11140 lines
406 KiB
C
11140 lines
406 KiB
C
/*
|
|
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
|
|
*
|
|
* This source code is subject to the terms of the BSD 2 Clause License and
|
|
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
|
|
* was not distributed with this source code in the LICENSE file, you can
|
|
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
|
|
* Media Patent License 1.0 was not distributed with this source code in the
|
|
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
#include "./aom_dsp_rtcd.h"
|
|
#include "./av1_rtcd.h"
|
|
|
|
#include "aom_dsp/aom_dsp_common.h"
|
|
#include "aom_dsp/blend.h"
|
|
#include "aom_mem/aom_mem.h"
|
|
#include "aom_ports/mem.h"
|
|
#include "aom_ports/system_state.h"
|
|
|
|
#include "av1/common/common.h"
|
|
#include "av1/common/common_data.h"
|
|
#include "av1/common/entropy.h"
|
|
#include "av1/common/entropymode.h"
|
|
#include "av1/common/idct.h"
|
|
#include "av1/common/mvref_common.h"
|
|
#include "av1/common/pred_common.h"
|
|
#include "av1/common/quant_common.h"
|
|
#include "av1/common/reconinter.h"
|
|
#include "av1/common/reconintra.h"
|
|
#include "av1/common/scan.h"
|
|
#include "av1/common/seg_common.h"
|
|
|
|
#include "av1/encoder/aq_variance.h"
|
|
#include "av1/encoder/cost.h"
|
|
#include "av1/encoder/encodemb.h"
|
|
#include "av1/encoder/encodemv.h"
|
|
#include "av1/encoder/encoder.h"
|
|
#include "av1/encoder/hybrid_fwd_txfm.h"
|
|
#include "av1/encoder/mcomp.h"
|
|
#if CONFIG_PALETTE
|
|
#include "av1/encoder/palette.h"
|
|
#endif // CONFIG_PALETTE
|
|
#include "av1/encoder/quantize.h"
|
|
#include "av1/encoder/ratectrl.h"
|
|
#include "av1/encoder/rd.h"
|
|
#include "av1/encoder/rdopt.h"
|
|
#include "av1/encoder/tokenize.h"
|
|
#if CONFIG_PVQ
|
|
#include "av1/encoder/pvq_encoder.h"
|
|
#endif
|
|
#if CONFIG_DUAL_FILTER
|
|
#if CONFIG_EXT_INTERP
|
|
static const int filter_sets[25][2] = {
|
|
{ 0, 0 }, { 0, 1 }, { 0, 2 }, { 0, 3 }, { 0, 4 }, { 1, 0 }, { 1, 1 },
|
|
{ 1, 2 }, { 1, 3 }, { 1, 4 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, { 2, 3 },
|
|
{ 2, 4 }, { 3, 0 }, { 3, 1 }, { 3, 2 }, { 3, 3 }, { 3, 4 }, { 4, 0 },
|
|
{ 4, 1 }, { 4, 2 }, { 4, 3 }, { 4, 4 },
|
|
};
|
|
#else
|
|
static const int filter_sets[9][2] = {
|
|
{ 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 0 }, { 1, 1 },
|
|
{ 1, 2 }, { 2, 0 }, { 2, 1 }, { 2, 2 },
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
#if CONFIG_EXT_REFS
|
|
|
|
#define LAST_FRAME_MODE_MASK \
|
|
((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \
|
|
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
|
|
#define LAST2_FRAME_MODE_MASK \
|
|
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) | \
|
|
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
|
|
#define LAST3_FRAME_MODE_MASK \
|
|
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
|
|
(1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
|
|
#define GOLDEN_FRAME_MODE_MASK \
|
|
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
|
|
(1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF_FRAME))
|
|
#define BWDREF_FRAME_MODE_MASK \
|
|
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
|
|
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME))
|
|
#define ALTREF_FRAME_MODE_MASK \
|
|
((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \
|
|
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME))
|
|
|
|
#else
|
|
|
|
#define LAST_FRAME_MODE_MASK \
|
|
((1 << GOLDEN_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
|
|
#define GOLDEN_FRAME_MODE_MASK \
|
|
((1 << LAST_FRAME) | (1 << ALTREF_FRAME) | (1 << INTRA_FRAME))
|
|
#define ALTREF_FRAME_MODE_MASK \
|
|
((1 << LAST_FRAME) | (1 << GOLDEN_FRAME) | (1 << INTRA_FRAME))
|
|
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | (1 << BWDREF_FRAME) | 0x01)
|
|
#else
|
|
#define SECOND_REF_FRAME_MASK ((1 << ALTREF_FRAME) | 0x01)
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#define MIN_EARLY_TERM_INDEX 3
|
|
#define NEW_MV_DISCOUNT_FACTOR 8
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
#define ANGLE_FAST_SEARCH 1
|
|
#define ANGLE_SKIP_THRESH 10
|
|
#define FILTER_FAST_SEARCH 1
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
const double ADST_FLIP_SVM[8] = { -6.6623, -2.8062, -3.2531, 3.1671, // vert
|
|
-7.7051, -3.2234, -3.6193, 3.4533 }; // horz
|
|
|
|
typedef struct {
|
|
PREDICTION_MODE mode;
|
|
MV_REFERENCE_FRAME ref_frame[2];
|
|
} MODE_DEFINITION;
|
|
|
|
typedef struct { MV_REFERENCE_FRAME ref_frame[2]; } REF_DEFINITION;
|
|
|
|
struct rdcost_block_args {
|
|
const AV1_COMP *cpi;
|
|
MACROBLOCK *x;
|
|
ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE];
|
|
ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE];
|
|
int this_rate;
|
|
int64_t this_dist;
|
|
int64_t this_sse;
|
|
int64_t this_rd;
|
|
int64_t best_rd;
|
|
int exit_early;
|
|
int use_fast_coef_costing;
|
|
const SCAN_ORDER *scan_order;
|
|
uint8_t skippable;
|
|
};
|
|
|
|
#define LAST_NEW_MV_INDEX 6
|
|
static const MODE_DEFINITION av1_mode_order[MAX_MODES] = {
|
|
{ NEARESTMV, { LAST_FRAME, NONE } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEARESTMV, { LAST2_FRAME, NONE } },
|
|
{ NEARESTMV, { LAST3_FRAME, NONE } },
|
|
{ NEARESTMV, { BWDREF_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEARESTMV, { ALTREF_FRAME, NONE } },
|
|
{ NEARESTMV, { GOLDEN_FRAME, NONE } },
|
|
|
|
{ DC_PRED, { INTRA_FRAME, NONE } },
|
|
|
|
{ NEWMV, { LAST_FRAME, NONE } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEWMV, { LAST2_FRAME, NONE } },
|
|
{ NEWMV, { LAST3_FRAME, NONE } },
|
|
{ NEWMV, { BWDREF_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEWMV, { ALTREF_FRAME, NONE } },
|
|
{ NEWMV, { GOLDEN_FRAME, NONE } },
|
|
|
|
{ NEARMV, { LAST_FRAME, NONE } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEARMV, { LAST2_FRAME, NONE } },
|
|
{ NEARMV, { LAST3_FRAME, NONE } },
|
|
{ NEARMV, { BWDREF_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEARMV, { ALTREF_FRAME, NONE } },
|
|
{ NEARMV, { GOLDEN_FRAME, NONE } },
|
|
|
|
#if CONFIG_EXT_INTER
|
|
{ NEWFROMNEARMV, { LAST_FRAME, NONE } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEWFROMNEARMV, { LAST2_FRAME, NONE } },
|
|
{ NEWFROMNEARMV, { LAST3_FRAME, NONE } },
|
|
{ NEWFROMNEARMV, { BWDREF_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEWFROMNEARMV, { ALTREF_FRAME, NONE } },
|
|
{ NEWFROMNEARMV, { GOLDEN_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
{ ZEROMV, { LAST_FRAME, NONE } },
|
|
#if CONFIG_EXT_REFS
|
|
{ ZEROMV, { LAST2_FRAME, NONE } },
|
|
{ ZEROMV, { LAST3_FRAME, NONE } },
|
|
{ ZEROMV, { BWDREF_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ ZEROMV, { GOLDEN_FRAME, NONE } },
|
|
{ ZEROMV, { ALTREF_FRAME, NONE } },
|
|
|
|
// TODO(zoeliu): May need to reconsider the order on the modes to check
|
|
|
|
#if CONFIG_EXT_INTER
|
|
{ NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#else // CONFIG_EXT_INTER
|
|
|
|
{ NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
{ TM_PRED, { INTRA_FRAME, NONE } },
|
|
|
|
#if CONFIG_EXT_INTER
|
|
{ NEAR_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ ZERO_ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ NEAR_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ ZERO_ZEROMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
|
|
{ NEAR_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ ZERO_ZEROMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
{ NEAR_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ ZERO_ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ NEAR_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ ZERO_ZEROMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
|
|
{ NEAR_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ ZERO_ZEROMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
|
|
{ NEAR_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ ZERO_ZEROMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
|
|
{ NEAR_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ ZERO_ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#else // CONFIG_EXT_INTER
|
|
|
|
{ NEARMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
{ NEWMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ NEARMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEWMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ NEARMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
{ NEWMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
{ NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ NEARMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEWMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ NEARMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEWMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ NEARMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEWMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
{ NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
{ ZEROMV, { LAST_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ ZEROMV, { LAST2_FRAME, ALTREF_FRAME } },
|
|
{ ZEROMV, { LAST3_FRAME, ALTREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ ZEROMV, { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ ZEROMV, { LAST_FRAME, BWDREF_FRAME } },
|
|
{ ZEROMV, { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ ZEROMV, { LAST3_FRAME, BWDREF_FRAME } },
|
|
{ ZEROMV, { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
{ H_PRED, { INTRA_FRAME, NONE } },
|
|
{ V_PRED, { INTRA_FRAME, NONE } },
|
|
{ D135_PRED, { INTRA_FRAME, NONE } },
|
|
{ D207_PRED, { INTRA_FRAME, NONE } },
|
|
{ D153_PRED, { INTRA_FRAME, NONE } },
|
|
{ D63_PRED, { INTRA_FRAME, NONE } },
|
|
{ D117_PRED, { INTRA_FRAME, NONE } },
|
|
{ D45_PRED, { INTRA_FRAME, NONE } },
|
|
|
|
#if CONFIG_EXT_INTER
|
|
{ ZEROMV, { LAST_FRAME, INTRA_FRAME } },
|
|
{ NEARESTMV, { LAST_FRAME, INTRA_FRAME } },
|
|
{ NEARMV, { LAST_FRAME, INTRA_FRAME } },
|
|
{ NEWMV, { LAST_FRAME, INTRA_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ ZEROMV, { LAST2_FRAME, INTRA_FRAME } },
|
|
{ NEARESTMV, { LAST2_FRAME, INTRA_FRAME } },
|
|
{ NEARMV, { LAST2_FRAME, INTRA_FRAME } },
|
|
{ NEWMV, { LAST2_FRAME, INTRA_FRAME } },
|
|
|
|
{ ZEROMV, { LAST3_FRAME, INTRA_FRAME } },
|
|
{ NEARESTMV, { LAST3_FRAME, INTRA_FRAME } },
|
|
{ NEARMV, { LAST3_FRAME, INTRA_FRAME } },
|
|
{ NEWMV, { LAST3_FRAME, INTRA_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
{ ZEROMV, { GOLDEN_FRAME, INTRA_FRAME } },
|
|
{ NEARESTMV, { GOLDEN_FRAME, INTRA_FRAME } },
|
|
{ NEARMV, { GOLDEN_FRAME, INTRA_FRAME } },
|
|
{ NEWMV, { GOLDEN_FRAME, INTRA_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ ZEROMV, { BWDREF_FRAME, INTRA_FRAME } },
|
|
{ NEARESTMV, { BWDREF_FRAME, INTRA_FRAME } },
|
|
{ NEARMV, { BWDREF_FRAME, INTRA_FRAME } },
|
|
{ NEWMV, { BWDREF_FRAME, INTRA_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
{ ZEROMV, { ALTREF_FRAME, INTRA_FRAME } },
|
|
{ NEARESTMV, { ALTREF_FRAME, INTRA_FRAME } },
|
|
{ NEARMV, { ALTREF_FRAME, INTRA_FRAME } },
|
|
{ NEWMV, { ALTREF_FRAME, INTRA_FRAME } },
|
|
#endif // CONFIG_EXT_INTER
|
|
};
|
|
|
|
static const REF_DEFINITION av1_ref_order[MAX_REFS] = {
|
|
{ { LAST_FRAME, NONE } },
|
|
#if CONFIG_EXT_REFS
|
|
{ { LAST2_FRAME, NONE } }, { { LAST3_FRAME, NONE } },
|
|
{ { BWDREF_FRAME, NONE } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ { GOLDEN_FRAME, NONE } }, { { ALTREF_FRAME, NONE } },
|
|
|
|
{ { LAST_FRAME, ALTREF_FRAME } },
|
|
#if CONFIG_EXT_REFS
|
|
{ { LAST2_FRAME, ALTREF_FRAME } }, { { LAST3_FRAME, ALTREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
{ { GOLDEN_FRAME, ALTREF_FRAME } },
|
|
|
|
#if CONFIG_EXT_REFS
|
|
{ { LAST_FRAME, BWDREF_FRAME } }, { { LAST2_FRAME, BWDREF_FRAME } },
|
|
{ { LAST3_FRAME, BWDREF_FRAME } }, { { GOLDEN_FRAME, BWDREF_FRAME } },
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
{ { INTRA_FRAME, NONE } },
|
|
};
|
|
|
|
#if CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
|
|
static INLINE int write_uniform_cost(int n, int v) {
|
|
int l = get_unsigned_bits(n), m = (1 << l) - n;
|
|
if (l == 0) return 0;
|
|
if (v < m)
|
|
return (l - 1) * av1_cost_bit(128, 0);
|
|
else
|
|
return l * av1_cost_bit(128, 0);
|
|
}
|
|
#endif // CONFIG_EXT_INTRA || CONFIG_FILTER_INTRA || CONFIG_PALETTE
|
|
|
|
// constants for prune 1 and prune 2 decision boundaries
|
|
#define FAST_EXT_TX_CORR_MID 0.0
|
|
#define FAST_EXT_TX_EDST_MID 0.1
|
|
#define FAST_EXT_TX_CORR_MARGIN 0.5
|
|
#define FAST_EXT_TX_EDST_MARGIN 0.3
|
|
|
|
static const TX_TYPE_1D vtx_tab[TX_TYPES] = {
|
|
DCT_1D, ADST_1D, DCT_1D, ADST_1D,
|
|
#if CONFIG_EXT_TX
|
|
FLIPADST_1D, DCT_1D, FLIPADST_1D, ADST_1D, FLIPADST_1D, IDTX_1D,
|
|
DCT_1D, IDTX_1D, ADST_1D, IDTX_1D, FLIPADST_1D, IDTX_1D,
|
|
#endif // CONFIG_EXT_TX
|
|
};
|
|
|
|
static const TX_TYPE_1D htx_tab[TX_TYPES] = {
|
|
DCT_1D, DCT_1D, ADST_1D, ADST_1D,
|
|
#if CONFIG_EXT_TX
|
|
DCT_1D, FLIPADST_1D, FLIPADST_1D, FLIPADST_1D, ADST_1D, IDTX_1D,
|
|
IDTX_1D, DCT_1D, IDTX_1D, ADST_1D, IDTX_1D, FLIPADST_1D,
|
|
#endif // CONFIG_EXT_TX
|
|
};
|
|
|
|
static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize,
|
|
uint8_t *src, int src_stride,
|
|
uint8_t *dst, int dst_stride,
|
|
double *hordist, double *verdist) {
|
|
int bw = 4 << (b_width_log2_lookup[bsize]);
|
|
int bh = 4 << (b_height_log2_lookup[bsize]);
|
|
unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
|
unsigned int var[16];
|
|
double total = 0;
|
|
|
|
const int f_index = bsize - BLOCK_16X16;
|
|
if (f_index < 0) {
|
|
int i, j, index;
|
|
int w_shift = bw == 8 ? 1 : 2;
|
|
int h_shift = bh == 8 ? 1 : 2;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth) {
|
|
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
|
|
uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst);
|
|
for (i = 0; i < bh; ++i)
|
|
for (j = 0; j < bw; ++j) {
|
|
index = (j >> w_shift) + ((i >> h_shift) << 2);
|
|
esq[index] +=
|
|
(src16[j + i * src_stride] - dst16[j + i * dst_stride]) *
|
|
(src16[j + i * src_stride] - dst16[j + i * dst_stride]);
|
|
}
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
for (i = 0; i < bh; ++i)
|
|
for (j = 0; j < bw; ++j) {
|
|
index = (j >> w_shift) + ((i >> h_shift) << 2);
|
|
esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) *
|
|
(src[j + i * src_stride] - dst[j + i * dst_stride]);
|
|
}
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
} else {
|
|
var[0] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]);
|
|
var[1] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
|
|
dst_stride, &esq[1]);
|
|
var[2] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
|
|
dst_stride, &esq[2]);
|
|
var[3] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
|
|
dst + 3 * bw / 4, dst_stride, &esq[3]);
|
|
src += bh / 4 * src_stride;
|
|
dst += bh / 4 * dst_stride;
|
|
|
|
var[4] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]);
|
|
var[5] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
|
|
dst_stride, &esq[5]);
|
|
var[6] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
|
|
dst_stride, &esq[6]);
|
|
var[7] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
|
|
dst + 3 * bw / 4, dst_stride, &esq[7]);
|
|
src += bh / 4 * src_stride;
|
|
dst += bh / 4 * dst_stride;
|
|
|
|
var[8] = cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]);
|
|
var[9] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
|
|
dst_stride, &esq[9]);
|
|
var[10] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
|
|
dst_stride, &esq[10]);
|
|
var[11] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
|
|
dst + 3 * bw / 4, dst_stride, &esq[11]);
|
|
src += bh / 4 * src_stride;
|
|
dst += bh / 4 * dst_stride;
|
|
|
|
var[12] =
|
|
cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]);
|
|
var[13] = cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4,
|
|
dst_stride, &esq[13]);
|
|
var[14] = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2,
|
|
dst_stride, &esq[14]);
|
|
var[15] = cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride,
|
|
dst + 3 * bw / 4, dst_stride, &esq[15]);
|
|
}
|
|
|
|
total = esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + esq[6] +
|
|
esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + esq[12] + esq[13] +
|
|
esq[14] + esq[15];
|
|
if (total > 0) {
|
|
const double e_recip = 1.0 / total;
|
|
hordist[0] =
|
|
((double)esq[0] + (double)esq[4] + (double)esq[8] + (double)esq[12]) *
|
|
e_recip;
|
|
hordist[1] =
|
|
((double)esq[1] + (double)esq[5] + (double)esq[9] + (double)esq[13]) *
|
|
e_recip;
|
|
hordist[2] =
|
|
((double)esq[2] + (double)esq[6] + (double)esq[10] + (double)esq[14]) *
|
|
e_recip;
|
|
verdist[0] =
|
|
((double)esq[0] + (double)esq[1] + (double)esq[2] + (double)esq[3]) *
|
|
e_recip;
|
|
verdist[1] =
|
|
((double)esq[4] + (double)esq[5] + (double)esq[6] + (double)esq[7]) *
|
|
e_recip;
|
|
verdist[2] =
|
|
((double)esq[8] + (double)esq[9] + (double)esq[10] + (double)esq[11]) *
|
|
e_recip;
|
|
} else {
|
|
hordist[0] = verdist[0] = 0.25;
|
|
hordist[1] = verdist[1] = 0.25;
|
|
hordist[2] = verdist[2] = 0.25;
|
|
}
|
|
(void)var[0];
|
|
(void)var[1];
|
|
(void)var[2];
|
|
(void)var[3];
|
|
(void)var[4];
|
|
(void)var[5];
|
|
(void)var[6];
|
|
(void)var[7];
|
|
(void)var[8];
|
|
(void)var[9];
|
|
(void)var[10];
|
|
(void)var[11];
|
|
(void)var[12];
|
|
(void)var[13];
|
|
(void)var[14];
|
|
(void)var[15];
|
|
}
|
|
|
|
static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, uint8_t *src,
|
|
int src_stride, uint8_t *dst, int dst_stride,
|
|
double *hdist, double *vdist) {
|
|
int prune_bitmask = 0;
|
|
double svm_proj_h = 0, svm_proj_v = 0;
|
|
get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride,
|
|
hdist, vdist);
|
|
|
|
svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] +
|
|
vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3];
|
|
svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] +
|
|
hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7];
|
|
if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
|
|
prune_bitmask |= 1 << FLIPADST_1D;
|
|
else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
|
|
prune_bitmask |= 1 << ADST_1D;
|
|
|
|
if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN)
|
|
prune_bitmask |= 1 << (FLIPADST_1D + 8);
|
|
else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN)
|
|
prune_bitmask |= 1 << (ADST_1D + 8);
|
|
|
|
return prune_bitmask;
|
|
}
|
|
|
|
#if CONFIG_EXT_TX
|
|
static void get_horver_correlation(int16_t *diff, int stride, int w, int h,
|
|
double *hcorr, double *vcorr) {
|
|
// Returns hor/ver correlation coefficient
|
|
const int num = (h - 1) * (w - 1);
|
|
double num_r;
|
|
int i, j;
|
|
int64_t xy_sum = 0, xz_sum = 0;
|
|
int64_t x_sum = 0, y_sum = 0, z_sum = 0;
|
|
int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0;
|
|
double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n;
|
|
*hcorr = *vcorr = 1;
|
|
|
|
assert(num > 0);
|
|
num_r = 1.0 / num;
|
|
for (i = 1; i < h; ++i) {
|
|
for (j = 1; j < w; ++j) {
|
|
const int16_t x = diff[i * stride + j];
|
|
const int16_t y = diff[i * stride + j - 1];
|
|
const int16_t z = diff[(i - 1) * stride + j];
|
|
xy_sum += x * y;
|
|
xz_sum += x * z;
|
|
x_sum += x;
|
|
y_sum += y;
|
|
z_sum += z;
|
|
x2_sum += x * x;
|
|
y2_sum += y * y;
|
|
z2_sum += z * z;
|
|
}
|
|
}
|
|
x_var_n = x2_sum - (x_sum * x_sum) * num_r;
|
|
y_var_n = y2_sum - (y_sum * y_sum) * num_r;
|
|
z_var_n = z2_sum - (z_sum * z_sum) * num_r;
|
|
xy_var_n = xy_sum - (x_sum * y_sum) * num_r;
|
|
xz_var_n = xz_sum - (x_sum * z_sum) * num_r;
|
|
if (x_var_n > 0 && y_var_n > 0) {
|
|
*hcorr = xy_var_n / sqrt(x_var_n * y_var_n);
|
|
*hcorr = *hcorr < 0 ? 0 : *hcorr;
|
|
}
|
|
if (x_var_n > 0 && z_var_n > 0) {
|
|
*vcorr = xz_var_n / sqrt(x_var_n * z_var_n);
|
|
*vcorr = *vcorr < 0 ? 0 : *vcorr;
|
|
}
|
|
}
|
|
|
|
int dct_vs_idtx(int16_t *diff, int stride, int w, int h, double *hcorr,
|
|
double *vcorr) {
|
|
int prune_bitmask = 0;
|
|
get_horver_correlation(diff, stride, w, h, hcorr, vcorr);
|
|
|
|
if (*vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
|
|
prune_bitmask |= 1 << IDTX_1D;
|
|
else if (*vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
|
|
prune_bitmask |= 1 << DCT_1D;
|
|
|
|
if (*hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN)
|
|
prune_bitmask |= 1 << (IDTX_1D + 8);
|
|
else if (*hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN)
|
|
prune_bitmask |= 1 << (DCT_1D + 8);
|
|
return prune_bitmask;
|
|
}
|
|
|
|
// Performance drop: 0.5%, Speed improvement: 24%
|
|
static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd, int adst_flipadst,
|
|
int dct_idtx) {
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
|
|
const int bw = 4 << (b_width_log2_lookup[bs]);
|
|
const int bh = 4 << (b_height_log2_lookup[bs]);
|
|
double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
|
|
double hcorr, vcorr;
|
|
int prune = 0;
|
|
av1_subtract_plane(x, bsize, 0);
|
|
|
|
if (adst_flipadst)
|
|
prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride,
|
|
pd->dst.buf, pd->dst.stride, hdist, vdist);
|
|
if (dct_idtx) prune |= dct_vs_idtx(p->src_diff, bw, bw, bh, &hcorr, &vcorr);
|
|
|
|
return prune;
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
// Performance drop: 0.3%, Speed improvement: 5%
|
|
static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd) {
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 };
|
|
av1_subtract_plane(x, bsize, 0);
|
|
return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf,
|
|
pd->dst.stride, hdist, vdist);
|
|
}
|
|
|
|
static int prune_tx_types(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x,
|
|
MACROBLOCKD *xd, int tx_set) {
|
|
#if CONFIG_EXT_TX
|
|
const int *tx_set_1D = ext_tx_used_inter_1D[tx_set];
|
|
#else
|
|
const int tx_set_1D[TX_TYPES_1D] = { 0 };
|
|
#endif
|
|
|
|
switch (cpi->sf.tx_type_search.prune_mode) {
|
|
case NO_PRUNE: return 0; break;
|
|
case PRUNE_ONE:
|
|
if ((tx_set >= 0) && !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D]))
|
|
return 0;
|
|
return prune_one_for_sby(cpi, bsize, x, xd);
|
|
break;
|
|
#if CONFIG_EXT_TX
|
|
case PRUNE_TWO:
|
|
if ((tx_set >= 0) && !(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) {
|
|
if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return 0;
|
|
return prune_two_for_sby(cpi, bsize, x, xd, 0, 1);
|
|
}
|
|
if ((tx_set >= 0) && !(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D]))
|
|
return prune_two_for_sby(cpi, bsize, x, xd, 1, 0);
|
|
return prune_two_for_sby(cpi, bsize, x, xd, 1, 1);
|
|
break;
|
|
#endif
|
|
}
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
static int do_tx_type_search(TX_TYPE tx_type, int prune) {
|
|
// TODO(sarahparker) implement for non ext tx
|
|
#if CONFIG_EXT_TX
|
|
return !(((prune >> vtx_tab[tx_type]) & 1) |
|
|
((prune >> (htx_tab[tx_type] + 8)) & 1));
|
|
#else
|
|
// temporary to avoid compiler warnings
|
|
(void)vtx_tab;
|
|
(void)htx_tab;
|
|
(void)tx_type;
|
|
(void)prune;
|
|
return 1;
|
|
#endif
|
|
}
|
|
|
|
static void model_rd_from_sse(const AV1_COMP *const cpi,
|
|
const MACROBLOCKD *const xd, BLOCK_SIZE bsize,
|
|
int plane, int64_t sse, int *rate,
|
|
int64_t *dist) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const int dequant_shift =
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 :
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
3;
|
|
|
|
// Fast approximate the modelling function.
|
|
if (cpi->sf.simple_model_rd_from_var) {
|
|
const int64_t square_error = sse;
|
|
int quantizer = (pd->dequant[1] >> dequant_shift);
|
|
|
|
if (quantizer < 120)
|
|
*rate = (int)((square_error * (280 - quantizer)) >>
|
|
(16 - AV1_PROB_COST_SHIFT));
|
|
else
|
|
*rate = 0;
|
|
*dist = (square_error * quantizer) >> 8;
|
|
} else {
|
|
av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize],
|
|
pd->dequant[1] >> dequant_shift, rate, dist);
|
|
}
|
|
|
|
*dist <<= 4;
|
|
}
|
|
|
|
static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
|
|
MACROBLOCK *x, MACROBLOCKD *xd, int plane_from,
|
|
int plane_to, int *out_rate_sum,
|
|
int64_t *out_dist_sum, int *skip_txfm_sb,
|
|
int64_t *skip_sse_sb) {
|
|
// Note our transform coeffs are 8 times an orthogonal transform.
|
|
// Hence quantizer step is also 8 times. To get effective quantizer
|
|
// we need to divide by 8 before sending to modeling function.
|
|
int plane;
|
|
const int ref = xd->mi[0]->mbmi.ref_frame[0];
|
|
|
|
int64_t rate_sum = 0;
|
|
int64_t dist_sum = 0;
|
|
int64_t total_sse = 0;
|
|
|
|
x->pred_sse[ref] = 0;
|
|
|
|
for (plane = plane_from; plane <= plane_to; ++plane) {
|
|
struct macroblock_plane *const p = &x->plane[plane];
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const BLOCK_SIZE bs = get_plane_block_size(bsize, pd);
|
|
|
|
unsigned int sse;
|
|
int rate;
|
|
int64_t dist;
|
|
|
|
// TODO(geza): Write direct sse functions that do not compute
|
|
// variance as well.
|
|
cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride,
|
|
&sse);
|
|
|
|
if (plane == 0) x->pred_sse[ref] = sse;
|
|
|
|
total_sse += sse;
|
|
|
|
model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist);
|
|
|
|
rate_sum += rate;
|
|
dist_sum += dist;
|
|
}
|
|
|
|
*skip_txfm_sb = total_sse == 0;
|
|
*skip_sse_sb = total_sse << 4;
|
|
*out_rate_sum = (int)rate_sum;
|
|
*out_dist_sum = dist_sum;
|
|
}
|
|
|
|
#if CONFIG_PVQ
|
|
// Without PVQ, av1_block_error_c() return two kind of errors,
|
|
// 1) reconstruction (i.e. decoded) error and
|
|
// 2) Squared sum of transformed residue (i.e. 'coeff')
|
|
// However, if PVQ is enabled, coeff does not keep the transformed residue
|
|
// but instead a transformed original is kept.
|
|
// Hence, new parameter ref vector (i.e. transformed predicted signal)
|
|
// is required to derive the residue signal,
|
|
// i.e. coeff - ref = residue (all transformed).
|
|
|
|
// TODO(yushin) : Since 4x4 case does not need ssz, better to refactor into
|
|
// a separate function that does not do the extra computations for ssz.
|
|
int64_t av1_block_error2_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
|
|
const tran_low_t *ref, intptr_t block_size,
|
|
int64_t *ssz) {
|
|
int64_t error;
|
|
|
|
// Use the existing sse codes for calculating distortion of decoded signal:
|
|
// i.e. (orig - decoded)^2
|
|
error = av1_block_error_fp(coeff, dqcoeff, block_size);
|
|
// prediction residue^2 = (orig - ref)^2
|
|
*ssz = av1_block_error_fp(coeff, ref, block_size);
|
|
|
|
return error;
|
|
}
|
|
#endif
|
|
|
|
int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
|
|
intptr_t block_size, int64_t *ssz) {
|
|
int i;
|
|
int64_t error = 0, sqcoeff = 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
const int diff = coeff[i] - dqcoeff[i];
|
|
error += diff * diff;
|
|
sqcoeff += coeff[i] * coeff[i];
|
|
}
|
|
|
|
*ssz = sqcoeff;
|
|
return error;
|
|
}
|
|
|
|
int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff,
|
|
int block_size) {
|
|
int i;
|
|
int64_t error = 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
const int diff = coeff[i] - dqcoeff[i];
|
|
error += diff * diff;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
|
|
const tran_low_t *dqcoeff, intptr_t block_size,
|
|
int64_t *ssz, int bd) {
|
|
int i;
|
|
int64_t error = 0, sqcoeff = 0;
|
|
int shift = 2 * (bd - 8);
|
|
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
|
|
|
|
for (i = 0; i < block_size; i++) {
|
|
const int64_t diff = coeff[i] - dqcoeff[i];
|
|
error += diff * diff;
|
|
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
|
|
}
|
|
assert(error >= 0 && sqcoeff >= 0);
|
|
error = (error + rounding) >> shift;
|
|
sqcoeff = (sqcoeff + rounding) >> shift;
|
|
|
|
*ssz = sqcoeff;
|
|
return error;
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
#if !CONFIG_PVQ
|
|
/* The trailing '0' is a terminator which is used inside av1_cost_coeffs() to
|
|
* decide whether to include cost of a trailing EOB node or not (i.e. we
|
|
* can skip this if the last coefficient in this transform block, e.g. the
|
|
* 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block,
|
|
* were non-zero). */
|
|
int av1_cost_coeffs(const AV1_COMMON *const cm, MACROBLOCK *x, int plane,
|
|
int block, int coeff_ctx, TX_SIZE tx_size,
|
|
const int16_t *scan, const int16_t *nb,
|
|
int use_fast_coef_costing) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const struct macroblock_plane *p = &x->plane[plane];
|
|
const struct macroblockd_plane *pd = &xd->plane[plane];
|
|
const PLANE_TYPE type = pd->plane_type;
|
|
const uint16_t *band_count = &band_count_table[tx_size][1];
|
|
const int eob = p->eobs[block];
|
|
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
|
|
const int tx_size_ctx = txsize_sqr_map[tx_size];
|
|
unsigned int(*token_costs)[2][COEFF_CONTEXTS][ENTROPY_TOKENS] =
|
|
x->token_costs[tx_size_ctx][type][is_inter_block(mbmi)];
|
|
uint8_t token_cache[MAX_TX_SQUARE];
|
|
int pt = coeff_ctx;
|
|
int c, cost;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const int *cat6_high_cost = av1_get_high_cost_table(xd->bd);
|
|
#else
|
|
const int *cat6_high_cost = av1_get_high_cost_table(8);
|
|
#endif
|
|
|
|
#if !CONFIG_VAR_TX && !CONFIG_SUPERTX
|
|
// Check for consistency of tx_size with mode info
|
|
assert(type == PLANE_TYPE_Y ? mbmi->tx_size == tx_size
|
|
: get_uv_tx_size(mbmi, pd) == tx_size);
|
|
#endif // !CONFIG_VAR_TX && !CONFIG_SUPERTX
|
|
(void)cm;
|
|
|
|
if (eob == 0) {
|
|
// single eob token
|
|
cost = token_costs[0][0][pt][EOB_TOKEN];
|
|
c = 0;
|
|
} else {
|
|
if (use_fast_coef_costing) {
|
|
int band_left = *band_count++;
|
|
|
|
// dc token
|
|
int v = qcoeff[0];
|
|
int16_t prev_t;
|
|
cost = av1_get_token_cost(v, &prev_t, cat6_high_cost);
|
|
cost += (*token_costs)[0][pt][prev_t];
|
|
|
|
token_cache[0] = av1_pt_energy_class[prev_t];
|
|
++token_costs;
|
|
|
|
// ac tokens
|
|
for (c = 1; c < eob; c++) {
|
|
const int rc = scan[c];
|
|
int16_t t;
|
|
|
|
v = qcoeff[rc];
|
|
cost += av1_get_token_cost(v, &t, cat6_high_cost);
|
|
cost += (*token_costs)[!prev_t][!prev_t][t];
|
|
prev_t = t;
|
|
if (!--band_left) {
|
|
band_left = *band_count++;
|
|
++token_costs;
|
|
}
|
|
}
|
|
|
|
// eob token
|
|
if (band_left) cost += (*token_costs)[0][!prev_t][EOB_TOKEN];
|
|
|
|
} else { // !use_fast_coef_costing
|
|
int band_left = *band_count++;
|
|
|
|
// dc token
|
|
int v = qcoeff[0];
|
|
int16_t tok;
|
|
unsigned int(*tok_cost_ptr)[COEFF_CONTEXTS][ENTROPY_TOKENS];
|
|
cost = av1_get_token_cost(v, &tok, cat6_high_cost);
|
|
cost += (*token_costs)[0][pt][tok];
|
|
|
|
token_cache[0] = av1_pt_energy_class[tok];
|
|
++token_costs;
|
|
|
|
tok_cost_ptr = &((*token_costs)[!tok]);
|
|
|
|
// ac tokens
|
|
for (c = 1; c < eob; c++) {
|
|
const int rc = scan[c];
|
|
|
|
v = qcoeff[rc];
|
|
cost += av1_get_token_cost(v, &tok, cat6_high_cost);
|
|
pt = get_coef_context(nb, token_cache, c);
|
|
cost += (*tok_cost_ptr)[pt][tok];
|
|
token_cache[rc] = av1_pt_energy_class[tok];
|
|
if (!--band_left) {
|
|
band_left = *band_count++;
|
|
++token_costs;
|
|
}
|
|
tok_cost_ptr = &((*token_costs)[!tok]);
|
|
}
|
|
|
|
// eob token
|
|
if (band_left) {
|
|
pt = get_coef_context(nb, token_cache, c);
|
|
cost += (*token_costs)[0][pt][EOB_TOKEN];
|
|
}
|
|
}
|
|
}
|
|
|
|
return cost;
|
|
}
|
|
#endif
|
|
|
|
static void dist_block(const AV1_COMP *cpi, MACROBLOCK *x, int plane, int block,
|
|
int blk_row, int blk_col, TX_SIZE tx_size,
|
|
int64_t *out_dist, int64_t *out_sse) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const struct macroblock_plane *const p = &x->plane[plane];
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
if (cpi->sf.use_transform_domain_distortion) {
|
|
// Transform domain distortion computation is more accurate as it does
|
|
// not involve an inverse transform, but it is less accurate.
|
|
const int buffer_length = tx_size_2d[tx_size];
|
|
int64_t this_sse;
|
|
int tx_type = get_tx_type(pd->plane_type, xd, block, tx_size);
|
|
int shift = (MAX_TX_SCALE - get_tx_scale(xd, tx_type, tx_size)) * 2;
|
|
tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block);
|
|
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
|
|
#if CONFIG_PVQ
|
|
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
|
|
#endif
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const int bd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd : 8;
|
|
*out_dist =
|
|
av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, bd) >>
|
|
shift;
|
|
#elif CONFIG_PVQ
|
|
*out_dist = av1_block_error2_c(coeff, dqcoeff, ref_coeff, buffer_length,
|
|
&this_sse) >>
|
|
shift;
|
|
#else
|
|
*out_dist =
|
|
av1_block_error(coeff, dqcoeff, buffer_length, &this_sse) >> shift;
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
*out_sse = this_sse >> shift;
|
|
} else {
|
|
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
|
|
const int bsw = block_size_wide[tx_bsize];
|
|
const int bsh = block_size_high[tx_bsize];
|
|
const int src_stride = x->plane[plane].src.stride;
|
|
const int dst_stride = xd->plane[plane].dst.stride;
|
|
// Scale the transform block index to pixel unit.
