						|
                  ((double)sum_mvc * sum_mvc / mvcount)) / mvcount;
 | 
						|
      fps.mv_in_out_count = (double)sum_in_vectors / (mvcount * 2);
 | 
						|
      fps.new_mv_count = new_mv_count;
 | 
						|
      fps.pcnt_motion = (double)mvcount / num_mbs;
 | 
						|
    } else {
 | 
						|
      fps.MVr = 0.0;
 | 
						|
      fps.mvr_abs = 0.0;
 | 
						|
      fps.MVc = 0.0;
 | 
						|
      fps.mvc_abs = 0.0;
 | 
						|
      fps.MVrv = 0.0;
 | 
						|
      fps.MVcv = 0.0;
 | 
						|
      fps.mv_in_out_count = 0.0;
 | 
						|
      fps.new_mv_count = 0.0;
 | 
						|
      fps.pcnt_motion = 0.0;
 | 
						|
    }
 | 
						|
 | 
						|
    // TODO(paulwilkins):  Handle the case when duration is set to 0, or
 | 
						|
    // something less than the full time between subsequent values of
 | 
						|
    // cpi->source_time_stamp.
 | 
						|
    fps.duration = (double)(source->ts_end - source->ts_start);
 | 
						|
 | 
						|
    // Don't want to do output stats with a stack variable!
 | 
						|
    twopass->this_frame_stats = fps;
 | 
						|
    output_stats(&twopass->this_frame_stats, cpi->output_pkt_list);
 | 
						|
    accumulate_stats(&twopass->total_stats, &fps);
 | 
						|
 | 
						|
#if CONFIG_FP_MB_STATS
 | 
						|
    if (cpi->use_fp_mb_stats) {
 | 
						|
      output_fpmb_stats(twopass->frame_mb_stats_buf, cm, cpi->output_pkt_list);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  // Copy the previous Last Frame back into gf and and arf buffers if
 | 
						|
  // the prediction is good enough... but also don't allow it to lag too far.
 | 
						|
  if ((twopass->sr_update_lag > 3) ||
 | 
						|
      ((cm->current_video_frame > 0) &&
 | 
						|
       (twopass->this_frame_stats.pcnt_inter > 0.20) &&
 | 
						|
       ((twopass->this_frame_stats.intra_error /
 | 
						|
         DOUBLE_DIVIDE_CHECK(twopass->this_frame_stats.coded_error)) > 2.0))) {
 | 
						|
    if (gld_yv12 != NULL) {
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
      ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
 | 
						|
                 cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]);
 | 
						|
#else
 | 
						|
      ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
 | 
						|
                 cm->ref_frame_map[cpi->lst_fb_idx]);
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
    }
 | 
						|
    twopass->sr_update_lag = 1;
 | 
						|
  } else {
 | 
						|
    ++twopass->sr_update_lag;
 | 
						|
  }
 | 
						|
 | 
						|
  vpx_extend_frame_borders(new_yv12);
 | 
						|
 | 
						|
  // The frame we just compressed now becomes the last frame.
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
  ref_cnt_fb(pool->frame_bufs,
 | 
						|
             &cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]],
 | 
						|
             cm->new_fb_idx);
 | 
						|
#else
 | 
						|
  ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->lst_fb_idx],
 | 
						|
             cm->new_fb_idx);
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
 | 
						|
  // Special case for the first frame. Copy into the GF buffer as a second
 | 
						|
  // reference.
 | 
						|
  if (cm->current_video_frame == 0 && cpi->gld_fb_idx != INVALID_IDX) {
 | 
						|
#if CONFIG_EXT_REFS
 | 
						|
    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
 | 
						|
               cm->ref_frame_map[cpi->lst_fb_idxes[LAST_FRAME - LAST_FRAME]]);
 | 
						|
#else
 | 
						|
    ref_cnt_fb(pool->frame_bufs, &cm->ref_frame_map[cpi->gld_fb_idx],
 | 
						|
               cm->ref_frame_map[cpi->lst_fb_idx]);
 | 
						|
#endif  // CONFIG_EXT_REFS
 | 
						|
  }
 | 
						|
 | 
						|
  // Use this to see what the first pass reconstruction looks like.
 | 
						|
  if (0) {
 | 
						|
    char filename[512];
 | 
						|
    FILE *recon_file;
 | 
						|
    snprintf(filename, sizeof(filename), "enc%04d.yuv",
 | 
						|
             (int)cm->current_video_frame);
 | 
						|
 | 
						|
    if (cm->current_video_frame == 0)
 | 
						|
      recon_file = fopen(filename, "wb");
 | 
						|
    else
 | 
						|
      recon_file = fopen(filename, "ab");
 | 
						|
 | 
						|
    (void)fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file);
 | 
						|
    fclose(recon_file);
 | 
						|
  }
 | 
						|
 | 
						|
  ++cm->current_video_frame;
 | 
						|
}
 | 
						|
 | 
						|
static double calc_correction_factor(double err_per_mb,
 | 
						|
                                     double err_divisor,
 | 
						|
                                     double pt_low,
 | 
						|
                                     double pt_high,
 | 
						|
                                     int q,
 | 
						|
                                     vpx_bit_depth_t bit_depth) {
 | 
						|
  const double error_term = err_per_mb / err_divisor;
 | 
						|
 | 
						|
  // Adjustment based on actual quantizer to power term.
 | 
						|
  const double power_term =
 | 
						|
      VPXMIN(vp10_convert_qindex_to_q(q, bit_depth) * 0.01 + pt_low, pt_high);
 | 
						|
 | 
						|
  // Calculate correction factor.
 | 
						|
  if (power_term < 1.0)
 | 
						|
    assert(error_term >= 0.0);
 | 
						|
 | 
						|
  return fclamp(pow(error_term, power_term), 0.05, 5.0);
 | 
						|
}
 | 
						|
 | 
						|
// Larger image formats are expected to be a little harder to code relatively
 | 
						|
// given the same prediction error score. This in part at least relates to the
 | 
						|
// increased size and hence coding cost of motion vectors.
 | 
						|
#define EDIV_SIZE_FACTOR 800
 | 
						|
 | 
						|
static int get_twopass_worst_quality(const VP10_COMP *cpi,
 | 
						|
                                     const double section_err,
 | 
						|
                                     double inactive_zone,
 | 
						|
                                     int section_target_bandwidth,
 | 
						|
                                     double group_weight_factor) {
 | 
						|
  const RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
 | 
						|
 | 
						|
  inactive_zone = fclamp(inactive_zone, 0.0, 1.0);
 | 
						|
 | 
						|
  if (section_target_bandwidth <= 0) {
 | 
						|
    return rc->worst_quality;  // Highest value allowed
 | 
						|
  } else {
 | 
						|
    const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
 | 
						|
                        ? cpi->initial_mbs : cpi->common.MBs;
 | 
						|
    const int active_mbs = VPXMAX(1, num_mbs - (int)(num_mbs * inactive_zone));
 | 
						|
    const double av_err_per_mb = section_err / active_mbs;
 | 
						|
    const double speed_term = 1.0 + 0.04 * oxcf->speed;
 | 
						|
    const double ediv_size_correction = (double)num_mbs / EDIV_SIZE_FACTOR;
 | 
						|
    const int target_norm_bits_per_mb = ((uint64_t)section_target_bandwidth <<
 | 
						|
                                         BPER_MB_NORMBITS) / active_mbs;
 | 
						|
 | 
						|
    int q;
 | 
						|
 | 
						|
    // Try and pick a max Q that will be high enough to encode the
 | 
						|
    // content at the given rate.
 | 
						|
    for (q = rc->best_quality; q < rc->worst_quality; ++q) {
 | 
						|
      const double factor =
 | 
						|
          calc_correction_factor(av_err_per_mb,
 | 
						|
                                 ERR_DIVISOR - ediv_size_correction,
 | 
						|
                                 FACTOR_PT_LOW, FACTOR_PT_HIGH, q,
 | 
						|
                                 cpi->common.bit_depth);
 | 
						|
      const int bits_per_mb =
 | 
						|
        vp10_rc_bits_per_mb(INTER_FRAME, q,
 | 
						|
                           factor * speed_term * group_weight_factor,
 | 
						|
                           cpi->common.bit_depth);
 | 
						|
      if (bits_per_mb <= target_norm_bits_per_mb)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Restriction on active max q for constrained quality mode.
 | 
						|
    if (cpi->oxcf.rc_mode == VPX_CQ)
 | 
						|
      q = VPXMAX(q, oxcf->cq_level);
 | 
						|
    return q;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static void setup_rf_level_maxq(VP10_COMP *cpi) {
 | 
						|
  int i;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  for (i = INTER_NORMAL; i < RATE_FACTOR_LEVELS; ++i) {
 | 
						|
    int qdelta = vp10_frame_type_qdelta(cpi, i, rc->worst_quality);
 | 
						|
    rc->rf_level_maxq[i] = VPXMAX(rc->worst_quality + qdelta, rc->best_quality);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
void vp10_init_subsampling(VP10_COMP *cpi) {
 | 
						|
  const VP10_COMMON *const cm = &cpi->common;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  const int w = cm->width;
 | 
						|
  const int h = cm->height;
 | 
						|
  int i;
 | 
						|
 | 
						|
  for (i = 0; i < FRAME_SCALE_STEPS; ++i) {
 | 
						|
    // Note: Frames with odd-sized dimensions may result from this scaling.
 | 
						|
    rc->frame_width[i] = (w * 16) / frame_scale_factor[i];
 | 
						|
    rc->frame_height[i] = (h * 16) / frame_scale_factor[i];
 | 
						|
  }
 | 
						|
 | 
						|
  setup_rf_level_maxq(cpi);
 | 
						|
}
 | 
						|
 | 
						|
void vp10_calculate_coded_size(VP10_COMP *cpi,
 | 
						|
                          int *scaled_frame_width,
 | 
						|
                          int *scaled_frame_height) {
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  *scaled_frame_width = rc->frame_width[rc->frame_size_selector];
 | 
						|
  *scaled_frame_height = rc->frame_height[rc->frame_size_selector];
 | 
						|
}
 | 
						|
 | 
						|
void vp10_init_second_pass(VP10_COMP *cpi) {
 | 
						|
  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  double frame_rate;
 | 
						|
  FIRSTPASS_STATS *stats;
 | 
						|
 | 
						|
  zero_stats(&twopass->total_stats);
 | 
						|
  zero_stats(&twopass->total_left_stats);
 | 
						|
 | 
						|
  if (!twopass->stats_in_end)
 | 
						|
    return;
 | 
						|
 | 
						|
  stats = &twopass->total_stats;
 | 
						|
 | 
						|
  *stats = *twopass->stats_in_end;
 | 
						|
  twopass->total_left_stats = *stats;
 | 
						|
 | 
						|
  frame_rate = 10000000.0 * stats->count / stats->duration;
 | 
						|
  // Each frame can have a different duration, as the frame rate in the source
 | 
						|
  // isn't guaranteed to be constant. The frame rate prior to the first frame
 | 
						|
  // encoded in the second pass is a guess. However, the sum duration is not.
 | 
						|
  // It is calculated based on the actual durations of all frames from the
 | 
						|
  // first pass.
