
Cherry-Picked the following commits: 0defd8f Changed "WebM" to "AOMedia" & "webm" to "aomedia" 54e6676 Replace "VPx" by "AVx" 5082a36 Change "Vpx" to "Avx" 7df44f1 Replace "Vp9" w/ "Av1" 967f722 Remove kVp9CodecId 828f30c Change "Vp8" to "AOM" 030b5ff AUTHORS regenerated 2524cae Add ref-mv experimental flag 016762b Change copyright notice to AOMedia form 81e5526 Replace vp9 w/ av1 9b94565 Add missing files fa8ca9f Change "vp9" to "av1" ec838b7 Convert "vp8" to "aom" 80edfa0 Change "VP9" to "AV1" d1a11fb Change "vp8" to "aom" 7b58251 Point to WebM test data dd1a5c8 Replace "VP8" with "AOM" ff00fc0 Change "VPX" to "AOM" 01dee0b Change "vp10" to "av1" in source code cebe6f0 Convert "vpx" to "aom" 17b0567 rename vp10*.mk to av1_*.mk fe5f8a8 rename files vp10_* to av1_* Change-Id: I6fc3d18eb11fc171e46140c836ad5339cf6c9419
383 lines
12 KiB
C++
383 lines
12 KiB
C++
/*
|
|
* Copyright (c) 2016 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "third_party/googletest/src/include/gtest/gtest.h"
|
|
|
|
#include "./aom_config.h"
|
|
|
|
#include "./aom_dsp_rtcd.h"
|
|
#include "./av1_rtcd.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
|
|
#include "av1/common/enums.h"
|
|
|
|
#include "test/acm_random.h"
|
|
#include "test/function_equivalence_test.h"
|
|
#include "test/register_state_check.h"
|
|
|
|
#define WEDGE_WEIGHT_BITS 6
|
|
#define MAX_MASK_VALUE (1 << (WEDGE_WEIGHT_BITS))
|
|
|
|
using libaom_test::ACMRandom;
|
|
using libaom_test::FunctionEquivalenceTest;
|
|
|
|
namespace {
|
|
|
|
static const int16_t kInt13Max = (1 << 12) - 1;
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_sse_from_residuals - functionality
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
class WedgeUtilsSSEFuncTest : public testing::Test {
|
|
protected:
|
|
WedgeUtilsSSEFuncTest() : rng_(ACMRandom::DeterministicSeed()) {}
|
|
|
|
static const int kIterations = 1000;
|
|
|
|
ACMRandom rng_;
|
|
};
|
|
|
|
static void equiv_blend_residuals(int16_t *r, const int16_t *r0,
|
|
const int16_t *r1, const uint8_t *m, int N) {
|
|
for (int i = 0; i < N; i++) {
|
|
const int32_t m0 = m[i];
|
|
const int32_t m1 = MAX_MASK_VALUE - m0;
|
|
const int16_t R = m0 * r0[i] + m1 * r1[i];
|
|
// Note that this rounding is designed to match the result
|
|
// you would get when actually blending the 2 predictors and computing
|
|
// the residuals.
|
|
r[i] = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
|
|
}
|
|
}
|
|
|
|
static uint64_t equiv_sse_from_residuals(const int16_t *r0, const int16_t *r1,
|
|
const uint8_t *m, int N) {
|
|
uint64_t acc = 0;
|
|
for (int i = 0; i < N; i++) {
|
|
const int32_t m0 = m[i];
|
|
const int32_t m1 = MAX_MASK_VALUE - m0;
|
|
const int16_t R = m0 * r0[i] + m1 * r1[i];
|
|
const int32_t r = ROUND_POWER_OF_TWO(R - 1, WEDGE_WEIGHT_BITS);
|
|
acc += r * r;
|
|
}
|
|
return acc;
|
|
}
|
|
|
|
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingEquiv) {
|
|
DECLARE_ALIGNED(32, uint8_t, s[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, p0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, p1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, p[MAX_SB_SQUARE]);
|
|
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r_ref[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r_tst[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
s[i] = rng_.Rand8();
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int w = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3);
|
|
const int h = 1 << (rng_(MAX_SB_SIZE_LOG2 + 1 - 3) + 3);
|
|
const int N = w * h;
|
|
|
|
for (int j = 0; j < N; j++) {
|
|