|
|
const int src_idx = (blk_row * src_stride + blk_col)
|
|
<< tx_size_wide_log2[0];
|
|
const int dst_idx = (blk_row * dst_stride + blk_col)
|
|
<< tx_size_wide_log2[0];
|
|
const uint8_t *src = &x->plane[plane].src.buf[src_idx];
|
|
const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx];
|
|
const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
|
|
const uint16_t eob = p->eobs[block];
|
|
|
|
unsigned int tmp;
|
|
|
|
assert(cpi != NULL);
|
|
assert(tx_size_wide_log2[0] == tx_size_high_log2[0]);
|
|
|
|
cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &tmp);
|
|
*out_sse = (int64_t)tmp * 16;
|
|
|
|
if (eob) {
|
|
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]);
|
|
uint8_t *recon = (uint8_t *)recon16;
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, recon[MAX_TX_SQUARE]);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
const PLANE_TYPE plane_type = plane == 0 ? PLANE_TYPE_Y : PLANE_TYPE_UV;
|
|
|
|
INV_TXFM_PARAM inv_txfm_param;
|
|
|
|
inv_txfm_param.tx_type = get_tx_type(plane_type, xd, block, tx_size);
|
|
inv_txfm_param.tx_size = tx_size;
|
|
inv_txfm_param.eob = eob;
|
|
inv_txfm_param.lossless = xd->lossless[mbmi->segment_id];
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
recon = CONVERT_TO_BYTEPTR(recon);
|
|
inv_txfm_param.bd = xd->bd;
|
|
aom_highbd_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0,
|
|
NULL, 0, bsw, bsh, xd->bd);
|
|
highbd_inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param);
|
|
} else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
{
|
|
aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, NULL, 0,
|
|
bsw, bsh);
|
|
inv_txfm_add(dqcoeff, recon, MAX_TX_SIZE, &inv_txfm_param);
|
|
}
|
|
|
|
cpi->fn_ptr[tx_bsize].vf(src, src_stride, recon, MAX_TX_SIZE, &tmp);
|
|
}
|
|
|
|
*out_dist = (int64_t)tmp * 16;
|
|
}
|
|
}
|
|
|
|
#if !CONFIG_PVQ
|
|
static int rate_block(int plane, int block, int coeff_ctx, TX_SIZE tx_size,
|
|
struct rdcost_block_args *args) {
|
|
return av1_cost_coeffs(&args->cpi->common, args->x, plane, block, coeff_ctx,
|
|
tx_size, args->scan_order->scan,
|
|
args->scan_order->neighbors,
|
|
args->use_fast_coef_costing);
|
|
}
|
|
#endif
|
|
|
|
static uint64_t sum_squares_2d(const int16_t *diff, int diff_stride,
|
|
TX_SIZE tx_size) {
|
|
uint64_t sse;
|
|
switch (tx_size) {
|
|
#if CONFIG_EXT_TX
|
|
case TX_4X8:
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, 4) +
|
|
aom_sum_squares_2d_i16(diff + 4 * diff_stride, diff_stride, 4);
|
|
break;
|
|
case TX_8X4:
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, 4) +
|
|
aom_sum_squares_2d_i16(diff + 4, diff_stride, 4);
|
|
break;
|
|
case TX_8X16:
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, 8) +
|
|
aom_sum_squares_2d_i16(diff + 8 * diff_stride, diff_stride, 8);
|
|
break;
|
|
case TX_16X8:
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, 8) +
|
|
aom_sum_squares_2d_i16(diff + 8, diff_stride, 8);
|
|
break;
|
|
case TX_16X32:
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, 16) +
|
|
aom_sum_squares_2d_i16(diff + 16 * diff_stride, diff_stride, 16);
|
|
break;
|
|
case TX_32X16:
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, 16) +
|
|
aom_sum_squares_2d_i16(diff + 16, diff_stride, 16);
|
|
break;
|
|
#endif // CONFIG_EXT_TX
|
|
default:
|
|
assert(tx_size < TX_SIZES);
|
|
sse = aom_sum_squares_2d_i16(diff, diff_stride, tx_size_wide[tx_size]);
|
|
break;
|
|
}
|
|
return sse;
|
|
}
|
|
|
|
static void block_rd_txfm(int plane, int block, int blk_row, int blk_col,
|
|
BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) {
|
|
struct rdcost_block_args *args = arg;
|
|
MACROBLOCK *const x = args->x;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const AV1_COMMON *cm = &args->cpi->common;
|
|
int64_t rd1, rd2, rd;
|
|
int rate;
|
|
int64_t dist;
|
|
int64_t sse;
|
|
|
|
int coeff_ctx = combine_entropy_contexts(*(args->t_above + blk_col),
|
|
*(args->t_left + blk_row));
|
|
|
|
if (args->exit_early) return;
|
|
|
|
if (!is_inter_block(mbmi)) {
|
|
struct encode_b_args b_args = {
|
|
(AV1_COMMON *)cm, x, NULL, &mbmi->skip, args->t_above, args->t_left, 1
|
|
};
|
|
av1_encode_block_intra(plane, block, blk_row, blk_col, plane_bsize, tx_size,
|
|
&b_args);
|
|
|
|
if (args->cpi->sf.use_transform_domain_distortion) {
|
|
dist_block(args->cpi, x, plane, block, blk_row, blk_col, tx_size, &dist,
|
|
&sse);
|
|
} else {
|
|
// Note that the encode block_intra call above already calls
|
|
// inv_txfm_add, so we can't just call dist_block here.
|
|
const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size];
|
|
const aom_variance_fn_t variance = args->cpi->fn_ptr[tx_bsize].vf;
|
|
|
|
const struct macroblock_plane *const p = &x->plane[plane];
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
|
|
const int src_stride = p->src.stride;
|
|
const int dst_stride = pd->dst.stride;
|
|
const int diff_stride = block_size_wide[plane_bsize];
|
|
|
|
const uint8_t *src = &p->src.buf[4 * (blk_row * src_stride + blk_col)];
|
|
const uint8_t *dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)];
|
|
const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
|
|
|
|
unsigned int tmp;
|
|
sse = sum_squares_2d(diff, diff_stride, tx_size);
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
|
|
sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
sse = (int64_t)sse * 16;
|
|
|
|
variance(src, src_stride, dst, dst_stride, &tmp);
|
|
dist = (int64_t)tmp * 16;
|
|
}
|
|
} else {
|
|
// full forward transform and quantization
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize,
|
|
tx_size, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
|
|
AV1_XFORM_QUANT_FP);
|
|
#endif // CONFIG_NEW_QUANT
|
|
if (x->plane[plane].eobs[block])
|
|
av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx);
|
|
dist_block(args->cpi, x, plane, block, blk_row, blk_col, tx_size, &dist,
|
|
&sse);
|
|
}
|
|
|
|
rd = RDCOST(x->rdmult, x->rddiv, 0, dist);
|
|
if (args->this_rd + rd > args->best_rd) {
|
|
args->exit_early = 1;
|
|
return;
|
|
}
|
|
#if !CONFIG_PVQ
|
|
rate = rate_block(plane, block, coeff_ctx, tx_size, args);
|
|
args->t_above[blk_col] = (x->plane[plane].eobs[block] > 0);
|
|
args->t_left[blk_row] = (x->plane[plane].eobs[block] > 0);
|
|
#else
|
|
rate = x->rate;
|
|
#endif
|
|
rd1 = RDCOST(x->rdmult, x->rddiv, rate, dist);
|
|
rd2 = RDCOST(x->rdmult, x->rddiv, 0, sse);
|
|
|
|
// TODO(jingning): temporarily enabled only for luma component
|
|
rd = AOMMIN(rd1, rd2);
|
|
|
|
args->this_rate += rate;
|
|
args->this_dist += dist;
|
|
args->this_sse += sse;
|
|
args->this_rd += rd;
|
|
|
|
if (args->this_rd > args->best_rd) {
|
|
args->exit_early = 1;
|
|
return;
|
|
}
|
|
#if !CONFIG_PVQ
|
|
args->skippable &= !x->plane[plane].eobs[block];
|
|
#else
|
|
args->skippable &= x->pvq_skip[plane];
|
|
#endif
|
|
}
|
|
|
|
static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, int *rate,
|
|
int64_t *distortion, int *skippable, int64_t *sse,
|
|
int64_t ref_best_rd, int plane, BLOCK_SIZE bsize,
|
|
TX_SIZE tx_size, int use_fast_coef_casting) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
TX_TYPE tx_type;
|
|
struct rdcost_block_args args;
|
|
av1_zero(args);
|
|
args.x = x;
|
|
args.cpi = cpi;
|
|
args.best_rd = ref_best_rd;
|
|
args.use_fast_coef_costing = use_fast_coef_casting;
|
|
args.skippable = 1;
|
|
|
|
if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size;
|
|
|
|
av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
|
|
|
|
tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size);
|
|
args.scan_order =
|
|
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
|
|
|
|
av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm,
|
|
&args);
|
|
if (args.exit_early) {
|
|
*rate = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
*sse = INT64_MAX;
|
|
*skippable = 0;
|
|
} else {
|
|
*distortion = args.this_dist;
|
|
*rate = args.this_rate;
|
|
*sse = args.this_sse;
|
|
*skippable = args.skippable;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_SUPERTX
|
|
void av1_txfm_rd_in_plane_supertx(MACROBLOCK *x, const AV1_COMP *cpi, int *rate,
|
|
int64_t *distortion, int *skippable,
|
|
int64_t *sse, int64_t ref_best_rd, int plane,
|
|
BLOCK_SIZE bsize, TX_SIZE tx_size,
|
|
int use_fast_coef_casting) {
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
struct rdcost_block_args args;
|
|
TX_TYPE tx_type;
|
|
|
|
av1_zero(args);
|
|
args.cpi = cpi;
|
|
args.x = x;
|
|
args.best_rd = ref_best_rd;
|
|
args.use_fast_coef_costing = use_fast_coef_casting;
|
|
|
|
#if CONFIG_EXT_TX
|
|
assert(tx_size < TX_SIZES);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size;
|
|
|
|
av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left);
|
|
|
|
tx_type = get_tx_type(pd->plane_type, xd, 0, tx_size);
|
|
args.scan_order =
|
|
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
|
|
|
|
block_rd_txfm(plane, 0, 0, 0, get_plane_block_size(bsize, pd), tx_size,
|
|
&args);
|
|
|
|
if (args.exit_early) {
|
|
*rate = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
*sse = INT64_MAX;
|
|
*skippable = 0;
|
|
} else {
|
|
*distortion = args.this_dist;
|
|
*rate = args.this_rate;
|
|
*sse = args.this_sse;
|
|
*skippable = !x->plane[plane].eobs[0];
|
|
}
|
|
}
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, int *r,
|
|
int64_t *d, int *s, int64_t *sse, int64_t ref_best_rd,
|
|
BLOCK_SIZE bs, TX_TYPE tx_type, int tx_size) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
int64_t rd = INT64_MAX;
|
|
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
|
|
int s0, s1;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
const int tx_size_ctx = get_tx_size_context(xd);
|
|
const int tx_size_cat =
|
|
is_inter ? inter_tx_size_cat_lookup[bs] : intra_tx_size_cat_lookup[bs];
|
|
const TX_SIZE coded_tx_size = txsize_sqr_up_map[tx_size];
|
|
const int depth = tx_size_to_depth(coded_tx_size);
|
|
const int tx_select = cm->tx_mode == TX_MODE_SELECT;
|
|
const int r_tx_size = cpi->tx_size_cost[tx_size_cat][tx_size_ctx][depth];
|
|
|
|
assert(skip_prob > 0);
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs)));
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
s0 = av1_cost_bit(skip_prob, 0);
|
|
s1 = av1_cost_bit(skip_prob, 1);
|
|
|
|
mbmi->tx_type = tx_type;
|
|
mbmi->tx_size = tx_size;
|
|
txfm_rd_in_plane(x, cpi, r, d, s, sse, ref_best_rd, 0, bs, tx_size,
|
|
cpi->sf.use_fast_coef_costing);
|
|
if (*r == INT_MAX) return INT64_MAX;
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(tx_size, bs, is_inter) > 1 &&
|
|
!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
|
|
const int ext_tx_set = get_ext_tx_set(tx_size, bs, is_inter);
|
|
if (is_inter) {
|
|
if (ext_tx_set > 0)
|
|
*r +=
|
|
cpi->inter_tx_type_costs[ext_tx_set][txsize_sqr_map[mbmi->tx_size]]
|
|
[mbmi->tx_type];
|
|
} else {
|
|
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
|
|
*r += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->mode]
|
|
[mbmi->tx_type];
|
|
}
|
|
}
|
|
#else
|
|
if (tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
|
|
!FIXED_TX_TYPE) {
|
|
if (is_inter) {
|
|
*r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
|
|
} else {
|
|
*r += cpi->intra_tx_type_costs[mbmi->tx_size]
|
|
[intra_mode_to_tx_type_context[mbmi->mode]]
|
|
[mbmi->tx_type];
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (*s) {
|
|
if (is_inter) {
|
|
rd = RDCOST(x->rdmult, x->rddiv, s1, *sse);
|
|
} else {
|
|
rd = RDCOST(x->rdmult, x->rddiv, s1 + r_tx_size * tx_select, *sse);
|
|
}
|
|
} else {
|
|
rd = RDCOST(x->rdmult, x->rddiv, *r + s0 + r_tx_size * tx_select, *d);
|
|
}
|
|
|
|
if (tx_select) *r += r_tx_size;
|
|
|
|
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && !(*s))
|
|
rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, *sse));
|
|
|
|
return rd;
|
|
}
|
|
|
|
static int64_t choose_tx_size_fix_type(const AV1_COMP *const cpi, BLOCK_SIZE bs,
|
|
MACROBLOCK *x, int *rate,
|
|
int64_t *distortion, int *skip,
|
|
int64_t *psse, int64_t ref_best_rd,
|
|
TX_TYPE tx_type, int prune) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
int r, s;
|
|
int64_t d, sse;
|
|
int64_t rd = INT64_MAX;
|
|
int n;
|
|
int start_tx, end_tx;
|
|
int64_t best_rd = INT64_MAX, last_rd = INT64_MAX;
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bs];
|
|
TX_SIZE best_tx_size = max_tx_size;
|
|
const int tx_select = cm->tx_mode == TX_MODE_SELECT;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
#if CONFIG_EXT_TX
|
|
#if CONFIG_RECT_TX
|
|
int evaluate_rect_tx = 0;
|
|
#endif // CONFIG_RECT_TX
|
|
int ext_tx_set;
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (tx_select) {
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
evaluate_rect_tx = is_rect_tx_allowed(xd, mbmi);
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
start_tx = max_tx_size;
|
|
end_tx = (max_tx_size == TX_32X32) ? TX_8X8 : TX_4X4;
|
|
} else {
|
|
const TX_SIZE chosen_tx_size =
|
|
tx_size_from_tx_mode(bs, cm->tx_mode, is_inter);
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
evaluate_rect_tx = is_rect_tx(chosen_tx_size);
|
|
assert(IMPLIES(evaluate_rect_tx, is_rect_tx_allowed(xd, mbmi)));
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
start_tx = chosen_tx_size;
|
|
end_tx = chosen_tx_size;
|
|
}
|
|
|
|
*distortion = INT64_MAX;
|
|
*rate = INT_MAX;
|
|
*skip = 0;
|
|
*psse = INT64_MAX;
|
|
|
|
mbmi->tx_type = tx_type;
|
|
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (evaluate_rect_tx) {
|
|
const TX_SIZE rect_tx_size = max_txsize_rect_lookup[bs];
|
|
ext_tx_set = get_ext_tx_set(rect_tx_size, bs, 1);
|
|
if (ext_tx_used_inter[ext_tx_set][tx_type]) {
|
|
rd = txfm_yrd(cpi, x, &r, &d, &s, &sse, ref_best_rd, bs, tx_type,
|
|
rect_tx_size);
|
|
best_tx_size = rect_tx_size;
|
|
best_rd = rd;
|
|
*distortion = d;
|
|
*rate = r;
|
|
*skip = s;
|
|
*psse = sse;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
last_rd = INT64_MAX;
|
|
for (n = start_tx; n >= end_tx; --n) {
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (is_rect_tx(n)) break;
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (FIXED_TX_TYPE && tx_type != get_default_tx_type(0, xd, 0, n)) continue;
|
|
if (!is_inter && x->use_default_intra_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, n))
|
|
continue;
|
|
if (is_inter && x->use_default_inter_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, n))
|
|
continue;
|
|
if (max_tx_size == TX_32X32 && n == TX_4X4) continue;
|
|
#if CONFIG_EXT_TX
|
|
ext_tx_set = get_ext_tx_set(n, bs, is_inter);
|
|
if (is_inter) {
|
|
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
|
|
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
|
|
if (!do_tx_type_search(tx_type, prune)) continue;
|
|
}
|
|
} else {
|
|
if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) {
|
|
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue;
|
|
}
|
|
if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue;
|
|
}
|
|
#else // CONFIG_EXT_TX
|
|
if (n >= TX_32X32 && tx_type != DCT_DCT) continue;
|
|
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
|
|
!do_tx_type_search(tx_type, prune))
|
|
continue;
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
rd = txfm_yrd(cpi, x, &r, &d, &s, &sse, ref_best_rd, bs, tx_type, n);
|
|
|
|
// Early termination in transform size search.
|
|
if (cpi->sf.tx_size_search_breakout &&
|
|
(rd == INT64_MAX || (s == 1 && tx_type != DCT_DCT && n < start_tx) ||
|
|
(n < (int)max_tx_size && rd > last_rd)))
|
|
break;
|
|
|
|
last_rd = rd;
|
|
if (rd < best_rd) {
|
|
best_tx_size = n;
|
|
best_rd = rd;
|
|
*distortion = d;
|
|
*rate = r;
|
|
*skip = s;
|
|
*psse = sse;
|
|
}
|
|
}
|
|
mbmi->tx_size = best_tx_size;
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs,
|
|
MACROBLOCK *x, int *r, int64_t *d, int *s,
|
|
int64_t *sse, int64_t ref_best_rd) {
|
|
return txfm_yrd(cpi, x, r, d, s, sse, ref_best_rd, bs, DCT_DCT,
|
|
max_txsize_lookup[bs]);
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion, int *skip,
|
|
int64_t *sse, int64_t ref_best_rd,
|
|
BLOCK_SIZE bs) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
TX_TYPE tx_type, best_tx_type = DCT_DCT;
|
|
int r, s;
|
|
int64_t d, psse, this_rd, best_rd = INT64_MAX;
|
|
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
|
|
int s0 = av1_cost_bit(skip_prob, 0);
|
|
int s1 = av1_cost_bit(skip_prob, 1);
|
|
const int is_inter = is_inter_block(mbmi);
|
|
int prune = 0;
|
|
#if CONFIG_EXT_TX
|
|
int ext_tx_set;
|
|
#endif // CONFIG_EXT_TX
|
|
*distortion = INT64_MAX;
|
|
*rate = INT_MAX;
|
|
*skip = 0;
|
|
*sse = INT64_MAX;
|
|
|
|
mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode, is_inter);
|
|
#if CONFIG_VAR_TX
|
|
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
|
|
#endif
|
|
#if CONFIG_EXT_TX
|
|
ext_tx_set = get_ext_tx_set(mbmi->tx_size, bs, is_inter);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
|
|
#if CONFIG_EXT_TX
|
|
prune = prune_tx_types(cpi, bs, x, xd, ext_tx_set);
|
|
#else
|
|
prune = prune_tx_types(cpi, bs, x, xd, 0);
|
|
#endif
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1 &&
|
|
!xd->lossless[mbmi->segment_id]) {
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_buf, post_buf;
|
|
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
|
|
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
|
|
if (is_inter) {
|
|
if (x->use_default_inter_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
|
|
continue;
|
|
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
|
|
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
|
|
if (!do_tx_type_search(tx_type, prune)) continue;
|
|
}
|
|
} else {
|
|
if (x->use_default_intra_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
|
|
continue;
|
|
if (!ALLOW_INTRA_EXT_TX && bs >= BLOCK_8X8) {
|
|
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue;
|
|
}
|
|
if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue;
|
|
}
|
|
|
|
mbmi->tx_type = tx_type;
|
|
|
|
txfm_rd_in_plane(x, cpi, &r, &d, &s, &psse, ref_best_rd, 0, bs,
|
|
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
if (r == INT_MAX) continue;
|
|
if (get_ext_tx_types(mbmi->tx_size, bs, is_inter) > 1) {
|
|
if (is_inter) {
|
|
if (ext_tx_set > 0)
|
|
r += cpi->inter_tx_type_costs[ext_tx_set][mbmi->tx_size]
|
|
[mbmi->tx_type];
|
|
} else {
|
|
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
|
|
r += cpi->intra_tx_type_costs[ext_tx_set][mbmi->tx_size][mbmi->mode]
|
|
[mbmi->tx_type];
|
|
}
|
|
}
|
|
|
|
if (s)
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse);
|
|
else
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d);
|
|
if (is_inter_block(mbmi) && !xd->lossless[mbmi->segment_id] && !s)
|
|
this_rd = AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse));
|
|
|
|
if (this_rd < best_rd) {
|
|
best_rd = this_rd;
|
|
best_tx_type = mbmi->tx_type;
|
|
*distortion = d;
|
|
*rate = r;
|
|
*skip = s;
|
|
*sse = psse;
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
}
|
|
}
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &post_buf);
|
|
#endif
|
|
} else {
|
|
mbmi->tx_type = DCT_DCT;
|
|
txfm_rd_in_plane(x, cpi, rate, distortion, skip, sse, ref_best_rd, 0, bs,
|
|
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
|
|
}
|
|
#else // CONFIG_EXT_TX
|
|
if (mbmi->tx_size < TX_32X32 && !xd->lossless[mbmi->segment_id]) {
|
|
for (tx_type = 0; tx_type < TX_TYPES; ++tx_type) {
|
|
if (!is_inter && x->use_default_intra_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
|
|
continue;
|
|
if (is_inter && x->use_default_inter_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, mbmi->tx_size))
|
|
continue;
|
|
mbmi->tx_type = tx_type;
|
|
txfm_rd_in_plane(x, cpi, &r, &d, &s, &psse, ref_best_rd, 0, bs,
|
|
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
|
|
if (r == INT_MAX) continue;
|
|
if (is_inter) {
|
|
r += cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
|
|
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
|
|
!do_tx_type_search(tx_type, prune))
|
|
continue;
|
|
} else {
|
|
r += cpi->intra_tx_type_costs[mbmi->tx_size]
|
|
[intra_mode_to_tx_type_context[mbmi->mode]]
|
|
[mbmi->tx_type];
|
|
}
|
|
if (s)
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, s1, psse);
|
|
else
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, r + s0, d);
|
|
if (is_inter && !xd->lossless[mbmi->segment_id] && !s)
|
|
this_rd = AOMMIN(this_rd, RDCOST(x->rdmult, x->rddiv, s1, psse));
|
|
|
|
if (this_rd < best_rd) {
|
|
best_rd = this_rd;
|
|
best_tx_type = mbmi->tx_type;
|
|
*distortion = d;
|
|
*rate = r;
|
|
*skip = s;
|
|
*sse = psse;
|
|
}
|
|
}
|
|
} else {
|
|
mbmi->tx_type = DCT_DCT;
|
|
txfm_rd_in_plane(x, cpi, rate, distortion, skip, sse, ref_best_rd, 0, bs,
|
|
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
mbmi->tx_type = best_tx_type;
|
|
}
|
|
|
|
static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int64_t *distortion, int *skip,
|
|
int64_t *sse, int64_t ref_best_rd,
|
|
BLOCK_SIZE bs) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
|
|
mbmi->tx_size = TX_4X4;
|
|
mbmi->tx_type = DCT_DCT;
|
|
#if CONFIG_VAR_TX
|
|
mbmi->min_tx_size = get_min_tx_size(TX_4X4);
|
|
#endif
|
|
|
|
txfm_rd_in_plane(x, cpi, rate, distortion, skip, sse, ref_best_rd, 0, bs,
|
|
mbmi->tx_size, cpi->sf.use_fast_coef_costing);
|
|
}
|
|
|
|
static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi,
|
|
MACROBLOCK *x, int *rate,
|
|
int64_t *distortion, int *skip,
|
|
int64_t *psse, int64_t ref_best_rd,
|
|
BLOCK_SIZE bs) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
int r, s;
|
|
int64_t d, sse;
|
|
int64_t rd = INT64_MAX;
|
|
int64_t best_rd = INT64_MAX;
|
|
TX_SIZE best_tx = max_txsize_lookup[bs];
|
|
const int is_inter = is_inter_block(mbmi);
|
|
TX_TYPE tx_type, best_tx_type = DCT_DCT;
|
|
int prune = 0;
|
|
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer buf;
|
|
#endif
|
|
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
|
|
// passing -1 in for tx_type indicates that all 1D
|
|
// transforms should be considered for pruning
|
|
prune = prune_tx_types(cpi, bs, x, xd, -1);
|
|
|
|
*distortion = INT64_MAX;
|
|
*rate = INT_MAX;
|
|
*skip = 0;
|
|
*psse = INT64_MAX;
|
|
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &buf);
|
|
#endif
|
|
|
|
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
|
|
#if CONFIG_REF_MV
|
|
if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) continue;
|
|
#endif
|
|
rd = choose_tx_size_fix_type(cpi, bs, x, &r, &d, &s, &sse, ref_best_rd,
|
|
tx_type, prune);
|
|
if (rd < best_rd) {
|
|
best_rd = rd;
|
|
*distortion = d;
|
|
*rate = r;
|
|
*skip = s;
|
|
*psse = sse;
|
|
best_tx_type = tx_type;
|
|
best_tx = mbmi->tx_size;
|
|
}
|
|
}
|
|
|
|
mbmi->tx_size = best_tx;
|
|
mbmi->tx_type = best_tx_type;
|
|
|
|
#if CONFIG_VAR_TX
|
|
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
|
|
#endif
|
|
|
|
#if !CONFIG_EXT_TX
|
|
if (mbmi->tx_size >= TX_32X32) assert(mbmi->tx_type == DCT_DCT);
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
if (best_tx < TX_SIZES)
|
|
txfm_rd_in_plane(x, cpi, &r, &d, &s, &sse, ref_best_rd, 0, bs, best_tx,
|
|
cpi->sf.use_fast_coef_costing);
|
|
#endif
|
|
}
|
|
|
|
static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, int *rate,
|
|
int64_t *distortion, int *skip, int64_t *psse,
|
|
BLOCK_SIZE bs, int64_t ref_best_rd) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
int64_t sse;
|
|
int64_t *ret_sse = psse ? psse : &sse;
|
|
|
|
assert(bs == xd->mi[0]->mbmi.sb_type);
|
|
|
|
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
|
|
choose_smallest_tx_size(cpi, x, rate, distortion, skip, ret_sse,
|
|
ref_best_rd, bs);
|
|
} else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) {
|
|
choose_largest_tx_size(cpi, x, rate, distortion, skip, ret_sse, ref_best_rd,
|
|
bs);
|
|
} else {
|
|
choose_tx_size_type_from_rd(cpi, x, rate, distortion, skip, ret_sse,
|
|
ref_best_rd, bs);
|
|
}
|
|
}
|
|
|
|
static int conditional_skipintra(PREDICTION_MODE mode,
|
|
PREDICTION_MODE best_intra_mode) {
|
|
if (mode == D117_PRED && best_intra_mode != V_PRED &&
|
|
best_intra_mode != D135_PRED)
|
|
return 1;
|
|
if (mode == D63_PRED && best_intra_mode != V_PRED &&
|
|
best_intra_mode != D45_PRED)
|
|
return 1;
|
|
if (mode == D207_PRED && best_intra_mode != H_PRED &&
|
|
best_intra_mode != D45_PRED)
|
|
return 1;
|
|
if (mode == D153_PRED && best_intra_mode != H_PRED &&
|
|
best_intra_mode != D135_PRED)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
static int rd_pick_palette_intra_sby(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int palette_ctx,
|
|
int dc_mode_cost, PALETTE_MODE_INFO *palette_mode_info,
|
|
uint8_t *best_palette_color_map, TX_SIZE *best_tx, TX_TYPE *best_tx_type,
|
|
PREDICTION_MODE *mode_selected, int64_t *best_rd) {
|
|
int rate_overhead = 0;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
int this_rate, this_rate_tokenonly, s, colors, n;
|
|
int64_t this_distortion, this_rd;
|
|
const int src_stride = x->plane[0].src.stride;
|
|
const uint8_t *const src = x->plane[0].src.buf;
|
|
|
|
assert(cpi->common.allow_screen_content_tools);
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth)
|
|
colors = av1_count_colors_highbd(src, src_stride, rows, cols,
|
|
cpi->common.bit_depth);
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
colors = av1_count_colors(src, src_stride, rows, cols);
|
|
palette_mode_info->palette_size[0] = 0;
|
|
#if CONFIG_FILTER_INTRA
|
|
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
if (colors > 1 && colors <= 64) {
|
|
int r, c, i, j, k;
|
|
const int max_itr = 50;
|
|
uint8_t color_order[PALETTE_MAX_SIZE];
|
|
float *const data = x->palette_buffer->kmeans_data_buf;
|
|
float centroids[PALETTE_MAX_SIZE];
|
|
uint8_t *const color_map = xd->plane[0].color_index_map;
|
|
float lb, ub, val;
|
|
MB_MODE_INFO *const mbmi = &mic->mbmi;
|
|
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
uint16_t *src16 = CONVERT_TO_SHORTPTR(src);
|
|
if (cpi->common.use_highbitdepth)
|
|
lb = ub = src16[0];
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
lb = ub = src[0];
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth) {
|
|
for (r = 0; r < rows; ++r) {
|
|
for (c = 0; c < cols; ++c) {
|
|
val = src16[r * src_stride + c];
|
|
data[r * cols + c] = val;
|
|
if (val < lb)
|
|
lb = val;
|
|
else if (val > ub)
|
|
ub = val;
|
|
}
|
|
}
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
for (r = 0; r < rows; ++r) {
|
|
for (c = 0; c < cols; ++c) {
|
|
val = src[r * src_stride + c];
|
|
data[r * cols + c] = val;
|
|
if (val < lb)
|
|
lb = val;
|
|
else if (val > ub)
|
|
ub = val;
|
|
}
|
|
}
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
mbmi->mode = DC_PRED;
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return 0;
|
|
|
|
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
|
|
--n) {
|
|
for (i = 0; i < n; ++i)
|
|
centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2;
|
|
av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr);
|
|
k = av1_remove_duplicates(centroids, n);
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth)
|
|
for (i = 0; i < k; ++i)
|
|
pmi->palette_colors[i] =
|
|
clip_pixel_highbd((int)centroids[i], cpi->common.bit_depth);
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
for (i = 0; i < k; ++i)
|
|
pmi->palette_colors[i] = clip_pixel((int)centroids[i]);
|
|
pmi->palette_size[0] = k;
|
|
|
|
av1_calc_indices(data, centroids, color_map, rows * cols, k, 1);
|
|
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
|
|
bsize, *best_rd);
|
|
if (this_rate_tokenonly == INT_MAX) continue;
|
|
|
|
this_rate =
|
|
this_rate_tokenonly + dc_mode_cost +
|
|
cpi->common.bit_depth * k * av1_cost_bit(128, 0) +
|
|
cpi->palette_y_size_cost[bsize - BLOCK_8X8][k - 2] +
|
|
write_uniform_cost(k, color_map[0]) +
|
|
av1_cost_bit(
|
|
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx],
|
|
1);
|
|
for (i = 0; i < rows; ++i) {
|
|
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
|
|
int color_idx;
|
|
const int color_ctx = av1_get_palette_color_context(
|
|
color_map, cols, i, j, k, color_order, &color_idx);
|
|
assert(color_idx >= 0 && color_idx < k);
|
|
this_rate += cpi->palette_y_color_cost[k - 2][color_ctx][color_idx];
|
|
}
|
|
}
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < *best_rd) {
|
|
*best_rd = this_rd;
|
|
*palette_mode_info = *pmi;
|
|
memcpy(best_palette_color_map, color_map,
|
|
rows * cols * sizeof(color_map[0]));
|
|
*mode_selected = DC_PRED;
|
|
*best_tx = mbmi->tx_size;
|
|
*best_tx_type = mbmi->tx_type;
|
|
rate_overhead = this_rate - this_rate_tokenonly;
|
|
}
|
|
}
|
|
}
|
|
return rate_overhead;
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
static int64_t rd_pick_intra4x4block(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, int row, int col,
|
|
PREDICTION_MODE *best_mode, const int *bmode_costs, ENTROPY_CONTEXT *a,
|
|
ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int64_t *bestdistortion,
|
|
BLOCK_SIZE bsize, int *y_skip, int64_t rd_thresh) {
|
|
#if !CONFIG_PVQ
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
#endif
|
|
PREDICTION_MODE mode;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int64_t best_rd = rd_thresh;
|
|
struct macroblock_plane *p = &x->plane[0];
|
|
struct macroblockd_plane *pd = &xd->plane[0];
|
|
const int src_stride = p->src.stride;
|
|
const int dst_stride = pd->dst.stride;
|
|
const uint8_t *src_init = &p->src.buf[row * 4 * src_stride + col * 4];
|
|
uint8_t *dst_init = &pd->dst.buf[row * 4 * src_stride + col * 4];
|
|
ENTROPY_CONTEXT ta[2], tempa[2];
|
|
ENTROPY_CONTEXT tl[2], templ[2];
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
int best_can_skip = 0;
|
|
uint8_t best_dst[8 * 8];
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
uint16_t best_dst16[8 * 8];
|
|
#endif
|
|
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_buf, post_buf;
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
|
|
memcpy(ta, a, num_4x4_blocks_wide * sizeof(a[0]));
|
|
memcpy(tl, l, num_4x4_blocks_high * sizeof(l[0]));
|
|
xd->mi[0]->mbmi.tx_size = TX_4X4;
|
|
#if CONFIG_PALETTE
|
|
xd->mi[0]->mbmi.palette_mode_info.palette_size[0] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
int64_t this_rd;
|
|
int ratey = 0;
|
|
int64_t distortion = 0;
|
|
int rate = bmode_costs[mode];
|
|
int can_skip = 1;
|
|
|
|
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
|
|
|
|
// Only do the oblique modes if the best so far is
|
|
// one of the neighboring directional modes
|
|
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
|
|
if (conditional_skipintra(mode, *best_mode)) continue;
|
|
}
|
|
|
|
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
|
|
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
|
|
const int block = (row + idy) * 2 + (col + idx);
|
|
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
|
|
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
|
|
int16_t *const src_diff =
|
|
av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
|
|
xd->mi[0]->bmi[block].as_mode = mode;
|
|
av1_predict_intra_block(xd, pd->width, pd->height, TX_4X4, mode, dst,
|
|
dst_stride, dst, dst_stride, col + idx,
|
|
row + idy, 0);
|
|
aom_highbd_subtract_block(4, 4, src_diff, 8, src, src_stride, dst,
|
|
dst_stride, xd->bd);
|
|
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
|
|
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
|
|
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
|
|
const int coeff_ctx =
|
|
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, 0, block, row + idy, col + idx,
|
|
BLOCK_8X8, TX_4X4, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
|
|
TX_4X4, AV1_XFORM_QUANT_FP);
|
|
#endif // CONFIG_NEW_QUANT
|
|
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
|
|
scan_order->scan, scan_order->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
*(tempa + idx) = !(p->eobs[block] == 0);
|
|
*(templ + idy) = !(p->eobs[block] == 0);
|
|
can_skip &= (p->eobs[block] == 0);
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next_highbd;
|
|
av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
|
|
dst_stride, p->eobs[block], xd->bd,
|
|
DCT_DCT, 1);
|
|
} else {
|
|
int64_t dist;
|
|
unsigned int tmp;
|
|
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
|
|
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
|
|
const int coeff_ctx =
|
|
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, 0, block, row + idy, col + idx,
|
|
BLOCK_8X8, TX_4X4, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
|
|
TX_4X4, AV1_XFORM_QUANT_FP);
|
|
#endif // CONFIG_NEW_QUANT
|
|
av1_optimize_b(cm, x, 0, block, TX_4X4, coeff_ctx);
|
|
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
|
|
scan_order->scan, scan_order->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
*(tempa + idx) = !(p->eobs[block] == 0);
|
|
*(templ + idy) = !(p->eobs[block] == 0);
|
|
can_skip &= (p->eobs[block] == 0);
|
|
av1_highbd_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
|
|
dst_stride, p->eobs[block], xd->bd,
|
|
tx_type, 0);
|
|
cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp);
|
|
dist = (int64_t)tmp << 4;
|
|
distortion += dist;
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next_highbd;
|
|
}
|
|
}
|
|
}
|
|
|
|
rate += ratey;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
*bestrate = rate;
|
|
*bestratey = ratey;
|
|
*bestdistortion = distortion;
|
|
best_rd = this_rd;
|
|
best_can_skip = can_skip;
|
|
*best_mode = mode;
|
|
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
|
|
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
|
|
memcpy(best_dst16 + idy * 8,
|
|
CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
|
|
num_4x4_blocks_wide * 4 * sizeof(uint16_t));
|
|
}
|
|
}
|
|
next_highbd : {}
|
|
}
|
|
|
|
if (best_rd >= rd_thresh) return best_rd;
|
|
|
|
if (y_skip) *y_skip &= best_can_skip;
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) {
|
|
memcpy(CONVERT_TO_SHORTPTR(dst_init + idy * dst_stride),
|
|
best_dst16 + idy * 8, num_4x4_blocks_wide * 4 * sizeof(uint16_t));
|
|
}
|
|
|
|
return best_rd;
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
int64_t this_rd;
|
|
int ratey = 0;
|
|
int64_t distortion = 0;
|
|
int rate = bmode_costs[mode];
|
|
int can_skip = 1;
|
|
|
|
if (!(cpi->sf.intra_y_mode_mask[TX_4X4] & (1 << mode))) continue;
|
|
|
|
// Only do the oblique modes if the best so far is
|
|
// one of the neighboring directional modes
|
|
if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
|
|
if (conditional_skipintra(mode, *best_mode)) continue;
|
|
}
|
|
|
|
memcpy(tempa, ta, num_4x4_blocks_wide * sizeof(ta[0]));
|
|
memcpy(templ, tl, num_4x4_blocks_high * sizeof(tl[0]));
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy) {
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx) {
|
|
const int block = (row + idy) * 2 + (col + idx);
|
|
const uint8_t *const src = &src_init[idx * 4 + idy * 4 * src_stride];
|
|
uint8_t *const dst = &dst_init[idx * 4 + idy * 4 * dst_stride];
|
|
#if !CONFIG_PVQ
|
|
int16_t *const src_diff =
|
|
av1_raster_block_offset_int16(BLOCK_8X8, block, p->src_diff);
|
|
#else
|
|
int lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
|
|
const int diff_stride = 8;
|
|
tran_low_t *const coeff = BLOCK_OFFSET(x->plane[0].coeff, block);
|
|
tran_low_t *const dqcoeff = BLOCK_OFFSET(xd->plane[0].dqcoeff, block);
|
|
tran_low_t *ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, block);
|
|
int16_t *pred = &pd->pred[4 * (row * diff_stride + col)];
|
|
int16_t *src_int16 = &p->src_int16[4 * (row * diff_stride + col)];
|
|
int i, j, tx_blk_size;
|
|
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
|
|
int rate_pvq;
|
|
int skip;
|
|
#endif
|
|
xd->mi[0]->bmi[block].as_mode = mode;
|
|
av1_predict_intra_block(xd, pd->width, pd->height, TX_4X4, mode, dst,
|
|
dst_stride, dst, dst_stride, col + idx,
|
|
row + idy, 0);
|
|
#if !CONFIG_PVQ
|
|
aom_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride);
|
|
#else
|
|
if (lossless) tx_type = DCT_DCT;
|
|
// transform block size in pixels
|
|
tx_blk_size = 4;
|
|
|
|
// copy uint8 orig and predicted block to int16 buffer
|
|
// in order to use existing VP10 transform functions
|
|
for (j = 0; j < tx_blk_size; j++)
|
|
for (i = 0; i < tx_blk_size; i++) {
|
|
src_int16[diff_stride * j + i] = src[src_stride * j + i];
|
|
pred[diff_stride * j + i] = dst[dst_stride * j + i];
|
|
}
|
|
{
|
|
FWD_TXFM_PARAM fwd_txfm_param;
|
|
fwd_txfm_param.tx_type = tx_type;
|
|
fwd_txfm_param.tx_size = TX_4X4;
|
|
fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL;
|
|
fwd_txfm_param.rd_transform = 0;
|
|
fwd_txfm_param.lossless = lossless;
|
|
fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
|
|
fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
|
|
}
|
|
#endif
|
|
|
|
if (xd->lossless[xd->mi[0]->mbmi.segment_id]) {
|
|
#if !CONFIG_PVQ
|
|
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
|
|
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
|
|
const int coeff_ctx =
|
|
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, 0, block, row + idy, col + idx,
|
|
BLOCK_8X8, TX_4X4, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
|
|
TX_4X4, AV1_XFORM_QUANT_B);
|
|
#endif // CONFIG_NEW_QUANT
|
|
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
|
|
scan_order->scan, scan_order->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
*(tempa + idx) = !(p->eobs[block] == 0);
|
|
*(templ + idy) = !(p->eobs[block] == 0);
|
|
can_skip &= (p->eobs[block] == 0);
|
|
#else
|
|
skip = av1_pvq_encode_helper(&x->daala_enc, coeff, ref_coeff, dqcoeff,
|
|
&p->eobs[block], pd->dequant, 0, TX_4X4,
|
|
tx_type, &rate_pvq, x->pvq_speed, NULL);
|
|
ratey += rate_pvq;
|
|
#endif
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next;
|
|
#if CONFIG_PVQ
|
|
if (!skip) {
|
|
for (j = 0; j < tx_blk_size; j++)
|
|
for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0;
|
|
#endif
|
|
av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
|
|
dst_stride, p->eobs[block], DCT_DCT, 1);
|
|
#if CONFIG_PVQ
|
|
}
|
|
#endif
|
|
} else {
|
|
int64_t dist;
|
|
unsigned int tmp;
|
|
#if !CONFIG_PVQ
|
|
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, block, TX_4X4);
|
|
const SCAN_ORDER *scan_order = get_scan(cm, TX_4X4, tx_type, 0);
|
|
const int coeff_ctx =
|
|
combine_entropy_contexts(*(tempa + idx), *(templ + idy));
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, 0, block, row + idy, col + idx,
|
|
BLOCK_8X8, TX_4X4, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, 0, block, row + idy, col + idx, BLOCK_8X8,
|
|
TX_4X4, AV1_XFORM_QUANT_FP);
|
|
#endif // CONFIG_NEW_QUANT
|
|
av1_optimize_b(cm, x, 0, block, TX_4X4, coeff_ctx);
|
|
ratey += av1_cost_coeffs(cm, x, 0, block, coeff_ctx, TX_4X4,
|
|
scan_order->scan, scan_order->neighbors,
|
|
cpi->sf.use_fast_coef_costing);
|
|
#else
|
|
skip = av1_pvq_encode_helper(&x->daala_enc, coeff, ref_coeff, dqcoeff,
|
|
&p->eobs[block], pd->dequant, 0, TX_4X4,
|
|
tx_type, &rate_pvq, x->pvq_speed, NULL);
|
|
ratey += rate_pvq;
|
|
#endif
|
|
// No need for av1_block_error2_c because the ssz is unused
|
|
av1_inv_txfm_add_4x4(BLOCK_OFFSET(pd->dqcoeff, block), dst,
|
|
dst_stride, p->eobs[block], tx_type, 0);
|
|
cpi->fn_ptr[BLOCK_4X4].vf(src, src_stride, dst, dst_stride, &tmp);
|
|
dist = (int64_t)tmp << 4;
|
|
distortion += dist;
|
|
// To use the pixel domain distortion, the step below needs to be
|
|
// put behind the inv txfm. Compared to calculating the distortion
|
|
// in the frequency domain, the overhead of encoding effort is low.