 | 
						|
  vp10_new_framerate(cpi, frame_rate);
 | 
						|
  twopass->bits_left = (int64_t)(stats->duration * oxcf->target_bandwidth /
 | 
						|
                       10000000.0);
 | 
						|
 | 
						|
  // This variable monitors how far behind the second ref update is lagging.
 | 
						|
  twopass->sr_update_lag = 1;
 | 
						|
 | 
						|
  // Scan the first pass file and calculate a modified total error based upon
 | 
						|
  // the bias/power function used to allocate bits.
 | 
						|
  {
 | 
						|
    const double avg_error = stats->coded_error /
 | 
						|
                             DOUBLE_DIVIDE_CHECK(stats->count);
 | 
						|
    const FIRSTPASS_STATS *s = twopass->stats_in;
 | 
						|
    double modified_error_total = 0.0;
 | 
						|
    twopass->modified_error_min = (avg_error *
 | 
						|
                                      oxcf->two_pass_vbrmin_section) / 100;
 | 
						|
    twopass->modified_error_max = (avg_error *
 | 
						|
                                      oxcf->two_pass_vbrmax_section) / 100;
 | 
						|
    while (s < twopass->stats_in_end) {
 | 
						|
      modified_error_total += calculate_modified_err(cpi, twopass, oxcf, s);
 | 
						|
      ++s;
 | 
						|
    }
 | 
						|
    twopass->modified_error_left = modified_error_total;
 | 
						|
  }
 | 
						|
 | 
						|
  // Reset the vbr bits off target counters
 | 
						|
  cpi->rc.vbr_bits_off_target = 0;
 | 
						|
  cpi->rc.vbr_bits_off_target_fast = 0;
 | 
						|
 | 
						|
  cpi->rc.rate_error_estimate = 0;
 | 
						|
 | 
						|
  // Static sequence monitor variables.
 | 
						|
  twopass->kf_zeromotion_pct = 100;
 | 
						|
  twopass->last_kfgroup_zeromotion_pct = 100;
 | 
						|
 | 
						|
  if (oxcf->resize_mode != RESIZE_NONE) {
 | 
						|
    vp10_init_subsampling(cpi);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#define SR_DIFF_PART 0.0015
 | 
						|
#define MOTION_AMP_PART 0.003
 | 
						|
#define INTRA_PART 0.005
 | 
						|
#define DEFAULT_DECAY_LIMIT 0.75
 | 
						|
#define LOW_SR_DIFF_TRHESH 0.1
 | 
						|
#define SR_DIFF_MAX 128.0
 | 
						|
 | 
						|
static double get_sr_decay_rate(const VP10_COMP *cpi,
 | 
						|
                                const FIRSTPASS_STATS *frame) {
 | 
						|
  const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
 | 
						|
                      ? cpi->initial_mbs : cpi->common.MBs;
 | 
						|
  double sr_diff =
 | 
						|
      (frame->sr_coded_error - frame->coded_error) / num_mbs;
 | 
						|
  double sr_decay = 1.0;
 | 
						|
  double modified_pct_inter;
 | 
						|
  double modified_pcnt_intra;
 | 
						|
  const double motion_amplitude_factor =
 | 
						|
    frame->pcnt_motion * ((frame->mvc_abs + frame->mvr_abs) / 2);
 | 
						|
 | 
						|
  modified_pct_inter = frame->pcnt_inter;
 | 
						|
  if ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) <
 | 
						|
      (double)NCOUNT_FRAME_II_THRESH) {
 | 
						|
    modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral;
 | 
						|
  }
 | 
						|
  modified_pcnt_intra = 100 * (1.0 - modified_pct_inter);
 | 
						|
 | 
						|
 | 
						|
  if ((sr_diff > LOW_SR_DIFF_TRHESH)) {
 | 
						|
    sr_diff = VPXMIN(sr_diff, SR_DIFF_MAX);
 | 
						|
    sr_decay = 1.0 - (SR_DIFF_PART * sr_diff) -
 | 
						|
               (MOTION_AMP_PART * motion_amplitude_factor) -
 | 
						|
               (INTRA_PART * modified_pcnt_intra);
 | 
						|
  }
 | 
						|
  return VPXMAX(sr_decay, VPXMIN(DEFAULT_DECAY_LIMIT, modified_pct_inter));
 | 
						|
}
 | 
						|
 | 
						|
// This function gives an estimate of how badly we believe the prediction
 | 
						|
// quality is decaying from frame to frame.
 | 
						|
static double get_zero_motion_factor(const VP10_COMP *cpi,
 | 
						|
                                     const FIRSTPASS_STATS *frame) {
 | 
						|
  const double zero_motion_pct = frame->pcnt_inter -
 | 
						|
                                 frame->pcnt_motion;
 | 
						|
  double sr_decay = get_sr_decay_rate(cpi, frame);
 | 
						|
  return VPXMIN(sr_decay, zero_motion_pct);
 | 
						|
}
 | 
						|
 | 
						|
#define ZM_POWER_FACTOR 0.75
 | 
						|
 | 
						|
static double get_prediction_decay_rate(const VP10_COMP *cpi,
 | 
						|
                                        const FIRSTPASS_STATS *next_frame) {
 | 
						|
  const double sr_decay_rate = get_sr_decay_rate(cpi, next_frame);
 | 
						|
  const double zero_motion_factor =
 | 
						|
    (0.95 * pow((next_frame->pcnt_inter - next_frame->pcnt_motion),
 | 
						|
                ZM_POWER_FACTOR));
 | 
						|
 | 
						|
  return VPXMAX(zero_motion_factor,
 | 
						|
                (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor)));
 | 
						|
}
 | 
						|
 | 
						|
// Function to test for a condition where a complex transition is followed
 | 
						|
// by a static section. For example in slide shows where there is a fade
 | 
						|
// between slides. This is to help with more optimal kf and gf positioning.
 | 
						|
static int detect_transition_to_still(VP10_COMP *cpi,
 | 
						|
                                      int frame_interval, int still_interval,
 | 
						|
                                      double loop_decay_rate,
 | 
						|
                                      double last_decay_rate) {
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
 | 
						|
  // Break clause to detect very still sections after motion
 | 
						|
  // For example a static image after a fade or other transition
 | 
						|
  // instead of a clean scene cut.
 | 
						|
  if (frame_interval > rc->min_gf_interval &&
 | 
						|
      loop_decay_rate >= 0.999 &&
 | 
						|
      last_decay_rate < 0.9) {
 | 
						|
    int j;
 | 
						|
 | 
						|
    // Look ahead a few frames to see if static condition persists...
 | 
						|
    for (j = 0; j < still_interval; ++j) {
 | 
						|
      const FIRSTPASS_STATS *stats = &twopass->stats_in[j];
 | 
						|
      if (stats >= twopass->stats_in_end)
 | 
						|
        break;
 | 
						|
 | 
						|
      if (stats->pcnt_inter - stats->pcnt_motion < 0.999)
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // Only if it does do we signal a transition to still.
 | 
						|
    return j == still_interval;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}
 | 
						|
 | 
						|
// This function detects a flash through the high relative pcnt_second_ref
 | 
						|
// score in the frame following a flash frame. The offset passed in should
 | 
						|
// reflect this.
 | 
						|
static int detect_flash(const TWO_PASS *twopass, int offset) {
 | 
						|
  const FIRSTPASS_STATS *const next_frame = read_frame_stats(twopass, offset);
 | 
						|
 | 
						|
  // What we are looking for here is a situation where there is a
 | 
						|
  // brief break in prediction (such as a flash) but subsequent frames
 | 
						|
  // are reasonably well predicted by an earlier (pre flash) frame.
 | 
						|
  // The recovery after a flash is indicated by a high pcnt_second_ref
 | 
						|
  // compared to pcnt_inter.
 | 
						|
  return next_frame != NULL &&
 | 
						|
         next_frame->pcnt_second_ref > next_frame->pcnt_inter &&
 | 
						|
         next_frame->pcnt_second_ref >= 0.5;
 | 
						|
}
 | 
						|
 | 
						|
// Update the motion related elements to the GF arf boost calculation.
 | 
						|
static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats,
 | 
						|
                                          double *mv_in_out,
 | 
						|
                                          double *mv_in_out_accumulator,
 | 
						|
                                          double *abs_mv_in_out_accumulator,
 | 
						|
                                          double *mv_ratio_accumulator) {
 | 
						|
  const double pct = stats->pcnt_motion;
 | 
						|
 | 
						|
  // Accumulate Motion In/Out of frame stats.
 | 
						|
  *mv_in_out = stats->mv_in_out_count * pct;
 | 
						|
  *mv_in_out_accumulator += *mv_in_out;
 | 
						|
  *abs_mv_in_out_accumulator += fabs(*mv_in_out);
 | 
						|
 | 
						|
  // Accumulate a measure of how uniform (or conversely how random) the motion
 | 
						|
  // field is (a ratio of abs(mv) / mv).
 | 
						|
  if (pct > 0.05) {
 | 
						|
    const double mvr_ratio = fabs(stats->mvr_abs) /
 | 
						|
                                 DOUBLE_DIVIDE_CHECK(fabs(stats->MVr));
 | 
						|
    const double mvc_ratio = fabs(stats->mvc_abs) /
 | 
						|
                                 DOUBLE_DIVIDE_CHECK(fabs(stats->MVc));
 | 
						|
 | 
						|
    *mv_ratio_accumulator += pct * (mvr_ratio < stats->mvr_abs ?
 | 
						|
                                       mvr_ratio : stats->mvr_abs);
 | 
						|
    *mv_ratio_accumulator += pct * (mvc_ratio < stats->mvc_abs ?
 | 
						|
                                       mvc_ratio : stats->mvc_abs);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
#define BASELINE_ERR_PER_MB 1000.0
 | 
						|
static double calc_frame_boost(VP10_COMP *cpi,
 | 
						|
                               const FIRSTPASS_STATS *this_frame,
 | 
						|
                               double this_frame_mv_in_out,
 | 
						|
                               double max_boost) {
 | 
						|
  double frame_boost;
 | 
						|
  const double lq =
 | 
						|
    vp10_convert_qindex_to_q(cpi->rc.avg_frame_qindex[INTER_FRAME],
 | 
						|
                            cpi->common.bit_depth);
 | 
						|
  const double boost_q_correction = VPXMIN((0.5 + (lq * 0.015)), 1.5);
 | 
						|
  int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
 | 
						|
                ? cpi->initial_mbs : cpi->common.MBs;
 | 
						|
 | 
						|
  // Correct for any inactive region in the image
 | 
						|
  num_mbs = (int)VPXMAX(1, num_mbs * calculate_active_area(cpi, this_frame));
 | 
						|
 | 
						|
  // Underlying boost factor is based on inter error ratio.
 | 
						|
  frame_boost = (BASELINE_ERR_PER_MB * num_mbs) /
 | 
						|
                DOUBLE_DIVIDE_CHECK(this_frame->coded_error);
 | 
						|
  frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction;
 | 
						|
 | 
						|
  // Increase boost for frames where new data coming into frame (e.g. zoom out).
 | 
						|
  // Slightly reduce boost if there is a net balance of motion out of the frame
 | 
						|
  // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0.
 | 
						|
  if (this_frame_mv_in_out > 0.0)
 | 
						|
    frame_boost += frame_boost * (this_frame_mv_in_out * 2.0);
 | 
						|
  // In the extreme case the boost is halved.