p0[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX);
|
|
p1[j] = clamp(s[j] + rng_(33) - 16, 0, UINT8_MAX);
|
|
}
|
|
|
|
aom_blend_a64_mask(p, w, p0, w, p1, w, m, w, h, w, 0, 0);
|
|
|
|
aom_subtract_block(h, w, r0, w, s, w, p0, w);
|
|
aom_subtract_block(h, w, r1, w, s, w, p1, w);
|
|
|
|
aom_subtract_block(h, w, r_ref, w, s, w, p, w);
|
|
equiv_blend_residuals(r_tst, r0, r1, m, N);
|
|
|
|
for (int i = 0; i < N; ++i) ASSERT_EQ(r_ref[i], r_tst[i]);
|
|
|
|
uint64_t ref_sse = aom_sum_squares_i16(r_ref, N);
|
|
uint64_t tst_sse = equiv_sse_from_residuals(r0, r1, m, N);
|
|
|
|
ASSERT_EQ(ref_sse, tst_sse);
|
|
}
|
|
}
|
|
|
|
static uint64_t sse_from_residuals(const int16_t *r0, const int16_t *r1,
|
|
const uint8_t *m, int N) {
|
|
uint64_t acc = 0;
|
|
for (int i = 0; i < N; i++) {
|
|
const int32_t m0 = m[i];
|
|
const int32_t m1 = MAX_MASK_VALUE - m0;
|
|
const int32_t r = m0 * r0[i] + m1 * r1[i];
|
|
acc += r * r;
|
|
}
|
|
return ROUND_POWER_OF_TWO(acc, 2 * WEDGE_WEIGHT_BITS);
|
|
}
|
|
|
|
TEST_F(WedgeUtilsSSEFuncTest, ResidualBlendingMethod) {
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r1[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN;
|
|
d[i] = rng_(2 * INT8_MAX - 2 * INT8_MIN + 1) + 2 * INT8_MIN;
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
for (int i = 0; i < N; i++) r0[i] = r1[i] + d[i];
|
|
|
|
const uint64_t ref_res = sse_from_residuals(r0, r1, m, N);
|
|
const uint64_t tst_res = av1_wedge_sse_from_residuals(r1, d, m, N);
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_sse_from_residuals - optimizations
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef uint64_t (*FSSE)(const int16_t *r1, const int16_t *d, const uint8_t *m,
|
|
int N);
|
|
typedef libaom_test::FuncParam<FSSE> TestFuncsFSSE;
|
|
|
|
class WedgeUtilsSSEOptTest : public FunctionEquivalenceTest<FSSE> {
|
|
protected:
|
|
static const int kIterations = 10000;
|
|
};
|
|
|
|
TEST_P(WedgeUtilsSSEOptTest, RandomValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
d[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
const uint64_t ref_res = params_.ref_func(r1, d, m, N);
|
|
uint64_t tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
TEST_P(WedgeUtilsSSEOptTest, ExtremeValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
if (rng_(2)) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = kInt13Max;
|
|
} else {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) r1[i] = -kInt13Max;
|
|
}
|
|
|
|
if (rng_(2)) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = kInt13Max;
|
|
} else {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) d[i] = -kInt13Max;
|
|
}
|
|
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE;
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
const uint64_t ref_res = params_.ref_func(r1, d, m, N);
|
|
uint64_t tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(r1, d, m, N));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSE2
|
|
INSTANTIATE_TEST_CASE_P(
|
|
SSE2, WedgeUtilsSSEOptTest,
|
|
::testing::Values(TestFuncsFSSE(av1_wedge_sse_from_residuals_c,
|
|
av1_wedge_sse_from_residuals_sse2)));
|
|
|
|
#endif // HAVE_SSE2
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_sign_from_residuals
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef int (*FSign)(const int16_t *ds, const uint8_t *m, int N, int64_t limit);
|
|
typedef libaom_test::FuncParam<FSign> TestFuncsFSign;
|
|
|
|
class WedgeUtilsSignOptTest : public FunctionEquivalenceTest<FSign> {
|
|
protected:
|
|
static const int kIterations = 10000;
|
|
static const int kMaxSize = 8196; // Size limited by SIMD implementation.