|
|
if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd)
|
|
goto next;
|
|
#if CONFIG_PVQ
|
|
if (!skip) {
|
|
for (j = 0; j < tx_blk_size; j++)
|
|
for (i = 0; i < tx_blk_size; i++) dst[j * dst_stride + i] = 0;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
rate += ratey;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion);
|
|
|
|
if (this_rd < best_rd) {
|
|
*bestrate = rate;
|
|
*bestratey = ratey;
|
|
*bestdistortion = distortion;
|
|
best_rd = this_rd;
|
|
best_can_skip = can_skip;
|
|
*best_mode = mode;
|
|
memcpy(a, tempa, num_4x4_blocks_wide * sizeof(tempa[0]));
|
|
memcpy(l, templ, num_4x4_blocks_high * sizeof(templ[0]));
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
|
|
memcpy(best_dst + idy * 8, dst_init + idy * dst_stride,
|
|
num_4x4_blocks_wide * 4);
|
|
}
|
|
next : {}
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
} // mode decision loop
|
|
|
|
if (best_rd >= rd_thresh) return best_rd;
|
|
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &post_buf);
|
|
#endif
|
|
|
|
if (y_skip) *y_skip &= best_can_skip;
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy)
|
|
memcpy(dst_init + idy * dst_stride, best_dst + idy * 8,
|
|
num_4x4_blocks_wide * 4);
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
static int64_t rd_pick_intra_sub_8x8_y_mode(const AV1_COMP *const cpi,
|
|
MACROBLOCK *mb, int *rate,
|
|
int *rate_y, int64_t *distortion,
|
|
int *y_skip, int64_t best_rd) {
|
|
int i, j;
|
|
const MACROBLOCKD *const xd = &mb->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
const MODE_INFO *above_mi = xd->above_mi;
|
|
const MODE_INFO *left_mi = xd->left_mi;
|
|
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
int idx, idy;
|
|
int cost = 0;
|
|
int64_t total_distortion = 0;
|
|
int tot_rate_y = 0;
|
|
int64_t total_rd = 0;
|
|
const int *bmode_costs = cpi->mbmode_cost[0];
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
mic->mbmi.intra_filter = INTRA_FILTER_LINEAR;
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
// TODO(any): Add search of the tx_type to improve rd performance at the
|
|
// expense of speed.
|
|
mic->mbmi.tx_type = DCT_DCT;
|
|
mic->mbmi.tx_size = TX_4X4;
|
|
|
|
if (y_skip) *y_skip = 1;
|
|
|
|
// Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block.
|
|
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
|
|
PREDICTION_MODE best_mode = DC_PRED;
|
|
int r = INT_MAX, ry = INT_MAX;
|
|
int64_t d = INT64_MAX, this_rd = INT64_MAX;
|
|
i = idy * 2 + idx;
|
|
if (cpi->common.frame_type == KEY_FRAME) {
|
|
const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, i);
|
|
const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, i);
|
|
|
|
bmode_costs = cpi->y_mode_costs[A][L];
|
|
}
|
|
|
|
this_rd = rd_pick_intra4x4block(
|
|
cpi, mb, idy, idx, &best_mode, bmode_costs,
|
|
xd->plane[0].above_context + idx, xd->plane[0].left_context + idy, &r,
|
|
&ry, &d, bsize, y_skip, best_rd - total_rd);
|
|
if (this_rd >= best_rd - total_rd) return INT64_MAX;
|
|
|
|
total_rd += this_rd;
|
|
cost += r;
|
|
total_distortion += d;
|
|
tot_rate_y += ry;
|
|
|
|
mic->bmi[i].as_mode = best_mode;
|
|
for (j = 1; j < num_4x4_blocks_high; ++j)
|
|
mic->bmi[i + j * 2].as_mode = best_mode;
|
|
for (j = 1; j < num_4x4_blocks_wide; ++j)
|
|
mic->bmi[i + j].as_mode = best_mode;
|
|
|
|
if (total_rd >= best_rd) return INT64_MAX;
|
|
}
|
|
}
|
|
mic->mbmi.mode = mic->bmi[3].as_mode;
|
|
|
|
// Add in the cost of the transform type
|
|
if (!xd->lossless[mic->mbmi.segment_id]) {
|
|
int rate_tx_type = 0;
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(TX_4X4, bsize, 0) > 1) {
|
|
const int eset = get_ext_tx_set(TX_4X4, bsize, 0);
|
|
rate_tx_type = cpi->intra_tx_type_costs[eset][TX_4X4][mic->mbmi.mode]
|
|
[mic->mbmi.tx_type];
|
|
}
|
|
#else
|
|
rate_tx_type =
|
|
cpi->intra_tx_type_costs[TX_4X4]
|
|
[intra_mode_to_tx_type_context[mic->mbmi.mode]]
|
|
[mic->mbmi.tx_type];
|
|
#endif
|
|
assert(mic->mbmi.tx_size == TX_4X4);
|
|
cost += rate_tx_type;
|
|
tot_rate_y += rate_tx_type;
|
|
}
|
|
|
|
*rate = cost;
|
|
*rate_y = tot_rate_y;
|
|
*distortion = total_distortion;
|
|
|
|
return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion);
|
|
}
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
// Return 1 if an filter intra mode is selected; return 0 otherwise.
|
|
static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, int mode_cost,
|
|
int64_t *best_rd, uint16_t skip_mask) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
MB_MODE_INFO *mbmi = &mic->mbmi;
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int filter_intra_selected_flag = 0;
|
|
int64_t this_distortion, this_rd;
|
|
FILTER_INTRA_MODE mode;
|
|
TX_SIZE best_tx_size = TX_4X4;
|
|
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
|
|
TX_TYPE best_tx_type;
|
|
|
|
av1_zero(filter_intra_mode_info);
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 1;
|
|
mbmi->mode = DC_PRED;
|
|
#if CONFIG_PALETTE
|
|
mbmi->palette_mode_info.palette_size[0] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
|
|
if (skip_mask & (1 << mode)) continue;
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[0] = mode;
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
|
|
bsize, *best_rd);
|
|
if (this_rate_tokenonly == INT_MAX) continue;
|
|
|
|
this_rate = this_rate_tokenonly +
|
|
av1_cost_bit(cpi->common.fc->filter_intra_probs[0], 1) +
|
|
write_uniform_cost(FILTER_INTRA_MODES, mode) + mode_cost;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < *best_rd) {
|
|
*best_rd = this_rd;
|
|
best_tx_size = mic->mbmi.tx_size;
|
|
filter_intra_mode_info = mbmi->filter_intra_mode_info;
|
|
best_tx_type = mic->mbmi.tx_type;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
filter_intra_selected_flag = 1;
|
|
}
|
|
}
|
|
|
|
if (filter_intra_selected_flag) {
|
|
mbmi->mode = DC_PRED;
|
|
mbmi->tx_size = best_tx_size;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] =
|
|
filter_intra_mode_info.use_filter_intra_mode[0];
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[0] =
|
|
filter_intra_mode_info.filter_intra_mode[0];
|
|
mbmi->tx_type = best_tx_type;
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
static void pick_intra_angle_routine_sby(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable, int *best_angle_delta,
|
|
TX_SIZE *best_tx_size, TX_TYPE *best_tx_type, INTRA_FILTER *best_filter,
|
|
BLOCK_SIZE bsize, int rate_overhead, int64_t *best_rd) {
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int64_t this_distortion, this_rd;
|
|
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
|
|
bsize, *best_rd);
|
|
if (this_rate_tokenonly == INT_MAX) return;
|
|
|
|
this_rate = this_rate_tokenonly + rate_overhead;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
|
|
if (this_rd < *best_rd) {
|
|
*best_rd = this_rd;
|
|
*best_angle_delta = mbmi->angle_delta[0];
|
|
*best_tx_size = mbmi->tx_size;
|
|
*best_filter = mbmi->intra_filter;
|
|
*best_tx_type = mbmi->tx_type;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
|
|
static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, int rate_overhead,
|
|
int64_t best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
MB_MODE_INFO *mbmi = &mic->mbmi;
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int angle_delta, best_angle_delta = 0, p_angle;
|
|
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
|
|
INTRA_FILTER filter, best_filter = INTRA_FILTER_LINEAR;
|
|
const double rd_adjust = 1.2;
|
|
int64_t this_distortion, this_rd;
|
|
TX_SIZE best_tx_size = mic->mbmi.tx_size;
|
|
TX_TYPE best_tx_type = mbmi->tx_type;
|
|
|
|
if (ANGLE_FAST_SEARCH) {
|
|
int deltas_level1[3] = { 0, -2, 2 };
|
|
int deltas_level2[3][2] = {
|
|
{ -1, 1 }, { -3, -1 }, { 1, 3 },
|
|
};
|
|
const int level1 = 3, level2 = 2;
|
|
int i, j, best_i = -1;
|
|
|
|
for (i = 0; i < level1; ++i) {
|
|
mic->mbmi.angle_delta[0] = deltas_level1[i];
|
|
p_angle =
|
|
mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
|
|
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
|
|
int64_t tmp_best_rd;
|
|
if ((FILTER_FAST_SEARCH || !av1_is_intra_filter_switchable(p_angle)) &&
|
|
filter != INTRA_FILTER_LINEAR)
|
|
continue;
|
|
mic->mbmi.intra_filter = filter;
|
|
tmp_best_rd =
|
|
(i == 0 && filter == INTRA_FILTER_LINEAR && best_rd < INT64_MAX)
|
|
? (int64_t)(best_rd * rd_adjust)
|
|
: best_rd;
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
NULL, bsize, tmp_best_rd);
|
|
if (this_rate_tokenonly == INT_MAX) {
|
|
if (i == 0 && filter == INTRA_FILTER_LINEAR)
|
|
return best_rd;
|
|
else
|
|
continue;
|
|
}
|
|
this_rate = this_rate_tokenonly + rate_overhead +
|
|
cpi->intra_filter_cost[intra_filter_ctx][filter];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
if (i == 0 && filter == INTRA_FILTER_LINEAR && best_rd < INT64_MAX &&
|
|
this_rd > best_rd * rd_adjust)
|
|
return best_rd;
|
|
if (this_rd < best_rd) {
|
|
best_i = i;
|
|
best_rd = this_rd;
|
|
best_angle_delta = mbmi->angle_delta[0];
|
|
best_tx_size = mbmi->tx_size;
|
|
best_filter = mbmi->intra_filter;
|
|
best_tx_type = mbmi->tx_type;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_i >= 0) {
|
|
for (j = 0; j < level2; ++j) {
|
|
mic->mbmi.angle_delta[0] = deltas_level2[best_i][j];
|
|
p_angle =
|
|
mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
|
|
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
|
|
mic->mbmi.intra_filter = filter;
|
|
if ((FILTER_FAST_SEARCH ||
|
|
!av1_is_intra_filter_switchable(p_angle)) &&
|
|
filter != INTRA_FILTER_LINEAR)
|
|
continue;
|
|
pick_intra_angle_routine_sby(
|
|
cpi, x, rate, rate_tokenonly, distortion, skippable,
|
|
&best_angle_delta, &best_tx_size, &best_tx_type, &best_filter,
|
|
bsize,
|
|
rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter],
|
|
&best_rd);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
for (angle_delta = -MAX_ANGLE_DELTAS; angle_delta <= MAX_ANGLE_DELTAS;
|
|
++angle_delta) {
|
|
mbmi->angle_delta[0] = angle_delta;
|
|
p_angle =
|
|
mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
|
|
for (filter = INTRA_FILTER_LINEAR; filter < INTRA_FILTERS; ++filter) {
|
|
mic->mbmi.intra_filter = filter;
|
|
if ((FILTER_FAST_SEARCH || !av1_is_intra_filter_switchable(p_angle)) &&
|
|
filter != INTRA_FILTER_LINEAR)
|
|
continue;
|
|
pick_intra_angle_routine_sby(
|
|
cpi, x, rate, rate_tokenonly, distortion, skippable,
|
|
&best_angle_delta, &best_tx_size, &best_tx_type, &best_filter,
|
|
bsize,
|
|
rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter],
|
|
&best_rd);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (FILTER_FAST_SEARCH && *rate_tokenonly < INT_MAX) {
|
|
mbmi->angle_delta[0] = best_angle_delta;
|
|
p_angle = mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
|
|
if (av1_is_intra_filter_switchable(p_angle)) {
|
|
for (filter = INTRA_FILTER_LINEAR + 1; filter < INTRA_FILTERS; ++filter) {
|
|
mic->mbmi.intra_filter = filter;
|
|
pick_intra_angle_routine_sby(
|
|
cpi, x, rate, rate_tokenonly, distortion, skippable,
|
|
&best_angle_delta, &best_tx_size, &best_tx_type, &best_filter,
|
|
bsize,
|
|
rate_overhead + cpi->intra_filter_cost[intra_filter_ctx][filter],
|
|
&best_rd);
|
|
}
|
|
}
|
|
}
|
|
|
|
mbmi->tx_size = best_tx_size;
|
|
mbmi->angle_delta[0] = best_angle_delta;
|
|
mic->mbmi.intra_filter = best_filter;
|
|
mbmi->tx_type = best_tx_type;
|
|
return best_rd;
|
|
}
|
|
|
|
// Indices are sign, integer, and fractional part of the gradient value
|
|
static const uint8_t gradient_to_angle_bin[2][7][16] = {
|
|
{
|
|
{ 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 },
|
|
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 },
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
|
|
{ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
|
|
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
|
|
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
|
|
},
|
|
{
|
|
{ 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 },
|
|
{ 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 },
|
|
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
|
|
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
|
|
{ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 },
|
|
{ 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
|
|
{ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 },
|
|
},
|
|
};
|
|
|
|
static const uint8_t mode_to_angle_bin[INTRA_MODES] = {
|
|
0, 2, 6, 0, 4, 3, 5, 7, 1, 0,
|
|
};
|
|
|
|
static void angle_estimation(const uint8_t *src, int src_stride, int rows,
|
|
int cols, uint8_t *directional_mode_skip_mask) {
|
|
int i, r, c, index, dx, dy, temp, sn, remd, quot;
|
|
uint64_t hist[DIRECTIONAL_MODES];
|
|
uint64_t hist_sum = 0;
|
|
|
|
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
|
|
src += src_stride;
|
|
for (r = 1; r < rows; ++r) {
|
|
for (c = 1; c < cols; ++c) {
|
|
dx = src[c] - src[c - 1];
|
|
dy = src[c] - src[c - src_stride];
|
|
temp = dx * dx + dy * dy;
|
|
if (dy == 0) {
|
|
index = 2;
|
|
} else {
|
|
sn = (dx > 0) ^ (dy > 0);
|
|
dx = abs(dx);
|
|
dy = abs(dy);
|
|
remd = dx % dy;
|
|
quot = dx / dy;
|
|
remd = remd * 16 / dy;
|
|
index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
|
|
}
|
|
hist[index] += temp;
|
|
}
|
|
src += src_stride;
|
|
}
|
|
|
|
for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
|
|
for (i = 0; i < INTRA_MODES; ++i) {
|
|
if (i != DC_PRED && i != TM_PRED) {
|
|
const uint8_t angle_bin = mode_to_angle_bin[i];
|
|
uint64_t score = 2 * hist[angle_bin];
|
|
int weight = 2;
|
|
if (angle_bin > 0) {
|
|
score += hist[angle_bin - 1];
|
|
++weight;
|
|
}
|
|
if (angle_bin < DIRECTIONAL_MODES - 1) {
|
|
score += hist[angle_bin + 1];
|
|
++weight;
|
|
}
|
|
if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
|
|
directional_mode_skip_mask[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
static void highbd_angle_estimation(const uint8_t *src8, int src_stride,
|
|
int rows, int cols,
|
|
uint8_t *directional_mode_skip_mask) {
|
|
int i, r, c, index, dx, dy, temp, sn, remd, quot;
|
|
uint64_t hist[DIRECTIONAL_MODES];
|
|
uint64_t hist_sum = 0;
|
|
uint16_t *src = CONVERT_TO_SHORTPTR(src8);
|
|
|
|
memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0]));
|
|
src += src_stride;
|
|
for (r = 1; r < rows; ++r) {
|
|
for (c = 1; c < cols; ++c) {
|
|
dx = src[c] - src[c - 1];
|
|
dy = src[c] - src[c - src_stride];
|
|
temp = dx * dx + dy * dy;
|
|
if (dy == 0) {
|
|
index = 2;
|
|
} else {
|
|
sn = (dx > 0) ^ (dy > 0);
|
|
dx = abs(dx);
|
|
dy = abs(dy);
|
|
remd = dx % dy;
|
|
quot = dx / dy;
|
|
remd = remd * 16 / dy;
|
|
index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)];
|
|
}
|
|
hist[index] += temp;
|
|
}
|
|
src += src_stride;
|
|
}
|
|
|
|
for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i];
|
|
for (i = 0; i < INTRA_MODES; ++i) {
|
|
if (i != DC_PRED && i != TM_PRED) {
|
|
const uint8_t angle_bin = mode_to_angle_bin[i];
|
|
uint64_t score = 2 * hist[angle_bin];
|
|
int weight = 2;
|
|
if (angle_bin > 0) {
|
|
score += hist[angle_bin - 1];
|
|
++weight;
|
|
}
|
|
if (angle_bin < DIRECTIONAL_MODES - 1) {
|
|
score += hist[angle_bin + 1];
|
|
++weight;
|
|
}
|
|
if (score * ANGLE_SKIP_THRESH < hist_sum * weight)
|
|
directional_mode_skip_mask[i] = 1;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
// This function is used only for intra_only frames
|
|
static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, int64_t best_rd) {
|
|
uint8_t mode_idx;
|
|
PREDICTION_MODE mode_selected = DC_PRED;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int64_t this_distortion, this_rd;
|
|
TX_SIZE best_tx = TX_4X4;
|
|
#if CONFIG_EXT_INTRA || CONFIG_PALETTE
|
|
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
#endif // CONFIG_EXT_INTRA || CONFIG_PALETTE
|
|
#if CONFIG_EXT_INTRA
|
|
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
|
|
int is_directional_mode, rate_overhead, best_angle_delta = 0;
|
|
INTRA_FILTER best_filter = INTRA_FILTER_LINEAR;
|
|
uint8_t directional_mode_skip_mask[INTRA_MODES];
|
|
const int src_stride = x->plane[0].src.stride;
|
|
const uint8_t *src = x->plane[0].src.buf;
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
int beat_best_rd = 0;
|
|
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
|
|
uint16_t filter_intra_mode_skip_mask = (1 << FILTER_INTRA_MODES) - 1;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
TX_TYPE best_tx_type = DCT_DCT;
|
|
const int *bmode_costs;
|
|
#if CONFIG_PALETTE
|
|
PALETTE_MODE_INFO palette_mode_info;
|
|
PALETTE_MODE_INFO *const pmi = &mic->mbmi.palette_mode_info;
|
|
uint8_t *best_palette_color_map =
|
|
cpi->common.allow_screen_content_tools
|
|
? x->palette_buffer->best_palette_color_map
|
|
: NULL;
|
|
int palette_ctx = 0;
|
|
#endif // CONFIG_PALETTE
|
|
const MODE_INFO *above_mi = xd->above_mi;
|
|
const MODE_INFO *left_mi = xd->left_mi;
|
|
const PREDICTION_MODE A = av1_above_block_mode(mic, above_mi, 0);
|
|
const PREDICTION_MODE L = av1_left_block_mode(mic, left_mi, 0);
|
|
const PREDICTION_MODE FINAL_MODE_SEARCH = TM_PRED + 1;
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_buf, post_buf;
|
|
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
bmode_costs = cpi->y_mode_costs[A][L];
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
mic->mbmi.angle_delta[0] = 0;
|
|
memset(directional_mode_skip_mask, 0,
|
|
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
|
|
highbd_angle_estimation(src, src_stride, rows, cols,
|
|
directional_mode_skip_mask);
|
|
else
|
|
#endif
|
|
angle_estimation(src, src_stride, rows, cols, directional_mode_skip_mask);
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
#if CONFIG_PALETTE
|
|
palette_mode_info.palette_size[0] = 0;
|
|
pmi->palette_size[0] = 0;
|
|
if (above_mi)
|
|
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
|
|
if (left_mi)
|
|
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
|
|
#endif // CONFIG_PALETTE
|
|
|
|
if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
|
|
x->use_default_intra_tx_type = 1;
|
|
else
|
|
x->use_default_intra_tx_type = 0;
|
|
|
|
/* Y Search for intra prediction mode */
|
|
for (mode_idx = DC_PRED; mode_idx <= FINAL_MODE_SEARCH; ++mode_idx) {
|
|
if (mode_idx == FINAL_MODE_SEARCH) {
|
|
if (x->use_default_intra_tx_type == 0) break;
|
|
mic->mbmi.mode = mode_selected;
|
|
x->use_default_intra_tx_type = 0;
|
|
} else {
|
|
mic->mbmi.mode = mode_idx;
|
|
}
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
#if CONFIG_EXT_INTRA
|
|
is_directional_mode =
|
|
(mic->mbmi.mode != DC_PRED && mic->mbmi.mode != TM_PRED);
|
|
if (is_directional_mode && directional_mode_skip_mask[mic->mbmi.mode])
|
|
continue;
|
|
if (is_directional_mode) {
|
|
rate_overhead = bmode_costs[mic->mbmi.mode] +
|
|
write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0);
|
|
this_rate_tokenonly = INT_MAX;
|
|
this_rd = rd_pick_intra_angle_sby(cpi, x, &this_rate,
|
|
&this_rate_tokenonly, &this_distortion,
|
|
&s, bsize, rate_overhead, best_rd);
|
|
} else {
|
|
mic->mbmi.angle_delta[0] = 0;
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
|
|
bsize, best_rd);
|
|
}
|
|
#else
|
|
super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL,
|
|
bsize, best_rd);
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
if (this_rate_tokenonly == INT_MAX) continue;
|
|
|
|
this_rate = this_rate_tokenonly + bmode_costs[mic->mbmi.mode];
|
|
|
|
if (!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
|
|
// super_block_yrd above includes the cost of the tx_size in the
|
|
// tokenonly rate, but for intra blocks, tx_size is always coded
|
|
// (prediction granularity), so we account for it in the full rate,
|
|
// not the tokenonly rate.
|
|
this_rate_tokenonly -=
|
|
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
|
|
[tx_size_to_depth(mic->mbmi.tx_size)];
|
|
}
|
|
#if CONFIG_PALETTE
|
|
if (cpi->common.allow_screen_content_tools && mic->mbmi.mode == DC_PRED)
|
|
this_rate += av1_cost_bit(
|
|
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0);
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_FILTER_INTRA
|
|
if (mic->mbmi.mode == DC_PRED)
|
|
this_rate += av1_cost_bit(cpi->common.fc->filter_intra_probs[0], 0);
|
|
#endif // CONFIG_FILTER_INTRA
|
|
#if CONFIG_EXT_INTRA
|
|
if (is_directional_mode) {
|
|
int p_angle;
|
|
this_rate +=
|
|
write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
|
|
MAX_ANGLE_DELTAS + mic->mbmi.angle_delta[0]);
|
|
p_angle = mode_to_angle_map[mic->mbmi.mode] +
|
|
mic->mbmi.angle_delta[0] * ANGLE_STEP;
|
|
if (av1_is_intra_filter_switchable(p_angle))
|
|
this_rate +=
|
|
cpi->intra_filter_cost[intra_filter_ctx][mic->mbmi.intra_filter];
|
|
}
|
|
#endif // CONFIG_EXT_INTRA
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
#if CONFIG_FILTER_INTRA
|
|
if (best_rd == INT64_MAX || this_rd - best_rd < (best_rd >> 4)) {
|
|
filter_intra_mode_skip_mask ^= (1 << mic->mbmi.mode);
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
if (this_rd < best_rd) {
|
|
mode_selected = mic->mbmi.mode;
|
|
best_rd = this_rd;
|
|
best_tx = mic->mbmi.tx_size;
|
|
#if CONFIG_EXT_INTRA
|
|
best_angle_delta = mic->mbmi.angle_delta[0];
|
|
best_filter = mic->mbmi.intra_filter;
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
beat_best_rd = 1;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
best_tx_type = mic->mbmi.tx_type;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &post_buf);
|
|
#endif
|
|
|
|
#if CONFIG_PALETTE
|
|
if (cpi->common.allow_screen_content_tools)
|
|
rd_pick_palette_intra_sby(cpi, x, bsize, palette_ctx, bmode_costs[DC_PRED],
|
|
&palette_mode_info, best_palette_color_map,
|
|
&best_tx, &best_tx_type, &mode_selected,
|
|
&best_rd);
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
if (beat_best_rd) {
|
|
if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion,
|
|
skippable, bsize, bmode_costs[DC_PRED],
|
|
&best_rd, filter_intra_mode_skip_mask)) {
|
|
mode_selected = mic->mbmi.mode;
|
|
best_tx = mic->mbmi.tx_size;
|
|
filter_intra_mode_info = mic->mbmi.filter_intra_mode_info;
|
|
best_tx_type = mic->mbmi.tx_type;
|
|
}
|
|
}
|
|
|
|
mic->mbmi.filter_intra_mode_info.use_filter_intra_mode[0] =
|
|
filter_intra_mode_info.use_filter_intra_mode[0];
|
|
if (filter_intra_mode_info.use_filter_intra_mode[0]) {
|
|
mic->mbmi.filter_intra_mode_info.filter_intra_mode[0] =
|
|
filter_intra_mode_info.filter_intra_mode[0];
|
|
#if CONFIG_PALETTE
|
|
palette_mode_info.palette_size[0] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
mic->mbmi.mode = mode_selected;
|
|
mic->mbmi.tx_size = best_tx;
|
|
#if CONFIG_EXT_INTRA
|
|
mic->mbmi.angle_delta[0] = best_angle_delta;
|
|
mic->mbmi.intra_filter = best_filter;
|
|
#endif // CONFIG_EXT_INTRA
|
|
mic->mbmi.tx_type = best_tx_type;
|
|
#if CONFIG_PALETTE
|
|
pmi->palette_size[0] = palette_mode_info.palette_size[0];
|
|
if (palette_mode_info.palette_size[0] > 0) {
|
|
memcpy(pmi->palette_colors, palette_mode_info.palette_colors,
|
|
PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
|
|
memcpy(xd->plane[0].color_index_map, best_palette_color_map,
|
|
rows * cols * sizeof(best_palette_color_map[0]));
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
// Return value 0: early termination triggered, no valid rd cost available;
|
|
// 1: rd cost values are valid.