 | 
						|
  else
 | 
						|
    frame_boost += frame_boost * (this_frame_mv_in_out / 2.0);
 | 
						|
 | 
						|
  return VPXMIN(frame_boost, max_boost * boost_q_correction);
 | 
						|
}
 | 
						|
 | 
						|
static int calc_arf_boost(VP10_COMP *cpi, int offset,
 | 
						|
                          int f_frames, int b_frames,
 | 
						|
                          int *f_boost, int *b_boost) {
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  int i;
 | 
						|
  double boost_score = 0.0;
 | 
						|
  double mv_ratio_accumulator = 0.0;
 | 
						|
  double decay_accumulator = 1.0;
 | 
						|
  double this_frame_mv_in_out = 0.0;
 | 
						|
  double mv_in_out_accumulator = 0.0;
 | 
						|
  double abs_mv_in_out_accumulator = 0.0;
 | 
						|
  int arf_boost;
 | 
						|
  int flash_detected = 0;
 | 
						|
 | 
						|
  // Search forward from the proposed arf/next gf position.
 | 
						|
  for (i = 0; i < f_frames; ++i) {
 | 
						|
    const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
 | 
						|
    if (this_frame == NULL)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Update the motion related elements to the boost calculation.
 | 
						|
    accumulate_frame_motion_stats(this_frame,
 | 
						|
                                  &this_frame_mv_in_out, &mv_in_out_accumulator,
 | 
						|
                                  &abs_mv_in_out_accumulator,
 | 
						|
                                  &mv_ratio_accumulator);
 | 
						|
 | 
						|
    // We want to discount the flash frame itself and the recovery
 | 
						|
    // frame that follows as both will have poor scores.
 | 
						|
    flash_detected = detect_flash(twopass, i + offset) ||
 | 
						|
                     detect_flash(twopass, i + offset + 1);
 | 
						|
 | 
						|
    // Accumulate the effect of prediction quality decay.
 | 
						|
    if (!flash_detected) {
 | 
						|
      decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
 | 
						|
      decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
 | 
						|
                          ? MIN_DECAY_FACTOR : decay_accumulator;
 | 
						|
    }
 | 
						|
 | 
						|
    boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
 | 
						|
                                                        this_frame_mv_in_out,
 | 
						|
                                                        GF_MAX_BOOST);
 | 
						|
  }
 | 
						|
 | 
						|
  *f_boost = (int)boost_score;
 | 
						|
 | 
						|
  // Reset for backward looking loop.
 | 
						|
  boost_score = 0.0;
 | 
						|
  mv_ratio_accumulator = 0.0;
 | 
						|
  decay_accumulator = 1.0;
 | 
						|
  this_frame_mv_in_out = 0.0;
 | 
						|
  mv_in_out_accumulator = 0.0;
 | 
						|
  abs_mv_in_out_accumulator = 0.0;
 | 
						|
 | 
						|
  // Search backward towards last gf position.
 | 
						|
  for (i = -1; i >= -b_frames; --i) {
 | 
						|
    const FIRSTPASS_STATS *this_frame = read_frame_stats(twopass, i + offset);
 | 
						|
    if (this_frame == NULL)
 | 
						|
      break;
 | 
						|
 | 
						|
    // Update the motion related elements to the boost calculation.
 | 
						|
    accumulate_frame_motion_stats(this_frame,
 | 
						|
                                  &this_frame_mv_in_out, &mv_in_out_accumulator,
 | 
						|
                                  &abs_mv_in_out_accumulator,
 | 
						|
                                  &mv_ratio_accumulator);
 | 
						|
 | 
						|
    // We want to discount the the flash frame itself and the recovery
 | 
						|
    // frame that follows as both will have poor scores.
 | 
						|
    flash_detected = detect_flash(twopass, i + offset) ||
 | 
						|
                     detect_flash(twopass, i + offset + 1);
 | 
						|
 | 
						|
    // Cumulative effect of prediction quality decay.
 | 
						|
    if (!flash_detected) {
 | 
						|
      decay_accumulator *= get_prediction_decay_rate(cpi, this_frame);
 | 
						|
      decay_accumulator = decay_accumulator < MIN_DECAY_FACTOR
 | 
						|
                              ? MIN_DECAY_FACTOR : decay_accumulator;
 | 
						|
    }
 | 
						|
 | 
						|
    boost_score += decay_accumulator * calc_frame_boost(cpi, this_frame,
 | 
						|
                                                        this_frame_mv_in_out,
 | 
						|
                                                        GF_MAX_BOOST);
 | 
						|
  }
 | 
						|
  *b_boost = (int)boost_score;
 | 
						|
 | 
						|
  arf_boost = (*f_boost + *b_boost);
 | 
						|
  if (arf_boost < ((b_frames + f_frames) * 20))
 | 
						|
    arf_boost = ((b_frames + f_frames) * 20);
 | 
						|
  arf_boost = VPXMAX(arf_boost, MIN_ARF_GF_BOOST);
 | 
						|
 | 
						|
  return arf_boost;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate a section intra ratio used in setting max loop filter.
 | 
						|
static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin,
 | 
						|
                                         const FIRSTPASS_STATS *end,
 | 
						|
                                         int section_length) {
 | 
						|
  const FIRSTPASS_STATS *s = begin;
 | 
						|
  double intra_error = 0.0;
 | 
						|
  double coded_error = 0.0;
 | 
						|
  int i = 0;
 | 
						|
 | 
						|
  while (s < end && i < section_length) {
 | 
						|
    intra_error += s->intra_error;
 | 
						|
    coded_error += s->coded_error;
 | 
						|
    ++s;
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error));
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the total bits to allocate in this GF/ARF group.
 | 
						|
static int64_t calculate_total_gf_group_bits(VP10_COMP *cpi,
 | 
						|
                                             double gf_group_err) {
 | 
						|
  const RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  const TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  const int max_bits = frame_max_bits(rc, &cpi->oxcf);
 | 
						|
  int64_t total_group_bits;
 | 
						|
 | 
						|
  // Calculate the bits to be allocated to the group as a whole.
 | 
						|
  if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) {
 | 
						|
    total_group_bits = (int64_t)(twopass->kf_group_bits *
 | 
						|
                                 (gf_group_err / twopass->kf_group_error_left));
 | 
						|
  } else {
 | 
						|
    total_group_bits = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Clamp odd edge cases.
 | 
						|
  total_group_bits = (total_group_bits < 0) ?
 | 
						|
     0 : (total_group_bits > twopass->kf_group_bits) ?
 | 
						|
     twopass->kf_group_bits : total_group_bits;
 | 
						|
 | 
						|
  // Clip based on user supplied data rate variability limit.
 | 
						|
  if (total_group_bits > (int64_t)max_bits * rc->baseline_gf_interval)
 | 
						|
    total_group_bits = (int64_t)max_bits * rc->baseline_gf_interval;
 | 
						|
 | 
						|
  return total_group_bits;
 | 
						|
}
 | 
						|
 | 
						|
// Calculate the number bits extra to assign to boosted frames in a group.
 | 
						|
static int calculate_boost_bits(int frame_count,
 | 
						|
                                int boost, int64_t total_group_bits) {
 | 
						|
  int allocation_chunks;
 | 
						|
 | 
						|
  // return 0 for invalid inputs (could arise e.g. through rounding errors)
 | 
						|
  if (!boost || (total_group_bits <= 0) || (frame_count <= 0) )
 | 
						|
    return 0;
 | 
						|
 | 
						|
  allocation_chunks = (frame_count * 100) + boost;
 | 
						|
 | 
						|
  // Prevent overflow.
 | 
						|
  if (boost > 1023) {
 | 
						|
    int divisor = boost >> 10;
 | 
						|
    boost /= divisor;
 | 
						|
    allocation_chunks /= divisor;
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate the number of extra bits for use in the boosted frame or frames.
 | 
						|
  return VPXMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks),
 | 
						|
                0);
 | 
						|
}
 | 
						|
 | 
						|
// Current limit on maximum number of active arfs in a GF/ARF group.
 | 
						|
#define MAX_ACTIVE_ARFS 2
 | 
						|
#define ARF_SLOT1 2
 | 
						|
#define ARF_SLOT2 3
 | 
						|
// This function indirects the choice of buffers for arfs.
 | 
						|
// At the moment the values are fixed but this may change as part of
 | 
						|
// the integration process with other codec features that swap buffers around.
 | 
						|
static void get_arf_buffer_indices(unsigned char *arf_buffer_indices) {
 | 
						|
  arf_buffer_indices[0] = ARF_SLOT1;
 | 
						|
  arf_buffer_indices[1] = ARF_SLOT2;
 | 
						|
}
 | 
						|
 | 
						|
static void allocate_gf_group_bits(VP10_COMP *cpi, int64_t gf_group_bits,
 | 
						|
                                   double group_error, int gf_arf_bits) {
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  GF_GROUP *const gf_group = &twopass->gf_group;
 | 
						|
  FIRSTPASS_STATS frame_stats;
 | 
						|
  int i;
 | 
						|
  int frame_index = 1;
 | 
						|
  int target_frame_size;
 | 
						|
  int key_frame;
 | 
						|
  const int max_bits = frame_max_bits(&cpi->rc, &cpi->oxcf);
 | 
						|
  int64_t total_group_bits = gf_group_bits;
 | 
						|
  double modified_err = 0.0;
 | 
						|
  double err_fraction;
 | 
						|
  int mid_boost_bits = 0;
 | 
						|
  int mid_frame_idx;
 | 
						|
  unsigned char arf_buffer_indices[MAX_ACTIVE_ARFS];
 | 
						|
 | 
						|
  key_frame = cpi->common.frame_type == KEY_FRAME;
 | 
						|
 | 
						|
  get_arf_buffer_indices(arf_buffer_indices);
 | 
						|
 | 
						|
  // For key frames the frame target rate is already set and it
 | 
						|
  // is also the golden frame.
 | 
						|
  if (!key_frame) {
 | 
						|
    if (rc->source_alt_ref_active) {
 | 
						|
      gf_group->update_type[0] = OVERLAY_UPDATE;
 | 
						|
      gf_group->rf_level[0] = INTER_NORMAL;
 | 
						|
      gf_group->bit_allocation[0] = 0;
 | 
						|
    } else {
 | 
						|
      gf_group->update_type[0] = GF_UPDATE;
 | 
						|
      gf_group->rf_level[0] = GF_ARF_STD;
 | 
						|
      gf_group->bit_allocation[0] = gf_arf_bits;
 | 
						|
    }
 | 
						|
    gf_group->arf_update_idx[0] = arf_buffer_indices[0];
 | 
						|
    gf_group->arf_ref_idx[0] = arf_buffer_indices[0];
 | 
						|
 | 
						|
    // Step over the golden frame / overlay frame
 | 
						|
    if (EOF == input_stats(twopass, &frame_stats))
 | 
						|
      return;
 | 
						|
  }
 | 
						|
 | 
						|
  // Deduct the boost bits for arf (or gf if it is not a key frame)
 | 
						|
  // from the group total.
 | 
						|
  if (rc->source_alt_ref_pending || !key_frame)
 | 
						|
    total_group_bits -= gf_arf_bits;
 | 
						|
 | 
						|
  // Store the bits to spend on the ARF if there is one.