|
|
};
|
|
|
|
TEST_P(WedgeUtilsSignOptTest, RandomValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
r1[i] = rng_(2 * kInt13Max + 1) - kInt13Max;
|
|
m[i] = rng_(MAX_MASK_VALUE + 1);
|
|
}
|
|
|
|
const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE);
|
|
const int N = 64 * (rng_(maxN / 64 - 1) + 1);
|
|
|
|
int64_t limit;
|
|
limit = (int64_t)aom_sum_squares_i16(r0, N);
|
|
limit -= (int64_t)aom_sum_squares_i16(r1, N);
|
|
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
|
|
|
|
for (int i = 0; i < N; i++)
|
|
ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX);
|
|
|
|
const int ref_res = params_.ref_func(ds, m, N, limit);
|
|
int tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
TEST_P(WedgeUtilsSignOptTest, ExtremeValues) {
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, uint8_t, m[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
switch (rng_(4)) {
|
|
case 0:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = 0;
|
|
r1[i] = kInt13Max;
|
|
}
|
|
break;
|
|
case 1:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = kInt13Max;
|
|
r1[i] = 0;
|
|
}
|
|
break;
|
|
case 2:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = 0;
|
|
r1[i] = -kInt13Max;
|
|
}
|
|
break;
|
|
default:
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
r0[i] = -kInt13Max;
|
|
r1[i] = 0;
|
|
}
|
|
break;
|
|
}
|
|
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) m[i] = MAX_MASK_VALUE;
|
|
|
|
const int maxN = AOMMIN(kMaxSize, MAX_SB_SQUARE);
|
|
const int N = 64 * (rng_(maxN / 64 - 1) + 1);
|
|
|
|
int64_t limit;
|
|
limit = (int64_t)aom_sum_squares_i16(r0, N);
|
|
limit -= (int64_t)aom_sum_squares_i16(r1, N);
|
|
limit *= (1 << WEDGE_WEIGHT_BITS) / 2;
|
|
|
|
for (int i = 0; i < N; i++)
|
|
ds[i] = clamp(r0[i] * r0[i] - r1[i] * r1[i], INT16_MIN, INT16_MAX);
|
|
|
|
const int ref_res = params_.ref_func(ds, m, N, limit);
|
|
int tst_res;
|
|
ASM_REGISTER_STATE_CHECK(tst_res = params_.tst_func(ds, m, N, limit));
|
|
|
|
ASSERT_EQ(ref_res, tst_res);
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSE2
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
SSE2, WedgeUtilsSignOptTest,
|
|
::testing::Values(TestFuncsFSign(av1_wedge_sign_from_residuals_c,
|
|
av1_wedge_sign_from_residuals_sse2)));
|
|
|
|
#endif // HAVE_SSE2
|
|
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
// av1_wedge_compute_delta_squares
|
|
//////////////////////////////////////////////////////////////////////////////
|
|
|
|
typedef void (*FDS)(int16_t *d, const int16_t *a, const int16_t *b, int N);
|
|
typedef libaom_test::FuncParam<FDS> TestFuncsFDS;
|
|
|
|
class WedgeUtilsDeltaSquaresOptTest : public FunctionEquivalenceTest<FDS> {
|
|
protected:
|
|
static const int kIterations = 10000;
|
|
};
|
|
|
|
TEST_P(WedgeUtilsDeltaSquaresOptTest, RandomValues) {
|
|
DECLARE_ALIGNED(32, int16_t, a[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, b[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d_ref[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d_tst[MAX_SB_SQUARE]);
|
|
|
|
for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) {
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) {
|
|
a[i] = rng_.Rand16();
|
|
b[i] = rng_(2 * INT16_MAX + 1) - INT16_MAX;
|
|
}
|
|
|
|
const int N = 64 * (rng_(MAX_SB_SQUARE / 64) + 1);
|
|
|
|
memset(&d_ref, INT16_MAX, sizeof(d_ref));
|
|
memset(&d_tst, INT16_MAX, sizeof(d_tst));
|
|
|
|
params_.ref_func(d_ref, a, b, N);
|
|
ASM_REGISTER_STATE_CHECK(params_.tst_func(d_tst, a, b, N));
|
|
|
|
for (int i = 0; i < MAX_SB_SQUARE; ++i) ASSERT_EQ(d_ref[i], d_tst[i]);
|
|
}
|
|
}
|
|
|
|
#if HAVE_SSE2
|
|
|
|
INSTANTIATE_TEST_CASE_P(
|
|
SSE2, WedgeUtilsDeltaSquaresOptTest,
|
|
::testing::Values(TestFuncsFDS(av1_wedge_compute_delta_squares_c,
|
|
av1_wedge_compute_delta_squares_sse2)));
|
|
|
|
#endif // HAVE_SSE2
|
|
|
|
} // namespace
|