|
|
static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, int *rate,
|
|
int64_t *distortion, int *skippable, int64_t *sse,
|
|
BLOCK_SIZE bsize, int64_t ref_best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const TX_SIZE uv_tx_size = get_uv_tx_size(mbmi, &xd->plane[1]);
|
|
int plane;
|
|
int pnrate = 0, pnskip = 1;
|
|
int64_t pndist = 0, pnsse = 0;
|
|
int is_cost_valid = 1;
|
|
|
|
if (ref_best_rd < 0) is_cost_valid = 0;
|
|
#if !CONFIG_PVQ
|
|
if (is_inter_block(mbmi) && is_cost_valid) {
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
|
|
av1_subtract_plane(x, bsize, plane);
|
|
}
|
|
#endif
|
|
*rate = 0;
|
|
*distortion = 0;
|
|
*sse = 0;
|
|
*skippable = 1;
|
|
|
|
if (is_cost_valid) {
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
|
|
txfm_rd_in_plane(x, cpi, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd,
|
|
plane, bsize, uv_tx_size, cpi->sf.use_fast_coef_costing);
|
|
if (pnrate == INT_MAX) {
|
|
is_cost_valid = 0;
|
|
break;
|
|
}
|
|
*rate += pnrate;
|
|
*distortion += pndist;
|
|
*sse += pnsse;
|
|
*skippable &= pnskip;
|
|
if (RDCOST(x->rdmult, x->rddiv, *rate, *distortion) > ref_best_rd &&
|
|
RDCOST(x->rdmult, x->rddiv, 0, *sse) > ref_best_rd) {
|
|
is_cost_valid = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!is_cost_valid) {
|
|
// reset cost value
|
|
*rate = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
*sse = INT64_MAX;
|
|
*skippable = 0;
|
|
}
|
|
|
|
return is_cost_valid;
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
void av1_tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size,
|
|
int blk_row, int blk_col, int plane, int block,
|
|
int plane_bsize, int coeff_ctx, RD_STATS *rd_stats) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const struct macroblock_plane *const p = &x->plane[plane];
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
int64_t tmp;
|
|
tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
|
|
PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
|
|
TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size);
|
|
const SCAN_ORDER *const scan_order =
|
|
get_scan(cm, tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi));
|
|
BLOCK_SIZE txm_bsize = txsize_to_bsize[tx_size];
|
|
int bh = block_size_high[txm_bsize];
|
|
int bw = block_size_wide[txm_bsize];
|
|
int txb_h = tx_size_high_unit[tx_size];
|
|
int txb_w = tx_size_wide_unit[tx_size];
|
|
|
|
int src_stride = p->src.stride;
|
|
uint8_t *src = &p->src.buf[4 * blk_row * src_stride + 4 * blk_col];
|
|
uint8_t *dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col];
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint16_t, rec_buffer16[MAX_TX_SQUARE]);
|
|
uint8_t *rec_buffer;
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, rec_buffer[MAX_TX_SQUARE]);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
int max_blocks_high = block_size_high[plane_bsize];
|
|
int max_blocks_wide = block_size_wide[plane_bsize];
|
|
const int diff_stride = max_blocks_wide;
|
|
const int16_t *diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)];
|
|
int txb_coeff_cost;
|
|
#if CONFIG_EXT_TX
|
|
assert(tx_size < TX_SIZES);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (xd->mb_to_bottom_edge < 0)
|
|
max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
|
|
if (xd->mb_to_right_edge < 0)
|
|
max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
|
|
|
|
max_blocks_high >>= tx_size_wide_log2[0];
|
|
max_blocks_wide >>= tx_size_wide_log2[0];
|
|
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, plane, block, blk_row, blk_col, plane_bsize,
|
|
tx_size, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
|
|
AV1_XFORM_QUANT_FP);
|
|
#endif // CONFIG_NEW_QUANT
|
|
|
|
av1_optimize_b(cm, x, plane, block, tx_size, coeff_ctx);
|
|
|
|
// TODO(any): Use dist_block to compute distortion
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
rec_buffer = CONVERT_TO_BYTEPTR(rec_buffer16);
|
|
aom_highbd_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL,
|
|
0, NULL, 0, bw, bh, xd->bd);
|
|
} else {
|
|
rec_buffer = (uint8_t *)rec_buffer16;
|
|
aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0,
|
|
NULL, 0, bw, bh);
|
|
}
|
|
#else
|
|
aom_convolve_copy(dst, pd->dst.stride, rec_buffer, MAX_TX_SIZE, NULL, 0, NULL,
|
|
0, bw, bh);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
if (blk_row + txb_h > max_blocks_high || blk_col + txb_w > max_blocks_wide) {
|
|
int idx, idy;
|
|
int blocks_height = AOMMIN(txb_h, max_blocks_high - blk_row);
|
|
int blocks_width = AOMMIN(txb_w, max_blocks_wide - blk_col);
|
|
tmp = 0;
|
|
for (idy = 0; idy < blocks_height; idy += 2) {
|
|
for (idx = 0; idx < blocks_width; idx += 2) {
|
|
const int16_t *d = diff + 4 * idy * diff_stride + 4 * idx;
|
|
tmp += aom_sum_squares_2d_i16(d, diff_stride, 8);
|
|
}
|
|
}
|
|
} else {
|
|
tmp = sum_squares_2d(diff, diff_stride, tx_size);
|
|
}
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
|
|
tmp = ROUND_POWER_OF_TWO(tmp, (xd->bd - 8) * 2);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
rd_stats->sse += tmp * 16;
|
|
|
|
if (p->eobs[block] > 0) {
|
|
INV_TXFM_PARAM inv_txfm_param;
|
|
inv_txfm_param.tx_type = tx_type;
|
|
inv_txfm_param.tx_size = tx_size;
|
|
inv_txfm_param.eob = p->eobs[block];
|
|
inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
inv_txfm_param.bd = xd->bd;
|
|
highbd_inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
|
|
} else {
|
|
inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
|
|
}
|
|
#else // CONFIG_AOM_HIGHBITDEPTH
|
|
inv_txfm_add(dqcoeff, rec_buffer, MAX_TX_SIZE, &inv_txfm_param);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
if (txb_w + blk_col > max_blocks_wide ||
|
|
txb_h + blk_row > max_blocks_high) {
|
|
int idx, idy;
|
|
unsigned int this_dist;
|
|
int blocks_height = AOMMIN(txb_h, max_blocks_high - blk_row);
|
|
int blocks_width = AOMMIN(txb_w, max_blocks_wide - blk_col);
|
|
tmp = 0;
|
|
for (idy = 0; idy < blocks_height; idy += 2) {
|
|
for (idx = 0; idx < blocks_width; idx += 2) {
|
|
uint8_t *const s = src + 4 * idy * src_stride + 4 * idx;
|
|
uint8_t *const r = rec_buffer + 4 * idy * MAX_TX_SIZE + 4 * idx;
|
|
cpi->fn_ptr[BLOCK_8X8].vf(s, src_stride, r, MAX_TX_SIZE, &this_dist);
|
|
tmp += this_dist;
|
|
}
|
|
}
|
|
} else {
|
|
uint32_t this_dist;
|
|
cpi->fn_ptr[txm_bsize].vf(src, src_stride, rec_buffer, MAX_TX_SIZE,
|
|
&this_dist);
|
|
tmp = this_dist;
|
|
}
|
|
}
|
|
rd_stats->dist += tmp * 16;
|
|
txb_coeff_cost = av1_cost_coeffs(cm, x, plane, block, coeff_ctx, tx_size,
|
|
scan_order->scan, scan_order->neighbors, 0);
|
|
rd_stats->rate += txb_coeff_cost;
|
|
rd_stats->skip &= (p->eobs[block] == 0);
|
|
#if CONFIG_RD_DEBUG
|
|
{
|
|
int idx, idy;
|
|
rd_stats->txb_coeff_cost[plane] += txb_coeff_cost;
|
|
|
|
for (idy = 0; idy < txb_h; ++idy)
|
|
for (idx = 0; idx < txb_w; ++idx)
|
|
rd_stats->txb_coeff_cost_map[plane][blk_row + idy][blk_col + idx] = 0;
|
|
|
|
rd_stats->txb_coeff_cost_map[plane][blk_row][blk_col] = txb_coeff_cost;
|
|
|
|
assert(blk_row < 16);
|
|
assert(blk_col < 16);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
|
|
int blk_col, int plane, int block, TX_SIZE tx_size,
|
|
int depth, BLOCK_SIZE plane_bsize,
|
|
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
|
|
TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left,
|
|
RD_STATS *rd_stats, int64_t ref_best_rd,
|
|
int *is_cost_valid) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
struct macroblock_plane *const p = &x->plane[plane];
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const int tx_row = blk_row >> (1 - pd->subsampling_y);
|
|
const int tx_col = blk_col >> (1 - pd->subsampling_x);
|
|
TX_SIZE(*const inter_tx_size)
|
|
[MAX_MIB_SIZE] =
|
|
(TX_SIZE(*)[MAX_MIB_SIZE]) & mbmi->inter_tx_size[tx_row][tx_col];
|
|
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
|
|
int64_t this_rd = INT64_MAX;
|
|
ENTROPY_CONTEXT *pta = ta + blk_col;
|
|
ENTROPY_CONTEXT *ptl = tl + blk_row;
|
|
int coeff_ctx, i;
|
|
int ctx =
|
|
txfm_partition_context(tx_above + (blk_col >> 1),
|
|
tx_left + (blk_row >> 1), mbmi->sb_type, tx_size);
|
|
|
|
int64_t sum_rd = INT64_MAX;
|
|
int tmp_eob = 0;
|
|
int zero_blk_rate;
|
|
RD_STATS sum_rd_stats;
|
|
av1_init_rd_stats(&sum_rd_stats);
|
|
|
|
#if CONFIG_EXT_TX
|
|
assert(tx_size < TX_SIZES);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (ref_best_rd < 0) {
|
|
*is_cost_valid = 0;
|
|
return;
|
|
}
|
|
|
|
coeff_ctx = get_entropy_context(tx_size, pta, ptl);
|
|
|
|
av1_init_rd_stats(rd_stats);
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
zero_blk_rate =
|
|
x->token_costs[tx_size][pd->plane_type][1][0][0][coeff_ctx][EOB_TOKEN];
|
|
|
|
if (cpi->common.tx_mode == TX_MODE_SELECT || tx_size == TX_4X4) {
|
|
inter_tx_size[0][0] = tx_size;
|
|
av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block,
|
|
plane_bsize, coeff_ctx, rd_stats);
|
|
|
|
if ((RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist) >=
|
|
RDCOST(x->rdmult, x->rddiv, zero_blk_rate, rd_stats->sse) ||
|
|
rd_stats->skip == 1) &&
|
|
!xd->lossless[mbmi->segment_id]) {
|
|
rd_stats->rate = zero_blk_rate;
|
|
rd_stats->dist = rd_stats->sse;
|
|
rd_stats->skip = 1;
|
|
x->blk_skip[plane][blk_row * bw + blk_col] = 1;
|
|
p->eobs[block] = 0;
|
|
} else {
|
|
x->blk_skip[plane][blk_row * bw + blk_col] = 0;
|
|
rd_stats->skip = 0;
|
|
}
|
|
|
|
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH)
|
|
rd_stats->rate +=
|
|
av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 0);
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist);
|
|
tmp_eob = p->eobs[block];
|
|
}
|
|
|
|
if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bsl = tx_size_wide_unit[sub_txs];
|
|
int sub_step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
|
|
RD_STATS this_rd_stats;
|
|
int this_cost_valid = 1;
|
|
int64_t tmp_rd = 0;
|
|
|
|
sum_rd_stats.rate =
|
|
av1_cost_bit(cpi->common.fc->txfm_partition_prob[ctx], 1);
|
|
#if CONFIG_EXT_TX
|
|
assert(tx_size < TX_SIZES);
|
|
#endif // CONFIG_EXT_TX
|
|
for (i = 0; i < 4 && this_cost_valid; ++i) {
|
|
int offsetr = blk_row + (i >> 1) * bsl;
|
|
int offsetc = blk_col + (i & 0x01) * bsl;
|
|
|
|
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
|
|
|
|
select_tx_block(cpi, x, offsetr, offsetc, plane, block, sub_txs,
|
|
depth + 1, plane_bsize, ta, tl, tx_above, tx_left,
|
|
&this_rd_stats, ref_best_rd - tmp_rd, &this_cost_valid);
|
|
|
|
av1_merge_rd_stats(&sum_rd_stats, &this_rd_stats);
|
|
|
|
tmp_rd =
|
|
RDCOST(x->rdmult, x->rddiv, sum_rd_stats.rate, sum_rd_stats.dist);
|
|
if (this_rd < tmp_rd) break;
|
|
block += sub_step;
|
|
}
|
|
if (this_cost_valid) sum_rd = tmp_rd;
|
|
}
|
|
|
|
if (this_rd < sum_rd) {
|
|
int idx, idy;
|
|
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i) pta[i] = !(tmp_eob == 0);
|
|
for (i = 0; i < tx_size_high_unit[tx_size]; ++i) ptl[i] = !(tmp_eob == 0);
|
|
txfm_partition_update(tx_above + (blk_col >> 1), tx_left + (blk_row >> 1),
|
|
tx_size);
|
|
inter_tx_size[0][0] = tx_size;
|
|
for (idy = 0; idy < tx_size_high_unit[tx_size] / 2; ++idy)
|
|
for (idx = 0; idx < tx_size_wide_unit[tx_size] / 2; ++idx)
|
|
inter_tx_size[idy][idx] = tx_size;
|
|
mbmi->tx_size = tx_size;
|
|
if (this_rd == INT64_MAX) *is_cost_valid = 0;
|
|
x->blk_skip[plane][blk_row * bw + blk_col] = rd_stats->skip;
|
|
} else {
|
|
*rd_stats = sum_rd_stats;
|
|
if (sum_rd == INT64_MAX) *is_cost_valid = 0;
|
|
}
|
|
}
|
|
|
|
static void inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
RD_STATS *rd_stats, BLOCK_SIZE bsize,
|
|
int64_t ref_best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
int is_cost_valid = 1;
|
|
int64_t this_rd = 0;
|
|
|
|
if (ref_best_rd < 0) is_cost_valid = 0;
|
|
|
|
av1_init_rd_stats(rd_stats);
|
|
|
|
if (is_cost_valid) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[0];
|
|
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
|
|
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
|
|
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
|
|
const int bh = tx_size_high_unit[max_tx_size];
|
|
const int bw = tx_size_wide_unit[max_tx_size];
|
|
int idx, idy;
|
|
int block = 0;
|
|
int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
|
|
ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE];
|
|
ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE];
|
|
TXFM_CONTEXT tx_above[MAX_MIB_SIZE];
|
|
TXFM_CONTEXT tx_left[MAX_MIB_SIZE];
|
|
|
|
RD_STATS pn_rd_stats;
|
|
av1_init_rd_stats(&pn_rd_stats);
|
|
|
|
av1_get_entropy_contexts(bsize, TX_4X4, pd, ctxa, ctxl);
|
|
memcpy(tx_above, xd->above_txfm_context,
|
|
sizeof(TXFM_CONTEXT) * (mi_width >> 1));
|
|
memcpy(tx_left, xd->left_txfm_context,
|
|
sizeof(TXFM_CONTEXT) * (mi_height >> 1));
|
|
|
|
for (idy = 0; idy < mi_height; idy += bh) {
|
|
for (idx = 0; idx < mi_width; idx += bw) {
|
|
select_tx_block(cpi, x, idy, idx, 0, block, max_tx_size,
|
|
mi_height != mi_width, plane_bsize, ctxa, ctxl,
|
|
tx_above, tx_left, &pn_rd_stats, ref_best_rd - this_rd,
|
|
&is_cost_valid);
|
|
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
|
|
this_rd += AOMMIN(
|
|
RDCOST(x->rdmult, x->rddiv, pn_rd_stats.rate, pn_rd_stats.dist),
|
|
RDCOST(x->rdmult, x->rddiv, 0, pn_rd_stats.sse));
|
|
block += step;
|
|
}
|
|
}
|
|
}
|
|
|
|
this_rd = AOMMIN(RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist),
|
|
RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse));
|
|
if (this_rd > ref_best_rd) is_cost_valid = 0;
|
|
|
|
if (!is_cost_valid) {
|
|
// reset cost value
|
|
av1_invalid_rd_stats(rd_stats);
|
|
}
|
|
}
|
|
|
|
static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
RD_STATS *rd_stats, BLOCK_SIZE bsize,
|
|
int64_t ref_best_rd, TX_TYPE tx_type) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
aom_prob skip_prob = av1_get_skip_prob(cm, xd);
|
|
int s0 = av1_cost_bit(skip_prob, 0);
|
|
int s1 = av1_cost_bit(skip_prob, 1);
|
|
int64_t rd;
|
|
int row, col;
|
|
const int max_blocks_high = max_block_high(xd, bsize, 0);
|
|
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
|
|
|
|
mbmi->tx_type = tx_type;
|
|
mbmi->min_tx_size = TX_SIZES_ALL;
|
|
inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd);
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (is_rect_tx_allowed(xd, mbmi)) {
|
|
RD_STATS rect_rd_stats;
|
|
int64_t rd_rect_tx;
|
|
int tx_size_cat = inter_tx_size_cat_lookup[bsize];
|
|
TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
|
|
TX_SIZE var_tx_size = mbmi->tx_size;
|
|
|
|
txfm_rd_in_plane(x, cpi, &rect_rd_stats.rate, &rect_rd_stats.dist,
|
|
&rect_rd_stats.skip, &rect_rd_stats.sse, ref_best_rd, 0,
|
|
bsize, tx_size, cpi->sf.use_fast_coef_costing);
|
|
|
|
if (rd_stats->rate != INT_MAX) {
|
|
rd_stats->rate += av1_cost_bit(cm->fc->rect_tx_prob[tx_size_cat], 0);
|
|
if (rd_stats->skip) {
|
|
rd = RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse);
|
|
} else {
|
|
rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate + s0, rd_stats->dist);
|
|
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
|
|
!rd_stats->skip)
|
|
rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse));
|
|
}
|
|
} else {
|
|
rd = INT64_MAX;
|
|
}
|
|
|
|
if (rect_rd_stats.rate != INT_MAX) {
|
|
rect_rd_stats.rate += av1_cost_bit(cm->fc->rect_tx_prob[tx_size_cat], 1);
|
|
if (rect_rd_stats.skip) {
|
|
rd_rect_tx = RDCOST(x->rdmult, x->rddiv, s1, rect_rd_stats.sse);
|
|
} else {
|
|
rd_rect_tx = RDCOST(x->rdmult, x->rddiv, rect_rd_stats.rate + s0,
|
|
rect_rd_stats.dist);
|
|
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
|
|
!(rect_rd_stats.skip))
|
|
rd_rect_tx = AOMMIN(
|
|
rd_rect_tx, RDCOST(x->rdmult, x->rddiv, s1, rect_rd_stats.sse));
|
|
}
|
|
} else {
|
|
rd_rect_tx = INT64_MAX;
|
|
}
|
|
|
|
if (rd_rect_tx < rd) {
|
|
*rd_stats = rect_rd_stats;
|
|
if (!xd->lossless[mbmi->segment_id]) x->blk_skip[0][0] = rd_stats->skip;
|
|
mbmi->tx_size = tx_size;
|
|
mbmi->inter_tx_size[0][0] = mbmi->tx_size;
|
|
} else {
|
|
mbmi->tx_size = var_tx_size;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
if (rd_stats->rate == INT_MAX) return INT64_MAX;
|
|
|
|
for (row = 0; row < max_blocks_high / 2; ++row)
|
|
for (col = 0; col < max_blocks_wide / 2; ++col)
|
|
mbmi->min_tx_size = AOMMIN(
|
|
mbmi->min_tx_size, get_min_tx_size(mbmi->inter_tx_size[row][col]));
|
|
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(mbmi->min_tx_size, bsize, is_inter) > 1 &&
|
|
!xd->lossless[xd->mi[0]->mbmi.segment_id]) {
|
|
int ext_tx_set = get_ext_tx_set(mbmi->min_tx_size, bsize, is_inter);
|
|
if (is_inter) {
|
|
if (ext_tx_set > 0)
|
|
rd_stats->rate +=
|
|
cpi->inter_tx_type_costs[ext_tx_set]
|
|
[txsize_sqr_map[mbmi->min_tx_size]]
|
|
[mbmi->tx_type];
|
|
} else {
|
|
if (ext_tx_set > 0 && ALLOW_INTRA_EXT_TX)
|
|
rd_stats->rate +=
|
|
cpi->intra_tx_type_costs[ext_tx_set][mbmi->min_tx_size][mbmi->mode]
|
|
[mbmi->tx_type];
|
|
}
|
|
}
|
|
#else // CONFIG_EXT_TX
|
|
if (mbmi->min_tx_size < TX_32X32 && !xd->lossless[xd->mi[0]->mbmi.segment_id])
|
|
rd_stats->rate +=
|
|
cpi->inter_tx_type_costs[mbmi->min_tx_size][mbmi->tx_type];
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (rd_stats->skip)
|
|
rd = RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse);
|
|
else
|
|
rd = RDCOST(x->rdmult, x->rddiv, rd_stats->rate + s0, rd_stats->dist);
|
|
|
|
if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] &&
|
|
!(rd_stats->skip))
|
|
rd = AOMMIN(rd, RDCOST(x->rdmult, x->rddiv, s1, rd_stats->sse));
|
|
|
|
return rd;
|
|
}
|
|
|
|
static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
RD_STATS *rd_stats, BLOCK_SIZE bsize,
|
|
int64_t ref_best_rd) {
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
int64_t rd = INT64_MAX;
|
|
int64_t best_rd = INT64_MAX;
|
|
TX_TYPE tx_type, best_tx_type = DCT_DCT;
|
|
const int is_inter = is_inter_block(mbmi);
|
|
TX_SIZE best_tx_size[MAX_MIB_SIZE][MAX_MIB_SIZE];
|
|
TX_SIZE best_tx = max_txsize_lookup[bsize];
|
|
TX_SIZE best_min_tx_size = TX_SIZES_ALL;
|
|
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE * 4];
|
|
const int n4 = 1 << (num_pels_log2_lookup[bsize] - 4);
|
|
int idx, idy;
|
|
int prune = 0;
|
|
#if CONFIG_EXT_TX
|
|
int ext_tx_set = get_ext_tx_set(max_tx_size, bsize, is_inter);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE)
|
|
#if CONFIG_EXT_TX
|
|
prune = prune_tx_types(cpi, bsize, x, xd, ext_tx_set);
|
|
#else
|
|
prune = prune_tx_types(cpi, bsize, x, xd, 0);
|
|
#endif
|
|
|
|
av1_invalid_rd_stats(rd_stats);
|
|
|
|
for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) {
|
|
RD_STATS this_rd_stats;
|
|
av1_init_rd_stats(&this_rd_stats);
|
|
#if CONFIG_EXT_TX
|
|
if (is_inter) {
|
|
if (!ext_tx_used_inter[ext_tx_set][tx_type]) continue;
|
|
if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) {
|
|
if (!do_tx_type_search(tx_type, prune)) continue;
|
|
}
|
|
} else {
|
|
if (!ALLOW_INTRA_EXT_TX && bsize >= BLOCK_8X8) {
|
|
if (tx_type != intra_mode_to_tx_type_context[mbmi->mode]) continue;
|
|
}
|
|
if (!ext_tx_used_intra[ext_tx_set][tx_type]) continue;
|
|
}
|
|
#else // CONFIG_EXT_TX
|
|
if (is_inter && cpi->sf.tx_type_search.prune_mode > NO_PRUNE &&
|
|
!do_tx_type_search(tx_type, prune))
|
|
continue;
|
|
#endif // CONFIG_EXT_TX
|
|
if (is_inter && x->use_default_inter_tx_type &&
|
|
tx_type != get_default_tx_type(0, xd, 0, max_tx_size))
|
|
continue;
|
|
|
|
if (xd->lossless[mbmi->segment_id])
|
|
if (tx_type != DCT_DCT) continue;
|
|
|
|
rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, ref_best_rd,
|
|
tx_type);
|
|
|
|
if (rd < best_rd) {
|
|
best_rd = rd;
|
|
*rd_stats = this_rd_stats;
|
|
best_tx_type = mbmi->tx_type;
|
|
best_tx = mbmi->tx_size;
|
|
best_min_tx_size = mbmi->min_tx_size;
|
|
memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4);
|
|
for (idy = 0; idy < xd->n8_h; ++idy)
|
|
for (idx = 0; idx < xd->n8_w; ++idx)
|
|
best_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx];
|
|
}
|
|
}
|
|
|
|
mbmi->tx_type = best_tx_type;
|
|
for (idy = 0; idy < xd->n8_h; ++idy)
|
|
for (idx = 0; idx < xd->n8_w; ++idx)
|
|
mbmi->inter_tx_size[idy][idx] = best_tx_size[idy][idx];
|
|
mbmi->tx_size = best_tx;
|
|
mbmi->min_tx_size = best_min_tx_size;
|
|
#if CONFIG_RD_DEBUG
|
|
// record plane y's transform block coefficient cost
|
|
mbmi->rd_stats = *rd_stats;
|
|
#endif
|
|
memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4);
|
|
}
|
|
|
|
static void tx_block_rd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row,
|
|
int blk_col, int plane, int block, TX_SIZE tx_size,
|
|
BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx,
|
|
ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
struct macroblock_plane *const p = &x->plane[plane];
|
|
struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
|
|
const int tx_row = blk_row >> (1 - pd->subsampling_y);
|
|
const int tx_col = blk_col >> (1 - pd->subsampling_x);
|
|
TX_SIZE plane_tx_size;
|
|
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
|
|
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
|
|
|
|
#if CONFIG_EXT_TX
|
|
assert(tx_size < TX_SIZES);
|
|
#endif // CONFIG_EXT_TX
|
|
|
|
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
|
|
|
|
plane_tx_size =
|
|
plane ? uv_txsize_lookup[bsize][mbmi->inter_tx_size[tx_row][tx_col]][0][0]
|
|
: mbmi->inter_tx_size[tx_row][tx_col];
|
|
|
|
if (tx_size == plane_tx_size) {
|
|
int coeff_ctx, i;
|
|
ENTROPY_CONTEXT *ta = above_ctx + blk_col;
|
|
ENTROPY_CONTEXT *tl = left_ctx + blk_row;
|
|
coeff_ctx = get_entropy_context(tx_size, ta, tl);
|
|
av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block,
|
|
plane_bsize, coeff_ctx, rd_stats);
|
|
|
|
for (i = 0; i < tx_size_wide_unit[tx_size]; ++i)
|
|
ta[i] = !(p->eobs[block] == 0);
|
|
for (i = 0; i < tx_size_high_unit[tx_size]; ++i)
|
|
tl[i] = !(p->eobs[block] == 0);
|
|
} else {
|
|
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
|
|
const int bsl = tx_size_wide_unit[sub_txs];
|
|
int step = tx_size_wide_unit[sub_txs] * tx_size_high_unit[sub_txs];
|
|
int i;
|
|
|
|
assert(bsl > 0);
|
|
|
|
for (i = 0; i < 4; ++i) {
|
|
int offsetr = blk_row + (i >> 1) * bsl;
|
|
int offsetc = blk_col + (i & 0x01) * bsl;
|
|
|
|
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
|
|
|
|
tx_block_rd(cpi, x, offsetr, offsetc, plane, block, sub_txs, plane_bsize,
|
|
above_ctx, left_ctx, rd_stats);
|
|
block += step;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return value 0: early termination triggered, no valid rd cost available;
|
|
// 1: rd cost values are valid.
|
|
static int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
RD_STATS *rd_stats, BLOCK_SIZE bsize,
|
|
int64_t ref_best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
int plane;
|
|
int is_cost_valid = 1;
|
|
int64_t this_rd;
|
|
|
|
if (ref_best_rd < 0) is_cost_valid = 0;
|
|
|
|
av1_init_rd_stats(rd_stats);
|
|
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
if (is_rect_tx(mbmi->tx_size)) {
|
|
return super_block_uvrd(cpi, x, &rd_stats->rate, &rd_stats->dist,
|
|
&rd_stats->skip, &rd_stats->sse, bsize,
|
|
ref_best_rd);
|
|
}
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
if (is_inter_block(mbmi) && is_cost_valid) {
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane)
|
|
av1_subtract_plane(x, bsize, plane);
|
|
}
|
|
|
|
for (plane = 1; plane < MAX_MB_PLANE; ++plane) {
|
|
const struct macroblockd_plane *const pd = &xd->plane[plane];
|
|
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd);
|
|
const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize];
|
|
const int mi_height = num_4x4_blocks_high_lookup[plane_bsize];
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize];
|
|
const int bh = tx_size_high_unit[max_tx_size];
|
|
const int bw = tx_size_wide_unit[max_tx_size];
|
|
int idx, idy;
|
|
int block = 0;
|
|
const int step = bh * bw;
|
|
ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE];
|
|
ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE];
|
|
RD_STATS pn_rd_stats;
|
|
av1_init_rd_stats(&pn_rd_stats);
|
|
|
|
av1_get_entropy_contexts(bsize, TX_4X4, pd, ta, tl);
|
|
|
|
for (idy = 0; idy < mi_height; idy += bh) {
|
|
for (idx = 0; idx < mi_width; idx += bw) {
|
|
tx_block_rd(cpi, x, idy, idx, plane, block, max_tx_size, plane_bsize,
|
|
ta, tl, &pn_rd_stats);
|
|
block += step;
|
|
}
|
|
}
|
|
|
|
if (pn_rd_stats.rate == INT_MAX) {
|
|
is_cost_valid = 0;
|
|
break;
|
|
}
|
|
|
|
av1_merge_rd_stats(rd_stats, &pn_rd_stats);
|
|
|
|
this_rd =
|
|
AOMMIN(RDCOST(x->rdmult, x->rddiv, rd_stats->rate, rd_stats->dist),
|
|
RDCOST(x->rdmult, x->rddiv, 0, rd_stats->sse));
|
|
|
|
if (this_rd > ref_best_rd) {
|
|
is_cost_valid = 0;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!is_cost_valid) {
|
|
// reset cost value
|
|
av1_invalid_rd_stats(rd_stats);
|
|
}
|
|
|
|
return is_cost_valid;
|
|
}
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
#if CONFIG_PALETTE
|
|
static void rd_pick_palette_intra_sbuv(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, int dc_mode_cost,
|
|
PALETTE_MODE_INFO *palette_mode_info, uint8_t *best_palette_color_map,
|
|
PREDICTION_MODE *mode_selected, int64_t *best_rd, int *rate,
|
|
int *rate_tokenonly, int64_t *distortion, int *skippable) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
const int rows =
|
|
(4 * num_4x4_blocks_high_lookup[bsize]) >> (xd->plane[1].subsampling_y);
|
|
const int cols =
|
|
(4 * num_4x4_blocks_wide_lookup[bsize]) >> (xd->plane[1].subsampling_x);
|
|
int this_rate, this_rate_tokenonly, s;
|
|
int64_t this_distortion, this_rd;
|
|
int colors_u, colors_v, colors;
|
|
const int src_stride = x->plane[1].src.stride;
|
|
const uint8_t *const src_u = x->plane[1].src.buf;
|
|
const uint8_t *const src_v = x->plane[2].src.buf;
|
|
|
|
if (rows * cols > PALETTE_MAX_BLOCK_SIZE) return;
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth) {
|
|
colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols,
|
|
cpi->common.bit_depth);
|
|
colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols,
|
|
cpi->common.bit_depth);
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
colors_u = av1_count_colors(src_u, src_stride, rows, cols);
|
|
colors_v = av1_count_colors(src_v, src_stride, rows, cols);
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
colors = colors_u > colors_v ? colors_u : colors_v;
|
|
if (colors > 1 && colors <= 64) {
|
|
int r, c, n, i, j;
|
|
const int max_itr = 50;
|
|
uint8_t color_order[PALETTE_MAX_SIZE];
|
|
int64_t this_sse;
|
|
float lb_u, ub_u, val_u;
|
|
float lb_v, ub_v, val_v;
|
|
float *const data = x->palette_buffer->kmeans_data_buf;
|
|
float centroids[2 * PALETTE_MAX_SIZE];
|
|
uint8_t *const color_map = xd->plane[1].color_index_map;
|
|
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u);
|
|
uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v);
|
|
if (cpi->common.use_highbitdepth) {
|
|
lb_u = src_u16[0];
|
|
ub_u = src_u16[0];
|
|
lb_v = src_v16[0];
|
|
ub_v = src_v16[0];
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
lb_u = src_u[0];
|
|
ub_u = src_u[0];
|
|
lb_v = src_v[0];
|
|
ub_v = src_v[0];
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
mbmi->uv_mode = DC_PRED;
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
for (r = 0; r < rows; ++r) {
|
|
for (c = 0; c < cols; ++c) {
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth) {
|
|
val_u = src_u16[r * src_stride + c];
|
|
val_v = src_v16[r * src_stride + c];
|
|
data[(r * cols + c) * 2] = val_u;
|
|
data[(r * cols + c) * 2 + 1] = val_v;
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
val_u = src_u[r * src_stride + c];
|
|
val_v = src_v[r * src_stride + c];
|
|
data[(r * cols + c) * 2] = val_u;
|
|
data[(r * cols + c) * 2 + 1] = val_v;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
if (val_u < lb_u)
|
|
lb_u = val_u;
|
|
else if (val_u > ub_u)
|
|
ub_u = val_u;
|
|
if (val_v < lb_v)
|
|
lb_v = val_v;
|
|
else if (val_v > ub_v)
|
|
ub_v = val_v;
|
|
}
|
|
}
|
|
|
|
for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2;
|
|
--n) {
|
|
for (i = 0; i < n; ++i) {
|
|
centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2;
|
|
centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2;
|
|
}
|
|
av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr);
|
|
pmi->palette_size[1] = n;
|
|
for (i = 1; i < 3; ++i) {
|
|
for (j = 0; j < n; ++j) {
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth)
|
|
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd(
|
|
(int)centroids[j * 2 + i - 1], cpi->common.bit_depth);
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
pmi->palette_colors[i * PALETTE_MAX_SIZE + j] =
|
|
clip_pixel((int)centroids[j * 2 + i - 1]);
|
|
}
|
|
}
|
|
|
|
super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
&this_sse, bsize, *best_rd);
|
|
if (this_rate_tokenonly == INT_MAX) continue;
|
|
this_rate =
|
|
this_rate_tokenonly + dc_mode_cost +
|
|
2 * cpi->common.bit_depth * n * av1_cost_bit(128, 0) +
|
|
cpi->palette_uv_size_cost[bsize - BLOCK_8X8][n - 2] +
|
|
write_uniform_cost(n, color_map[0]) +
|
|
av1_cost_bit(
|
|
av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 1);
|
|
|
|
for (i = 0; i < rows; ++i) {
|
|
for (j = (i == 0 ? 1 : 0); j < cols; ++j) {
|
|
int color_idx;
|
|
const int color_ctx = av1_get_palette_color_context(
|
|
color_map, cols, i, j, n, color_order, &color_idx);
|
|
assert(color_idx >= 0 && color_idx < n);
|
|
this_rate += cpi->palette_uv_color_cost[n - 2][color_ctx][color_idx];
|
|
}
|
|
}
|
|
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
if (this_rd < *best_rd) {
|
|
*best_rd = this_rd;
|
|
*palette_mode_info = *pmi;
|
|
memcpy(best_palette_color_map, color_map,
|
|
rows * cols * sizeof(best_palette_color_map[0]));
|
|
*mode_selected = DC_PRED;
|
|
*rate = this_rate;
|
|
*distortion = this_distortion;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
// Return 1 if an filter intra mode is selected; return 0 otherwise.
|
|
static int rd_pick_filter_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, int64_t *best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
int filter_intra_selected_flag = 0;
|
|
int this_rate_tokenonly, this_rate, s;
|
|
int64_t this_distortion, this_sse, this_rd;
|
|
FILTER_INTRA_MODE mode;
|
|
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
|
|
|
|
av1_zero(filter_intra_mode_info);
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 1;
|
|
mbmi->uv_mode = DC_PRED;
|
|
#if CONFIG_PALETTE
|
|
mbmi->palette_mode_info.palette_size[1] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) {
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1] = mode;
|
|
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
&this_sse, bsize, *best_rd))
|
|
continue;
|
|
|
|
this_rate = this_rate_tokenonly +
|
|
av1_cost_bit(cpi->common.fc->filter_intra_probs[1], 1) +
|
|
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode] +
|
|
write_uniform_cost(FILTER_INTRA_MODES, mode);
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
if (this_rd < *best_rd) {
|
|
*best_rd = this_rd;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
filter_intra_mode_info = mbmi->filter_intra_mode_info;
|
|
filter_intra_selected_flag = 1;
|
|
}
|
|
}
|
|
|
|
if (filter_intra_selected_flag) {
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
|
|
filter_intra_mode_info.use_filter_intra_mode[1];
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
|
|
filter_intra_mode_info.filter_intra_mode[1];
|
|
return 1;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
static void pick_intra_angle_routine_sbuv(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable, int *best_angle_delta,
|
|
BLOCK_SIZE bsize, int rate_overhead, int64_t *best_rd) {
|
|
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
|
|
int this_rate_tokenonly, this_rate, s;
|
|
int64_t this_distortion, this_sse, this_rd;
|
|
|
|
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
&this_sse, bsize, *best_rd))
|
|
return;
|
|
|
|
this_rate = this_rate_tokenonly + rate_overhead;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
if (this_rd < *best_rd) {
|
|
*best_rd = this_rd;
|
|
*best_angle_delta = mbmi->angle_delta[1];
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
|
|
static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, int rate_overhead,
|
|
int64_t best_rd) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
int this_rate_tokenonly, this_rate, s;
|
|
int64_t this_distortion, this_sse, this_rd;
|
|
int angle_delta, best_angle_delta = 0;
|
|
const double rd_adjust = 1.2;
|
|
|
|
*rate_tokenonly = INT_MAX;
|
|
if (ANGLE_FAST_SEARCH) {
|
|
int deltas_level1[3] = { 0, -2, 2 };
|
|
int deltas_level2[3][2] = {
|
|
{ -1, 1 }, { -3, -1 }, { 1, 3 },
|
|
};
|
|
const int level1 = 3, level2 = 2;
|
|
int i, j, best_i = -1;
|
|
|
|
for (i = 0; i < level1; ++i) {
|
|
int64_t tmp_best_rd;
|
|
mbmi->angle_delta[1] = deltas_level1[i];
|
|
tmp_best_rd = (i == 0 && best_rd < INT64_MAX)
|
|
? (int64_t)(best_rd * rd_adjust)
|
|
: best_rd;
|
|
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
&this_sse, bsize, tmp_best_rd)) {
|
|
if (i == 0)
|
|
break;
|
|
else
|
|
continue;
|
|
}
|
|
this_rate = this_rate_tokenonly + rate_overhead;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
if (i == 0 && best_rd < INT64_MAX && this_rd > best_rd * rd_adjust) break;
|
|
if (this_rd < best_rd) {
|
|
best_i = i;
|
|
best_rd = this_rd;
|
|
best_angle_delta = mbmi->angle_delta[1];
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
|
|
if (best_i >= 0) {
|
|
for (j = 0; j < level2; ++j) {
|
|
mbmi->angle_delta[1] = deltas_level2[best_i][j];
|
|
pick_intra_angle_routine_sbuv(cpi, x, rate, rate_tokenonly, distortion,
|
|
skippable, &best_angle_delta, bsize,
|
|
rate_overhead, &best_rd);
|
|
}
|
|
}
|
|
} else {
|
|
for (angle_delta = -MAX_ANGLE_DELTAS; angle_delta <= MAX_ANGLE_DELTAS;
|
|
++angle_delta) {
|
|
mbmi->angle_delta[1] = angle_delta;
|
|
pick_intra_angle_routine_sbuv(cpi, x, rate, rate_tokenonly, distortion,
|
|
skippable, &best_angle_delta, bsize,
|
|
rate_overhead, &best_rd);
|
|
}
|
|
}
|
|
|
|
mbmi->angle_delta[1] = best_angle_delta;
|
|
return *rate_tokenonly != INT_MAX;
|
|
}
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int *rate, int *rate_tokenonly,
|
|
int64_t *distortion, int *skippable,
|
|
BLOCK_SIZE bsize, TX_SIZE max_tx_size) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
PREDICTION_MODE mode;
|
|
PREDICTION_MODE mode_selected = DC_PRED;
|
|
int64_t best_rd = INT64_MAX, this_rd;
|
|
int this_rate_tokenonly, this_rate, s;
|
|
int64_t this_distortion, this_sse;
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer buf;
|
|
|
|
od_encode_checkpoint(&x->daala_enc, &buf);
|
|
#endif
|
|
#if CONFIG_PALETTE
|
|
const int rows =
|
|
(4 * num_4x4_blocks_high_lookup[bsize]) >> (xd->plane[1].subsampling_y);
|
|
const int cols =
|
|
(4 * num_4x4_blocks_wide_lookup[bsize]) >> (xd->plane[1].subsampling_x);
|
|
PALETTE_MODE_INFO palette_mode_info;
|
|
PALETTE_MODE_INFO *const pmi = &xd->mi[0]->mbmi.palette_mode_info;
|
|
uint8_t *best_palette_color_map = NULL;
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_EXT_INTRA
|
|
int is_directional_mode, rate_overhead, best_angle_delta = 0;
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
FILTER_INTRA_MODE_INFO filter_intra_mode_info;
|
|
|
|
filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
#if CONFIG_PALETTE
|
|
palette_mode_info.palette_size[1] = 0;
|
|
pmi->palette_size[1] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
for (mode = DC_PRED; mode <= TM_PRED; ++mode) {
|
|
if (!(cpi->sf.intra_uv_mode_mask[max_tx_size] & (1 << mode))) continue;
|
|
|
|
mbmi->uv_mode = mode;
|
|
#if CONFIG_EXT_INTRA
|
|
is_directional_mode = (mode != DC_PRED && mode != TM_PRED);
|
|
rate_overhead = cpi->intra_uv_mode_cost[mbmi->mode][mode] +
|
|
write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0);
|
|
mbmi->angle_delta[1] = 0;
|
|
if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode) {
|
|
if (!rd_pick_intra_angle_sbuv(cpi, x, &this_rate, &this_rate_tokenonly,
|
|
&this_distortion, &s, bsize, rate_overhead,
|
|
best_rd))
|
|
continue;
|
|
} else {
|
|
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
&this_sse, bsize, best_rd)) {
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &buf);
|
|
#endif
|
|
continue;
|
|
}
|
|
}
|
|
this_rate = this_rate_tokenonly + cpi->intra_uv_mode_cost[mbmi->mode][mode];
|
|
if (mbmi->sb_type >= BLOCK_8X8 && is_directional_mode)
|
|
this_rate += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
|
|
MAX_ANGLE_DELTAS + mbmi->angle_delta[1]);
|
|
#else
|
|
if (!super_block_uvrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s,
|
|
&this_sse, bsize, best_rd)) {
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &buf);
|
|
#endif
|
|
continue;
|
|
}
|
|
this_rate = this_rate_tokenonly + cpi->intra_uv_mode_cost[mbmi->mode][mode];
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
if (mbmi->sb_type >= BLOCK_8X8 && mode == DC_PRED)
|
|
this_rate += av1_cost_bit(cpi->common.fc->filter_intra_probs[1], 0);
|
|
#endif // CONFIG_FILTER_INTRA
|
|
#if CONFIG_PALETTE
|
|
if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8 &&
|
|
mode == DC_PRED)
|
|
this_rate += av1_cost_bit(
|
|
av1_default_palette_uv_mode_prob[pmi->palette_size[0] > 0], 0);
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_PVQ
|
|
// For chroma channels, multiply lambda by 0.5 when doing intra prediction
|
|
// NOTE: Chroma intra prediction itself has a separate RDO,
|
|
// though final chroma intra mode's D and R is simply added to
|
|
// those of luma then global RDO is performed to decide the modes of SB.
|
|
// Also, for chroma, the RDO cannot decide tx_size (follow luma's decision)
|
|
// or tx_type (DCT only), then only the intra prediction is
|
|
// chroma's own mode decision based on separate RDO.
|
|
// TODO(yushin) : Seek for more reasonable solution than this.
|
|
this_rd = RDCOST(x->rdmult >> (1 * PVQ_CHROMA_RD), x->rddiv, this_rate,
|
|
this_distortion);
|
|
od_encode_rollback(&x->daala_enc, &buf);
|
|
#else
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion);
|
|
#endif
|
|
|
|
if (this_rd < best_rd) {
|
|
mode_selected = mode;
|
|
#if CONFIG_EXT_INTRA
|
|
best_angle_delta = mbmi->angle_delta[1];
|
|
#endif // CONFIG_EXT_INTRA
|
|
best_rd = this_rd;
|
|
*rate = this_rate;
|
|
*rate_tokenonly = this_rate_tokenonly;
|
|
*distortion = this_distortion;
|
|
*skippable = s;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
if (cpi->common.allow_screen_content_tools && mbmi->sb_type >= BLOCK_8X8) {
|
|
best_palette_color_map = x->palette_buffer->best_palette_color_map;
|
|
rd_pick_palette_intra_sbuv(
|
|
cpi, x, cpi->intra_uv_mode_cost[mbmi->mode][DC_PRED],
|
|
&palette_mode_info, best_palette_color_map, &mode_selected, &best_rd,
|
|
rate, rate_tokenonly, distortion, skippable);
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
if (mbmi->sb_type >= BLOCK_8X8) {
|
|
if (rd_pick_filter_intra_sbuv(cpi, x, rate, rate_tokenonly, distortion,
|
|
skippable, bsize, &best_rd)) {
|
|
mode_selected = mbmi->uv_mode;
|
|
filter_intra_mode_info = mbmi->filter_intra_mode_info;
|
|
}
|
|
}
|
|
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
|
|
filter_intra_mode_info.use_filter_intra_mode[1];
|
|
if (filter_intra_mode_info.use_filter_intra_mode[1]) {
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
|
|
filter_intra_mode_info.filter_intra_mode[1];
|
|
#if CONFIG_PALETTE
|
|
palette_mode_info.palette_size[1] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
mbmi->angle_delta[1] = best_angle_delta;
|
|
#endif // CONFIG_EXT_INTRA
|
|
mbmi->uv_mode = mode_selected;
|
|
#if CONFIG_PALETTE
|
|
pmi->palette_size[1] = palette_mode_info.palette_size[1];
|
|
if (palette_mode_info.palette_size[1] > 0) {
|
|
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
|
|
palette_mode_info.palette_colors + PALETTE_MAX_SIZE,
|
|
2 * PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
|
|
memcpy(xd->plane[1].color_index_map, best_palette_color_map,
|
|
rows * cols * sizeof(best_palette_color_map[0]));
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x,
|
|
PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize,
|
|
TX_SIZE max_tx_size, int *rate_uv,
|
|
int *rate_uv_tokenonly, int64_t *dist_uv,
|
|
int *skip_uv, PREDICTION_MODE *mode_uv) {
|
|
// Use an estimated rd for uv_intra based on DC_PRED if the
|
|
// appropriate speed flag is set.