 | 
						|
  if (rc->source_alt_ref_pending) {
 | 
						|
    gf_group->update_type[frame_index] = ARF_UPDATE;
 | 
						|
    gf_group->rf_level[frame_index] = GF_ARF_STD;
 | 
						|
    gf_group->bit_allocation[frame_index] = gf_arf_bits;
 | 
						|
 | 
						|
    gf_group->arf_src_offset[frame_index] =
 | 
						|
        (unsigned char)(rc->baseline_gf_interval - 1);
 | 
						|
 | 
						|
    gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
 | 
						|
    gf_group->arf_ref_idx[frame_index] =
 | 
						|
      arf_buffer_indices[cpi->multi_arf_last_grp_enabled &&
 | 
						|
                         rc->source_alt_ref_active];
 | 
						|
    ++frame_index;
 | 
						|
 | 
						|
    if (cpi->multi_arf_enabled) {
 | 
						|
      // Set aside a slot for a level 1 arf.
 | 
						|
      gf_group->update_type[frame_index] = ARF_UPDATE;
 | 
						|
      gf_group->rf_level[frame_index] = GF_ARF_LOW;
 | 
						|
      gf_group->arf_src_offset[frame_index] =
 | 
						|
        (unsigned char)((rc->baseline_gf_interval >> 1) - 1);
 | 
						|
      gf_group->arf_update_idx[frame_index] = arf_buffer_indices[1];
 | 
						|
      gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
 | 
						|
      ++frame_index;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  // Define middle frame
 | 
						|
  mid_frame_idx = frame_index + (rc->baseline_gf_interval >> 1) - 1;
 | 
						|
 | 
						|
  // Allocate bits to the other frames in the group.
 | 
						|
  for (i = 0; i < rc->baseline_gf_interval - rc->source_alt_ref_pending; ++i) {
 | 
						|
    int arf_idx = 0;
 | 
						|
    if (EOF == input_stats(twopass, &frame_stats))
 | 
						|
      break;
 | 
						|
 | 
						|
    modified_err = calculate_modified_err(cpi, twopass, oxcf, &frame_stats);
 | 
						|
 | 
						|
    if (group_error > 0)
 | 
						|
      err_fraction = modified_err / DOUBLE_DIVIDE_CHECK(group_error);
 | 
						|
    else
 | 
						|
      err_fraction = 0.0;
 | 
						|
 | 
						|
    target_frame_size = (int)((double)total_group_bits * err_fraction);
 | 
						|
 | 
						|
    if (rc->source_alt_ref_pending && cpi->multi_arf_enabled) {
 | 
						|
      mid_boost_bits += (target_frame_size >> 4);
 | 
						|
      target_frame_size -= (target_frame_size >> 4);
 | 
						|
 | 
						|
      if (frame_index <= mid_frame_idx)
 | 
						|
        arf_idx = 1;
 | 
						|
    }
 | 
						|
    gf_group->arf_update_idx[frame_index] = arf_buffer_indices[arf_idx];
 | 
						|
    gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[arf_idx];
 | 
						|
 | 
						|
    target_frame_size = clamp(target_frame_size, 0,
 | 
						|
                              VPXMIN(max_bits, (int)total_group_bits));
 | 
						|
 | 
						|
    gf_group->update_type[frame_index] = LF_UPDATE;
 | 
						|
    gf_group->rf_level[frame_index] = INTER_NORMAL;
 | 
						|
 | 
						|
    gf_group->bit_allocation[frame_index] = target_frame_size;
 | 
						|
    ++frame_index;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note:
 | 
						|
  // We need to configure the frame at the end of the sequence + 1 that will be
 | 
						|
  // the start frame for the next group. Otherwise prior to the call to
 | 
						|
  // vp10_rc_get_second_pass_params() the data will be undefined.
 | 
						|
  gf_group->arf_update_idx[frame_index] = arf_buffer_indices[0];
 | 
						|
  gf_group->arf_ref_idx[frame_index] = arf_buffer_indices[0];
 | 
						|
 | 
						|
  if (rc->source_alt_ref_pending) {
 | 
						|
    gf_group->update_type[frame_index] = OVERLAY_UPDATE;
 | 
						|
    gf_group->rf_level[frame_index] = INTER_NORMAL;
 | 
						|
 | 
						|
    // Final setup for second arf and its overlay.
 | 
						|
    if (cpi->multi_arf_enabled) {
 | 
						|
      gf_group->bit_allocation[2] =
 | 
						|
          gf_group->bit_allocation[mid_frame_idx] + mid_boost_bits;
 | 
						|
      gf_group->update_type[mid_frame_idx] = OVERLAY_UPDATE;
 | 
						|
      gf_group->bit_allocation[mid_frame_idx] = 0;
 | 
						|
    }
 | 
						|
  } else {
 | 
						|
    gf_group->update_type[frame_index] = GF_UPDATE;
 | 
						|
    gf_group->rf_level[frame_index] = GF_ARF_STD;
 | 
						|
  }
 | 
						|
 | 
						|
  // Note whether multi-arf was enabled this group for next time.
 | 
						|
  cpi->multi_arf_last_grp_enabled = cpi->multi_arf_enabled;
 | 
						|
}
 | 
						|
 | 
						|
// Analyse and define a gf/arf group.
 | 
						|
static void define_gf_group(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
 | 
						|
  VP10_COMMON *const cm = &cpi->common;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  VP10EncoderConfig *const oxcf = &cpi->oxcf;
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  FIRSTPASS_STATS next_frame;
 | 
						|
  const FIRSTPASS_STATS *const start_pos = twopass->stats_in;
 | 
						|
  int i;
 | 
						|
 | 
						|
  double boost_score = 0.0;
 | 
						|
  double old_boost_score = 0.0;
 | 
						|
  double gf_group_err = 0.0;
 | 
						|
#if GROUP_ADAPTIVE_MAXQ
 | 
						|
  double gf_group_raw_error = 0.0;
 | 
						|
#endif
 | 
						|
  double gf_group_skip_pct = 0.0;
 | 
						|
  double gf_group_inactive_zone_rows = 0.0;
 | 
						|
  double gf_first_frame_err = 0.0;
 | 
						|
  double mod_frame_err = 0.0;
 | 
						|
 | 
						|
  double mv_ratio_accumulator = 0.0;
 | 
						|
  double decay_accumulator = 1.0;
 | 
						|
  double zero_motion_accumulator = 1.0;
 | 
						|
 | 
						|
  double loop_decay_rate = 1.00;
 | 
						|
  double last_loop_decay_rate = 1.00;
 | 
						|
 | 
						|
  double this_frame_mv_in_out = 0.0;
 | 
						|
  double mv_in_out_accumulator = 0.0;
 | 
						|
  double abs_mv_in_out_accumulator = 0.0;
 | 
						|
  double mv_ratio_accumulator_thresh;
 | 
						|
  unsigned int allow_alt_ref = is_altref_enabled(cpi);
 | 
						|
 | 
						|
  int f_boost = 0;
 | 
						|
  int b_boost = 0;
 | 
						|
  int flash_detected;
 | 
						|
  int active_max_gf_interval;
 | 
						|
  int active_min_gf_interval;
 | 
						|
  int64_t gf_group_bits;
 | 
						|
  double gf_group_error_left;
 | 
						|
  int gf_arf_bits;
 | 
						|
  const int is_key_frame = frame_is_intra_only(cm);
 | 
						|
  const int arf_active_or_kf = is_key_frame || rc->source_alt_ref_active;
 | 
						|
 | 
						|
  // Reset the GF group data structures unless this is a key
 | 
						|
  // frame in which case it will already have been done.
 | 
						|
  if (is_key_frame == 0) {
 | 
						|
    vp10_zero(twopass->gf_group);
 | 
						|
  }
 | 
						|
 | 
						|
  vpx_clear_system_state();
 | 
						|
  vp10_zero(next_frame);
 | 
						|
 | 
						|
  // Load stats for the current frame.
 | 
						|
  mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
 | 
						|
 | 
						|
  // Note the error of the frame at the start of the group. This will be
 | 
						|
  // the GF frame error if we code a normal gf.
 | 
						|
  gf_first_frame_err = mod_frame_err;
 | 
						|
 | 
						|
  // If this is a key frame or the overlay from a previous arf then
 | 
						|
  // the error score / cost of this frame has already been accounted for.
 | 
						|
  if (arf_active_or_kf) {
 | 
						|
    gf_group_err -= gf_first_frame_err;
 | 
						|
#if GROUP_ADAPTIVE_MAXQ
 | 
						|
    gf_group_raw_error -= this_frame->coded_error;
 | 
						|
#endif
 | 
						|
    gf_group_skip_pct -= this_frame->intra_skip_pct;
 | 
						|
    gf_group_inactive_zone_rows -= this_frame->inactive_zone_rows;
 | 
						|
  }
 | 
						|
 | 
						|
  // Motion breakout threshold for loop below depends on image size.
 | 
						|
  mv_ratio_accumulator_thresh =
 | 
						|
      (cpi->initial_height + cpi->initial_width) / 4.0;
 | 
						|
 | 
						|
  // Set a maximum and minimum interval for the GF group.
 | 
						|
  // If the image appears almost completely static we can extend beyond this.
 | 
						|
  {
 | 
						|
    int int_max_q =
 | 
						|
      (int)(vp10_convert_qindex_to_q(twopass->active_worst_quality,
 | 
						|
                                     cpi->common.bit_depth));
 | 
						|
    int int_lbq =
 | 
						|
      (int)(vp10_convert_qindex_to_q(rc->last_boosted_qindex,
 | 
						|
                                     cpi->common.bit_depth));
 | 
						|
    active_min_gf_interval = rc->min_gf_interval + VPXMIN(2, int_max_q / 200);
 | 
						|
    if (active_min_gf_interval > rc->max_gf_interval)
 | 
						|
      active_min_gf_interval = rc->max_gf_interval;
 | 
						|
 | 
						|
    if (cpi->multi_arf_allowed) {
 | 
						|
      active_max_gf_interval = rc->max_gf_interval;
 | 
						|
    } else {
 | 
						|
      // The value chosen depends on the active Q range. At low Q we have
 | 
						|
      // bits to spare and are better with a smaller interval and smaller boost.
 | 
						|
      // At high Q when there are few bits to spare we are better with a longer
 | 
						|
      // interval to spread the cost of the GF.
 | 
						|
      active_max_gf_interval = 12 + VPXMIN(4, (int_lbq / 6));
 | 
						|
 | 
						|
      // We have: active_min_gf_interval <= rc->max_gf_interval
 | 
						|
      if (active_max_gf_interval < active_min_gf_interval)
 | 
						|
        active_max_gf_interval = active_min_gf_interval;
 | 
						|
      else if (active_max_gf_interval > rc->max_gf_interval)
 | 
						|
        active_max_gf_interval = rc->max_gf_interval;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  i = 0;
 | 
						|
  while (i < rc->static_scene_max_gf_interval && i < rc->frames_to_key) {
 | 
						|
    ++i;
 | 
						|
 | 
						|
    // Accumulate error score of frames in this gf group.
 | 
						|
    mod_frame_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
 | 
						|
    gf_group_err += mod_frame_err;
 | 
						|
#if GROUP_ADAPTIVE_MAXQ
 | 
						|
    gf_group_raw_error += this_frame->coded_error;
 | 
						|
#endif
 | 
						|
    gf_group_skip_pct += this_frame->intra_skip_pct;
 | 
						|
    gf_group_inactive_zone_rows += this_frame->inactive_zone_rows;
 | 
						|
 | 
						|
    if (EOF == input_stats(twopass, &next_frame))
 | 
						|
      break;
 | 
						|
 | 
						|
    // Test for the case where there is a brief flash but the prediction
 | 
						|
    // quality back to an earlier frame is then restored.
 | 
						|
    flash_detected = detect_flash(twopass, 0);
 | 
						|
 | 
						|
    // Update the motion related elements to the boost calculation.
 | 
						|
    accumulate_frame_motion_stats(&next_frame,
 | 
						|
                                  &this_frame_mv_in_out, &mv_in_out_accumulator,
 | 
						|
                                  &abs_mv_in_out_accumulator,
 | 
						|
                                  &mv_ratio_accumulator);
 | 
						|
 | 
						|
    // Accumulate the effect of prediction quality decay.
 | 
						|
    if (!flash_detected) {
 | 
						|
      last_loop_decay_rate = loop_decay_rate;
 | 
						|
      loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame);
 | 
						|
 | 
						|
      decay_accumulator = decay_accumulator * loop_decay_rate;
 | 
						|
 | 
						|
      // Monitor for static sections.
 | 
						|
      zero_motion_accumulator = VPXMIN(
 | 
						|
          zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
 | 
						|
 | 
						|
      // Break clause to detect very still sections after motion. For example,
 | 
						|
      // a static image after a fade or other transition.
 | 
						|
      if (detect_transition_to_still(cpi, i, 5, loop_decay_rate,
 | 
						|
                                     last_loop_decay_rate)) {
 | 
						|
        allow_alt_ref = 0;
 | 
						|
        break;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    // Calculate a boost number for this frame.
 | 
						|
    boost_score += decay_accumulator * calc_frame_boost(cpi, &next_frame,
 | 
						|
                                                        this_frame_mv_in_out,
 | 
						|
                                                        GF_MAX_BOOST);
 | 
						|
 | 
						|
    // Break out conditions.
 | 
						|
    if (
 | 
						|
      // Break at active_max_gf_interval unless almost totally static.
 | 
						|
      (i >= (active_max_gf_interval + arf_active_or_kf) &&
 | 
						|
            zero_motion_accumulator < 0.995) ||
 | 
						|
      (
 | 
						|
        // Don't break out with a very short interval.
 | 
						|
        (i >= active_min_gf_interval + arf_active_or_kf) &&
 | 
						|
        (!flash_detected) &&
 | 
						|
        ((mv_ratio_accumulator > mv_ratio_accumulator_thresh) ||
 | 
						|
         (abs_mv_in_out_accumulator > 3.0) ||
 | 
						|
         (mv_in_out_accumulator < -2.0) ||
 | 
						|
         ((boost_score - old_boost_score) < BOOST_BREAKOUT)))) {
 | 
						|
      boost_score = old_boost_score;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    *this_frame = next_frame;
 | 
						|
    old_boost_score = boost_score;
 | 
						|
  }
 | 
						|
 | 
						|
  twopass->gf_zeromotion_pct = (int)(zero_motion_accumulator * 1000.0);
 | 
						|
 | 
						|
  // Was the group length constrained by the requirement for a new KF?
 | 
						|
  rc->constrained_gf_group = (i >= rc->frames_to_key) ? 1 : 0;
 | 
						|
 | 
						|
  // Should we use the alternate reference frame.
 | 
						|
  if (allow_alt_ref &&
 | 
						|
    (i < cpi->oxcf.lag_in_frames) &&
 | 
						|
    (i >= rc->min_gf_interval)) {
 | 
						|
    // Calculate the boost for alt ref.
 | 
						|
    rc->gfu_boost = calc_arf_boost(cpi, 0, (i - 1), (i - 1), &f_boost,
 | 
						|
      &b_boost);
 | 
						|
    rc->source_alt_ref_pending = 1;
 | 
						|
 | 
						|
    // Test to see if multi arf is appropriate.
 | 
						|
    cpi->multi_arf_enabled =
 | 
						|
      (cpi->multi_arf_allowed && (rc->baseline_gf_interval >= 6) &&
 | 
						|
      (zero_motion_accumulator < 0.995)) ? 1 : 0;
 | 
						|
  } else {
 | 
						|
    rc->gfu_boost = VPXMAX((int)boost_score, MIN_ARF_GF_BOOST);
 | 
						|
    rc->source_alt_ref_pending = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Set the interval until the next gf.
 | 
						|
  rc->baseline_gf_interval = i - (is_key_frame || rc->source_alt_ref_pending);
 | 
						|
 | 
						|
  rc->frames_till_gf_update_due = rc->baseline_gf_interval;
 | 
						|
 | 
						|
  // Reset the file position.
 | 
						|
  reset_fpf_position(twopass, start_pos);
 | 
						|
 | 
						|
  // Calculate the bits to be allocated to the gf/arf group as a whole
 | 
						|
  gf_group_bits = calculate_total_gf_group_bits(cpi, gf_group_err);
 | 
						|
 | 
						|
#if GROUP_ADAPTIVE_MAXQ
 | 
						|
  // Calculate an estimate of the maxq needed for the group.
 | 
						|
  // We are more agressive about correcting for sections
 | 
						|
  // where there could be significant overshoot than for easier
 | 
						|
  // sections where we do not wish to risk creating an overshoot
 | 
						|
  // of the allocated bit budget.
 | 
						|
  if ((cpi->oxcf.rc_mode != VPX_Q) && (rc->baseline_gf_interval > 1)) {
 | 
						|
    const int vbr_group_bits_per_frame =
 | 
						|
      (int)(gf_group_bits / rc->baseline_gf_interval);
 | 
						|
    const double group_av_err = gf_group_raw_error  / rc->baseline_gf_interval;
 | 
						|
    const double group_av_skip_pct =
 | 
						|
      gf_group_skip_pct / rc->baseline_gf_interval;
 | 
						|
    const double group_av_inactive_zone =
 | 
						|
      ((gf_group_inactive_zone_rows * 2) /
 | 
						|
       (rc->baseline_gf_interval * (double)cm->mb_rows));
 | 
						|
 | 
						|
    int tmp_q;
 | 
						|
    // rc factor is a weight factor that corrects for local rate control drift.
 | 
						|
    double rc_factor = 1.0;
 | 
						|
    if (rc->rate_error_estimate > 0) {
 | 
						|
      rc_factor = VPXMAX(RC_FACTOR_MIN,
 | 
						|
                         (double)(100 - rc->rate_error_estimate) / 100.0);
 | 
						|
    } else {
 | 
						|
      rc_factor = VPXMIN(RC_FACTOR_MAX,
 | 
						|
                         (double)(100 - rc->rate_error_estimate) / 100.0);
 | 
						|
    }
 | 
						|
    tmp_q =
 | 
						|
      get_twopass_worst_quality(cpi, group_av_err,
 | 
						|
                                (group_av_skip_pct + group_av_inactive_zone),
 | 
						|
                                vbr_group_bits_per_frame,
 | 
						|
                                twopass->kfgroup_inter_fraction * rc_factor);
 | 
						|
    twopass->active_worst_quality =
 | 
						|
      VPXMAX(tmp_q, twopass->active_worst_quality >> 1);
 | 
						|
  }
 | 
						|
#endif
 | 
						|
 | 
						|
  // Calculate the extra bits to be used for boosted frame(s)
 | 
						|
  gf_arf_bits = calculate_boost_bits(rc->baseline_gf_interval,
 | 
						|
                                     rc->gfu_boost, gf_group_bits);
 | 
						|
 | 
						|
  // Adjust KF group bits and error remaining.
 | 
						|
  twopass->kf_group_error_left -= (int64_t)gf_group_err;
 | 
						|
 | 
						|
  // If this is an arf update we want to remove the score for the overlay
 | 
						|
  // frame at the end which will usually be very cheap to code.
 | 
						|
  // The overlay frame has already, in effect, been coded so we want to spread
 | 
						|
  // the remaining bits among the other frames.
 | 
						|
  // For normal GFs remove the score for the GF itself unless this is
 | 
						|
  // also a key frame in which case it has already been accounted for.
 | 
						|
  if (rc->source_alt_ref_pending) {
 | 
						|
    gf_group_error_left = gf_group_err - mod_frame_err;
 | 
						|
  } else if (is_key_frame == 0) {
 | 
						|
    gf_group_error_left = gf_group_err - gf_first_frame_err;
 | 
						|
  } else {
 | 
						|
    gf_group_error_left = gf_group_err;
 | 
						|
  }
 | 
						|
 | 
						|
  // Allocate bits to each of the frames in the GF group.
 | 
						|
  allocate_gf_group_bits(cpi, gf_group_bits, gf_group_error_left, gf_arf_bits);
 | 
						|
 | 
						|
  // Reset the file position.
 | 
						|
  reset_fpf_position(twopass, start_pos);
 | 
						|
 | 
						|
  // Calculate a section intra ratio used in setting max loop filter.
 | 
						|
  if (cpi->common.frame_type != KEY_FRAME) {
 | 
						|
    twopass->section_intra_rating =
 | 
						|
        calculate_section_intra_ratio(start_pos, twopass->stats_in_end,
 | 
						|
                                      rc->baseline_gf_interval);
 | 
						|
  }
 | 
						|
 | 
						|
  if (oxcf->resize_mode == RESIZE_DYNAMIC) {
 | 
						|
    // Default to starting GF groups at normal frame size.
 | 
						|
    cpi->rc.next_frame_size_selector = UNSCALED;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Threshold for use of the lagging second reference frame. High second ref
 | 
						|
// usage may point to a transient event like a flash or occlusion rather than
 | 
						|
// a real scene cut.
 | 
						|
#define SECOND_REF_USEAGE_THRESH 0.1
 | 
						|
// Minimum % intra coding observed in first pass (1.0 = 100%)
 | 
						|
#define MIN_INTRA_LEVEL 0.25
 | 
						|
// Minimum ratio between the % of intra coding and inter coding in the first
 | 
						|
// pass after discounting neutral blocks (discounting neutral blocks in this
 | 
						|
// way helps catch scene cuts in clips with very flat areas or letter box
 | 
						|
// format clips with image padding.
 | 
						|
#define INTRA_VS_INTER_THRESH 2.0
 | 
						|
// Hard threshold where the first pass chooses intra for almost all blocks.
 | 
						|
// In such a case even if the frame is not a scene cut coding a key frame
 | 
						|
// may be a good option.
 | 
						|
#define VERY_LOW_INTER_THRESH 0.05
 | 
						|
// Maximum threshold for the relative ratio of intra error score vs best
 | 
						|
// inter error score.
 | 
						|
#define KF_II_ERR_THRESHOLD 2.5
 | 
						|
// In real scene cuts there is almost always a sharp change in the intra
 | 
						|
// or inter error score.
 | 
						|
#define ERR_CHANGE_THRESHOLD 0.4
 | 
						|
// For real scene cuts we expect an improvment in the intra inter error
 | 
						|
// ratio in the next frame.