|
|
(void)ctx;
|
|
rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv,
|
|
bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize, max_tx_size);
|
|
*mode_uv = x->e_mbd.mi[0]->mbmi.uv_mode;
|
|
}
|
|
|
|
static int cost_mv_ref(const AV1_COMP *const cpi, PREDICTION_MODE mode,
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
int is_compound,
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
int16_t mode_context) {
|
|
#if CONFIG_REF_MV
|
|
int mode_cost = 0;
|
|
#if CONFIG_EXT_INTER
|
|
int16_t mode_ctx =
|
|
is_compound ? mode_context : (mode_context & NEWMV_CTX_MASK);
|
|
#else
|
|
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
|
|
#endif // CONFIG_EXT_INTER
|
|
int16_t is_all_zero_mv = mode_context & (1 << ALL_ZERO_FLAG_OFFSET);
|
|
|
|
assert(is_inter_mode(mode));
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (is_compound) {
|
|
return cpi->inter_compound_mode_cost[mode_context]
|
|
[INTER_COMPOUND_OFFSET(mode)];
|
|
} else {
|
|
if (mode == NEWMV || mode == NEWFROMNEARMV) {
|
|
#else
|
|
if (mode == NEWMV) {
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_cost = cpi->newmv_mode_cost[mode_ctx][0];
|
|
#if CONFIG_EXT_INTER
|
|
if (!is_compound)
|
|
mode_cost += cpi->new2mv_mode_cost[mode == NEWFROMNEARMV];
|
|
#endif // CONFIG_EXT_INTER
|
|
return mode_cost;
|
|
} else {
|
|
mode_cost = cpi->newmv_mode_cost[mode_ctx][1];
|
|
mode_ctx = (mode_context >> ZEROMV_OFFSET) & ZEROMV_CTX_MASK;
|
|
|
|
if (is_all_zero_mv) return mode_cost;
|
|
|
|
if (mode == ZEROMV) {
|
|
mode_cost += cpi->zeromv_mode_cost[mode_ctx][0];
|
|
return mode_cost;
|
|
} else {
|
|
mode_cost += cpi->zeromv_mode_cost[mode_ctx][1];
|
|
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
|
|
|
|
if (mode_context & (1 << SKIP_NEARESTMV_OFFSET)) mode_ctx = 6;
|
|
if (mode_context & (1 << SKIP_NEARMV_OFFSET)) mode_ctx = 7;
|
|
if (mode_context & (1 << SKIP_NEARESTMV_SUB8X8_OFFSET)) mode_ctx = 8;
|
|
|
|
mode_cost += cpi->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
|
|
return mode_cost;
|
|
}
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#else
|
|
assert(is_inter_mode(mode));
|
|
#if CONFIG_EXT_INTER
|
|
if (is_inter_compound_mode(mode)) {
|
|
return cpi->inter_compound_mode_cost[mode_context]
|
|
[INTER_COMPOUND_OFFSET(mode)];
|
|
} else {
|
|
#endif // CONFIG_EXT_INTER
|
|
return cpi->inter_mode_cost[mode_context][INTER_OFFSET(mode)];
|
|
#if CONFIG_EXT_INTER
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_GLOBAL_MOTION
|
|
static int get_gmbitcost(const Global_Motion_Params *gm,
|
|
const aom_prob *probs) {
|
|
int gmtype_cost[GLOBAL_MOTION_TYPES];
|
|
int bits;
|
|
av1_cost_tokens(gmtype_cost, probs, av1_global_motion_types_tree);
|
|
if (gm->motion_params.wmmat[5] || gm->motion_params.wmmat[4]) {
|
|
bits = (GM_ABS_TRANS_BITS + 1) * 2 + 4 * GM_ABS_ALPHA_BITS + 4;
|
|
} else if (gm->motion_params.wmmat[3] || gm->motion_params.wmmat[2]) {
|
|
bits = (GM_ABS_TRANS_BITS + 1) * 2 + 2 * GM_ABS_ALPHA_BITS + 2;
|
|
} else {
|
|
bits = ((gm->motion_params.wmmat[1] || gm->motion_params.wmmat[0])
|
|
? ((GM_ABS_TRANS_BITS + 1) * 2)
|
|
: 0);
|
|
}
|
|
return bits ? (bits << AV1_PROB_COST_SHIFT) + gmtype_cost[gm->gmtype] : 0;
|
|
}
|
|
|
|
#define GLOBAL_MOTION_RATE(ref) \
|
|
(cpi->global_motion_used[ref] >= 2 \
|
|
? 0 \
|
|
: get_gmbitcost(&cm->global_motion[(ref)], \
|
|
cm->fc->global_motion_types_prob) / \
|
|
2);
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
|
|
static int set_and_cost_bmi_mvs(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
MACROBLOCKD *xd, int i, PREDICTION_MODE mode,
|
|
int_mv this_mv[2],
|
|
int_mv frame_mv[MB_MODE_COUNT]
|
|
[TOTAL_REFS_PER_FRAME],
|
|
int_mv seg_mvs[TOTAL_REFS_PER_FRAME],
|
|
#if CONFIG_EXT_INTER
|
|
int_mv compound_seg_newmvs[2],
|
|
#endif // CONFIG_EXT_INTER
|
|
int_mv *best_ref_mv[2], const int *mvjcost,
|
|
int *mvcost[2]) {
|
|
#if CONFIG_GLOBAL_MOTION
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
MODE_INFO *const mic = xd->mi[0];
|
|
const MB_MODE_INFO *const mbmi = &mic->mbmi;
|
|
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
int thismvcost = 0;
|
|
int idx, idy;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type];
|
|
const int is_compound = has_second_ref(mbmi);
|
|
int mode_ctx = mbmi_ext->mode_context[mbmi->ref_frame[0]];
|
|
|
|
switch (mode) {
|
|
case NEWMV:
|
|
#if CONFIG_EXT_INTER
|
|
case NEWFROMNEARMV:
|
|
#endif // CONFIG_EXT_INTER
|
|
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
|
|
#if CONFIG_EXT_INTER
|
|
if (!cpi->common.allow_high_precision_mv)
|
|
lower_mv_precision(&this_mv[0].as_mv, 0);
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_REF_MV
|
|
for (idx = 0; idx < 1 + is_compound; ++idx) {
|
|
this_mv[idx] = seg_mvs[mbmi->ref_frame[idx]];
|
|
av1_set_mvcost(x, mbmi->ref_frame[idx], idx, mbmi->ref_mv_idx);
|
|
thismvcost +=
|
|
av1_mv_bit_cost(&this_mv[idx].as_mv, &best_ref_mv[idx]->as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT_SUB);
|
|
}
|
|
(void)mvjcost;
|
|
(void)mvcost;
|
|
#else
|
|
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
#if !CONFIG_EXT_INTER
|
|
if (is_compound) {
|
|
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
|
|
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
}
|
|
#endif // !CONFIG_EXT_INTER
|
|
#endif
|
|
break;
|
|
case NEARMV:
|
|
case NEARESTMV:
|
|
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
|
|
if (is_compound)
|
|
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
|
|
break;
|
|
case ZEROMV:
|
|
#if CONFIG_GLOBAL_MOTION
|
|
this_mv[0].as_int =
|
|
gm_get_motion_vector(&cpi->common.global_motion[mbmi->ref_frame[0]])
|
|
.as_int;
|
|
thismvcost += GLOBAL_MOTION_RATE(mbmi->ref_frame[0]);
|
|
if (is_compound) {
|
|
this_mv[1].as_int =
|
|
gm_get_motion_vector(&cpi->common.global_motion[mbmi->ref_frame[1]])
|
|
.as_int;
|
|
thismvcost += GLOBAL_MOTION_RATE(mbmi->ref_frame[1]);
|
|
}
|
|
#else // CONFIG_GLOBAL_MOTION
|
|
this_mv[0].as_int = 0;
|
|
if (is_compound) this_mv[1].as_int = 0;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
break;
|
|
#if CONFIG_EXT_INTER
|
|
case NEW_NEWMV:
|
|
if (compound_seg_newmvs[0].as_int == INVALID_MV ||
|
|
compound_seg_newmvs[1].as_int == INVALID_MV) {
|
|
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
|
|
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
|
|
} else {
|
|
this_mv[0].as_int = compound_seg_newmvs[0].as_int;
|
|
this_mv[1].as_int = compound_seg_newmvs[1].as_int;
|
|
}
|
|
if (!cpi->common.allow_high_precision_mv)
|
|
lower_mv_precision(&this_mv[0].as_mv, 0);
|
|
if (!cpi->common.allow_high_precision_mv)
|
|
lower_mv_precision(&this_mv[1].as_mv, 0);
|
|
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
break;
|
|
case NEW_NEARMV:
|
|
case NEW_NEARESTMV:
|
|
this_mv[0].as_int = seg_mvs[mbmi->ref_frame[0]].as_int;
|
|
if (!cpi->common.allow_high_precision_mv)
|
|
lower_mv_precision(&this_mv[0].as_mv, 0);
|
|
thismvcost += av1_mv_bit_cost(&this_mv[0].as_mv, &best_ref_mv[0]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
|
|
break;
|
|
case NEAR_NEWMV:
|
|
case NEAREST_NEWMV:
|
|
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
|
|
this_mv[1].as_int = seg_mvs[mbmi->ref_frame[1]].as_int;
|
|
if (!cpi->common.allow_high_precision_mv)
|
|
lower_mv_precision(&this_mv[1].as_mv, 0);
|
|
thismvcost += av1_mv_bit_cost(&this_mv[1].as_mv, &best_ref_mv[1]->as_mv,
|
|
mvjcost, mvcost, MV_COST_WEIGHT_SUB);
|
|
break;
|
|
case NEAREST_NEARMV:
|
|
case NEAR_NEARESTMV:
|
|
case NEAREST_NEARESTMV:
|
|
case NEAR_NEARMV:
|
|
this_mv[0].as_int = frame_mv[mode][mbmi->ref_frame[0]].as_int;
|
|
this_mv[1].as_int = frame_mv[mode][mbmi->ref_frame[1]].as_int;
|
|
break;
|
|
case ZERO_ZEROMV:
|
|
this_mv[0].as_int = 0;
|
|
this_mv[1].as_int = 0;
|
|
break;
|
|
#endif // CONFIG_EXT_INTER
|
|
default: break;
|
|
}
|
|
|
|
mic->bmi[i].as_mv[0].as_int = this_mv[0].as_int;
|
|
if (is_compound) mic->bmi[i].as_mv[1].as_int = this_mv[1].as_int;
|
|
|
|
mic->bmi[i].as_mode = mode;
|
|
|
|
#if CONFIG_REF_MV
|
|
if (mode == NEWMV) {
|
|
mic->bmi[i].pred_mv[0].as_int =
|
|
mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_int;
|
|
if (is_compound)
|
|
mic->bmi[i].pred_mv[1].as_int =
|
|
mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0].as_int;
|
|
} else {
|
|
mic->bmi[i].pred_mv[0].as_int = this_mv[0].as_int;
|
|
if (is_compound) mic->bmi[i].pred_mv[1].as_int = this_mv[1].as_int;
|
|
}
|
|
#endif
|
|
|
|
for (idy = 0; idy < num_4x4_blocks_high; ++idy)
|
|
for (idx = 0; idx < num_4x4_blocks_wide; ++idx)
|
|
memmove(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i]));
|
|
|
|
#if CONFIG_REF_MV
|
|
#if CONFIG_EXT_INTER
|
|
if (is_compound)
|
|
mode_ctx = mbmi_ext->compound_mode_context[mbmi->ref_frame[0]];
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
|
|
mbmi->ref_frame, mbmi->sb_type, i);
|
|
#endif
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
return cost_mv_ref(cpi, mode, is_compound, mode_ctx) + thismvcost;
|
|
#else
|
|
return cost_mv_ref(cpi, mode, mode_ctx) + thismvcost;
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
}
|
|
|
|
static int64_t encode_inter_mb_segment(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
int64_t best_yrd, int i, int *labelyrate,
|
|
int64_t *distortion, int64_t *sse,
|
|
ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl,
|
|
int ir, int ic, int mi_row, int mi_col) {
|
|
#if !CONFIG_PVQ
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
#endif
|
|
int k;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
const BLOCK_SIZE plane_bsize = get_plane_block_size(mi->mbmi.sb_type, pd);
|
|
const int width = block_size_wide[plane_bsize];
|
|
const int height = block_size_high[plane_bsize];
|
|
int idx, idy;
|
|
const uint8_t *const src =
|
|
&p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
|
|
uint8_t *const dst =
|
|
&pd->dst.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->dst.stride)];
|
|
int64_t thisdistortion = 0, thissse = 0;
|
|
int thisrate = 0;
|
|
TX_SIZE tx_size = mi->mbmi.tx_size;
|
|
|
|
TX_TYPE tx_type = get_tx_type(PLANE_TYPE_Y, xd, i, tx_size);
|
|
const int num_4x4_w = tx_size_wide_unit[tx_size];
|
|
const int num_4x4_h = tx_size_high_unit[tx_size];
|
|
#if !CONFIG_PVQ
|
|
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, 1);
|
|
#else
|
|
(void)cpi;
|
|
(void)ta;
|
|
(void)tl;
|
|
#endif
|
|
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
assert(IMPLIES(xd->lossless[mi->mbmi.segment_id], tx_size == TX_4X4));
|
|
assert(IMPLIES(!xd->lossless[mi->mbmi.segment_id],
|
|
tx_size == max_txsize_rect_lookup[mi->mbmi.sb_type]));
|
|
#else
|
|
assert(tx_size == TX_4X4);
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
assert(tx_type == DCT_DCT);
|
|
|
|
av1_build_inter_predictor_sub8x8(xd, 0, i, ir, ic, mi_row, mi_col);
|
|
|
|
#if !CONFIG_PVQ
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
aom_highbd_subtract_block(
|
|
height, width, av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
|
|
8, src, p->src.stride, dst, pd->dst.stride, xd->bd);
|
|
} else {
|
|
aom_subtract_block(height, width,
|
|
av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
|
|
8, src, p->src.stride, dst, pd->dst.stride);
|
|
}
|
|
#else
|
|
aom_subtract_block(height, width,
|
|
av1_raster_block_offset_int16(BLOCK_8X8, i, p->src_diff),
|
|
8, src, p->src.stride, dst, pd->dst.stride);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
#endif // !CONFIG_PVQ
|
|
|
|
k = i;
|
|
for (idy = 0; idy < height / 4; idy += num_4x4_h) {
|
|
for (idx = 0; idx < width / 4; idx += num_4x4_w) {
|
|
int64_t dist, ssz, rd, rd1, rd2;
|
|
int block;
|
|
#if !CONFIG_PVQ
|
|
int coeff_ctx;
|
|
#else
|
|
const int src_stride = p->src.stride;
|
|
const int dst_stride = pd->dst.stride;
|
|
const int diff_stride = 8;
|
|
tran_low_t *coeff;
|
|
tran_low_t *dqcoeff;
|
|
tran_low_t *ref_coeff;
|
|
int16_t *pred = &pd->pred[4 * (ir * diff_stride + ic)];
|
|
int16_t *src_int16 = &p->src_int16[4 * (ir * diff_stride + ic)];
|
|
int ii, j, tx_blk_size;
|
|
int rate_pvq;
|
|
#endif
|
|
k += (idy * 2 + idx);
|
|
if (tx_size == TX_4X4)
|
|
block = k;
|
|
else
|
|
block = (i ? 2 : 0);
|
|
#if !CONFIG_PVQ
|
|
coeff_ctx = combine_entropy_contexts(*(ta + (k & 1)), *(tl + (k >> 1)));
|
|
#if CONFIG_NEW_QUANT
|
|
av1_xform_quant_fp_nuq(cm, x, 0, block, idy + (i >> 1), idx + (i & 0x01),
|
|
BLOCK_8X8, tx_size, coeff_ctx);
|
|
#else
|
|
av1_xform_quant(cm, x, 0, block, idy + (i >> 1), idx + (i & 0x01),
|
|
BLOCK_8X8, tx_size, AV1_XFORM_QUANT_FP);
|
|
#endif // CONFIG_NEW_QUANT
|
|
if (xd->lossless[xd->mi[0]->mbmi.segment_id] == 0)
|
|
av1_optimize_b(cm, x, 0, block, tx_size, coeff_ctx);
|
|
#else
|
|
coeff = BLOCK_OFFSET(p->coeff, k);
|
|
dqcoeff = BLOCK_OFFSET(pd->dqcoeff, k);
|
|
ref_coeff = BLOCK_OFFSET(pd->pvq_ref_coeff, k);
|
|
|
|
// transform block size in pixels
|
|
tx_blk_size = 4;
|
|
|
|
// copy uint8 orig and predicted block to int16 buffer
|
|
// in order to use existing VP10 transform functions
|
|
for (j = 0; j < tx_blk_size; j++)
|
|
for (ii = 0; ii < tx_blk_size; ii++) {
|
|
src_int16[diff_stride * j + ii] =
|
|
src[src_stride * (j + 4 * idy) + (ii + 4 * idx)];
|
|
pred[diff_stride * j + ii] =
|
|
dst[dst_stride * (j + 4 * idy) + (ii + 4 * idx)];
|
|
}
|
|
|
|
{
|
|
FWD_TXFM_PARAM fwd_txfm_param;
|
|
fwd_txfm_param.tx_type = DCT_DCT;
|
|
fwd_txfm_param.tx_size = TX_4X4;
|
|
fwd_txfm_param.fwd_txfm_opt = FWD_TXFM_OPT_NORMAL;
|
|
fwd_txfm_param.rd_transform = 0;
|
|
fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id];
|
|
|
|
fwd_txfm(src_int16, coeff, diff_stride, &fwd_txfm_param);
|
|
fwd_txfm(pred, ref_coeff, diff_stride, &fwd_txfm_param);
|
|
}
|
|
av1_pvq_encode_helper(&x->daala_enc, coeff, ref_coeff, dqcoeff,
|
|
&p->eobs[k], pd->dequant, 0, TX_4X4, tx_type,
|
|
&rate_pvq, x->pvq_speed, NULL);
|
|
#endif
|
|
|
|
dist_block(cpi, x, 0, block, idy + (i >> 1), idx + (i & 0x1), tx_size,
|
|
&dist, &ssz);
|
|
thisdistortion += dist;
|
|
thissse += ssz;
|
|
#if !CONFIG_PVQ
|
|
thisrate +=
|
|
av1_cost_coeffs(cm, x, 0, block, coeff_ctx, tx_size, scan_order->scan,
|
|
scan_order->neighbors, cpi->sf.use_fast_coef_costing);
|
|
#else
|
|
thisrate += rate_pvq;
|
|
#endif
|
|
*(ta + (k & 1)) = !(p->eobs[block] == 0);
|
|
*(tl + (k >> 1)) = !(p->eobs[block] == 0);
|
|
#if CONFIG_EXT_TX
|
|
if (tx_size == TX_8X4) {
|
|
*(ta + (k & 1) + 1) = *(ta + (k & 1));
|
|
}
|
|
if (tx_size == TX_4X8) {
|
|
*(tl + (k >> 1) + 1) = *(tl + (k >> 1));
|
|
}
|
|
#endif // CONFIG_EXT_TX
|
|
rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion);
|
|
rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse);
|
|
rd = AOMMIN(rd1, rd2);
|
|
if (rd >= best_yrd) return INT64_MAX;
|
|
}
|
|
}
|
|
|
|
*distortion = thisdistortion;
|
|
*labelyrate = thisrate;
|
|
*sse = thissse;
|
|
|
|
return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion);
|
|
}
|
|
|
|
typedef struct {
|
|
int eobs;
|
|
int brate;
|
|
int byrate;
|
|
int64_t bdist;
|
|
int64_t bsse;
|
|
int64_t brdcost;
|
|
int_mv mvs[2];
|
|
#if CONFIG_REF_MV
|
|
int_mv pred_mv[2];
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
int_mv ref_mv[2];
|
|
#endif // CONFIG_EXT_INTER
|
|
ENTROPY_CONTEXT ta[2];
|
|
ENTROPY_CONTEXT tl[2];
|
|
} SEG_RDSTAT;
|
|
|
|
typedef struct {
|
|
int_mv *ref_mv[2];
|
|
int_mv mvp;
|
|
|
|
int64_t segment_rd;
|
|
int r;
|
|
int64_t d;
|
|
int64_t sse;
|
|
int segment_yrate;
|
|
PREDICTION_MODE modes[4];
|
|
#if CONFIG_EXT_INTER
|
|
SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES];
|
|
#else
|
|
SEG_RDSTAT rdstat[4][INTER_MODES];
|
|
#endif // CONFIG_EXT_INTER
|
|
int mvthresh;
|
|
} BEST_SEG_INFO;
|
|
|
|
static INLINE int mv_check_bounds(const MACROBLOCK *x, const MV *mv) {
|
|
return (mv->row >> 3) < x->mv_row_min || (mv->row >> 3) > x->mv_row_max ||
|
|
(mv->col >> 3) < x->mv_col_min || (mv->col >> 3) > x->mv_col_max;
|
|
}
|
|
|
|
static INLINE void mi_buf_shift(MACROBLOCK *x, int i) {
|
|
MB_MODE_INFO *const mbmi = &x->e_mbd.mi[0]->mbmi;
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &x->e_mbd.plane[0];
|
|
|
|
p->src.buf =
|
|
&p->src.buf[av1_raster_block_offset(BLOCK_8X8, i, p->src.stride)];
|
|
assert(((intptr_t)pd->pre[0].buf & 0x7) == 0);
|
|
pd->pre[0].buf =
|
|
&pd->pre[0].buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[0].stride)];
|
|
if (has_second_ref(mbmi))
|
|
pd->pre[1].buf =
|
|
&pd->pre[1]
|
|
.buf[av1_raster_block_offset(BLOCK_8X8, i, pd->pre[1].stride)];
|
|
}
|
|
|
|
static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src,
|
|
struct buf_2d orig_pre[2]) {
|
|
MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi;
|
|
x->plane[0].src = orig_src;
|
|
x->e_mbd.plane[0].pre[0] = orig_pre[0];
|
|
if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1];
|
|
}
|
|
|
|
// Check if NEARESTMV/NEARMV/ZEROMV is the cheapest way encode zero motion.
|
|
// TODO(aconverse): Find out if this is still productive then clean up or remove
|
|
static int check_best_zero_mv(
|
|
const AV1_COMP *const cpi, const int16_t mode_context[TOTAL_REFS_PER_FRAME],
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
const int16_t compound_mode_context[TOTAL_REFS_PER_FRAME],
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], int this_mode,
|
|
const MV_REFERENCE_FRAME ref_frames[2], const BLOCK_SIZE bsize, int block) {
|
|
|
|
#if !CONFIG_EXT_INTER
|
|
assert(ref_frames[1] != INTRA_FRAME); // Just sanity check
|
|
#endif
|
|
|
|
if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) &&
|
|
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
|
|
(ref_frames[1] <= INTRA_FRAME ||
|
|
frame_mv[this_mode][ref_frames[1]].as_int == 0)) {
|
|
#if CONFIG_REF_MV
|
|
int16_t rfc =
|
|
av1_mode_context_analyzer(mode_context, ref_frames, bsize, block);
|
|
#else
|
|
int16_t rfc = mode_context[ref_frames[0]];
|
|
#endif
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
int c1 = cost_mv_ref(cpi, NEARMV, ref_frames[1] > INTRA_FRAME, rfc);
|
|
int c2 = cost_mv_ref(cpi, NEARESTMV, ref_frames[1] > INTRA_FRAME, rfc);
|
|
int c3 = cost_mv_ref(cpi, ZEROMV, ref_frames[1] > INTRA_FRAME, rfc);
|
|
#else
|
|
int c1 = cost_mv_ref(cpi, NEARMV, rfc);
|
|
int c2 = cost_mv_ref(cpi, NEARESTMV, rfc);
|
|
int c3 = cost_mv_ref(cpi, ZEROMV, rfc);
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
|
|
#if !CONFIG_REF_MV
|
|
(void)bsize;
|
|
(void)block;
|
|
#endif
|
|
|
|
if (this_mode == NEARMV) {
|
|
if (c1 > c3) return 0;
|
|
} else if (this_mode == NEARESTMV) {
|
|
if (c2 > c3) return 0;
|
|
} else {
|
|
assert(this_mode == ZEROMV);
|
|
if (ref_frames[1] <= INTRA_FRAME) {
|
|
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) ||
|
|
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0))
|
|
return 0;
|
|
} else {
|
|
if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) ||
|
|
(c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEARMV][ref_frames[1]].as_int == 0))
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
else if ((this_mode == NEAREST_NEARESTMV || this_mode == NEAREST_NEARMV ||
|
|
this_mode == NEAR_NEARESTMV || this_mode == NEAR_NEARMV ||
|
|
this_mode == ZERO_ZEROMV) &&
|
|
frame_mv[this_mode][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[this_mode][ref_frames[1]].as_int == 0) {
|
|
#if CONFIG_REF_MV
|
|
int16_t rfc = compound_mode_context[ref_frames[0]];
|
|
int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, 1, rfc);
|
|
int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, 1, rfc);
|
|
int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, 1, rfc);
|
|
int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, 1, rfc);
|
|
int c5 = cost_mv_ref(cpi, NEAR_NEARMV, 1, rfc);
|
|
#else
|
|
int16_t rfc = mode_context[ref_frames[0]];
|
|
int c1 = cost_mv_ref(cpi, NEAREST_NEARMV, rfc);
|
|
int c2 = cost_mv_ref(cpi, NEAREST_NEARESTMV, rfc);
|
|
int c3 = cost_mv_ref(cpi, ZERO_ZEROMV, rfc);
|
|
int c4 = cost_mv_ref(cpi, NEAR_NEARESTMV, rfc);
|
|
int c5 = cost_mv_ref(cpi, NEAR_NEARMV, rfc);
|
|
#endif
|
|
|
|
if (this_mode == NEAREST_NEARMV) {
|
|
if (c1 > c3) return 0;
|
|
} else if (this_mode == NEAREST_NEARESTMV) {
|
|
if (c2 > c3) return 0;
|
|
} else if (this_mode == NEAR_NEARESTMV) {
|
|
if (c4 > c3) return 0;
|
|
} else if (this_mode == NEAR_NEARMV) {
|
|
if (c5 > c3) return 0;
|
|
} else {
|
|
assert(this_mode == ZERO_ZEROMV);
|
|
if ((c3 >= c2 && frame_mv[NEAREST_NEARESTMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEAREST_NEARESTMV][ref_frames[1]].as_int == 0) ||
|
|
(c3 >= c1 && frame_mv[NEAREST_NEARMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEAREST_NEARMV][ref_frames[1]].as_int == 0) ||
|
|
(c3 >= c5 && frame_mv[NEAR_NEARMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEAR_NEARMV][ref_frames[1]].as_int == 0) ||
|
|
(c3 >= c4 && frame_mv[NEAR_NEARESTMV][ref_frames[0]].as_int == 0 &&
|
|
frame_mv[NEAR_NEARESTMV][ref_frames[1]].as_int == 0))
|
|
return 0;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
return 1;
|
|
}
|
|
|
|
static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row,
|
|
int mi_col,
|
|
#if CONFIG_EXT_INTER
|
|
int_mv *ref_mv_sub8x8[2],
|
|
#endif
|
|
int_mv single_newmv[TOTAL_REFS_PER_FRAME],
|
|
int *rate_mv, const int block) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const int refs[2] = { mbmi->ref_frame[0],
|
|
mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
|
|
int_mv ref_mv[2];
|
|
int ite, ref;
|
|
#if CONFIG_DUAL_FILTER
|
|
InterpFilter interp_filter[4] = {
|
|
mbmi->interp_filter[0], mbmi->interp_filter[1], mbmi->interp_filter[2],
|
|
mbmi->interp_filter[3],
|
|
};
|
|
#else
|
|
const InterpFilter interp_filter = mbmi->interp_filter;
|
|
#endif
|
|
struct scale_factors sf;
|
|
|
|
// Do joint motion search in compound mode to get more accurate mv.
|
|
struct buf_2d backup_yv12[2][MAX_MB_PLANE];
|
|
int last_besterr[2] = { INT_MAX, INT_MAX };
|
|
const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = {
|
|
av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[0]),
|
|
av1_get_scaled_ref_frame(cpi, mbmi->ref_frame[1])
|
|
};
|
|
|
|
// Prediction buffer from second frame.
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]);
|
|
uint8_t *second_pred;
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, second_pred[MAX_SB_SQUARE]);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
#if CONFIG_EXT_INTER
|
|
if (bsize < BLOCK_8X8 && ref_mv_sub8x8 != NULL)
|
|
ref_mv[ref].as_int = ref_mv_sub8x8[ref]->as_int;
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0];
|
|
|
|
if (scaled_ref_frame[ref]) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[ref][i] = xd->plane[i].pre[ref];
|
|
av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col,
|
|
NULL);
|
|
}
|
|
|
|
frame_mv[refs[ref]].as_int = single_newmv[refs[ref]].as_int;
|
|
}
|
|
|
|
// Since we have scaled the reference frames to match the size of the current
|
|
// frame we must use a unit scaling factor during mode selection.
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
|
|
cm->height, cm->use_highbitdepth);
|
|
#else
|
|
av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width,
|
|
cm->height);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
// Allow joint search multiple times iteratively for each reference frame
|
|
// and break out of the search loop if it couldn't find a better mv.
|
|
for (ite = 0; ite < 4; ite++) {
|
|
struct buf_2d ref_yv12[2];
|
|
int bestsme = INT_MAX;
|
|
int sadpb = x->sadperbit16;
|
|
MV *const best_mv = &x->best_mv.as_mv;
|
|
int search_range = 3;
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
int id = ite % 2; // Even iterations search in the first reference frame,
|
|
// odd iterations search in the second. The predictor
|
|
// found for the 'other' reference frame is factored in.
|
|
|
|
// Initialized here because of compiler problem in Visual Studio.
|
|
ref_yv12[0] = xd->plane[0].pre[0];
|
|
ref_yv12[1] = xd->plane[0].pre[1];
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
// reload the filter types
|
|
interp_filter[0] =
|
|
(id == 0) ? mbmi->interp_filter[2] : mbmi->interp_filter[0];
|
|
interp_filter[1] =
|
|
(id == 0) ? mbmi->interp_filter[3] : mbmi->interp_filter[1];
|
|
#endif
|
|
|
|
// Get the prediction block from the 'other' reference frame.
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16);
|
|
av1_highbd_build_inter_predictor(
|
|
ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw,
|
|
&frame_mv[refs[!id]].as_mv, &sf, pw, ph, 0, interp_filter,
|
|
MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd->bd);
|
|
} else {
|
|
second_pred = (uint8_t *)second_pred_alloc_16;
|
|
av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
|
|
second_pred, pw, &frame_mv[refs[!id]].as_mv,
|
|
&sf, pw, ph, 0, interp_filter, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE, mi_row * MI_SIZE);
|
|
}
|
|
#else
|
|
av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride,
|
|
second_pred, pw, &frame_mv[refs[!id]].as_mv, &sf,
|
|
pw, ph, 0, interp_filter, MV_PRECISION_Q3,
|
|
mi_col * MI_SIZE, mi_row * MI_SIZE);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
// Do compound motion search on the current reference frame.
|
|
if (id) xd->plane[0].pre[0] = ref_yv12[id];
|
|
av1_set_mv_search_range(x, &ref_mv[id].as_mv);
|
|
|
|
// Use the mv result from the single mode as mv predictor.
|
|
*best_mv = frame_mv[refs[id]].as_mv;
|
|
|
|
best_mv->col >>= 3;
|
|
best_mv->row >>= 3;
|
|
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, refs[id], id, mbmi->ref_mv_idx);
|
|
#endif
|
|
|
|
// Small-range full-pixel motion search.
|
|
bestsme =
|
|
av1_refining_search_8p_c(x, sadpb, search_range, &cpi->fn_ptr[bsize],
|
|
&ref_mv[id].as_mv, second_pred);
|
|
if (bestsme < INT_MAX)
|
|
bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv,
|
|
second_pred, &cpi->fn_ptr[bsize], 1);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
unsigned int sse;
|
|
if (cpi->sf.use_upsampled_references) {
|
|
// Use up-sampled reference frames.
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
struct buf_2d backup_pred = pd->pre[0];
|
|
const YV12_BUFFER_CONFIG *upsampled_ref =
|
|
get_upsampled_ref(cpi, refs[id]);
|
|
|
|
// Set pred for Y plane
|
|
setup_pred_plane(&pd->pre[0], upsampled_ref->y_buffer,
|
|
upsampled_ref->y_crop_width,
|
|
upsampled_ref->y_crop_height, upsampled_ref->y_stride,
|
|
(mi_row << 3), (mi_col << 3), NULL, pd->subsampling_x,
|
|
pd->subsampling_y);
|
|
|
|
// If bsize < BLOCK_8X8, adjust pred pointer for this block
|
|
if (bsize < BLOCK_8X8)
|
|
pd->pre[0].buf =
|
|
&pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, block,
|
|
pd->pre[0].stride))
|
|
<< 3];
|
|
|
|
bestsme = cpi->find_fractional_mv_step(
|
|
x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
|
|
x->errorperbit, &cpi->fn_ptr[bsize], 0,
|
|
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
|
|
&dis, &sse, second_pred, pw, ph, 1);
|
|
|
|
// Restore the reference frames.
|
|
pd->pre[0] = backup_pred;
|
|
} else {
|
|
(void)block;
|
|
bestsme = cpi->find_fractional_mv_step(
|
|
x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv,
|
|
x->errorperbit, &cpi->fn_ptr[bsize], 0,
|
|
cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost,
|
|
&dis, &sse, second_pred, pw, ph, 0);
|
|
}
|
|
}
|
|
|
|
// Restore the pointer to the first (possibly scaled) prediction buffer.
|
|
if (id) xd->plane[0].pre[0] = ref_yv12[0];
|
|
|
|
if (bestsme < last_besterr[id]) {
|
|
frame_mv[refs[id]].as_mv = *best_mv;
|
|
last_besterr[id] = bestsme;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
*rate_mv = 0;
|
|
|
|
for (ref = 0; ref < 2; ++ref) {
|
|
if (scaled_ref_frame[ref]) {
|
|
// Restore the prediction frame pointers to their unscaled versions.
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[ref] = backup_yv12[ref][i];
|
|
}
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, refs[ref], ref, mbmi->ref_mv_idx);
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
if (bsize >= BLOCK_8X8)
|
|
#endif // CONFIG_EXT_INTER
|
|
*rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
|
|
&x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
#if CONFIG_EXT_INTER
|
|
else
|
|
*rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv,
|
|
&ref_mv_sub8x8[ref]->as_mv, x->nmvjointcost,
|
|
x->mvcost, MV_COST_WEIGHT);
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
}
|
|
|
|
static int64_t rd_pick_best_sub8x8_mode(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, int_mv *best_ref_mv,
|
|
int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate,
|
|
int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse,
|
|
int mvthresh,
|
|
#if CONFIG_EXT_INTER
|
|
int_mv seg_mvs[4][2][TOTAL_REFS_PER_FRAME],
|
|
int_mv compound_seg_newmvs[4][2],
|
|
#else
|
|
int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME],
|
|
#endif // CONFIG_EXT_INTER
|
|
BEST_SEG_INFO *bsi_buf, int filter_idx, int mi_row, int mi_col) {
|
|
BEST_SEG_INFO *bsi = bsi_buf + filter_idx;
|
|
#if CONFIG_REF_MV
|
|
int_mv tmp_ref_mv[2];
|
|
#endif
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MODE_INFO *mi = xd->mi[0];
|
|
MB_MODE_INFO *mbmi = &mi->mbmi;
|
|
int mode_idx;
|
|
int k, br = 0, idx, idy;
|
|
int64_t bd = 0, block_sse = 0;
|
|
PREDICTION_MODE this_mode;
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
struct macroblock_plane *const p = &x->plane[0];
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
const int label_count = 4;
|
|
int64_t this_segment_rd = 0;
|
|
int label_mv_thresh;
|
|
int segmentyrate = 0;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize];
|
|
const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize];
|
|
ENTROPY_CONTEXT t_above[2], t_left[2];
|
|
int subpelmv = 1, have_ref = 0;
|
|
const int has_second_rf = has_second_ref(mbmi);
|
|
const int inter_mode_mask = cpi->sf.inter_mode_mask[bsize];
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_buf;
|
|
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
#if CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
mbmi->tx_size =
|
|
xd->lossless[mbmi->segment_id] ? TX_4X4 : max_txsize_rect_lookup[bsize];
|
|
#else
|
|
mbmi->tx_size = TX_4X4;
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
av1_zero(*bsi);
|
|
|
|
bsi->segment_rd = best_rd;
|
|
bsi->ref_mv[0] = best_ref_mv;
|
|
bsi->ref_mv[1] = second_best_ref_mv;
|
|
bsi->mvp.as_int = best_ref_mv->as_int;
|
|
bsi->mvthresh = mvthresh;
|
|
|
|
for (idx = 0; idx < 4; ++idx) bsi->modes[idx] = ZEROMV;
|
|
|
|
#if CONFIG_REFMV
|
|
for (idx = 0; idx < 4; ++idx) {
|
|
for (k = NEARESTMV; k <= NEWMV; ++k) {
|
|
bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[0].as_int = INVALID_MV;
|
|
bsi->rdstat[idx][INTER_OFFSET(k)].pred_mv[1].as_int = INVALID_MV;
|
|
|
|
bsi->rdstat[idx][INTER_OFFSET(k)].mvs[0].as_int = INVALID_MV;
|
|
bsi->rdstat[idx][INTER_OFFSET(k)].mvs[1].as_int = INVALID_MV;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
memcpy(t_above, pd->above_context, sizeof(t_above));
|
|
memcpy(t_left, pd->left_context, sizeof(t_left));
|
|
|
|
// 64 makes this threshold really big effectively
|
|
// making it so that we very rarely check mvs on
|
|
// segments. setting this to 1 would make mv thresh
|
|
// roughly equal to what it is for macroblocks
|
|
label_mv_thresh = 1 * bsi->mvthresh / label_count;
|
|
|
|
// Segmentation method overheads
|
|
for (idy = 0; idy < 2; idy += num_4x4_blocks_high) {
|
|
for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) {
|
|
// TODO(jingning,rbultje): rewrite the rate-distortion optimization
|
|
// loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop
|
|
int_mv mode_mv[MB_MODE_COUNT][2];
|
|
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
|
|
PREDICTION_MODE mode_selected = ZEROMV;
|
|
int64_t new_best_rd = INT64_MAX;
|
|
const int index = idy * 2 + idx;
|
|
int ref;
|
|
#if CONFIG_REF_MV
|
|
CANDIDATE_MV ref_mv_stack[2][MAX_REF_MV_STACK_SIZE];
|
|
uint8_t ref_mv_count[2];
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
int mv_idx;
|
|
int_mv ref_mvs_sub8x8[2][2];
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer idx_buf, post_buf;
|
|
od_encode_checkpoint(&x->daala_enc, &idx_buf);
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
|
|
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
|
|
#if CONFIG_EXT_INTER
|
|
int_mv mv_ref_list[MAX_MV_REF_CANDIDATES];
|
|
av1_update_mv_context(xd, mi, frame, mv_ref_list, index, mi_row, mi_col,
|
|
NULL);
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_GLOBAL_MOTION
|
|
frame_mv[ZEROMV][frame].as_int =
|
|
gm_get_motion_vector(&cm->global_motion[frame]).as_int;
|
|
#else // CONFIG_GLOBAL_MOTION
|
|
frame_mv[ZEROMV][frame].as_int = 0;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
av1_append_sub8x8_mvs_for_idx(cm, xd, index, ref, mi_row, mi_col,
|
|
#if CONFIG_REF_MV
|
|
ref_mv_stack[ref], &ref_mv_count[ref],
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
mv_ref_list,
|
|
#endif // CONFIG_EXT_INTER
|
|
&frame_mv[NEARESTMV][frame],
|
|
&frame_mv[NEARMV][frame]);
|
|
|
|
#if CONFIG_REF_MV
|
|
tmp_ref_mv[ref] = frame_mv[NEARESTMV][mbmi->ref_frame[ref]];
|
|
lower_mv_precision(&tmp_ref_mv[ref].as_mv, cm->allow_high_precision_mv);
|
|
bsi->ref_mv[ref] = &tmp_ref_mv[ref];
|
|
mbmi_ext->ref_mvs[frame][0] = tmp_ref_mv[ref];
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
mv_ref_list[0].as_int = frame_mv[NEARESTMV][frame].as_int;
|
|
mv_ref_list[1].as_int = frame_mv[NEARMV][frame].as_int;
|
|
av1_find_best_ref_mvs(cm->allow_high_precision_mv, mv_ref_list,
|
|
&ref_mvs_sub8x8[0][ref], &ref_mvs_sub8x8[1][ref]);
|
|
|
|
if (has_second_rf) {
|
|
frame_mv[ZERO_ZEROMV][frame].as_int = 0;
|
|
frame_mv[NEAREST_NEARESTMV][frame].as_int =
|
|
frame_mv[NEARESTMV][frame].as_int;
|
|
|
|
if (ref == 0) {
|
|
frame_mv[NEAREST_NEARMV][frame].as_int =
|
|
frame_mv[NEARESTMV][frame].as_int;
|
|
frame_mv[NEAR_NEARESTMV][frame].as_int =
|
|
frame_mv[NEARMV][frame].as_int;
|
|
frame_mv[NEAREST_NEWMV][frame].as_int =
|
|
frame_mv[NEARESTMV][frame].as_int;
|
|
frame_mv[NEAR_NEWMV][frame].as_int = frame_mv[NEARMV][frame].as_int;
|
|
frame_mv[NEAR_NEARMV][frame].as_int =
|
|
frame_mv[NEARMV][frame].as_int;
|
|
} else if (ref == 1) {
|
|
frame_mv[NEAREST_NEARMV][frame].as_int =
|
|
frame_mv[NEARMV][frame].as_int;
|
|
frame_mv[NEAR_NEARESTMV][frame].as_int =
|
|
frame_mv[NEARESTMV][frame].as_int;
|
|
frame_mv[NEW_NEARESTMV][frame].as_int =
|
|
frame_mv[NEARESTMV][frame].as_int;
|
|
frame_mv[NEW_NEARMV][frame].as_int = frame_mv[NEARMV][frame].as_int;
|
|
frame_mv[NEAR_NEARMV][frame].as_int =
|
|
frame_mv[NEARMV][frame].as_int;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
|
|
// search for the best motion vector on this segment
|
|
#if CONFIG_EXT_INTER
|
|
for (this_mode = (has_second_rf ? NEAREST_NEARESTMV : NEARESTMV);
|
|
this_mode <= (has_second_rf ? NEW_NEWMV : NEWFROMNEARMV);
|
|
++this_mode)
|
|
#else
|
|
for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode)
|
|
#endif // CONFIG_EXT_INTER
|
|
{
|
|
const struct buf_2d orig_src = x->plane[0].src;
|
|
struct buf_2d orig_pre[2];
|
|
// This flag controls if the motion estimation will kick off. When it
|
|
// is set to a non-zero value, the encoder will force motion estimation.
|
|
int run_mv_search = 0;
|
|
|
|
mode_idx = INTER_OFFSET(this_mode);
|
|
#if CONFIG_EXT_INTER
|
|
mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref)
|
|
bsi->ref_mv[ref]->as_int = ref_mvs_sub8x8[mv_idx][ref].as_int;
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi->rdstat[index][mode_idx].brdcost = INT64_MAX;
|
|
if (!(inter_mode_mask & (1 << this_mode))) continue;
|
|
|
|
#if CONFIG_REF_MV
|
|
run_mv_search = 2;
|
|
#if !CONFIG_EXT_INTER
|
|
if (filter_idx > 0 && this_mode == NEWMV) {
|
|
BEST_SEG_INFO *ref_bsi = bsi_buf;
|
|
SEG_RDSTAT *ref_rdstat = &ref_bsi->rdstat[index][mode_idx];
|
|
|
|
if (has_second_rf) {
|
|
if (seg_mvs[index][mbmi->ref_frame[0]].as_int ==
|
|
ref_rdstat->mvs[0].as_int &&
|
|
ref_rdstat->mvs[0].as_int != INVALID_MV)
|
|
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int)
|
|
--run_mv_search;
|
|
|
|
if (seg_mvs[index][mbmi->ref_frame[1]].as_int ==
|
|
ref_rdstat->mvs[1].as_int &&
|
|
ref_rdstat->mvs[1].as_int != INVALID_MV)
|
|
if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int)
|
|
--run_mv_search;
|
|
} else {
|
|
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int &&
|
|
ref_rdstat->mvs[0].as_int != INVALID_MV) {
|
|
run_mv_search = 0;
|
|
seg_mvs[index][mbmi->ref_frame[0]].as_int =
|
|
ref_rdstat->mvs[0].as_int;
|
|
}
|
|
}
|
|
|
|
if (run_mv_search != 0 && filter_idx > 1) {
|
|
ref_bsi = bsi_buf + 1;
|
|
ref_rdstat = &ref_bsi->rdstat[index][mode_idx];
|
|
run_mv_search = 2;
|
|
|
|
if (has_second_rf) {
|
|
if (seg_mvs[index][mbmi->ref_frame[0]].as_int ==
|
|
ref_rdstat->mvs[0].as_int &&
|
|
ref_rdstat->mvs[0].as_int != INVALID_MV)
|
|
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int)
|
|
--run_mv_search;
|
|
|
|
if (seg_mvs[index][mbmi->ref_frame[1]].as_int ==
|
|
ref_rdstat->mvs[1].as_int &&
|
|
ref_rdstat->mvs[1].as_int != INVALID_MV)
|
|
if (bsi->ref_mv[1]->as_int == ref_rdstat->pred_mv[1].as_int)
|
|
--run_mv_search;
|
|
} else {
|
|
if (bsi->ref_mv[0]->as_int == ref_rdstat->pred_mv[0].as_int &&
|
|
ref_rdstat->mvs[0].as_int != INVALID_MV) {
|
|
run_mv_search = 0;
|
|
seg_mvs[index][mbmi->ref_frame[0]].as_int =
|
|
ref_rdstat->mvs[0].as_int;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#endif // CONFIG_REF_MV
|
|
|
|
#if CONFIG_GLOBAL_MOTION
|
|
if (get_gmtype(&cm->global_motion[mbmi->ref_frame[0]]) == GLOBAL_ZERO &&
|
|
(!has_second_rf ||
|
|
get_gmtype(&cm->global_motion[mbmi->ref_frame[1]]) == GLOBAL_ZERO))
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
|
|
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context,
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
mbmi_ext->compound_mode_context,
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
frame_mv, this_mode, mbmi->ref_frame, bsize,
|
|
index))
|
|
continue;
|
|
|
|
memcpy(orig_pre, pd->pre, sizeof(orig_pre));
|
|
memcpy(bsi->rdstat[index][mode_idx].ta, t_above,
|
|
sizeof(bsi->rdstat[index][mode_idx].ta));
|
|
memcpy(bsi->rdstat[index][mode_idx].tl, t_left,
|
|
sizeof(bsi->rdstat[index][mode_idx].tl));
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &idx_buf);
|
|
#endif
|
|
|
|
// motion search for newmv (single predictor case only)
|
|
if (!has_second_rf &&
|
|
#if CONFIG_EXT_INTER
|
|
have_newmv_in_inter_mode(this_mode) &&
|
|
(seg_mvs[index][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV)
|
|
#else
|
|
this_mode == NEWMV &&
|
|
(seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV ||
|
|
run_mv_search)
|
|
#endif // CONFIG_EXT_INTER
|
|
) {
|
|
int step_param = 0;
|
|
int bestsme = INT_MAX;
|
|
int sadpb = x->sadperbit4;
|
|
MV mvp_full;
|
|
int max_mv;
|
|
int cost_list[5];
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
|
|
/* Is the best so far sufficiently good that we cant justify doing
|
|
* and new motion search. */
|
|
if (new_best_rd < label_mv_thresh) break;
|
|
|
|
if (cpi->oxcf.mode != BEST) {
|
|
#if CONFIG_EXT_INTER
|
|
bsi->mvp.as_int = bsi->ref_mv[0]->as_int;
|
|
#else
|
|
// use previous block's result as next block's MV predictor.
|
|
#if !CONFIG_REF_MV
|
|
if (index > 0) {
|
|
bsi->mvp.as_int = mi->bmi[index - 1].as_mv[0].as_int;
|
|
if (index == 2)
|
|
bsi->mvp.as_int = mi->bmi[index - 2].as_mv[0].as_int;
|
|
}
|
|
#endif
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
max_mv = (index == 0) ? (int)x->max_mv_context[mbmi->ref_frame[0]]
|
|
: AOMMAX(abs(bsi->mvp.as_mv.row),
|
|
abs(bsi->mvp.as_mv.col)) >>
|
|
3;
|
|
|
|
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
|
// Take wtd average of the step_params based on the last frame's
|
|
// max mv magnitude and the best ref mvs of the current block for
|
|
// the given reference.
|
|
step_param =
|
|
(av1_init_search_range(max_mv) + cpi->mv_step_param) / 2;
|
|
} else {
|
|
step_param = cpi->mv_step_param;
|
|
}
|
|
|
|
#if CONFIG_REF_MV
|
|
mvp_full.row = bsi->ref_mv[0]->as_mv.row >> 3;
|
|
mvp_full.col = bsi->ref_mv[0]->as_mv.col >> 3;
|
|
#else
|
|
mvp_full.row = bsi->mvp.as_mv.row >> 3;
|
|
mvp_full.col = bsi->mvp.as_mv.col >> 3;
|
|
#endif
|
|
|
|
if (cpi->sf.adaptive_motion_search) {
|
|
mvp_full.row = x->pred_mv[mbmi->ref_frame[0]].row >> 3;
|
|
mvp_full.col = x->pred_mv[mbmi->ref_frame[0]].col >> 3;
|
|
step_param = AOMMAX(step_param, 8);
|
|
}
|
|
|
|
// adjust src pointer for this block
|
|
mi_buf_shift(x, index);
|
|
|
|
av1_set_mv_search_range(x, &bsi->ref_mv[0]->as_mv);
|
|
|
|
x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;
|
|
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
|
|
#endif
|
|
bestsme = av1_full_pixel_search(
|
|
cpi, x, bsize, &mvp_full, step_param, sadpb,
|
|
cpi->sf.mv.subpel_search_method != SUBPEL_TREE ? cost_list : NULL,
|
|
&bsi->ref_mv[0]->as_mv, INT_MAX, 1);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int distortion;
|
|
if (cpi->sf.use_upsampled_references) {
|
|
int best_mv_var;
|
|
const int try_second =
|
|
x->second_best_mv.as_int != INVALID_MV &&
|
|
x->second_best_mv.as_int != x->best_mv.as_int;
|
|
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
// Use up-sampled reference frames.
|
|
struct buf_2d backup_pred = pd->pre[0];
|
|
const YV12_BUFFER_CONFIG *upsampled_ref =
|
|
get_upsampled_ref(cpi, mbmi->ref_frame[0]);
|
|
|
|
// Set pred for Y plane
|
|
setup_pred_plane(
|
|
&pd->pre[0], upsampled_ref->y_buffer,
|
|
upsampled_ref->y_crop_width, upsampled_ref->y_crop_height,
|
|
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL,
|
|
pd->subsampling_x, pd->subsampling_y);
|
|
|
|
// adjust pred pointer for this block
|
|
pd->pre[0].buf =
|
|
&pd->pre[0].buf[(av1_raster_block_offset(BLOCK_8X8, index,
|
|
pd->pre[0].stride))
|
|
<< 3];
|
|
|
|
best_mv_var = cpi->find_fractional_mv_step(
|
|
x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
|
|
x->errorperbit, &cpi->fn_ptr[bsize],
|
|
cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step,
|
|
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
|
|
&distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, pw, ph,
|
|
1);
|
|
|
|
if (try_second) {
|
|
int this_var;
|
|
MV best_mv = x->best_mv.as_mv;
|
|
const MV ref_mv = bsi->ref_mv[0]->as_mv;
|
|
const int minc = AOMMAX(x->mv_col_min * 8, ref_mv.col - MV_MAX);
|
|
const int maxc = AOMMIN(x->mv_col_max * 8, ref_mv.col + MV_MAX);
|
|
const int minr = AOMMAX(x->mv_row_min * 8, ref_mv.row - MV_MAX);
|
|
const int maxr = AOMMIN(x->mv_row_max * 8, ref_mv.row + MV_MAX);
|
|
|
|
x->best_mv = x->second_best_mv;
|
|
if (x->best_mv.as_mv.row * 8 <= maxr &&
|
|
x->best_mv.as_mv.row * 8 >= minr &&
|
|
x->best_mv.as_mv.col * 8 <= maxc &&
|
|
x->best_mv.as_mv.col * 8 >= minc) {
|
|
this_var = cpi->find_fractional_mv_step(
|
|
x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
|
|
x->errorperbit, &cpi->fn_ptr[bsize],
|
|
cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step,
|
|
cond_cost_list(cpi, cost_list), x->nmvjointcost,
|
|
x->mvcost, &distortion, &x->pred_sse[mbmi->ref_frame[0]],
|
|
NULL, pw, ph, 1);
|
|
if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
|
|
x->best_mv.as_mv = best_mv;
|
|
}
|
|
}
|
|
|
|
// Restore the reference frames.
|
|
pd->pre[0] = backup_pred;
|
|
} else {
|
|
cpi->find_fractional_mv_step(
|
|
x, &bsi->ref_mv[0]->as_mv, cm->allow_high_precision_mv,
|
|
x->errorperbit, &cpi->fn_ptr[bsize],
|
|
cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step,
|
|
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
|
|
&distortion, &x->pred_sse[mbmi->ref_frame[0]], NULL, 0, 0, 0);
|
|
}
|
|
|
|
// save motion search result for use in compound prediction
|
|
#if CONFIG_EXT_INTER
|
|
seg_mvs[index][mv_idx][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv;
|
|
#else
|
|
seg_mvs[index][mbmi->ref_frame[0]].as_mv = x->best_mv.as_mv;
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
|
|
if (cpi->sf.adaptive_motion_search)
|
|
x->pred_mv[mbmi->ref_frame[0]] = x->best_mv.as_mv;
|
|
|
|
#if CONFIG_EXT_INTER
|
|
mode_mv[this_mode][0] = x->best_mv;
|
|
#else
|
|
mode_mv[NEWMV][0] = x->best_mv;
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
// restore src pointers
|
|
mi_buf_restore(x, orig_src, orig_pre);
|
|
}
|
|
|
|
if (has_second_rf) {
|
|
#if CONFIG_EXT_INTER
|
|
if (seg_mvs[index][mv_idx][mbmi->ref_frame[1]].as_int == INVALID_MV ||
|
|
seg_mvs[index][mv_idx][mbmi->ref_frame[0]].as_int == INVALID_MV)
|
|
#else
|
|
if (seg_mvs[index][mbmi->ref_frame[1]].as_int == INVALID_MV ||
|
|
seg_mvs[index][mbmi->ref_frame[0]].as_int == INVALID_MV)
|
|
#endif // CONFIG_EXT_INTER
|
|
continue;
|
|
}
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
(void)run_mv_search;
|
|
#endif
|
|
|
|
if (has_second_rf &&
|
|
#if CONFIG_EXT_INTER
|
|
this_mode == NEW_NEWMV &&
|
|
#else
|
|
this_mode == NEWMV &&
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_DUAL_FILTER
|
|
(mbmi->interp_filter[0] == EIGHTTAP_REGULAR || run_mv_search))
|
|
#else
|
|
(mbmi->interp_filter == EIGHTTAP_REGULAR || run_mv_search))
|
|
#endif
|
|
{
|
|
// adjust src pointers
|
|
mi_buf_shift(x, index);
|
|
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
|
|
int rate_mv;
|
|
joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row,
|
|
mi_col,
|
|
#if CONFIG_EXT_INTER
|
|
bsi->ref_mv, seg_mvs[index][mv_idx],
|
|
#else
|
|
seg_mvs[index],
|
|
#endif // CONFIG_EXT_INTER
|
|
&rate_mv, index);
|
|
#if CONFIG_EXT_INTER
|
|
compound_seg_newmvs[index][0].as_int =
|
|
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
|
|
compound_seg_newmvs[index][1].as_int =
|
|
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
|
|
#else
|
|
seg_mvs[index][mbmi->ref_frame[0]].as_int =
|
|
frame_mv[this_mode][mbmi->ref_frame[0]].as_int;
|
|
seg_mvs[index][mbmi->ref_frame[1]].as_int =
|
|
frame_mv[this_mode][mbmi->ref_frame[1]].as_int;
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
// restore src pointers
|
|
mi_buf_restore(x, orig_src, orig_pre);
|
|
}
|
|
|
|
bsi->rdstat[index][mode_idx].brate = set_and_cost_bmi_mvs(
|
|
cpi, x, xd, index, this_mode, mode_mv[this_mode], frame_mv,
|
|
#if CONFIG_EXT_INTER
|
|
seg_mvs[index][mv_idx], compound_seg_newmvs[index],
|
|
#else
|
|
seg_mvs[index],
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi->ref_mv, x->nmvjointcost, x->mvcost);
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
|
|
bsi->rdstat[index][mode_idx].mvs[ref].as_int =
|
|
mode_mv[this_mode][ref].as_int;
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[index + 1][mode_idx].mvs[ref].as_int =
|
|
mode_mv[this_mode][ref].as_int;
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[index + 2][mode_idx].mvs[ref].as_int =
|
|
mode_mv[this_mode][ref].as_int;
|
|
#if CONFIG_REF_MV
|
|
bsi->rdstat[index][mode_idx].pred_mv[ref].as_int =
|
|
mi->bmi[index].pred_mv[ref].as_int;
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[index + 1][mode_idx].pred_mv[ref].as_int =
|
|
mi->bmi[index].pred_mv[ref].as_int;
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[index + 2][mode_idx].pred_mv[ref].as_int =
|
|
mi->bmi[index].pred_mv[ref].as_int;
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
bsi->rdstat[index][mode_idx].ref_mv[ref].as_int =
|
|
bsi->ref_mv[ref]->as_int;
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[index + 1][mode_idx].ref_mv[ref].as_int =
|
|
bsi->ref_mv[ref]->as_int;
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[index + 2][mode_idx].ref_mv[ref].as_int =
|
|
bsi->ref_mv[ref]->as_int;
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
|
|
// Trap vectors that reach beyond the UMV borders
|
|
if (mv_check_bounds(x, &mode_mv[this_mode][0].as_mv) ||
|
|
(has_second_rf && mv_check_bounds(x, &mode_mv[this_mode][1].as_mv)))
|
|
continue;
|
|
|
|
if (filter_idx > 0) {
|
|
BEST_SEG_INFO *ref_bsi = bsi_buf;
|
|
subpelmv = 0;
|
|
have_ref = 1;
|
|
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref) {
|
|
subpelmv |= mv_has_subpel(&mode_mv[this_mode][ref].as_mv);
|
|
#if CONFIG_EXT_INTER
|
|
if (have_newmv_in_inter_mode(this_mode))
|
|
have_ref &=
|
|
((mode_mv[this_mode][ref].as_int ==
|
|
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int) &&
|
|
(bsi->ref_mv[ref]->as_int ==
|
|
ref_bsi->rdstat[index][mode_idx].ref_mv[ref].as_int));
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
have_ref &= mode_mv[this_mode][ref].as_int ==
|
|
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int;
|
|
}
|
|
|
|
have_ref &= ref_bsi->rdstat[index][mode_idx].brate > 0;
|
|
|
|
if (filter_idx > 1 && !subpelmv && !have_ref) {
|
|
ref_bsi = bsi_buf + 1;
|
|
have_ref = 1;
|
|
for (ref = 0; ref < 1 + has_second_rf; ++ref)
|
|
#if CONFIG_EXT_INTER
|
|
if (have_newmv_in_inter_mode(this_mode))
|
|
have_ref &=
|
|
((mode_mv[this_mode][ref].as_int ==
|
|
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int) &&
|
|
(bsi->ref_mv[ref]->as_int ==
|
|
ref_bsi->rdstat[index][mode_idx].ref_mv[ref].as_int));
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
have_ref &= mode_mv[this_mode][ref].as_int ==
|
|
ref_bsi->rdstat[index][mode_idx].mvs[ref].as_int;
|
|
|
|
have_ref &= ref_bsi->rdstat[index][mode_idx].brate > 0;
|
|
}
|
|
|
|
if (!subpelmv && have_ref &&
|
|
ref_bsi->rdstat[index][mode_idx].brdcost < INT64_MAX) {
|
|
#if CONFIG_REF_MV
|
|
bsi->rdstat[index][mode_idx].byrate =
|
|
ref_bsi->rdstat[index][mode_idx].byrate;
|
|
bsi->rdstat[index][mode_idx].bdist =
|
|
ref_bsi->rdstat[index][mode_idx].bdist;
|
|
bsi->rdstat[index][mode_idx].bsse =
|
|
ref_bsi->rdstat[index][mode_idx].bsse;
|
|
bsi->rdstat[index][mode_idx].brate +=
|
|
ref_bsi->rdstat[index][mode_idx].byrate;
|
|
bsi->rdstat[index][mode_idx].eobs =
|
|
ref_bsi->rdstat[index][mode_idx].eobs;
|
|
|
|
bsi->rdstat[index][mode_idx].brdcost =
|
|
RDCOST(x->rdmult, x->rddiv, bsi->rdstat[index][mode_idx].brate,
|
|
bsi->rdstat[index][mode_idx].bdist);
|
|
|
|
memcpy(bsi->rdstat[index][mode_idx].ta,
|
|
ref_bsi->rdstat[index][mode_idx].ta,
|
|
sizeof(bsi->rdstat[index][mode_idx].ta));
|
|
memcpy(bsi->rdstat[index][mode_idx].tl,
|
|
ref_bsi->rdstat[index][mode_idx].tl,
|
|
sizeof(bsi->rdstat[index][mode_idx].tl));
|
|
#else
|
|
memcpy(&bsi->rdstat[index][mode_idx],
|
|
&ref_bsi->rdstat[index][mode_idx], sizeof(SEG_RDSTAT));
|
|
#endif
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[index + 1][mode_idx].eobs =
|
|
ref_bsi->rdstat[index + 1][mode_idx].eobs;
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[index + 2][mode_idx].eobs =
|
|
ref_bsi->rdstat[index + 2][mode_idx].eobs;
|
|
|
|
if (bsi->rdstat[index][mode_idx].brdcost < new_best_rd) {
|
|
#if CONFIG_REF_MV
|
|
// If the NEWMV mode is using the same motion vector as the
|
|
// NEARESTMV mode, skip the rest rate-distortion calculations
|
|
// and use the inferred motion vector modes.
|
|
if (this_mode == NEWMV) {
|
|
if (has_second_rf) {
|
|
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
|
|
bsi->ref_mv[0]->as_int &&
|
|
bsi->rdstat[index][mode_idx].mvs[1].as_int ==
|
|
bsi->ref_mv[1]->as_int)
|
|
continue;
|
|
} else {
|
|
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
|
|
bsi->ref_mv[0]->as_int)
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
mode_selected = this_mode;
|
|
new_best_rd = bsi->rdstat[index][mode_idx].brdcost;
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
|
|
bsi->rdstat[index][mode_idx].brdcost = encode_inter_mb_segment(
|
|
cpi, x, bsi->segment_rd - this_segment_rd, index,
|
|
&bsi->rdstat[index][mode_idx].byrate,
|
|
&bsi->rdstat[index][mode_idx].bdist,
|
|
&bsi->rdstat[index][mode_idx].bsse, bsi->rdstat[index][mode_idx].ta,
|
|
bsi->rdstat[index][mode_idx].tl, idy, idx, mi_row, mi_col);
|
|
|
|
if (bsi->rdstat[index][mode_idx].brdcost < INT64_MAX) {
|
|
bsi->rdstat[index][mode_idx].brdcost += RDCOST(
|
|
x->rdmult, x->rddiv, bsi->rdstat[index][mode_idx].brate, 0);
|
|
bsi->rdstat[index][mode_idx].brate +=
|
|
bsi->rdstat[index][mode_idx].byrate;
|
|
bsi->rdstat[index][mode_idx].eobs = p->eobs[index];
|
|
if (num_4x4_blocks_wide > 1)
|
|
bsi->rdstat[index + 1][mode_idx].eobs = p->eobs[index + 1];
|
|
if (num_4x4_blocks_high > 1)
|
|
bsi->rdstat[index + 2][mode_idx].eobs = p->eobs[index + 2];
|
|
}
|
|
|
|
if (bsi->rdstat[index][mode_idx].brdcost < new_best_rd) {
|
|
#if CONFIG_REF_MV
|
|
// If the NEWMV mode is using the same motion vector as the
|
|
// NEARESTMV mode, skip the rest rate-distortion calculations
|
|
// and use the inferred motion vector modes.
|
|
if (this_mode == NEWMV) {
|
|
if (has_second_rf) {
|
|
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
|
|
bsi->ref_mv[0]->as_int &&
|
|
bsi->rdstat[index][mode_idx].mvs[1].as_int ==
|
|
bsi->ref_mv[1]->as_int)
|
|
continue;
|
|
} else {
|
|
if (bsi->rdstat[index][mode_idx].mvs[0].as_int ==
|
|
bsi->ref_mv[0]->as_int)
|
|
continue;
|
|
}
|
|
}
|
|
#endif
|
|
mode_selected = this_mode;
|
|
new_best_rd = bsi->rdstat[index][mode_idx].brdcost;
|
|
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &post_buf);
|
|
#endif
|
|
}
|
|
} /*for each 4x4 mode*/
|
|
|
|
if (new_best_rd == INT64_MAX) {
|
|
int iy, midx;
|
|
for (iy = index + 1; iy < 4; ++iy)
|
|
#if CONFIG_EXT_INTER
|
|
for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx)
|
|
#else
|
|
for (midx = 0; midx < INTER_MODES; ++midx)
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
|
|
bsi->segment_rd = INT64_MAX;
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
return INT64_MAX;
|
|
}
|
|
|
|
mode_idx = INTER_OFFSET(mode_selected);
|
|
memcpy(t_above, bsi->rdstat[index][mode_idx].ta, sizeof(t_above));
|
|
memcpy(t_left, bsi->rdstat[index][mode_idx].tl, sizeof(t_left));
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &post_buf);
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
mv_idx = (mode_selected == NEWFROMNEARMV) ? 1 : 0;
|
|
bsi->ref_mv[0]->as_int = bsi->rdstat[index][mode_idx].ref_mv[0].as_int;
|
|
if (has_second_rf)
|
|
bsi->ref_mv[1]->as_int = bsi->rdstat[index][mode_idx].ref_mv[1].as_int;
|
|
#endif // CONFIG_EXT_INTER
|
|
set_and_cost_bmi_mvs(cpi, x, xd, index, mode_selected,
|
|
mode_mv[mode_selected], frame_mv,
|
|
#if CONFIG_EXT_INTER
|
|
seg_mvs[index][mv_idx], compound_seg_newmvs[index],
|
|
#else
|
|
seg_mvs[index],
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi->ref_mv, x->nmvjointcost, x->mvcost);
|
|
|
|
br += bsi->rdstat[index][mode_idx].brate;
|
|
bd += bsi->rdstat[index][mode_idx].bdist;
|
|
block_sse += bsi->rdstat[index][mode_idx].bsse;
|
|
segmentyrate += bsi->rdstat[index][mode_idx].byrate;
|
|
this_segment_rd += bsi->rdstat[index][mode_idx].brdcost;
|
|
|
|
if (this_segment_rd > bsi->segment_rd) {
|
|
int iy, midx;
|
|
for (iy = index + 1; iy < 4; ++iy)
|
|
#if CONFIG_EXT_INTER
|
|
for (midx = 0; midx < INTER_MODES + INTER_COMPOUND_MODES; ++midx)
|
|
#else
|
|
for (midx = 0; midx < INTER_MODES; ++midx)
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi->rdstat[iy][midx].brdcost = INT64_MAX;
|
|
bsi->segment_rd = INT64_MAX;
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
} /* for each label */
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
|
|
bsi->r = br;
|
|
bsi->d = bd;
|
|
bsi->segment_yrate = segmentyrate;
|
|
bsi->segment_rd = this_segment_rd;
|
|
bsi->sse = block_sse;
|
|
|
|
// update the coding decisions
|
|
for (k = 0; k < 4; ++k) bsi->modes[k] = mi->bmi[k].as_mode;
|
|
|
|
if (bsi->segment_rd > best_rd) return INT64_MAX;
|
|
/* set it to the best */
|
|
for (idx = 0; idx < 4; idx++) {
|
|
mode_idx = INTER_OFFSET(bsi->modes[idx]);
|
|
mi->bmi[idx].as_mv[0].as_int = bsi->rdstat[idx][mode_idx].mvs[0].as_int;
|
|
if (has_second_ref(mbmi))
|
|
mi->bmi[idx].as_mv[1].as_int = bsi->rdstat[idx][mode_idx].mvs[1].as_int;
|
|
#if CONFIG_REF_MV
|
|
mi->bmi[idx].pred_mv[0] = bsi->rdstat[idx][mode_idx].pred_mv[0];
|
|
if (has_second_ref(mbmi))
|
|
mi->bmi[idx].pred_mv[1] = bsi->rdstat[idx][mode_idx].pred_mv[1];
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
mi->bmi[idx].ref_mv[0].as_int = bsi->rdstat[idx][mode_idx].ref_mv[0].as_int;
|
|
if (has_second_rf)
|
|
mi->bmi[idx].ref_mv[1].as_int =
|
|
bsi->rdstat[idx][mode_idx].ref_mv[1].as_int;
|
|
#endif // CONFIG_EXT_INTER
|
|
x->plane[0].eobs[idx] = bsi->rdstat[idx][mode_idx].eobs;
|
|
mi->bmi[idx].as_mode = bsi->modes[idx];
|
|
}
|
|
|
|
/*
|
|
* used to set mbmi->mv.as_int
|
|
*/
|
|
*returntotrate = bsi->r;
|
|
*returndistortion = bsi->d;
|
|
*returnyrate = bsi->segment_yrate;
|
|
*skippable = av1_is_skippable_in_plane(x, BLOCK_8X8, 0);
|
|
*psse = bsi->sse;
|
|
mbmi->mode = bsi->modes[3];
|
|
|
|
return bsi->segment_rd;
|
|
}
|
|
|
|
static void estimate_ref_frame_costs(const AV1_COMMON *cm,
|
|
const MACROBLOCKD *xd, int segment_id,
|
|
unsigned int *ref_costs_single,
|
|
unsigned int *ref_costs_comp,
|
|
aom_prob *comp_mode_p) {
|
|
int seg_ref_active =
|
|
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
|
|
if (seg_ref_active) {
|
|
memset(ref_costs_single, 0,
|
|
TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_single));
|
|
memset(ref_costs_comp, 0, TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_comp));
|
|
*comp_mode_p = 128;
|
|
} else {
|
|
aom_prob intra_inter_p = av1_get_intra_inter_prob(cm, xd);
|
|
aom_prob comp_inter_p = 128;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
comp_inter_p = av1_get_reference_mode_prob(cm, xd);
|
|
*comp_mode_p = comp_inter_p;
|
|
} else {
|
|
*comp_mode_p = 128;
|
|
}
|
|
|
|
ref_costs_single[INTRA_FRAME] = av1_cost_bit(intra_inter_p, 0);
|
|
|
|
if (cm->reference_mode != COMPOUND_REFERENCE) {
|
|
aom_prob ref_single_p1 = av1_get_pred_prob_single_ref_p1(cm, xd);
|
|
aom_prob ref_single_p2 = av1_get_pred_prob_single_ref_p2(cm, xd);
|
|
#if CONFIG_EXT_REFS
|
|
aom_prob ref_single_p3 = av1_get_pred_prob_single_ref_p3(cm, xd);
|
|
aom_prob ref_single_p4 = av1_get_pred_prob_single_ref_p4(cm, xd);
|
|
aom_prob ref_single_p5 = av1_get_pred_prob_single_ref_p5(cm, xd);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
unsigned int base_cost = av1_cost_bit(intra_inter_p, 1);
|
|
|
|
ref_costs_single[LAST_FRAME] =
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_single[LAST2_FRAME] = ref_costs_single[LAST3_FRAME] =
|
|
ref_costs_single[BWDREF_FRAME] =
|
|
#endif // CONFIG_EXT_REFS
|
|
ref_costs_single[GOLDEN_FRAME] =
|
|
ref_costs_single[ALTREF_FRAME] = base_cost;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
|
|
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
|
|
|
|
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p3, 0);
|
|
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p3, 0);
|
|
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p3, 1);
|
|
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p3, 1);
|
|
|
|
ref_costs_single[BWDREF_FRAME] += av1_cost_bit(ref_single_p2, 0);
|
|
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1);
|
|
|
|
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p4, 0);
|
|
ref_costs_single[LAST2_FRAME] += av1_cost_bit(ref_single_p4, 1);
|
|
|
|
ref_costs_single[LAST3_FRAME] += av1_cost_bit(ref_single_p5, 0);
|
|
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p5, 1);
|
|
#else
|
|
ref_costs_single[LAST_FRAME] += av1_cost_bit(ref_single_p1, 0);
|
|
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p1, 1);
|
|
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p1, 1);
|
|
|
|
ref_costs_single[GOLDEN_FRAME] += av1_cost_bit(ref_single_p2, 0);
|
|
ref_costs_single[ALTREF_FRAME] += av1_cost_bit(ref_single_p2, 1);
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
ref_costs_single[LAST_FRAME] = 512;
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_single[LAST2_FRAME] = 512;
|
|
ref_costs_single[LAST3_FRAME] = 512;
|
|
ref_costs_single[BWDREF_FRAME] = 512;
|
|
#endif // CONFIG_EXT_REFS
|
|
ref_costs_single[GOLDEN_FRAME] = 512;
|
|
ref_costs_single[ALTREF_FRAME] = 512;
|
|
}
|
|
|
|
if (cm->reference_mode != SINGLE_REFERENCE) {
|
|
aom_prob ref_comp_p = av1_get_pred_prob_comp_ref_p(cm, xd);
|
|
#if CONFIG_EXT_REFS
|
|
aom_prob ref_comp_p1 = av1_get_pred_prob_comp_ref_p1(cm, xd);
|
|
aom_prob ref_comp_p2 = av1_get_pred_prob_comp_ref_p2(cm, xd);
|
|
aom_prob bwdref_comp_p = av1_get_pred_prob_comp_bwdref_p(cm, xd);
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
unsigned int base_cost = av1_cost_bit(intra_inter_p, 1);
|
|
|
|
ref_costs_comp[LAST_FRAME] =
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_comp[LAST2_FRAME] = ref_costs_comp[LAST3_FRAME] =
|
|
#endif // CONFIG_EXT_REFS
|
|
ref_costs_comp[GOLDEN_FRAME] = base_cost;
|
|
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF_FRAME] = 0;
|
|
#endif // CONFIG_EXT_REFS
|
|
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0);
|
|
ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p, 0);
|
|
ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p, 1);
|
|
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1);
|
|
|
|
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p1, 1);
|
|
ref_costs_comp[LAST2_FRAME] += av1_cost_bit(ref_comp_p1, 0);
|
|
|
|
ref_costs_comp[LAST3_FRAME] += av1_cost_bit(ref_comp_p2, 0);
|
|
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p2, 1);
|
|
|
|
// NOTE(zoeliu): BWDREF and ALTREF each add an extra cost by coding 1
|
|
// more bit.
|
|
ref_costs_comp[BWDREF_FRAME] += av1_cost_bit(bwdref_comp_p, 0);
|
|
ref_costs_comp[ALTREF_FRAME] += av1_cost_bit(bwdref_comp_p, 1);
|
|
#else
|
|
ref_costs_comp[LAST_FRAME] += av1_cost_bit(ref_comp_p, 0);
|
|
ref_costs_comp[GOLDEN_FRAME] += av1_cost_bit(ref_comp_p, 1);
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
ref_costs_comp[LAST_FRAME] = 512;
|
|
#if CONFIG_EXT_REFS
|
|
ref_costs_comp[LAST2_FRAME] = 512;
|
|
ref_costs_comp[LAST3_FRAME] = 512;
|
|
ref_costs_comp[BWDREF_FRAME] = 512;
|
|
ref_costs_comp[ALTREF_FRAME] = 512;
|
|
#endif // CONFIG_EXT_REFS
|
|
ref_costs_comp[GOLDEN_FRAME] = 512;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
|
|
int mode_index,
|
|
int64_t comp_pred_diff[REFERENCE_MODES],
|
|
int skippable) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
|
|
// Take a snapshot of the coding context so it can be
|
|
// restored if we decide to encode this way
|
|
ctx->skip = x->skip;
|
|
ctx->skippable = skippable;
|
|
ctx->best_mode_index = mode_index;
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->mbmi_ext = *x->mbmi_ext;
|
|
ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE];
|
|
ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE];
|
|
ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT];
|
|
}
|
|
|
|
static void setup_buffer_inter(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
MV_REFERENCE_FRAME ref_frame,
|
|
BLOCK_SIZE block_size, int mi_row, int mi_col,
|
|
int_mv frame_nearest_mv[TOTAL_REFS_PER_FRAME],
|
|
int_mv frame_near_mv[TOTAL_REFS_PER_FRAME],
|
|
struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME]
|
|
[MAX_MB_PLANE]) {
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame);
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
|
|
const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf;
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
|
|
assert(yv12 != NULL);
|
|
|
|
// TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this
|
|
// use the UV scaling factors.