 | 
						|
#define II_IMPROVEMENT_THRESHOLD 3.5
 | 
						|
#define KF_II_MAX 128.0
 | 
						|
 | 
						|
static int test_candidate_kf(TWO_PASS *twopass,
 | 
						|
                             const FIRSTPASS_STATS *last_frame,
 | 
						|
                             const FIRSTPASS_STATS *this_frame,
 | 
						|
                             const FIRSTPASS_STATS *next_frame) {
 | 
						|
  int is_viable_kf = 0;
 | 
						|
  double pcnt_intra = 1.0 - this_frame->pcnt_inter;
 | 
						|
  double modified_pcnt_inter =
 | 
						|
    this_frame->pcnt_inter - this_frame->pcnt_neutral;
 | 
						|
 | 
						|
  // Does the frame satisfy the primary criteria of a key frame?
 | 
						|
  // See above for an explanation of the test criteria.
 | 
						|
  // If so, then examine how well it predicts subsequent frames.
 | 
						|
  if ((this_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
 | 
						|
      (next_frame->pcnt_second_ref < SECOND_REF_USEAGE_THRESH) &&
 | 
						|
      ((this_frame->pcnt_inter < VERY_LOW_INTER_THRESH) ||
 | 
						|
       ((pcnt_intra > MIN_INTRA_LEVEL) &&
 | 
						|
        (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) &&
 | 
						|
        ((this_frame->intra_error /
 | 
						|
          DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) <
 | 
						|
          KF_II_ERR_THRESHOLD) &&
 | 
						|
        ((fabs(last_frame->coded_error - this_frame->coded_error) /
 | 
						|
          DOUBLE_DIVIDE_CHECK(this_frame->coded_error) >
 | 
						|
          ERR_CHANGE_THRESHOLD) ||
 | 
						|
         (fabs(last_frame->intra_error - this_frame->intra_error) /
 | 
						|
          DOUBLE_DIVIDE_CHECK(this_frame->intra_error) >
 | 
						|
          ERR_CHANGE_THRESHOLD) ||
 | 
						|
         ((next_frame->intra_error /
 | 
						|
          DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) >
 | 
						|
          II_IMPROVEMENT_THRESHOLD))))) {
 | 
						|
    int i;
 | 
						|
    const FIRSTPASS_STATS *start_pos = twopass->stats_in;
 | 
						|
    FIRSTPASS_STATS local_next_frame = *next_frame;
 | 
						|
    double boost_score = 0.0;
 | 
						|
    double old_boost_score = 0.0;
 | 
						|
    double decay_accumulator = 1.0;
 | 
						|
 | 
						|
    // Examine how well the key frame predicts subsequent frames.
 | 
						|
    for (i = 0; i < 16; ++i) {
 | 
						|
      double next_iiratio = (BOOST_FACTOR * local_next_frame.intra_error /
 | 
						|
                             DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error));
 | 
						|
 | 
						|
      if (next_iiratio > KF_II_MAX)
 | 
						|
        next_iiratio = KF_II_MAX;
 | 
						|
 | 
						|
      // Cumulative effect of decay in prediction quality.
 | 
						|
      if (local_next_frame.pcnt_inter > 0.85)
 | 
						|
        decay_accumulator *= local_next_frame.pcnt_inter;
 | 
						|
      else
 | 
						|
        decay_accumulator *= (0.85 + local_next_frame.pcnt_inter) / 2.0;
 | 
						|
 | 
						|
      // Keep a running total.
 | 
						|
      boost_score += (decay_accumulator * next_iiratio);
 | 
						|
 | 
						|
      // Test various breakout clauses.
 | 
						|
      if ((local_next_frame.pcnt_inter < 0.05) ||
 | 
						|
          (next_iiratio < 1.5) ||
 | 
						|
          (((local_next_frame.pcnt_inter -
 | 
						|
             local_next_frame.pcnt_neutral) < 0.20) &&
 | 
						|
           (next_iiratio < 3.0)) ||
 | 
						|
          ((boost_score - old_boost_score) < 3.0) ||
 | 
						|
          (local_next_frame.intra_error < 200)) {
 | 
						|
        break;
 | 
						|
      }
 | 
						|
 | 
						|
      old_boost_score = boost_score;
 | 
						|
 | 
						|
      // Get the next frame details
 | 
						|
      if (EOF == input_stats(twopass, &local_next_frame))
 | 
						|
        break;
 | 
						|
    }
 | 
						|
 | 
						|
    // If there is tolerable prediction for at least the next 3 frames then
 | 
						|
    // break out else discard this potential key frame and move on
 | 
						|
    if (boost_score > 30.0 && (i > 3)) {
 | 
						|
      is_viable_kf = 1;
 | 
						|
    } else {
 | 
						|
      // Reset the file position
 | 
						|
      reset_fpf_position(twopass, start_pos);
 | 
						|
 | 
						|
      is_viable_kf = 0;
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  return is_viable_kf;
 | 
						|
}
 | 
						|
 | 
						|
#define FRAMES_TO_CHECK_DECAY 8
 | 
						|
 | 
						|
static void find_next_key_frame(VP10_COMP *cpi, FIRSTPASS_STATS *this_frame) {
 | 
						|
  int i, j;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  GF_GROUP *const gf_group = &twopass->gf_group;
 | 
						|
  const VP10EncoderConfig *const oxcf = &cpi->oxcf;
 | 
						|
  const FIRSTPASS_STATS first_frame = *this_frame;
 | 
						|
  const FIRSTPASS_STATS *const start_position = twopass->stats_in;
 | 
						|
  FIRSTPASS_STATS next_frame;
 | 
						|
  FIRSTPASS_STATS last_frame;
 | 
						|
  int kf_bits = 0;
 | 
						|
  int loop_decay_counter = 0;
 | 
						|
  double decay_accumulator = 1.0;
 | 
						|
  double av_decay_accumulator = 0.0;
 | 
						|
  double zero_motion_accumulator = 1.0;
 | 
						|
  double boost_score = 0.0;
 | 
						|
  double kf_mod_err = 0.0;
 | 
						|
  double kf_group_err = 0.0;
 | 
						|
  double recent_loop_decay[FRAMES_TO_CHECK_DECAY];
 | 
						|
 | 
						|
  vp10_zero(next_frame);
 | 
						|
 | 
						|
  cpi->common.frame_type = KEY_FRAME;
 | 
						|
 | 
						|
  // Reset the GF group data structures.
 | 
						|
  vp10_zero(*gf_group);
 | 
						|
 | 
						|
  // Is this a forced key frame by interval.
 | 
						|
  rc->this_key_frame_forced = rc->next_key_frame_forced;
 | 
						|
 | 
						|
  // Clear the alt ref active flag and last group multi arf flags as they
 | 
						|
  // can never be set for a key frame.
 | 
						|
  rc->source_alt_ref_active = 0;
 | 
						|
  cpi->multi_arf_last_grp_enabled = 0;
 | 
						|
 | 
						|
  // KF is always a GF so clear frames till next gf counter.
 | 
						|
  rc->frames_till_gf_update_due = 0;
 | 
						|
 | 
						|
  rc->frames_to_key = 1;
 | 
						|
 | 
						|
  twopass->kf_group_bits = 0;        // Total bits available to kf group
 | 
						|
  twopass->kf_group_error_left = 0;  // Group modified error score.
 | 
						|
 | 
						|
  kf_mod_err = calculate_modified_err(cpi, twopass, oxcf, this_frame);
 | 
						|
 | 
						|
  // Initialize the decay rates for the recent frames to check
 | 
						|
  for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
 | 
						|
    recent_loop_decay[j] = 1.0;
 | 
						|
 | 
						|
  // Find the next keyframe.
 | 
						|
  i = 0;
 | 
						|
  while (twopass->stats_in < twopass->stats_in_end &&
 | 
						|
         rc->frames_to_key < cpi->oxcf.key_freq) {
 | 
						|
    // Accumulate kf group error.
 | 
						|
    kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
 | 
						|
 | 
						|
    // Load the next frame's stats.
 | 
						|
    last_frame = *this_frame;
 | 
						|
    input_stats(twopass, this_frame);
 | 
						|
 | 
						|
    // Provided that we are not at the end of the file...
 | 
						|
    if (cpi->oxcf.auto_key && twopass->stats_in < twopass->stats_in_end) {
 | 
						|
      double loop_decay_rate;
 | 
						|
 | 
						|
      // Check for a scene cut.
 | 
						|
      if (test_candidate_kf(twopass, &last_frame, this_frame,
 | 
						|
                            twopass->stats_in))
 | 
						|
        break;
 | 
						|
 | 
						|
      // How fast is the prediction quality decaying?
 | 
						|
      loop_decay_rate = get_prediction_decay_rate(cpi, twopass->stats_in);
 | 
						|
 | 
						|
      // We want to know something about the recent past... rather than
 | 
						|
      // as used elsewhere where we are concerned with decay in prediction
 | 
						|
      // quality since the last GF or KF.
 | 
						|
      recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate;
 | 
						|
      decay_accumulator = 1.0;
 | 
						|
      for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j)
 | 
						|
        decay_accumulator *= recent_loop_decay[j];
 | 
						|
 | 
						|
      // Special check for transition or high motion followed by a
 | 
						|
      // static scene.
 | 
						|
      if (detect_transition_to_still(cpi, i, cpi->oxcf.key_freq - i,
 | 
						|
                                     loop_decay_rate, decay_accumulator))
 | 
						|
        break;
 | 
						|
 | 
						|
      // Step on to the next frame.
 | 
						|
      ++rc->frames_to_key;
 | 
						|
 | 
						|
      // If we don't have a real key frame within the next two
 | 
						|
      // key_freq intervals then break out of the loop.
 | 
						|
      if (rc->frames_to_key >= 2 * cpi->oxcf.key_freq)
 | 
						|
        break;
 | 
						|
    } else {
 | 
						|
      ++rc->frames_to_key;
 | 
						|
    }
 | 
						|
    ++i;
 | 
						|
  }
 | 
						|
 | 
						|
  // If there is a max kf interval set by the user we must obey it.
 | 
						|
  // We already breakout of the loop above at 2x max.
 | 
						|
  // This code centers the extra kf if the actual natural interval
 | 
						|
  // is between 1x and 2x.
 | 
						|
  if (cpi->oxcf.auto_key &&
 | 
						|
      rc->frames_to_key > cpi->oxcf.key_freq) {
 | 
						|
    FIRSTPASS_STATS tmp_frame = first_frame;
 | 
						|
 | 
						|
    rc->frames_to_key /= 2;
 | 
						|
 | 
						|
    // Reset to the start of the group.
 | 
						|
    reset_fpf_position(twopass, start_position);
 | 
						|
 | 
						|
    kf_group_err = 0.0;
 | 
						|
 | 
						|
    // Rescan to get the correct error data for the forced kf group.
 | 
						|
    for (i = 0; i < rc->frames_to_key; ++i) {
 | 
						|
      kf_group_err += calculate_modified_err(cpi, twopass, oxcf, &tmp_frame);
 | 
						|
      input_stats(twopass, &tmp_frame);
 | 
						|
    }
 | 
						|
    rc->next_key_frame_forced = 1;
 | 
						|
  } else if (twopass->stats_in == twopass->stats_in_end ||
 | 
						|
             rc->frames_to_key >= cpi->oxcf.key_freq) {
 | 
						|
    rc->next_key_frame_forced = 1;
 | 
						|
  } else {
 | 
						|
    rc->next_key_frame_forced = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  // Special case for the last key frame of the file.
 | 
						|
  if (twopass->stats_in >= twopass->stats_in_end) {
 | 
						|
    // Accumulate kf group error.
 | 
						|
    kf_group_err += calculate_modified_err(cpi, twopass, oxcf, this_frame);
 | 
						|
  }
 | 
						|
 | 
						|
  // Calculate the number of bits that should be assigned to the kf group.
 | 
						|
  if (twopass->bits_left > 0 && twopass->modified_error_left > 0.0) {
 | 
						|
    // Maximum number of bits for a single normal frame (not key frame).
 | 
						|
    const int max_bits = frame_max_bits(rc, &cpi->oxcf);
 | 
						|
 | 
						|
    // Maximum number of bits allocated to the key frame group.
 | 
						|
    int64_t max_grp_bits;
 | 
						|
 | 
						|
    // Default allocation based on bits left and relative
 | 
						|
    // complexity of the section.
 | 
						|
    twopass->kf_group_bits = (int64_t)(twopass->bits_left *
 | 
						|
       (kf_group_err / twopass->modified_error_left));
 | 
						|
 | 
						|
    // Clip based on maximum per frame rate defined by the user.
 | 
						|
    max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key;
 | 
						|
    if (twopass->kf_group_bits > max_grp_bits)
 | 
						|
      twopass->kf_group_bits = max_grp_bits;
 | 
						|
  } else {
 | 
						|
    twopass->kf_group_bits = 0;
 | 
						|
  }
 | 
						|
  twopass->kf_group_bits = VPXMAX(0, twopass->kf_group_bits);
 | 
						|
 | 
						|
  // Reset the first pass file position.
 | 
						|
  reset_fpf_position(twopass, start_position);
 | 
						|
 | 
						|
  // Scan through the kf group collating various stats used to determine
 | 
						|
  // how many bits to spend on it.
 | 
						|
  decay_accumulator = 1.0;
 | 
						|
  boost_score = 0.0;
 | 
						|
  for (i = 0; i < (rc->frames_to_key - 1); ++i) {
 | 
						|
    if (EOF == input_stats(twopass, &next_frame))
 | 
						|
      break;
 | 
						|
 | 
						|
    // Monitor for static sections.
 | 
						|
    zero_motion_accumulator = VPXMIN(
 | 
						|
        zero_motion_accumulator, get_zero_motion_factor(cpi, &next_frame));
 | 
						|
 | 
						|
    // Not all frames in the group are necessarily used in calculating boost.
 | 
						|
    if ((i <= rc->max_gf_interval) ||
 | 
						|
        ((i <= (rc->max_gf_interval * 4)) && (decay_accumulator > 0.5))) {
 | 
						|
      const double frame_boost =
 | 
						|
        calc_frame_boost(cpi, this_frame, 0, KF_MAX_BOOST);
 | 
						|
 | 
						|
      // How fast is prediction quality decaying.
 | 
						|
      if (!detect_flash(twopass, 0)) {
 | 
						|
        const double loop_decay_rate =
 | 
						|
          get_prediction_decay_rate(cpi, &next_frame);
 | 
						|
        decay_accumulator *= loop_decay_rate;
 | 
						|
        decay_accumulator = VPXMAX(decay_accumulator, MIN_DECAY_FACTOR);
 | 
						|
        av_decay_accumulator += decay_accumulator;
 | 
						|
        ++loop_decay_counter;
 | 
						|
      }
 | 
						|
      boost_score += (decay_accumulator * frame_boost);
 | 
						|
    }
 | 
						|
  }
 | 
						|
  av_decay_accumulator /= (double)loop_decay_counter;
 | 
						|
 | 
						|
  reset_fpf_position(twopass, start_position);
 | 
						|
 | 
						|
  // Store the zero motion percentage
 | 
						|
  twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0);
 | 
						|
 | 
						|
  // Calculate a section intra ratio used in setting max loop filter.
 | 
						|
  twopass->section_intra_rating =
 | 
						|
      calculate_section_intra_ratio(start_position, twopass->stats_in_end,
 | 
						|
                                    rc->frames_to_key);
 | 
						|
 | 
						|
  // Apply various clamps for min and max boost
 | 
						|
  rc->kf_boost = (int)(av_decay_accumulator * boost_score);
 | 
						|
  rc->kf_boost = VPXMAX(rc->kf_boost, (rc->frames_to_key * 3));
 | 
						|
  rc->kf_boost = VPXMAX(rc->kf_boost, MIN_KF_BOOST);
 | 
						|
 | 
						|
  // Work out how many bits to allocate for the key frame itself.
 | 
						|
  kf_bits = calculate_boost_bits((rc->frames_to_key - 1),
 | 
						|
                                  rc->kf_boost, twopass->kf_group_bits);
 | 
						|
 | 
						|
  // Work out the fraction of the kf group bits reserved for the inter frames
 | 
						|
  // within the group after discounting the bits for the kf itself.
 | 
						|
  if (twopass->kf_group_bits) {
 | 
						|
    twopass->kfgroup_inter_fraction =
 | 
						|
      (double)(twopass->kf_group_bits - kf_bits) /
 | 
						|
      (double)twopass->kf_group_bits;
 | 
						|
  } else {
 | 
						|
    twopass->kfgroup_inter_fraction = 1.0;
 | 
						|
  }
 | 
						|
 | 
						|
  twopass->kf_group_bits -= kf_bits;
 | 
						|
 | 
						|
  // Save the bits to spend on the key frame.
 | 
						|
  gf_group->bit_allocation[0] = kf_bits;
 | 
						|
  gf_group->update_type[0] = KF_UPDATE;
 | 
						|
  gf_group->rf_level[0] = KF_STD;
 | 
						|
 | 
						|
  // Note the total error score of the kf group minus the key frame itself.
 | 
						|
  twopass->kf_group_error_left = (int)(kf_group_err - kf_mod_err);
 | 
						|
 | 
						|
  // Adjust the count of total modified error left.
 | 
						|
  // The count of bits left is adjusted elsewhere based on real coded frame
 | 
						|
  // sizes.
 | 
						|
  twopass->modified_error_left -= kf_group_err;
 | 
						|
 | 
						|
  if (oxcf->resize_mode == RESIZE_DYNAMIC) {
 | 
						|
    // Default to normal-sized frame on keyframes.
 | 
						|
    cpi->rc.next_frame_size_selector = UNSCALED;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
// Define the reference buffers that will be updated post encode.
 | 
						|
static void configure_buffer_updates(VP10_COMP *cpi) {
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
 | 
						|
  cpi->rc.is_src_frame_alt_ref = 0;
 | 
						|
  switch (twopass->gf_group.update_type[twopass->gf_group.index]) {
 | 
						|
    case KF_UPDATE:
 | 
						|
      cpi->refresh_last_frame = 1;
 | 
						|
      cpi->refresh_golden_frame = 1;
 | 
						|
      cpi->refresh_alt_ref_frame = 1;
 | 
						|
      break;
 | 
						|
    case LF_UPDATE:
 | 
						|
      cpi->refresh_last_frame = 1;
 | 
						|
      cpi->refresh_golden_frame = 0;
 | 
						|
      cpi->refresh_alt_ref_frame = 0;
 | 
						|
      break;
 | 
						|
    case GF_UPDATE:
 | 
						|
      cpi->refresh_last_frame = 1;
 | 
						|
      cpi->refresh_golden_frame = 1;
 | 
						|
      cpi->refresh_alt_ref_frame = 0;
 | 
						|
      break;
 | 
						|
    case OVERLAY_UPDATE:
 | 
						|
      cpi->refresh_last_frame = 0;
 | 
						|
      cpi->refresh_golden_frame = 1;
 | 
						|
      cpi->refresh_alt_ref_frame = 0;
 | 
						|
      cpi->rc.is_src_frame_alt_ref = 1;
 | 
						|
      break;
 | 
						|
    case ARF_UPDATE:
 | 
						|
      cpi->refresh_last_frame = 0;
 | 
						|
      cpi->refresh_golden_frame = 0;
 | 
						|
      cpi->refresh_alt_ref_frame = 1;
 | 
						|
      break;
 | 
						|
    default:
 | 
						|
      assert(0);
 | 
						|
      break;
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
static int is_skippable_frame(const VP10_COMP *cpi) {
 | 
						|
  // If the current frame does not have non-zero motion vector detected in the
 | 
						|
  // first  pass, and so do its previous and forward frames, then this frame
 | 
						|
  // can be skipped for partition check, and the partition size is assigned
 | 
						|
  // according to the variance
 | 
						|
  const TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
 | 
						|
  return (!frame_is_intra_only(&cpi->common) &&
 | 
						|
    twopass->stats_in - 2 > twopass->stats_in_start &&
 | 
						|
    twopass->stats_in < twopass->stats_in_end &&
 | 
						|
    (twopass->stats_in - 1)->pcnt_inter - (twopass->stats_in - 1)->pcnt_motion
 | 
						|
    == 1 &&
 | 
						|
    (twopass->stats_in - 2)->pcnt_inter - (twopass->stats_in - 2)->pcnt_motion
 | 
						|
    == 1 &&
 | 
						|
    twopass->stats_in->pcnt_inter - twopass->stats_in->pcnt_motion == 1);
 | 
						|
}
 | 
						|
 | 
						|
void vp10_rc_get_second_pass_params(VP10_COMP *cpi) {
 | 
						|
  VP10_COMMON *const cm = &cpi->common;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  GF_GROUP *const gf_group = &twopass->gf_group;
 | 
						|
  int frames_left;
 | 
						|
  FIRSTPASS_STATS this_frame;
 | 
						|
 | 
						|
  int target_rate;
 | 
						|
 | 
						|
  frames_left = (int)(twopass->total_stats.count -
 | 
						|
                cm->current_video_frame);
 | 
						|
 | 
						|
  if (!twopass->stats_in)
 | 
						|
    return;
 | 
						|
 | 
						|
  // If this is an arf frame then we dont want to read the stats file or
 | 
						|
  // advance the input pointer as we already have what we need.
 | 
						|
  if (gf_group->update_type[gf_group->index] == ARF_UPDATE) {
 | 
						|
    int target_rate;
 | 
						|
    configure_buffer_updates(cpi);
 | 
						|
    target_rate = gf_group->bit_allocation[gf_group->index];
 | 
						|
    target_rate = vp10_rc_clamp_pframe_target_size(cpi, target_rate);
 | 
						|
    rc->base_frame_target = target_rate;
 | 
						|
 | 
						|
    cm->frame_type = INTER_FRAME;
 | 
						|
 | 
						|
    // Do the firstpass stats indicate that this frame is skippable for the
 | 
						|
    // partition search?
 | 
						|
    if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
 | 
						|
      cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
 | 
						|
    }
 | 
						|
 | 
						|
    return;
 | 
						|
  }
 | 
						|
 | 
						|
  vpx_clear_system_state();
 | 
						|
 | 
						|
  if (cpi->oxcf.rc_mode == VPX_Q) {
 | 
						|
    twopass->active_worst_quality = cpi->oxcf.cq_level;
 | 
						|
  } else if (cm->current_video_frame == 0) {
 | 
						|
    // Special case code for first frame.