|
|
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf);
|
|
|
|
// Gets an initial list of candidate vectors from neighbours and orders them
|
|
av1_find_mv_refs(
|
|
cm, xd, mi, ref_frame,
|
|
#if CONFIG_REF_MV
|
|
&mbmi_ext->ref_mv_count[ref_frame], mbmi_ext->ref_mv_stack[ref_frame],
|
|
#if CONFIG_EXT_INTER
|
|
mbmi_ext->compound_mode_context,
|
|
#endif // CONFIG_EXT_INTER
|
|
#endif
|
|
candidates, mi_row, mi_col, NULL, NULL, mbmi_ext->mode_context);
|
|
|
|
// Candidate refinement carried out at encoder and decoder
|
|
av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates,
|
|
&frame_nearest_mv[ref_frame],
|
|
&frame_near_mv[ref_frame]);
|
|
|
|
// Further refinement that is encode side only to test the top few candidates
|
|
// in full and choose the best as the centre point for subsequent searches.
|
|
// The current implementation doesn't support scaling.
|
|
if (!av1_is_scaled(sf) && block_size >= BLOCK_8X8)
|
|
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame,
|
|
block_size);
|
|
}
|
|
|
|
static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col,
|
|
#if CONFIG_EXT_INTER
|
|
int ref_idx, int mv_idx,
|
|
#endif // CONFIG_EXT_INTER
|
|
int *rate_mv) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
|
|
int bestsme = INT_MAX;
|
|
int step_param;
|
|
int sadpb = x->sadperbit16;
|
|
MV mvp_full;
|
|
#if CONFIG_EXT_INTER
|
|
int ref = mbmi->ref_frame[ref_idx];
|
|
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
|
|
#else
|
|
int ref = mbmi->ref_frame[0];
|
|
MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv;
|
|
int ref_idx = 0;
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
int cost_list[5];
|
|
|
|
const YV12_BUFFER_CONFIG *scaled_ref_frame =
|
|
av1_get_scaled_ref_frame(cpi, ref);
|
|
|
|
MV pred_mv[3];
|
|
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
|
|
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
|
|
pred_mv[2] = x->pred_mv[ref];
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[i] = xd->plane[i].pre[ref_idx];
|
|
|
|
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
|
|
}
|
|
|
|
av1_set_mv_search_range(x, &ref_mv);
|
|
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx);
|
|
#endif
|
|
|
|
// Work out the size of the first step in the mv step search.
|
|
// 0 here is maximum length first step. 1 is AOMMAX >> 1 etc.
|
|
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
|
// Take wtd average of the step_params based on the last frame's
|
|
// max mv magnitude and that based on the best ref mvs of the current
|
|
// block for the given reference.
|
|
step_param =
|
|
(av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
|
|
2;
|
|
} else {
|
|
step_param = cpi->mv_step_param;
|
|
}
|
|
|
|
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size) {
|
|
int boffset =
|
|
2 * (b_width_log2_lookup[cm->sb_size] -
|
|
AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
|
step_param = AOMMAX(step_param, boffset);
|
|
}
|
|
|
|
if (cpi->sf.adaptive_motion_search) {
|
|
int bwl = b_width_log2_lookup[bsize];
|
|
int bhl = b_height_log2_lookup[bsize];
|
|
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
|
|
|
|
if (tlevel < 5) step_param += 2;
|
|
|
|
// prev_mv_sad is not setup for dynamically scaled frames.
|
|
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
|
|
int i;
|
|
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
|
|
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
|
|
x->pred_mv[ref].row = 0;
|
|
x->pred_mv[ref].col = 0;
|
|
x->best_mv.as_int = INVALID_MV;
|
|
|
|
if (scaled_ref_frame) {
|
|
int j;
|
|
for (j = 0; j < MAX_MB_PLANE; ++j)
|
|
xd->plane[j].pre[ref_idx] = backup_yv12[j];
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
av1_set_mv_search_range(x, &ref_mv);
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
if (mbmi->motion_mode != SIMPLE_TRANSLATION)
|
|
mvp_full = mbmi->mv[0].as_mv;
|
|
else
|
|
#endif // CONFIG_MOTION_VAR
|
|
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
|
|
|
|
mvp_full.col >>= 3;
|
|
mvp_full.row >>= 3;
|
|
|
|
x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV;
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
switch (mbmi->motion_mode) {
|
|
case SIMPLE_TRANSLATION:
|
|
#endif // CONFIG_MOTION_VAR
|
|
bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param,
|
|
sadpb, cond_cost_list(cpi, cost_list),
|
|
&ref_mv, INT_MAX, 1);
|
|
#if CONFIG_MOTION_VAR
|
|
break;
|
|
case OBMC_CAUSAL:
|
|
bestsme = av1_obmc_full_pixel_diamond(
|
|
cpi, x, &mvp_full, step_param, sadpb,
|
|
MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv,
|
|
&(x->best_mv.as_mv), 0);
|
|
break;
|
|
default: assert("Invalid motion mode!\n");
|
|
}
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
#if CONFIG_MOTION_VAR
|
|
switch (mbmi->motion_mode) {
|
|
case SIMPLE_TRANSLATION:
|
|
#endif // CONFIG_MOTION_VAR
|
|
if (cpi->sf.use_upsampled_references) {
|
|
int best_mv_var;
|
|
const int try_second = x->second_best_mv.as_int != INVALID_MV &&
|
|
x->second_best_mv.as_int != x->best_mv.as_int;
|
|
const int pw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
const int ph = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
// Use up-sampled reference frames.
|
|
struct macroblockd_plane *const pd = &xd->plane[0];
|
|
struct buf_2d backup_pred = pd->pre[ref_idx];
|
|
const YV12_BUFFER_CONFIG *upsampled_ref = get_upsampled_ref(cpi, ref);
|
|
|
|
// Set pred for Y plane
|
|
setup_pred_plane(
|
|
&pd->pre[ref_idx], upsampled_ref->y_buffer,
|
|
upsampled_ref->y_crop_width, upsampled_ref->y_crop_height,
|
|
upsampled_ref->y_stride, (mi_row << 3), (mi_col << 3), NULL,
|
|
pd->subsampling_x, pd->subsampling_y);
|
|
|
|
best_mv_var = cpi->find_fractional_mv_step(
|
|
x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
|
|
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
|
|
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, pw, ph,
|
|
1);
|
|
|
|
if (try_second) {
|
|
const int minc = AOMMAX(x->mv_col_min * 8, ref_mv.col - MV_MAX);
|
|
const int maxc = AOMMIN(x->mv_col_max * 8, ref_mv.col + MV_MAX);
|
|
const int minr = AOMMAX(x->mv_row_min * 8, ref_mv.row - MV_MAX);
|
|
const int maxr = AOMMIN(x->mv_row_max * 8, ref_mv.row + MV_MAX);
|
|
int this_var;
|
|
MV best_mv = x->best_mv.as_mv;
|
|
|
|
x->best_mv = x->second_best_mv;
|
|
if (x->best_mv.as_mv.row * 8 <= maxr &&
|
|
x->best_mv.as_mv.row * 8 >= minr &&
|
|
x->best_mv.as_mv.col * 8 <= maxc &&
|
|
x->best_mv.as_mv.col * 8 >= minc) {
|
|
this_var = cpi->find_fractional_mv_step(
|
|
x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
|
|
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step,
|
|
cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost,
|
|
&dis, &x->pred_sse[ref], NULL, pw, ph, 1);
|
|
if (this_var < best_mv_var) best_mv = x->best_mv.as_mv;
|
|
x->best_mv.as_mv = best_mv;
|
|
}
|
|
}
|
|
|
|
// Restore the reference frames.
|
|
pd->pre[ref_idx] = backup_pred;
|
|
} else {
|
|
cpi->find_fractional_mv_step(
|
|
x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit,
|
|
&cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop,
|
|
cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list),
|
|
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, 0, 0,
|
|
0);
|
|
}
|
|
#if CONFIG_MOTION_VAR
|
|
break;
|
|
case OBMC_CAUSAL:
|
|
av1_find_best_obmc_sub_pixel_tree_up(
|
|
cpi, x, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv,
|
|
cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize],
|
|
cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
|
|
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], 0,
|
|
cpi->sf.use_upsampled_references);
|
|
break;
|
|
default: assert("Invalid motion mode!\n");
|
|
}
|
|
#endif // CONFIG_MOTION_VAR
|
|
}
|
|
*rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost,
|
|
x->mvcost, MV_COST_WEIGHT);
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION)
|
|
#else
|
|
if (cpi->sf.adaptive_motion_search)
|
|
#endif // CONFIG_MOTION_VAR
|
|
x->pred_mv[ref] = x->best_mv.as_mv;
|
|
|
|
if (scaled_ref_frame) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[ref_idx] = backup_yv12[i];
|
|
}
|
|
}
|
|
|
|
static INLINE void restore_dst_buf(MACROBLOCKD *xd,
|
|
uint8_t *orig_dst[MAX_MB_PLANE],
|
|
int orig_dst_stride[MAX_MB_PLANE]) {
|
|
int i;
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].dst.buf = orig_dst[i];
|
|
xd->plane[i].dst.stride = orig_dst_stride[i];
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
static void do_masked_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x,
|
|
const uint8_t *mask, int mask_stride,
|
|
BLOCK_SIZE bsize, int mi_row, int mi_col,
|
|
int_mv *tmp_mv, int *rate_mv, int ref_idx,
|
|
int mv_idx) {
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } };
|
|
int bestsme = INT_MAX;
|
|
int step_param;
|
|
int sadpb = x->sadperbit16;
|
|
MV mvp_full;
|
|
int ref = mbmi->ref_frame[ref_idx];
|
|
MV ref_mv = x->mbmi_ext->ref_mvs[ref][mv_idx].as_mv;
|
|
|
|
int tmp_col_min = x->mv_col_min;
|
|
int tmp_col_max = x->mv_col_max;
|
|
int tmp_row_min = x->mv_row_min;
|
|
int tmp_row_max = x->mv_row_max;
|
|
|
|
const YV12_BUFFER_CONFIG *scaled_ref_frame =
|
|
av1_get_scaled_ref_frame(cpi, ref);
|
|
int i;
|
|
|
|
MV pred_mv[3];
|
|
pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv;
|
|
pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv;
|
|
pred_mv[2] = x->pred_mv[ref];
|
|
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, ref, ref_idx, mbmi->ref_mv_idx);
|
|
#endif
|
|
|
|
if (scaled_ref_frame) {
|
|
// Swap out the reference frame for a version that's been scaled to
|
|
// match the resolution of the current frame, allowing the existing
|
|
// motion search code to be used without additional modifications.
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
backup_yv12[i] = xd->plane[i].pre[ref_idx];
|
|
|
|
av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL);
|
|
}
|
|
|
|
av1_set_mv_search_range(x, &ref_mv);
|
|
|
|
// Work out the size of the first step in the mv step search.
|
|
// 0 here is maximum length first step. 1 is MAX >> 1 etc.
|
|
if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) {
|
|
// Take wtd average of the step_params based on the last frame's
|
|
// max mv magnitude and that based on the best ref mvs of the current
|
|
// block for the given reference.
|
|
step_param =
|
|
(av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) /
|
|
2;
|
|
} else {
|
|
step_param = cpi->mv_step_param;
|
|
}
|
|
|
|
// TODO(debargha): is show_frame needed here?
|
|
if (cpi->sf.adaptive_motion_search && bsize < cm->sb_size && cm->show_frame) {
|
|
int boffset =
|
|
2 * (b_width_log2_lookup[cm->sb_size] -
|
|
AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize]));
|
|
step_param = AOMMAX(step_param, boffset);
|
|
}
|
|
|
|
if (cpi->sf.adaptive_motion_search) {
|
|
int bwl = b_width_log2_lookup[bsize];
|
|
int bhl = b_height_log2_lookup[bsize];
|
|
int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4);
|
|
|
|
if (tlevel < 5) step_param += 2;
|
|
|
|
// prev_mv_sad is not setup for dynamically scaled frames.
|
|
if (cpi->oxcf.resize_mode != RESIZE_DYNAMIC) {
|
|
for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) {
|
|
if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) {
|
|
x->pred_mv[ref].row = 0;
|
|
x->pred_mv[ref].col = 0;
|
|
tmp_mv->as_int = INVALID_MV;
|
|
|
|
if (scaled_ref_frame) {
|
|
int j;
|
|
for (j = 0; j < MAX_MB_PLANE; ++j)
|
|
xd->plane[j].pre[ref_idx] = backup_yv12[j];
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
mvp_full = pred_mv[x->mv_best_ref_index[ref]];
|
|
|
|
mvp_full.col >>= 3;
|
|
mvp_full.row >>= 3;
|
|
|
|
bestsme = av1_masked_full_pixel_diamond(
|
|
cpi, x, mask, mask_stride, &mvp_full, step_param, sadpb,
|
|
MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv,
|
|
&tmp_mv->as_mv, ref_idx);
|
|
|
|
x->mv_col_min = tmp_col_min;
|
|
x->mv_col_max = tmp_col_max;
|
|
x->mv_row_min = tmp_row_min;
|
|
x->mv_row_max = tmp_row_max;
|
|
|
|
if (bestsme < INT_MAX) {
|
|
int dis; /* TODO: use dis in distortion calculation later. */
|
|
av1_find_best_masked_sub_pixel_tree_up(
|
|
cpi, x, mask, mask_stride, mi_row, mi_col, &tmp_mv->as_mv, &ref_mv,
|
|
cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize],
|
|
cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step,
|
|
x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], ref_idx,
|
|
cpi->sf.use_upsampled_references);
|
|
}
|
|
*rate_mv = av1_mv_bit_cost(&tmp_mv->as_mv, &ref_mv, x->nmvjointcost,
|
|
x->mvcost, MV_COST_WEIGHT);
|
|
|
|
if (cpi->sf.adaptive_motion_search && cm->show_frame)
|
|
x->pred_mv[ref] = tmp_mv->as_mv;
|
|
|
|
if (scaled_ref_frame) {
|
|
for (i = 0; i < MAX_MB_PLANE; i++)
|
|
xd->plane[i].pre[ref_idx] = backup_yv12[i];
|
|
}
|
|
}
|
|
|
|
static void do_masked_motion_search_indexed(const AV1_COMP *const cpi,
|
|
MACROBLOCK *x, int wedge_index,
|
|
int wedge_sign, BLOCK_SIZE bsize,
|
|
int mi_row, int mi_col,
|
|
int_mv *tmp_mv, int *rate_mv,
|
|
int mv_idx[2], int which) {
|
|
// NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
BLOCK_SIZE sb_type = mbmi->sb_type;
|
|
const uint8_t *mask;
|
|
const int mask_stride = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
|
|
|
|
if (which == 0 || which == 2)
|
|
do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col,
|
|
&tmp_mv[0], &rate_mv[0], 0, mv_idx[0]);
|
|
|
|
if (which == 1 || which == 2) {
|
|
// get the negative mask
|
|
mask = av1_get_contiguous_soft_mask(wedge_index, !wedge_sign, sb_type);
|
|
do_masked_motion_search(cpi, x, mask, mask_stride, bsize, mi_row, mi_col,
|
|
&tmp_mv[1], &rate_mv[1], 1, mv_idx[1]);
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
// In some situations we want to discount tha pparent cost of a new motion
|
|
// vector. Where there is a subtle motion field and especially where there is
|
|
// low spatial complexity then it can be hard to cover the cost of a new motion
|
|
// vector in a single block, even if that motion vector reduces distortion.
|
|
// However, once established that vector may be usable through the nearest and
|
|
// near mv modes to reduce distortion in subsequent blocks and also improve
|
|
// visual quality.
|
|
static int discount_newmv_test(const AV1_COMP *const cpi, int this_mode,
|
|
int_mv this_mv,
|
|
int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME],
|
|
int ref_frame) {
|
|
return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) &&
|
|
(this_mv.as_int != 0) &&
|
|
((mode_mv[NEARESTMV][ref_frame].as_int == 0) ||
|
|
(mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) &&
|
|
((mode_mv[NEARMV][ref_frame].as_int == 0) ||
|
|
(mode_mv[NEARMV][ref_frame].as_int == INVALID_MV)));
|
|
}
|
|
|
|
#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
|
|
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
|
|
|
|
// TODO(jingning): this mv clamping function should be block size dependent.
|
|
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
|
|
clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN,
|
|
xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
|
|
xd->mb_to_top_edge - LEFT_TOP_MARGIN,
|
|
xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN);
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x,
|
|
const BLOCK_SIZE bsize, const uint8_t *pred0,
|
|
int stride0, const uint8_t *pred1, int stride1) {
|
|
const struct macroblock_plane *const p = &x->plane[0];
|
|
const uint8_t *src = p->src.buf;
|
|
int src_stride = p->src.stride;
|
|
const int f_index = bsize - BLOCK_8X8;
|
|
const int bw = 4 << (b_width_log2_lookup[bsize]);
|
|
const int bh = 4 << (b_height_log2_lookup[bsize]);
|
|
uint32_t esq[2][4], var;
|
|
int64_t tl, br;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
pred0 = CONVERT_TO_BYTEPTR(pred0);
|
|
pred1 = CONVERT_TO_BYTEPTR(pred1);
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
var = cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]);
|
|
var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2,
|
|
stride0, &esq[0][1]);
|
|
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
|
|
pred0 + bh / 2 * stride0, stride0, &esq[0][2]);
|
|
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
|
|
pred0 + bh / 2 * stride0 + bw / 2, stride0,
|
|
&esq[0][3]);
|
|
var = cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]);
|
|
var = cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2,
|
|
stride1, &esq[1][1]);
|
|
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride,
|
|
pred1 + bh / 2 * stride1, stride0, &esq[1][2]);
|
|
var = cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride,
|
|
pred1 + bh / 2 * stride1 + bw / 2, stride0,
|
|
&esq[1][3]);
|
|
(void)var;
|
|
|
|
tl = (int64_t)(esq[0][0] + esq[0][1] + esq[0][2]) -
|
|
(int64_t)(esq[1][0] + esq[1][1] + esq[1][2]);
|
|
br = (int64_t)(esq[1][3] + esq[1][1] + esq[1][2]) -
|
|
(int64_t)(esq[0][3] + esq[0][1] + esq[0][2]);
|
|
return (tl + br > 0);
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if !CONFIG_DUAL_FILTER
|
|
static InterpFilter predict_interp_filter(
|
|
const AV1_COMP *cpi, const MACROBLOCK *x, const BLOCK_SIZE bsize,
|
|
const int mi_row, const int mi_col,
|
|
InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME]) {
|
|
InterpFilter best_filter = SWITCHABLE;
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
const MACROBLOCKD *xd = &x->e_mbd;
|
|
int bsl = mi_width_log2_lookup[bsize];
|
|
int pred_filter_search =
|
|
cpi->sf.cb_pred_filter_search
|
|
? (((mi_row + mi_col) >> bsl) +
|
|
get_chessboard_index(cm->current_video_frame)) &
|
|
0x1
|
|
: 0;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
const int is_comp_pred = has_second_ref(mbmi);
|
|
const int this_mode = mbmi->mode;
|
|
int refs[2] = { mbmi->ref_frame[0],
|
|
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
|
|
if (pred_filter_search) {
|
|
InterpFilter af = SWITCHABLE, lf = SWITCHABLE;
|
|
if (xd->up_available) af = xd->mi[-xd->mi_stride]->mbmi.interp_filter;
|
|
if (xd->left_available) lf = xd->mi[-1]->mbmi.interp_filter;
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if ((this_mode != NEWMV && this_mode != NEWFROMNEARMV &&
|
|
this_mode != NEW_NEWMV) ||
|
|
(af == lf))
|
|
#else
|
|
if ((this_mode != NEWMV) || (af == lf))
|
|
#endif // CONFIG_EXT_INTER
|
|
best_filter = af;
|
|
}
|
|
if (is_comp_pred) {
|
|
if (cpi->sf.adaptive_mode_search) {
|
|
#if CONFIG_EXT_INTER
|
|
switch (this_mode) {
|
|
case NEAREST_NEARESTMV:
|
|
if (single_filter[NEARESTMV][refs[0]] ==
|
|
single_filter[NEARESTMV][refs[1]])
|
|
best_filter = single_filter[NEARESTMV][refs[0]];
|
|
break;
|
|
case NEAREST_NEARMV:
|
|
if (single_filter[NEARESTMV][refs[0]] ==
|
|
single_filter[NEARMV][refs[1]])
|
|
best_filter = single_filter[NEARESTMV][refs[0]];
|
|
break;
|
|
case NEAR_NEARESTMV:
|
|
if (single_filter[NEARMV][refs[0]] ==
|
|
single_filter[NEARESTMV][refs[1]])
|
|
best_filter = single_filter[NEARMV][refs[0]];
|
|
break;
|
|
case NEAR_NEARMV:
|
|
if (single_filter[NEARMV][refs[0]] == single_filter[NEARMV][refs[1]])
|
|
best_filter = single_filter[NEARMV][refs[0]];
|
|
break;
|
|
case ZERO_ZEROMV:
|
|
if (single_filter[ZEROMV][refs[0]] == single_filter[ZEROMV][refs[1]])
|
|
best_filter = single_filter[ZEROMV][refs[0]];
|
|
break;
|
|
case NEW_NEWMV:
|
|
if (single_filter[NEWMV][refs[0]] == single_filter[NEWMV][refs[1]])
|
|
best_filter = single_filter[NEWMV][refs[0]];
|
|
break;
|
|
case NEAREST_NEWMV:
|
|
if (single_filter[NEARESTMV][refs[0]] ==
|
|
single_filter[NEWMV][refs[1]])
|
|
best_filter = single_filter[NEARESTMV][refs[0]];
|
|
break;
|
|
case NEAR_NEWMV:
|
|
if (single_filter[NEARMV][refs[0]] == single_filter[NEWMV][refs[1]])
|
|
best_filter = single_filter[NEARMV][refs[0]];
|
|
break;
|
|
case NEW_NEARESTMV:
|
|
if (single_filter[NEWMV][refs[0]] ==
|
|
single_filter[NEARESTMV][refs[1]])
|
|
best_filter = single_filter[NEWMV][refs[0]];
|
|
break;
|
|
case NEW_NEARMV:
|
|
if (single_filter[NEWMV][refs[0]] == single_filter[NEARMV][refs[1]])
|
|
best_filter = single_filter[NEWMV][refs[0]];
|
|
break;
|
|
default:
|
|
if (single_filter[this_mode][refs[0]] ==
|
|
single_filter[this_mode][refs[1]])
|
|
best_filter = single_filter[this_mode][refs[0]];
|
|
break;
|
|
}
|
|
#else
|
|
if (single_filter[this_mode][refs[0]] ==
|
|
single_filter[this_mode][refs[1]])
|
|
best_filter = single_filter[this_mode][refs[0]];
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
}
|
|
if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) {
|
|
best_filter = EIGHTTAP_REGULAR;
|
|
}
|
|
return best_filter;
|
|
}
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
// Choose the best wedge index and sign
|
|
static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x,
|
|
const BLOCK_SIZE bsize, const uint8_t *const p0,
|
|
const uint8_t *const p1, int *const best_wedge_sign,
|
|
int *const best_wedge_index) {
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
const struct buf_2d *const src = &x->plane[0].src;
|
|
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
const int bh = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
const int N = bw * bh;
|
|
int rate;
|
|
int64_t dist;
|
|
int64_t rd, best_rd = INT64_MAX;
|
|
int wedge_index;
|
|
int wedge_sign;
|
|
int wedge_types = (1 << get_wedge_bits_lookup(bsize));
|
|
const uint8_t *mask;
|
|
uint64_t sse;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
|
|
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
|
|
#else
|
|
const int bd_round = 0;
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]);
|
|
|
|
int64_t sign_limit;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (hbd) {
|
|
aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride,
|
|
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
|
|
aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
|
|
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
|
|
aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw,
|
|
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
|
|
} else // NOLINT
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
{
|
|
aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw);
|
|
aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
|
|
aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
|
|
}
|
|
|
|
sign_limit = ((int64_t)aom_sum_squares_i16(r0, N) -
|
|
(int64_t)aom_sum_squares_i16(r1, N)) *
|
|
(1 << WEDGE_WEIGHT_BITS) / 2;
|
|
|
|
av1_wedge_compute_delta_squares(ds, r0, r1, N);
|
|
|
|
for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
|
|
mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize);
|
|
wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit);
|
|
|
|
mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
|
|
sse = av1_wedge_sse_from_residuals(r1, d10, mask, N);
|
|
sse = ROUND_POWER_OF_TWO(sse, bd_round);
|
|
|
|
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
|
|
|
|
if (rd < best_rd) {
|
|
*best_wedge_index = wedge_index;
|
|
*best_wedge_sign = wedge_sign;
|
|
best_rd = rd;
|
|
}
|
|
}
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
// Choose the best wedge index the specified sign
|
|
static int64_t pick_wedge_fixed_sign(
|
|
const AV1_COMP *const cpi, const MACROBLOCK *const x,
|
|
const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1,
|
|
const int wedge_sign, int *const best_wedge_index) {
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
const struct buf_2d *const src = &x->plane[0].src;
|
|
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
const int bh = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
const int N = bw * bh;
|
|
int rate;
|
|
int64_t dist;
|
|
int64_t rd, best_rd = INT64_MAX;
|
|
int wedge_index;
|
|
int wedge_types = (1 << get_wedge_bits_lookup(bsize));
|
|
const uint8_t *mask;
|
|
uint64_t sse;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH;
|
|
const int bd_round = hbd ? (xd->bd - 8) * 2 : 0;
|
|
#else
|
|
const int bd_round = 0;
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]);
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (hbd) {
|
|
aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride,
|
|
CONVERT_TO_BYTEPTR(p1), bw, xd->bd);
|
|
aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw,
|
|
CONVERT_TO_BYTEPTR(p0), bw, xd->bd);
|
|
} else // NOLINT
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
{
|
|
aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw);
|
|
aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw);
|
|
}
|
|
|
|
for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) {
|
|
mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize);
|
|
sse = av1_wedge_sse_from_residuals(r1, d10, mask, N);
|
|
sse = ROUND_POWER_OF_TWO(sse, bd_round);
|
|
|
|
model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rate, dist);
|
|
|
|
if (rd < best_rd) {
|
|
*best_wedge_index = wedge_index;
|
|
best_rd = rd;
|
|
}
|
|
}
|
|
|
|
return best_rd;
|
|
}
|
|
|
|
static int64_t pick_interinter_wedge(const AV1_COMP *const cpi,
|
|
const MACROBLOCK *const x,
|
|
const BLOCK_SIZE bsize,
|
|
const uint8_t *const p0,
|
|
const uint8_t *const p1) {
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
|
|
int64_t rd;
|
|
int wedge_index = -1;
|
|
int wedge_sign = 0;
|
|
|
|
assert(is_interinter_wedge_used(bsize));
|
|
|
|
if (cpi->sf.fast_wedge_sign_estimate) {
|
|
wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw);
|
|
rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index);
|
|
} else {
|
|
rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index);
|
|
}
|
|
|
|
mbmi->interinter_wedge_sign = wedge_sign;
|
|
mbmi->interinter_wedge_index = wedge_index;
|
|
return rd;
|
|
}
|
|
|
|
static int64_t pick_interintra_wedge(const AV1_COMP *const cpi,
|
|
const MACROBLOCK *const x,
|
|
const BLOCK_SIZE bsize,
|
|
const uint8_t *const p0,
|
|
const uint8_t *const p1) {
|
|
const MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
|
|
int64_t rd;
|
|
int wedge_index = -1;
|
|
|
|
assert(is_interintra_wedge_used(bsize));
|
|
|
|
rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index);
|
|
|
|
mbmi->interintra_wedge_sign = 0;
|
|
mbmi->interintra_wedge_index = wedge_index;
|
|
return rd;
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
static int64_t handle_inter_mode(
|
|
const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int *rate2,
|
|
int64_t *distortion, int *skippable, int *rate_y, int *rate_uv,
|
|
int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row,
|
|
int mi_col,
|
|
#if CONFIG_MOTION_VAR
|
|
uint8_t *above_pred_buf[3], int above_pred_stride[3],
|
|
uint8_t *left_pred_buf[3], int left_pred_stride[3],
|
|
#endif // CONFIG_MOTION_VAR
|
|
#if CONFIG_EXT_INTER
|
|
int_mv single_newmvs[2][TOTAL_REFS_PER_FRAME],
|
|
int single_newmvs_rate[2][TOTAL_REFS_PER_FRAME],
|
|
int *compmode_interintra_cost, int *compmode_wedge_cost,
|
|
int64_t (*const modelled_rd)[TOTAL_REFS_PER_FRAME],
|
|
#else
|
|
int_mv single_newmv[TOTAL_REFS_PER_FRAME],
|
|
#endif // CONFIG_EXT_INTER
|
|
InterpFilter (*single_filter)[TOTAL_REFS_PER_FRAME],
|
|
int (*single_skippable)[TOTAL_REFS_PER_FRAME], int64_t *psse,
|
|
const int64_t ref_best_rd) {
|
|
const AV1_COMMON *cm = &cpi->common;
|
|
MACROBLOCKD *xd = &x->e_mbd;
|
|
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const int is_comp_pred = has_second_ref(mbmi);
|
|
const int this_mode = mbmi->mode;
|
|
int_mv *frame_mv = mode_mv[this_mode];
|
|
int i;
|
|
int refs[2] = { mbmi->ref_frame[0],
|
|
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
|
|
int_mv cur_mv[2];
|
|
int rate_mv = 0;
|
|
#if CONFIG_EXT_INTER
|
|
int pred_exists = 1;
|
|
const int bw = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
int mv_idx = (this_mode == NEWFROMNEARMV) ? 1 : 0;
|
|
int_mv single_newmv[TOTAL_REFS_PER_FRAME];
|
|
const unsigned int *const interintra_mode_cost =
|
|
cpi->interintra_mode_cost[size_group_lookup[bsize]];
|
|
const int is_comp_interintra_pred = (mbmi->ref_frame[1] == INTRA_FRAME);
|
|
#if CONFIG_REF_MV
|
|
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
#endif
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf_[MAX_MB_PLANE * MAX_SB_SQUARE]);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
uint8_t *tmp_buf;
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
int allow_motvar =
|
|
#if CONFIG_EXT_INTER
|
|
!is_comp_interintra_pred &&
|
|
#endif // CONFIG_EXT_INTER
|
|
is_motion_variation_allowed(mbmi);
|
|
int rate2_nocoeff = 0, best_rate2 = INT_MAX, best_skippable, best_xskip,
|
|
best_disable_skip = 0;
|
|
int best_rate_y, best_rate_uv;
|
|
#if CONFIG_VAR_TX
|
|
uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE * 4];
|
|
#endif // CONFIG_VAR_TX
|
|
int64_t best_distortion = INT64_MAX;
|
|
int64_t best_rd = INT64_MAX;
|
|
MB_MODE_INFO best_mbmi;
|
|
#if CONFIG_EXT_INTER
|
|
int rate2_bmc_nocoeff;
|
|
int rate_mv_bmc;
|
|
MB_MODE_INFO best_bmc_mbmi;
|
|
#endif // CONFIG_EXT_INTER
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
int64_t rd = INT64_MAX;
|
|
uint8_t *orig_dst[MAX_MB_PLANE];
|
|
int orig_dst_stride[MAX_MB_PLANE];
|
|
uint8_t *tmp_dst[MAX_MB_PLANE];
|
|
int tmp_dst_stride[MAX_MB_PLANE];
|
|
int rs = 0;
|
|
InterpFilter assign_filter = SWITCHABLE;
|
|
|
|
int skip_txfm_sb = 0;
|
|
int64_t skip_sse_sb = INT64_MAX;
|
|
int64_t distortion_y = 0, distortion_uv = 0;
|
|
int16_t mode_ctx = mbmi_ext->mode_context[refs[0]];
|
|
|
|
#if CONFIG_EXT_INTER
|
|
*compmode_interintra_cost = 0;
|
|
mbmi->use_wedge_interintra = 0;
|
|
*compmode_wedge_cost = 0;
|
|
mbmi->use_wedge_interinter = 0;
|
|
|
|
// is_comp_interintra_pred implies !is_comp_pred
|
|
assert(!is_comp_interintra_pred || (!is_comp_pred));
|
|
// is_comp_interintra_pred implies is_interintra_allowed(mbmi->sb_type)
|
|
assert(!is_comp_interintra_pred || is_interintra_allowed(mbmi));
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_REF_MV
|
|
#if CONFIG_EXT_INTER
|
|
if (is_comp_pred)
|
|
mode_ctx = mbmi_ext->compound_mode_context[refs[0]];
|
|
else
|
|
#endif // CONFIG_EXT_INTER
|
|
mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context,
|
|
mbmi->ref_frame, bsize, -1);
|
|
#endif
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
|
|
tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_);
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
tmp_buf = tmp_buf_;
|
|
|
|
if (is_comp_pred) {
|
|
if (frame_mv[refs[0]].as_int == INVALID_MV ||
|
|
frame_mv[refs[1]].as_int == INVALID_MV)
|
|
return INT64_MAX;
|
|
}
|
|
|
|
mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
if (have_newmv_in_inter_mode(this_mode)) {
|
|
if (is_comp_pred) {
|
|
#if CONFIG_EXT_INTER
|
|
for (i = 0; i < 2; ++i) {
|
|
single_newmv[refs[i]].as_int = single_newmvs[mv_idx][refs[i]].as_int;
|
|
}
|
|
|
|
if (this_mode == NEW_NEWMV) {
|
|
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
|
|
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
|
|
|
|
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
|
|
joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, NULL,
|
|
single_newmv, &rate_mv, 0);
|
|
} else {
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
|
|
#endif // CONFIG_REF_MV
|
|
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
|
|
&mbmi_ext->ref_mvs[refs[0]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx);
|
|
#endif // CONFIG_REF_MV
|
|
rate_mv += av1_mv_bit_cost(
|
|
&frame_mv[refs[1]].as_mv, &mbmi_ext->ref_mvs[refs[1]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
}
|
|
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
|
|
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
|
|
rate_mv = av1_mv_bit_cost(&frame_mv[refs[1]].as_mv,
|
|
&mbmi_ext->ref_mvs[refs[1]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
} else {
|
|
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
|
|
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
|
|
&mbmi_ext->ref_mvs[refs[0]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
}
|
|
#else
|
|
// Initialize mv using single prediction mode result.
|
|
frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int;
|
|
frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int;
|
|
|
|
if (cpi->sf.comp_inter_joint_search_thresh <= bsize) {
|
|
joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col,
|
|
single_newmv, &rate_mv, 0);
|
|
} else {
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, mbmi->ref_frame[0], 0, mbmi->ref_mv_idx);
|
|
#endif // CONFIG_REF_MV
|
|
rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv,
|
|
&mbmi_ext->ref_mvs[refs[0]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
#if CONFIG_REF_MV
|
|
av1_set_mvcost(x, mbmi->ref_frame[1], 1, mbmi->ref_mv_idx);
|
|
#endif // CONFIG_REF_MV
|
|
rate_mv += av1_mv_bit_cost(&frame_mv[refs[1]].as_mv,
|
|
&mbmi_ext->ref_mvs[refs[1]][0].as_mv,
|
|
x->nmvjointcost, x->mvcost, MV_COST_WEIGHT);
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
} else {
|
|
#if CONFIG_EXT_INTER
|
|
if (is_comp_interintra_pred) {
|
|
x->best_mv = single_newmvs[mv_idx][refs[0]];
|
|
rate_mv = single_newmvs_rate[mv_idx][refs[0]];
|
|
} else {
|
|
single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, mv_idx,
|
|
&rate_mv);
|
|
single_newmvs[mv_idx][refs[0]] = x->best_mv;
|
|
single_newmvs_rate[mv_idx][refs[0]] = rate_mv;
|
|
}
|
|
#else
|
|
single_motion_search(cpi, x, bsize, mi_row, mi_col, &rate_mv);
|
|
single_newmv[refs[0]] = x->best_mv;
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
if (x->best_mv.as_int == INVALID_MV) return INT64_MAX;
|
|
|
|
frame_mv[refs[0]] = x->best_mv;
|
|
xd->mi[0]->bmi[0].as_mv[0] = x->best_mv;
|
|
|
|
// Estimate the rate implications of a new mv but discount this
|
|
// under certain circumstances where we want to help initiate a weak
|
|
// motion field, where the distortion gain for a single block may not
|
|
// be enough to overcome the cost of a new mv.