 | 
						|
    const int section_target_bandwidth = (int)(twopass->bits_left /
 | 
						|
                                               frames_left);
 | 
						|
    const double section_length = twopass->total_left_stats.count;
 | 
						|
    const double section_error =
 | 
						|
      twopass->total_left_stats.coded_error / section_length;
 | 
						|
    const double section_intra_skip =
 | 
						|
      twopass->total_left_stats.intra_skip_pct / section_length;
 | 
						|
    const double section_inactive_zone =
 | 
						|
      (twopass->total_left_stats.inactive_zone_rows * 2) /
 | 
						|
      ((double)cm->mb_rows * section_length);
 | 
						|
    const int tmp_q =
 | 
						|
      get_twopass_worst_quality(cpi, section_error,
 | 
						|
                                section_intra_skip + section_inactive_zone,
 | 
						|
                                section_target_bandwidth, DEFAULT_GRP_WEIGHT);
 | 
						|
 | 
						|
    twopass->active_worst_quality = tmp_q;
 | 
						|
    twopass->baseline_active_worst_quality = tmp_q;
 | 
						|
    rc->ni_av_qi = tmp_q;
 | 
						|
    rc->last_q[INTER_FRAME] = tmp_q;
 | 
						|
    rc->avg_q = vp10_convert_qindex_to_q(tmp_q, cm->bit_depth);
 | 
						|
    rc->avg_frame_qindex[INTER_FRAME] = tmp_q;
 | 
						|
    rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.best_allowed_q) / 2;
 | 
						|
    rc->avg_frame_qindex[KEY_FRAME] = rc->last_q[KEY_FRAME];
 | 
						|
  }
 | 
						|
  vp10_zero(this_frame);
 | 
						|
  if (EOF == input_stats(twopass, &this_frame))
 | 
						|
    return;
 | 
						|
 | 
						|
  // Set the frame content type flag.
 | 
						|
  if (this_frame.intra_skip_pct >= FC_ANIMATION_THRESH)
 | 
						|
    twopass->fr_content_type = FC_GRAPHICS_ANIMATION;
 | 
						|
  else
 | 
						|
    twopass->fr_content_type = FC_NORMAL;
 | 
						|
 | 
						|
  // Keyframe and section processing.
 | 
						|
  if (rc->frames_to_key == 0 || (cpi->frame_flags & FRAMEFLAGS_KEY)) {
 | 
						|
    FIRSTPASS_STATS this_frame_copy;
 | 
						|
    this_frame_copy = this_frame;
 | 
						|
    // Define next KF group and assign bits to it.
 | 
						|
    find_next_key_frame(cpi, &this_frame);
 | 
						|
    this_frame = this_frame_copy;
 | 
						|
  } else {
 | 
						|
    cm->frame_type = INTER_FRAME;
 | 
						|
  }
 | 
						|
 | 
						|
  // Define a new GF/ARF group. (Should always enter here for key frames).
 | 
						|
  if (rc->frames_till_gf_update_due == 0) {
 | 
						|
    define_gf_group(cpi, &this_frame);
 | 
						|
 | 
						|
    rc->frames_till_gf_update_due = rc->baseline_gf_interval;
 | 
						|
 | 
						|
#if ARF_STATS_OUTPUT
 | 
						|
    {
 | 
						|
      FILE *fpfile;
 | 
						|
      fpfile = fopen("arf.stt", "a");
 | 
						|
      ++arf_count;
 | 
						|
      fprintf(fpfile, "%10d %10ld %10d %10d %10ld\n",
 | 
						|
              cm->current_video_frame, rc->frames_till_gf_update_due,
 | 
						|
              rc->kf_boost, arf_count, rc->gfu_boost);
 | 
						|
 | 
						|
      fclose(fpfile);
 | 
						|
    }
 | 
						|
#endif
 | 
						|
  }
 | 
						|
 | 
						|
  configure_buffer_updates(cpi);
 | 
						|
 | 
						|
  // Do the firstpass stats indicate that this frame is skippable for the
 | 
						|
  // partition search?
 | 
						|
  if (cpi->sf.allow_partition_search_skip && cpi->oxcf.pass == 2) {
 | 
						|
    cpi->partition_search_skippable_frame = is_skippable_frame(cpi);
 | 
						|
  }
 | 
						|
 | 
						|
  target_rate = gf_group->bit_allocation[gf_group->index];
 | 
						|
  if (cpi->common.frame_type == KEY_FRAME)
 | 
						|
    target_rate = vp10_rc_clamp_iframe_target_size(cpi, target_rate);
 | 
						|
  else
 | 
						|
    target_rate = vp10_rc_clamp_pframe_target_size(cpi, target_rate);
 | 
						|
 | 
						|
  rc->base_frame_target = target_rate;
 | 
						|
 | 
						|
  {
 | 
						|
    const int num_mbs = (cpi->oxcf.resize_mode != RESIZE_NONE)
 | 
						|
                        ? cpi->initial_mbs : cpi->common.MBs;
 | 
						|
    // The multiplication by 256 reverses a scaling factor of (>> 8)
 | 
						|
    // applied when combining MB error values for the frame.
 | 
						|
    twopass->mb_av_energy =
 | 
						|
      log(((this_frame.intra_error * 256.0) / num_mbs) + 1.0);
 | 
						|
  }
 | 
						|
 | 
						|
  // Update the total stats remaining structure.
 | 
						|
  subtract_stats(&twopass->total_left_stats, &this_frame);
 | 
						|
}
 | 
						|
 | 
						|
#define MINQ_ADJ_LIMIT 48
 | 
						|
#define MINQ_ADJ_LIMIT_CQ 20
 | 
						|
#define HIGH_UNDERSHOOT_RATIO 2
 | 
						|
void vp10_twopass_postencode_update(VP10_COMP *cpi) {
 | 
						|
  TWO_PASS *const twopass = &cpi->twopass;
 | 
						|
  RATE_CONTROL *const rc = &cpi->rc;
 | 
						|
  const int bits_used = rc->base_frame_target;
 | 
						|
 | 
						|
  // VBR correction is done through rc->vbr_bits_off_target. Based on the
 | 
						|
  // sign of this value, a limited % adjustment is made to the target rate
 | 
						|
  // of subsequent frames, to try and push it back towards 0. This method
 | 
						|
  // is designed to prevent extreme behaviour at the end of a clip
 | 
						|
  // or group of frames.
 | 
						|
  rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size;
 | 
						|
  twopass->bits_left = VPXMAX(twopass->bits_left - bits_used, 0);
 | 
						|
 | 
						|
  // Calculate the pct rc error.
 | 
						|
  if (rc->total_actual_bits) {
 | 
						|
    rc->rate_error_estimate =
 | 
						|
      (int)((rc->vbr_bits_off_target * 100) / rc->total_actual_bits);
 | 
						|
    rc->rate_error_estimate = clamp(rc->rate_error_estimate, -100, 100);
 | 
						|
  } else {
 | 
						|
    rc->rate_error_estimate = 0;
 | 
						|
  }
 | 
						|
 | 
						|
  if (cpi->common.frame_type != KEY_FRAME) {
 | 
						|
    twopass->kf_group_bits -= bits_used;
 | 
						|
    twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct;
 | 
						|
  }
 | 
						|
  twopass->kf_group_bits = VPXMAX(twopass->kf_group_bits, 0);
 | 
						|
 | 
						|
  // Increment the gf group index ready for the next frame.
 | 
						|
  ++twopass->gf_group.index;
 | 
						|
 | 
						|
  // If the rate control is drifting consider adjustment to min or maxq.
 | 
						|
  if ((cpi->oxcf.rc_mode != VPX_Q) &&
 | 
						|
      (cpi->twopass.gf_zeromotion_pct < VLOW_MOTION_THRESHOLD) &&
 | 
						|
      !cpi->rc.is_src_frame_alt_ref) {
 | 
						|
    const int maxq_adj_limit =
 | 
						|
      rc->worst_quality - twopass->active_worst_quality;
 | 
						|
    const int minq_adj_limit =
 | 
						|
        (cpi->oxcf.rc_mode == VPX_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT);
 | 
						|
 | 
						|
    // Undershoot.
 | 
						|
    if (rc->rate_error_estimate > cpi->oxcf.under_shoot_pct) {
 | 
						|
      --twopass->extend_maxq;
 | 
						|
      if (rc->rolling_target_bits >= rc->rolling_actual_bits)
 | 
						|
        ++twopass->extend_minq;
 | 
						|
    // Overshoot.
 | 
						|
    } else if (rc->rate_error_estimate < -cpi->oxcf.over_shoot_pct) {
 | 
						|
      --twopass->extend_minq;
 | 
						|
      if (rc->rolling_target_bits < rc->rolling_actual_bits)
 | 
						|
        ++twopass->extend_maxq;
 | 
						|
    } else {
 | 
						|
      // Adjustment for extreme local overshoot.
 | 
						|
      if (rc->projected_frame_size > (2 * rc->base_frame_target) &&
 | 
						|
          rc->projected_frame_size > (2 * rc->avg_frame_bandwidth))
 | 
						|
        ++twopass->extend_maxq;
 | 
						|
 | 
						|
      // Unwind undershoot or overshoot adjustment.
 | 
						|
      if (rc->rolling_target_bits < rc->rolling_actual_bits)
 | 
						|
        --twopass->extend_minq;
 | 
						|
      else if (rc->rolling_target_bits > rc->rolling_actual_bits)
 | 
						|
        --twopass->extend_maxq;
 | 
						|
    }
 | 
						|
 | 
						|
    twopass->extend_minq = clamp(twopass->extend_minq, 0, minq_adj_limit);
 | 
						|
    twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit);
 | 
						|
 | 
						|
    // If there is a big and undexpected undershoot then feed the extra
 | 
						|
    // bits back in quickly. One situation where this may happen is if a
 | 
						|
    // frame is unexpectedly almost perfectly predicted by the ARF or GF
 | 
						|
    // but not very well predcited by the previous frame.
 | 
						|
    if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) {
 | 
						|
      int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO;
 | 
						|
      if (rc->projected_frame_size < fast_extra_thresh) {
 | 
						|
        rc->vbr_bits_off_target_fast +=
 | 
						|
          fast_extra_thresh - rc->projected_frame_size;
 | 
						|
        rc->vbr_bits_off_target_fast =
 | 
						|
          VPXMIN(rc->vbr_bits_off_target_fast, (4 * rc->avg_frame_bandwidth));
 | 
						|
 | 
						|
        // Fast adaptation of minQ if necessary to use up the extra bits.
 | 
						|
        if (rc->avg_frame_bandwidth) {
 | 
						|
          twopass->extend_minq_fast =
 | 
						|
            (int)(rc->vbr_bits_off_target_fast * 8 / rc->avg_frame_bandwidth);
 | 
						|
        }
 | 
						|
        twopass->extend_minq_fast = VPXMIN(
 | 
						|
            twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
 | 
						|
      } else if (rc->vbr_bits_off_target_fast) {
 | 
						|
        twopass->extend_minq_fast = VPXMIN(
 | 
						|
            twopass->extend_minq_fast, minq_adj_limit - twopass->extend_minq);
 | 
						|
      } else {
 | 
						|
        twopass->extend_minq_fast = 0;
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
}
 |