|
|
if (discount_newmv_test(cpi, this_mode, x->best_mv, mode_mv, refs[0])) {
|
|
rate_mv = AOMMAX((rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
|
}
|
|
}
|
|
*rate2 += rate_mv;
|
|
}
|
|
|
|
for (i = 0; i < is_comp_pred + 1; ++i) {
|
|
cur_mv[i] = frame_mv[refs[i]];
|
|
// Clip "next_nearest" so that it does not extend to far out of image
|
|
#if CONFIG_EXT_INTER
|
|
if (this_mode != NEWMV && this_mode != NEWFROMNEARMV)
|
|
#else
|
|
if (this_mode != NEWMV)
|
|
#endif // CONFIG_EXT_INTER
|
|
clamp_mv2(&cur_mv[i].as_mv, xd);
|
|
|
|
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
|
|
mbmi->mv[i].as_int = cur_mv[i].as_int;
|
|
}
|
|
|
|
#if CONFIG_REF_MV
|
|
#if CONFIG_EXT_INTER
|
|
if (this_mode == NEAREST_NEARESTMV)
|
|
#else
|
|
if (this_mode == NEARESTMV && is_comp_pred)
|
|
#endif // CONFIG_EXT_INTER
|
|
{
|
|
#if !CONFIG_EXT_INTER
|
|
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
#endif
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
|
|
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
|
|
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
clamp_mv2(&cur_mv[i].as_mv, xd);
|
|
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
|
|
mbmi->mv[i].as_int = cur_mv[i].as_int;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) {
|
|
if (this_mode == NEAREST_NEWMV || this_mode == NEAREST_NEARMV) {
|
|
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv;
|
|
|
|
lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv);
|
|
clamp_mv2(&cur_mv[0].as_mv, xd);
|
|
if (mv_check_bounds(x, &cur_mv[0].as_mv)) return INT64_MAX;
|
|
mbmi->mv[0].as_int = cur_mv[0].as_int;
|
|
}
|
|
|
|
if (this_mode == NEW_NEARESTMV || this_mode == NEAR_NEARESTMV) {
|
|
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
|
|
|
|
lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv);
|
|
clamp_mv2(&cur_mv[1].as_mv, xd);
|
|
if (mv_check_bounds(x, &cur_mv[1].as_mv)) return INT64_MAX;
|
|
mbmi->mv[1].as_int = cur_mv[1].as_int;
|
|
}
|
|
}
|
|
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
|
|
if (this_mode == NEAR_NEWMV || this_mode == NEAR_NEARESTMV ||
|
|
this_mode == NEAR_NEARMV) {
|
|
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][1].this_mv;
|
|
|
|
lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv);
|
|
clamp_mv2(&cur_mv[0].as_mv, xd);
|
|
if (mv_check_bounds(x, &cur_mv[0].as_mv)) return INT64_MAX;
|
|
mbmi->mv[0].as_int = cur_mv[0].as_int;
|
|
}
|
|
|
|
if (this_mode == NEW_NEARMV || this_mode == NEAREST_NEARMV ||
|
|
this_mode == NEAR_NEARMV) {
|
|
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][1].comp_mv;
|
|
|
|
lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv);
|
|
clamp_mv2(&cur_mv[1].as_mv, xd);
|
|
if (mv_check_bounds(x, &cur_mv[1].as_mv)) return INT64_MAX;
|
|
mbmi->mv[1].as_int = cur_mv[1].as_int;
|
|
}
|
|
}
|
|
#else
|
|
if (this_mode == NEARMV && is_comp_pred) {
|
|
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
|
|
int ref_mv_idx = mbmi->ref_mv_idx + 1;
|
|
cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
|
|
cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
|
|
|
|
for (i = 0; i < 2; ++i) {
|
|
clamp_mv2(&cur_mv[i].as_mv, xd);
|
|
if (mv_check_bounds(x, &cur_mv[i].as_mv)) return INT64_MAX;
|
|
mbmi->mv[i].as_int = cur_mv[i].as_int;
|
|
}
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#endif // CONFIG_REF_MV
|
|
|
|
// do first prediction into the destination buffer. Do the next
|
|
// prediction into a temporary buffer. Then keep track of which one
|
|
// of these currently holds the best predictor, and use the other
|
|
// one for future predictions. In the end, copy from tmp_buf to
|
|
// dst if necessary.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
tmp_dst[i] = tmp_buf + i * MAX_SB_SQUARE;
|
|
tmp_dst_stride[i] = MAX_SB_SIZE;
|
|
}
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
orig_dst[i] = xd->plane[i].dst.buf;
|
|
orig_dst_stride[i] = xd->plane[i].dst.stride;
|
|
}
|
|
|
|
// We don't include the cost of the second reference here, because there
|
|
// are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other
|
|
// words if you present them in that order, the second one is always known
|
|
// if the first is known.
|
|
//
|
|
// Under some circumstances we discount the cost of new mv mode to encourage
|
|
// initiation of a motion field.
|
|
if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv,
|
|
refs[0])) {
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
*rate2 += AOMMIN(cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx),
|
|
cost_mv_ref(cpi, NEARESTMV, is_comp_pred, mode_ctx));
|
|
#else
|
|
*rate2 += AOMMIN(cost_mv_ref(cpi, this_mode, mode_ctx),
|
|
cost_mv_ref(cpi, NEARESTMV, mode_ctx));
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
} else {
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
*rate2 += cost_mv_ref(cpi, this_mode, is_comp_pred, mode_ctx);
|
|
#else
|
|
*rate2 += cost_mv_ref(cpi, this_mode, mode_ctx);
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
}
|
|
|
|
if (RDCOST(x->rdmult, x->rddiv, *rate2, 0) > ref_best_rd &&
|
|
#if CONFIG_EXT_INTER
|
|
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV
|
|
#else
|
|
mbmi->mode != NEARESTMV
|
|
#endif // CONFIG_EXT_INTER
|
|
)
|
|
return INT64_MAX;
|
|
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
#if !CONFIG_DUAL_FILTER
|
|
assign_filter =
|
|
predict_interp_filter(cpi, x, bsize, mi_row, mi_col, single_filter);
|
|
#endif
|
|
#if CONFIG_EXT_INTERP || CONFIG_DUAL_FILTER
|
|
if (!av1_is_interp_needed(xd)) assign_filter = EIGHTTAP_REGULAR;
|
|
#endif
|
|
} else {
|
|
assign_filter = cm->interp_filter;
|
|
}
|
|
|
|
{ // Do interpolation filter search in the parentheses
|
|
int tmp_rate;
|
|
int64_t tmp_dist;
|
|
#if CONFIG_DUAL_FILTER
|
|
mbmi->interp_filter[0] =
|
|
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
|
|
mbmi->interp_filter[1] =
|
|
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
|
|
mbmi->interp_filter[2] =
|
|
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
|
|
mbmi->interp_filter[3] =
|
|
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
|
|
#else
|
|
mbmi->interp_filter =
|
|
assign_filter == SWITCHABLE ? EIGHTTAP_REGULAR : assign_filter;
|
|
#endif
|
|
rs = av1_get_switchable_rate(cpi, xd);
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
|
|
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
|
|
|
|
if (assign_filter == SWITCHABLE) {
|
|
// do interp_filter search
|
|
if (av1_is_interp_needed(xd)) {
|
|
int best_in_temp = 0;
|
|
#if CONFIG_DUAL_FILTER
|
|
InterpFilter best_filter[4];
|
|
av1_copy(best_filter, mbmi->interp_filter);
|
|
#else
|
|
InterpFilter best_filter = mbmi->interp_filter;
|
|
#endif
|
|
restore_dst_buf(xd, tmp_dst, tmp_dst_stride);
|
|
#if CONFIG_DUAL_FILTER
|
|
// EIGHTTAP_REGULAR mode is calculated beforehand
|
|
for (i = 1; i < SWITCHABLE_FILTERS * SWITCHABLE_FILTERS; ++i)
|
|
#else
|
|
// EIGHTTAP_REGULAR mode is calculated beforehand
|
|
for (i = 1; i < SWITCHABLE_FILTERS; ++i)
|
|
#endif
|
|
{
|
|
int tmp_skip_sb = 0;
|
|
int64_t tmp_skip_sse = INT64_MAX;
|
|
int tmp_rs;
|
|
int64_t tmp_rd;
|
|
#if CONFIG_DUAL_FILTER
|
|
mbmi->interp_filter[0] = filter_sets[i][0];
|
|
mbmi->interp_filter[1] = filter_sets[i][1];
|
|
mbmi->interp_filter[2] = filter_sets[i][0];
|
|
mbmi->interp_filter[3] = filter_sets[i][1];
|
|
#else
|
|
mbmi->interp_filter = i;
|
|
#endif
|
|
tmp_rs = av1_get_switchable_rate(cpi, xd);
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
|
|
&tmp_dist, &tmp_skip_sb, &tmp_skip_sse);
|
|
tmp_rd = RDCOST(x->rdmult, x->rddiv, tmp_rs + tmp_rate, tmp_dist);
|
|
|
|
if (tmp_rd < rd) {
|
|
rd = tmp_rd;
|
|
rs = av1_get_switchable_rate(cpi, xd);
|
|
#if CONFIG_DUAL_FILTER
|
|
av1_copy(best_filter, mbmi->interp_filter);
|
|
#else
|
|
best_filter = mbmi->interp_filter;
|
|
#endif
|
|
skip_txfm_sb = tmp_skip_sb;
|
|
skip_sse_sb = tmp_skip_sse;
|
|
best_in_temp = !best_in_temp;
|
|
if (best_in_temp) {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
} else {
|
|
restore_dst_buf(xd, tmp_dst, tmp_dst_stride);
|
|
}
|
|
}
|
|
}
|
|
if (best_in_temp) {
|
|
restore_dst_buf(xd, tmp_dst, tmp_dst_stride);
|
|
} else {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
}
|
|
#if CONFIG_DUAL_FILTER
|
|
av1_copy(mbmi->interp_filter, best_filter);
|
|
#else
|
|
mbmi->interp_filter = best_filter;
|
|
#endif
|
|
} else {
|
|
#if !CONFIG_EXT_INTERP && !CONFIG_DUAL_FILTER
|
|
int tmp_rs;
|
|
InterpFilter best_filter = mbmi->interp_filter;
|
|
rs = av1_get_switchable_rate(cpi, xd);
|
|
for (i = 1; i < SWITCHABLE_FILTERS; ++i) {
|
|
mbmi->interp_filter = i;
|
|
tmp_rs = av1_get_switchable_rate(cpi, xd);
|
|
if (tmp_rs < rs) {
|
|
rs = tmp_rs;
|
|
best_filter = i;
|
|
}
|
|
}
|
|
mbmi->interp_filter = best_filter;
|
|
#else
|
|
assert(0);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
#if CONFIG_MOTION_VAR
|
|
best_bmc_mbmi = *mbmi;
|
|
rate_mv_bmc = rate_mv;
|
|
rate2_bmc_nocoeff = *rate2;
|
|
if (cm->interp_filter == SWITCHABLE) rate2_bmc_nocoeff += rs;
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
if (is_comp_pred && is_interinter_wedge_used(bsize)) {
|
|
int rate_sum, rs2;
|
|
int64_t dist_sum;
|
|
int64_t best_rd_nowedge = INT64_MAX;
|
|
int64_t best_rd_wedge = INT64_MAX;
|
|
int tmp_skip_txfm_sb;
|
|
int64_t tmp_skip_sse_sb;
|
|
|
|
rs2 = av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 0);
|
|
mbmi->use_wedge_interinter = 0;
|
|
av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
|
|
av1_subtract_plane(x, bsize, 0);
|
|
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
|
|
if (rd != INT64_MAX)
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum);
|
|
best_rd_nowedge = rd;
|
|
|
|
// Disbale wedge search if source variance is small
|
|
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh &&
|
|
best_rd_nowedge / 3 < ref_best_rd) {
|
|
uint8_t pred0[2 * MAX_SB_SQUARE];
|
|
uint8_t pred1[2 * MAX_SB_SQUARE];
|
|
uint8_t *preds0[1] = { pred0 };
|
|
uint8_t *preds1[1] = { pred1 };
|
|
int strides[1] = { bw };
|
|
|
|
mbmi->use_wedge_interinter = 1;
|
|
rs2 = av1_cost_literal(get_interinter_wedge_bits(bsize)) +
|
|
av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1);
|
|
|
|
av1_build_inter_predictors_for_planes_single_buf(
|
|
xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides);
|
|
av1_build_inter_predictors_for_planes_single_buf(
|
|
xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides);
|
|
|
|
// Choose the best wedge
|
|
best_rd_wedge = pick_interinter_wedge(cpi, x, bsize, pred0, pred1);
|
|
best_rd_wedge += RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv, 0);
|
|
|
|
if (have_newmv_in_inter_mode(this_mode)) {
|
|
int_mv tmp_mv[2];
|
|
int rate_mvs[2], tmp_rate_mv = 0;
|
|
if (this_mode == NEW_NEWMV) {
|
|
int mv_idxs[2] = { 0, 0 };
|
|
do_masked_motion_search_indexed(
|
|
cpi, x, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign,
|
|
bsize, mi_row, mi_col, tmp_mv, rate_mvs, mv_idxs, 2);
|
|
tmp_rate_mv = rate_mvs[0] + rate_mvs[1];
|
|
mbmi->mv[0].as_int = tmp_mv[0].as_int;
|
|
mbmi->mv[1].as_int = tmp_mv[1].as_int;
|
|
} else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) {
|
|
int mv_idxs[2] = { 0, 0 };
|
|
do_masked_motion_search_indexed(
|
|
cpi, x, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign,
|
|
bsize, mi_row, mi_col, tmp_mv, rate_mvs, mv_idxs, 0);
|
|
tmp_rate_mv = rate_mvs[0];
|
|
mbmi->mv[0].as_int = tmp_mv[0].as_int;
|
|
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
|
|
int mv_idxs[2] = { 0, 0 };
|
|
do_masked_motion_search_indexed(
|
|
cpi, x, mbmi->interinter_wedge_index, mbmi->interinter_wedge_sign,
|
|
bsize, mi_row, mi_col, tmp_mv, rate_mvs, mv_idxs, 1);
|
|
tmp_rate_mv = rate_mvs[1];
|
|
mbmi->mv[1].as_int = tmp_mv[1].as_int;
|
|
}
|
|
av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
|
|
rd =
|
|
RDCOST(x->rdmult, x->rddiv, rs2 + tmp_rate_mv + rate_sum, dist_sum);
|
|
if (rd < best_rd_wedge) {
|
|
best_rd_wedge = rd;
|
|
} else {
|
|
mbmi->mv[0].as_int = cur_mv[0].as_int;
|
|
mbmi->mv[1].as_int = cur_mv[1].as_int;
|
|
tmp_rate_mv = rate_mv;
|
|
av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0,
|
|
strides, preds1, strides);
|
|
}
|
|
av1_subtract_plane(x, bsize, 0);
|
|
rd =
|
|
estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
|
|
if (rd != INT64_MAX)
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs2 + tmp_rate_mv + rate_sum,
|
|
dist_sum);
|
|
best_rd_wedge = rd;
|
|
|
|
if (best_rd_wedge < best_rd_nowedge) {
|
|
mbmi->use_wedge_interinter = 1;
|
|
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
|
|
xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int;
|
|
*rate2 += tmp_rate_mv - rate_mv;
|
|
rate_mv = tmp_rate_mv;
|
|
} else {
|
|
mbmi->use_wedge_interinter = 0;
|
|
mbmi->mv[0].as_int = cur_mv[0].as_int;
|
|
mbmi->mv[1].as_int = cur_mv[1].as_int;
|
|
xd->mi[0]->bmi[0].as_mv[0].as_int = mbmi->mv[0].as_int;
|
|
xd->mi[0]->bmi[0].as_mv[1].as_int = mbmi->mv[1].as_int;
|
|
}
|
|
} else {
|
|
av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0,
|
|
strides, preds1, strides);
|
|
av1_subtract_plane(x, bsize, 0);
|
|
rd =
|
|
estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
|
|
if (rd != INT64_MAX)
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs2 + rate_mv + rate_sum, dist_sum);
|
|
best_rd_wedge = rd;
|
|
if (best_rd_wedge < best_rd_nowedge) {
|
|
mbmi->use_wedge_interinter = 1;
|
|
} else {
|
|
mbmi->use_wedge_interinter = 0;
|
|
}
|
|
}
|
|
}
|
|
if (ref_best_rd < INT64_MAX &&
|
|
AOMMIN(best_rd_wedge, best_rd_nowedge) / 3 > ref_best_rd)
|
|
return INT64_MAX;
|
|
|
|
pred_exists = 0;
|
|
|
|
if (mbmi->use_wedge_interinter)
|
|
*compmode_wedge_cost =
|
|
av1_cost_literal(get_interinter_wedge_bits(bsize)) +
|
|
av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 1);
|
|
else
|
|
*compmode_wedge_cost =
|
|
av1_cost_bit(cm->fc->wedge_interinter_prob[bsize], 0);
|
|
}
|
|
|
|
if (is_comp_interintra_pred) {
|
|
INTERINTRA_MODE best_interintra_mode = II_DC_PRED;
|
|
int64_t best_interintra_rd = INT64_MAX;
|
|
int rmode, rate_sum;
|
|
int64_t dist_sum;
|
|
int j;
|
|
int64_t best_interintra_rd_nowedge = INT64_MAX;
|
|
int64_t best_interintra_rd_wedge = INT64_MAX;
|
|
int rwedge;
|
|
int_mv tmp_mv;
|
|
int tmp_rate_mv = 0;
|
|
int tmp_skip_txfm_sb;
|
|
int64_t tmp_skip_sse_sb;
|
|
DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_SB_SQUARE]);
|
|
uint8_t *intrapred;
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
|
|
intrapred = CONVERT_TO_BYTEPTR(intrapred_);
|
|
else
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
intrapred = intrapred_;
|
|
|
|
mbmi->ref_frame[1] = NONE;
|
|
for (j = 0; j < MAX_MB_PLANE; j++) {
|
|
xd->plane[j].dst.buf = tmp_buf + j * MAX_SB_SQUARE;
|
|
xd->plane[j].dst.stride = bw;
|
|
}
|
|
av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
mbmi->ref_frame[1] = INTRA_FRAME;
|
|
mbmi->use_wedge_interintra = 0;
|
|
|
|
for (j = 0; j < INTERINTRA_MODES; ++j) {
|
|
mbmi->interintra_mode = (INTERINTRA_MODE)j;
|
|
rmode = interintra_mode_cost[mbmi->interintra_mode];
|
|
av1_build_intra_predictors_for_interintra(xd, bsize, 0, intrapred, bw);
|
|
av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate_mv + rate_sum, dist_sum);
|
|
if (rd < best_interintra_rd) {
|
|
best_interintra_rd = rd;
|
|
best_interintra_mode = mbmi->interintra_mode;
|
|
}
|
|
}
|
|
mbmi->interintra_mode = best_interintra_mode;
|
|
rmode = interintra_mode_cost[mbmi->interintra_mode];
|
|
av1_build_intra_predictors_for_interintra(xd, bsize, 0, intrapred, bw);
|
|
av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
|
|
av1_subtract_plane(x, bsize, 0);
|
|
rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
|
|
if (rd != INT64_MAX)
|
|
rd = RDCOST(x->rdmult, x->rddiv, rate_mv + rmode + rate_sum, dist_sum);
|
|
best_interintra_rd = rd;
|
|
|
|
if (ref_best_rd < INT64_MAX && best_interintra_rd > 2 * ref_best_rd) {
|
|
return INT64_MAX;
|
|
}
|
|
if (is_interintra_wedge_used(bsize)) {
|
|
rwedge = av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 0);
|
|
if (rd != INT64_MAX)
|
|
rd = RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge + rate_sum,
|
|
dist_sum);
|
|
best_interintra_rd_nowedge = rd;
|
|
|
|
// Disbale wedge search if source variance is small
|
|
if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) {
|
|
mbmi->use_wedge_interintra = 1;
|
|
|
|
rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) +
|
|
av1_cost_bit(cm->fc->wedge_interintra_prob[bsize], 1);
|
|
|
|
best_interintra_rd_wedge =
|
|
pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_);
|
|
|
|
best_interintra_rd_wedge +=
|
|
RDCOST(x->rdmult, x->rddiv, rmode + rate_mv + rwedge, 0);
|
|
// Refine motion vector.
|
|
if (have_newmv_in_inter_mode(this_mode)) {
|
|
// get negative of mask
|
|
const uint8_t *mask = av1_get_contiguous_soft_mask(
|
|
mbmi->interintra_wedge_index, 1, bsize);
|
|
do_masked_motion_search(cpi, x, mask, bw, bsize, mi_row, mi_col,
|
|
&tmp_mv, &tmp_rate_mv, 0, mv_idx);
|
|
mbmi->mv[0].as_int = tmp_mv.as_int;
|
|
av1_build_inter_predictors_sby(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb);
|
|
rd = RDCOST(x->rdmult, x->rddiv,
|
|
rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum);
|
|
if (rd < best_interintra_rd_wedge) {
|
|
best_interintra_rd_wedge = rd;
|
|
} else {
|
|
tmp_mv.as_int = cur_mv[0].as_int;
|
|
tmp_rate_mv = rate_mv;
|
|
}
|
|
} else {
|
|
tmp_mv.as_int = cur_mv[0].as_int;
|
|
tmp_rate_mv = rate_mv;
|
|
av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw);
|
|
}
|
|
// Evaluate closer to true rd
|
|
av1_subtract_plane(x, bsize, 0);
|
|
rd =
|
|
estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum,
|
|
&tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX);
|
|
if (rd != INT64_MAX)
|
|
rd = RDCOST(x->rdmult, x->rddiv,
|
|
rmode + tmp_rate_mv + rwedge + rate_sum, dist_sum);
|
|
best_interintra_rd_wedge = rd;
|
|
if (best_interintra_rd_wedge < best_interintra_rd_nowedge) {
|
|
mbmi->use_wedge_interintra = 1;
|
|
best_interintra_rd = best_interintra_rd_wedge;
|
|
mbmi->mv[0].as_int = tmp_mv.as_int;
|
|
*rate2 += tmp_rate_mv - rate_mv;
|
|
rate_mv = tmp_rate_mv;
|
|
} else {
|
|
mbmi->use_wedge_interintra = 0;
|
|
best_interintra_rd = best_interintra_rd_nowedge;
|
|
mbmi->mv[0].as_int = cur_mv[0].as_int;
|
|
}
|
|
} else {
|
|
mbmi->use_wedge_interintra = 0;
|
|
best_interintra_rd = best_interintra_rd_nowedge;
|
|
}
|
|
}
|
|
|
|
pred_exists = 0;
|
|
*compmode_interintra_cost =
|
|
av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 1);
|
|
*compmode_interintra_cost += interintra_mode_cost[mbmi->interintra_mode];
|
|
if (is_interintra_wedge_used(bsize)) {
|
|
*compmode_interintra_cost += av1_cost_bit(
|
|
cm->fc->wedge_interintra_prob[bsize], mbmi->use_wedge_interintra);
|
|
if (mbmi->use_wedge_interintra) {
|
|
*compmode_interintra_cost +=
|
|
av1_cost_literal(get_interintra_wedge_bits(bsize));
|
|
}
|
|
}
|
|
} else if (is_interintra_allowed(mbmi)) {
|
|
*compmode_interintra_cost =
|
|
av1_cost_bit(cm->fc->interintra_prob[size_group_lookup[bsize]], 0);
|
|
}
|
|
|
|
#if CONFIG_EXT_INTERP
|
|
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE) {
|
|
#if CONFIG_DUAL_FILTER
|
|
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = EIGHTTAP_REGULAR;
|
|
#else
|
|
mbmi->interp_filter = EIGHTTAP_REGULAR;
|
|
#endif
|
|
pred_exists = 0;
|
|
}
|
|
#endif // CONFIG_EXT_INTERP
|
|
if (pred_exists == 0) {
|
|
int tmp_rate;
|
|
int64_t tmp_dist;
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
|
|
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
|
|
rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist);
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter[0];
|
|
#else
|
|
if (!is_comp_pred) single_filter[this_mode][refs[0]] = mbmi->interp_filter;
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (modelled_rd != NULL) {
|
|
if (is_comp_pred) {
|
|
const int mode0 = compound_ref0_mode(this_mode);
|
|
const int mode1 = compound_ref1_mode(this_mode);
|
|
int64_t mrd =
|
|
AOMMIN(modelled_rd[mode0][refs[0]], modelled_rd[mode1][refs[1]]);
|
|
if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
} else if (!is_comp_interintra_pred) {
|
|
modelled_rd[this_mode][refs[0]] = rd;
|
|
}
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) {
|
|
// if current pred_error modeled rd is substantially more than the best
|
|
// so far, do not bother doing full rd
|
|
if (rd / 2 > ref_best_rd) {
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
}
|
|
|
|
if (cm->interp_filter == SWITCHABLE) *rate2 += rs;
|
|
#if CONFIG_MOTION_VAR
|
|
rate2_nocoeff = *rate2;
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
best_rd = INT64_MAX;
|
|
for (mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
mbmi->motion_mode < (allow_motvar ? MOTION_MODES : 1);
|
|
mbmi->motion_mode++) {
|
|
int64_t tmp_rd = INT64_MAX;
|
|
#if CONFIG_EXT_INTER
|
|
int tmp_rate2 = mbmi->motion_mode != SIMPLE_TRANSLATION ? rate2_bmc_nocoeff
|
|
: rate2_nocoeff;
|
|
#else
|
|
int tmp_rate2 = rate2_nocoeff;
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_EXT_INTERP
|
|
#if CONFIG_DUAL_FILTER
|
|
InterpFilter obmc_interp_filter[2][2] = {
|
|
{ mbmi->interp_filter[0], mbmi->interp_filter[1] }, // obmc == 0
|
|
{ mbmi->interp_filter[0], mbmi->interp_filter[1] } // obmc == 1
|
|
};
|
|
#else
|
|
InterpFilter obmc_interp_filter[2] = {
|
|
mbmi->interp_filter, // obmc == 0
|
|
mbmi->interp_filter // obmc == 1
|
|
};
|
|
#endif // CONFIG_DUAL_FILTER
|
|
#endif // CONFIG_EXT_INTERP
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
int tmp_rate;
|
|
int64_t tmp_dist;
|
|
if (mbmi->motion_mode == OBMC_CAUSAL) {
|
|
#if CONFIG_EXT_INTER
|
|
*mbmi = best_bmc_mbmi;
|
|
mbmi->motion_mode = OBMC_CAUSAL;
|
|
#endif // CONFIG_EXT_INTER
|
|
if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) {
|
|
int tmp_rate_mv = 0;
|
|
|
|
single_motion_search(cpi, x, bsize, mi_row, mi_col,
|
|
#if CONFIG_EXT_INTER
|
|
0, mv_idx,
|
|
#endif // CONFIG_EXT_INTER
|
|
&tmp_rate_mv);
|
|
mbmi->mv[0].as_int = x->best_mv.as_int;
|
|
if (discount_newmv_test(cpi, this_mode, mbmi->mv[0], mode_mv,
|
|
refs[0])) {
|
|
tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1);
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
tmp_rate2 = rate2_bmc_nocoeff - rate_mv_bmc + tmp_rate_mv;
|
|
#else
|
|
tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv;
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_EXT_INTERP
|
|
#if CONFIG_DUAL_FILTER
|
|
if (!has_subpel_mv_component(xd->mi[0], xd, 0))
|
|
obmc_interp_filter[1][0] = mbmi->interp_filter[0] = EIGHTTAP_REGULAR;
|
|
if (!has_subpel_mv_component(xd->mi[0], xd, 1))
|
|
obmc_interp_filter[1][1] = mbmi->interp_filter[1] = EIGHTTAP_REGULAR;
|
|
#else
|
|
if (!av1_is_interp_needed(xd))
|
|
obmc_interp_filter[1] = mbmi->interp_filter = EIGHTTAP_REGULAR;
|
|
#endif // CONFIG_DUAL_FILTER
|
|
// This is not quite correct with CONFIG_DUAL_FILTER when a filter
|
|
// is needed in only one direction
|
|
if (!av1_is_interp_needed(xd)) tmp_rate2 -= rs;
|
|
#endif // CONFIG_EXT_INTERP
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
#if CONFIG_EXT_INTER
|
|
} else {
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, above_pred_buf,
|
|
above_pred_stride, left_pred_buf,
|
|
left_pred_stride);
|
|
model_rd_for_sb(cpi, bsize, x, xd, 0, MAX_MB_PLANE - 1, &tmp_rate,
|
|
&tmp_dist, &skip_txfm_sb, &skip_sse_sb);
|
|
}
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
#if CONFIG_WARPED_MOTION
|
|
if (mbmi->motion_mode == WARPED_CAUSAL) {
|
|
// TODO(yuec): Add code
|
|
}
|
|
#endif // CONFIG_WARPED_MOTION
|
|
x->skip = 0;
|
|
|
|
*rate2 = tmp_rate2;
|
|
if (allow_motvar) *rate2 += cpi->motion_mode_cost[bsize][mbmi->motion_mode];
|
|
*distortion = 0;
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
if (!skip_txfm_sb) {
|
|
int skippable_y, skippable_uv;
|
|
int64_t sseuv = INT64_MAX;
|
|
int64_t rdcosty = INT64_MAX;
|
|
int is_cost_valid_uv = 0;
|
|
#if CONFIG_VAR_TX
|
|
RD_STATS rd_stats_uv;
|
|
#endif
|
|
|
|
// Y cost and distortion
|
|
#if !CONFIG_PVQ
|
|
av1_subtract_plane(x, bsize, 0);
|
|
#endif
|
|
#if CONFIG_VAR_TX
|
|
if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) {
|
|
RD_STATS rd_stats_y;
|
|
select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, ref_best_rd);
|
|
*rate_y = rd_stats_y.rate;
|
|
distortion_y = rd_stats_y.dist;
|
|
skippable_y = rd_stats_y.skip;
|
|
*psse = rd_stats_y.sse;
|
|
} else {
|
|
int idx, idy;
|
|
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse,
|
|
bsize, ref_best_rd);
|
|
for (idy = 0; idy < xd->n8_h; ++idy)
|
|
for (idx = 0; idx < xd->n8_w; ++idx)
|
|
mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
|
|
memset(x->blk_skip[0], skippable_y,
|
|
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
|
|
}
|
|
#else
|
|
super_block_yrd(cpi, x, rate_y, &distortion_y, &skippable_y, psse, bsize,
|
|
ref_best_rd);
|
|
#endif // CONFIG_VAR_TX
|
|
|
|
if (*rate_y == INT_MAX) {
|
|
*rate2 = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
if (mbmi->motion_mode != SIMPLE_TRANSLATION) {
|
|
continue;
|
|
} else {
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
}
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
}
|
|
|
|
*rate2 += *rate_y;
|
|
*distortion += distortion_y;
|
|
|
|
rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
|
|
rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse));
|
|
|
|
#if CONFIG_VAR_TX
|
|
is_cost_valid_uv =
|
|
inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, ref_best_rd - rdcosty);
|
|
#if CONFIG_RD_DEBUG
|
|
// record uv planes' transform block coefficient cost
|
|
if (is_cost_valid_uv) av1_merge_rd_stats(&mbmi->rd_stats, &rd_stats_uv);
|
|
#endif
|
|
*rate_uv = rd_stats_uv.rate;
|
|
distortion_uv = rd_stats_uv.dist;
|
|
skippable_uv = rd_stats_uv.skip;
|
|
sseuv = rd_stats_uv.sse;
|
|
#else
|
|
is_cost_valid_uv =
|
|
super_block_uvrd(cpi, x, rate_uv, &distortion_uv, &skippable_uv,
|
|
&sseuv, bsize, ref_best_rd - rdcosty);
|
|
#endif // CONFIG_VAR_TX
|
|
if (!is_cost_valid_uv) {
|
|
*rate2 = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
continue;
|
|
#else
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
}
|
|
|
|
*psse += sseuv;
|
|
*rate2 += *rate_uv;
|
|
*distortion += distortion_uv;
|
|
*skippable = skippable_y && skippable_uv;
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
if (*skippable) {
|
|
*rate2 -= *rate_uv + *rate_y;
|
|
*rate_y = 0;
|
|
*rate_uv = 0;
|
|
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
mbmi->skip = 0;
|
|
// here mbmi->skip temporarily plays a role as what this_skip2 does
|
|
} else if (!xd->lossless[mbmi->segment_id] &&
|
|
(RDCOST(x->rdmult, x->rddiv,
|
|
*rate_y + *rate_uv +
|
|
av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
|
|
*distortion) >=
|
|
RDCOST(x->rdmult, x->rddiv,
|
|
av1_cost_bit(av1_get_skip_prob(cm, xd), 1), *psse))) {
|
|
*rate2 -= *rate_uv + *rate_y;
|
|
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
*distortion = *psse;
|
|
*rate_y = 0;
|
|
*rate_uv = 0;
|
|
mbmi->skip = 1;
|
|
} else {
|
|
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
mbmi->skip = 0;
|
|
}
|
|
*disable_skip = 0;
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
} else {
|
|
x->skip = 1;
|
|
*disable_skip = 1;
|
|
mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode, 1);
|
|
|
|
// The cost of skip bit needs to be added.
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
mbmi->skip = 0;
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
*rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
|
|
*distortion = skip_sse_sb;
|
|
*psse = skip_sse_sb;
|
|
*rate_y = 0;
|
|
*rate_uv = 0;
|
|
*skippable = 1;
|
|
}
|
|
#if CONFIG_GLOBAL_MOTION
|
|
if (this_mode == ZEROMV) {
|
|
*rate2 += GLOBAL_MOTION_RATE(mbmi->ref_frame[0]);
|
|
if (is_comp_pred) *rate2 += GLOBAL_MOTION_RATE(mbmi->ref_frame[1]);
|
|
}
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
tmp_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion);
|
|
if (mbmi->motion_mode == SIMPLE_TRANSLATION || (tmp_rd < best_rd)) {
|
|
#if CONFIG_EXT_INTERP
|
|
#if CONFIG_DUAL_FILTER
|
|
mbmi->interp_filter[0] = obmc_interp_filter[mbmi->motion_mode][0];
|
|
mbmi->interp_filter[1] = obmc_interp_filter[mbmi->motion_mode][1];
|
|
#else
|
|
mbmi->interp_filter = obmc_interp_filter[mbmi->motion_mode];
|
|
#endif // CONFIG_DUAL_FILTER
|
|
#endif // CONFIG_EXT_INTERP
|
|
best_mbmi = *mbmi;
|
|
best_rd = tmp_rd;
|
|
best_rate2 = *rate2;
|
|
best_rate_y = *rate_y;
|
|
best_rate_uv = *rate_uv;
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(best_blk_skip[i], x->blk_skip[i],
|
|
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
|
|
#endif // CONFIG_VAR_TX
|
|
best_distortion = *distortion;
|
|
best_skippable = *skippable;
|
|
best_xskip = x->skip;
|
|
best_disable_skip = *disable_skip;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->recon_variance = av1_high_get_sby_perpixel_variance(
|
|
cpi, &xd->plane[0].dst, bsize, xd->bd);
|
|
} else {
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
}
|
|
#else
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
}
|
|
|
|
if (best_rd == INT64_MAX) {
|
|
*rate2 = INT_MAX;
|
|
*distortion = INT64_MAX;
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return INT64_MAX;
|
|
}
|
|
*mbmi = best_mbmi;
|
|
*rate2 = best_rate2;
|
|
*rate_y = best_rate_y;
|
|
*rate_uv = best_rate_uv;
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(x->blk_skip[i], best_blk_skip[i],
|
|
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
|
|
#endif // CONFIG_VAR_TX
|
|
*distortion = best_distortion;
|
|
*skippable = best_skippable;
|
|
x->skip = best_xskip;
|
|
*disable_skip = best_disable_skip;
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
|
|
if (!is_comp_pred) single_skippable[this_mode][refs[0]] = *skippable;
|
|
|
|
#if !(CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION)
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->recon_variance = av1_high_get_sby_perpixel_variance(
|
|
cpi, &xd->plane[0].dst, bsize, xd->bd);
|
|
} else {
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
}
|
|
#else
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
#endif // !(CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION)
|
|
|
|
restore_dst_buf(xd, orig_dst, orig_dst_stride);
|
|
return 0; // The rate-distortion cost will be re-calculated by caller.
|
|
}
|
|
|
|
void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
struct macroblockd_plane *const pd = xd->plane;
|
|
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
|
|
int y_skip = 0, uv_skip = 0;
|
|
int64_t dist_y = 0, dist_uv = 0;
|
|
TX_SIZE max_uv_tx_size;
|
|
ctx->skip = 0;
|
|
xd->mi[0]->mbmi.ref_frame[0] = INTRA_FRAME;
|
|
xd->mi[0]->mbmi.ref_frame[1] = NONE;
|
|
|
|
if (bsize >= BLOCK_8X8) {
|
|
if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
|
|
&y_skip, bsize, best_rd) >= best_rd) {
|
|
rd_cost->rate = INT_MAX;
|
|
return;
|
|
}
|
|
} else {
|
|
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly,
|
|
&dist_y, &y_skip, best_rd) >= best_rd) {
|
|
rd_cost->rate = INT_MAX;
|
|
return;
|
|
}
|
|
}
|
|
max_uv_tx_size = uv_txsize_lookup[bsize][xd->mi[0]->mbmi.tx_size]
|
|
[pd[1].subsampling_x][pd[1].subsampling_y];
|
|
rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv,
|
|
&uv_skip, AOMMAX(BLOCK_8X8, bsize), max_uv_tx_size);
|
|
|
|
if (y_skip && uv_skip) {
|
|
rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly +
|
|
av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
rd_cost->dist = dist_y + dist_uv;
|
|
} else {
|
|
rd_cost->rate =
|
|
rate_y + rate_uv + av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
rd_cost->dist = dist_y + dist_uv;
|
|
}
|
|
|
|
ctx->mic = *xd->mi[0];
|
|
ctx->mbmi_ext = *x->mbmi_ext;
|
|
rd_cost->rdcost = RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
|
|
}
|
|
|
|
// Do we have an internal image edge (e.g. formatting bars).
|
|
int av1_internal_image_edge(const AV1_COMP *cpi) {
|
|
return (cpi->oxcf.pass == 2) &&
|
|
((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) ||
|
|
(cpi->twopass.this_frame_stats.inactive_zone_cols > 0));
|
|
}
|
|
|
|
// Checks to see if a super block is on a horizontal image edge.
|
|
// In most cases this is the "real" edge unless there are formatting
|
|
// bars embedded in the stream.
|
|
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
|
|
int top_edge = 0;
|
|
int bottom_edge = cpi->common.mi_rows;
|
|
int is_active_h_edge = 0;
|
|
|
|
// For two pass account for any formatting bars detected.
|
|
if (cpi->oxcf.pass == 2) {
|
|
const TWO_PASS *const twopass = &cpi->twopass;
|
|
|
|
// The inactive region is specified in MBs not mi units.
|
|
// The image edge is in the following MB row.
|
|
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
|
|
|
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
|
|
bottom_edge = AOMMAX(top_edge, bottom_edge);
|
|
}
|
|
|
|
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
|
|
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
|
|
is_active_h_edge = 1;
|
|
}
|
|
return is_active_h_edge;
|
|
}
|
|
|
|
// Checks to see if a super block is on a vertical image edge.
|
|
// In most cases this is the "real" edge unless there are formatting
|
|
// bars embedded in the stream.
|
|
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
|
|
int left_edge = 0;
|
|
int right_edge = cpi->common.mi_cols;
|
|
int is_active_v_edge = 0;
|
|
|
|
// For two pass account for any formatting bars detected.
|
|
if (cpi->oxcf.pass == 2) {
|
|
const TWO_PASS *const twopass = &cpi->twopass;
|
|
|
|
// The inactive region is specified in MBs not mi units.
|
|
// The image edge is in the following MB row.
|
|
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
|
|
|
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
|
|
right_edge = AOMMAX(left_edge, right_edge);
|
|
}
|
|
|
|
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
|
|
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
|
|
is_active_v_edge = 1;
|
|
}
|
|
return is_active_v_edge;
|
|
}
|
|
|
|
// Checks to see if a super block is at the edge of the active image.
|
|
// In most cases this is the "real" edge unless there are formatting
|
|
// bars embedded in the stream.
|
|
int av1_active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) {
|
|
return av1_active_h_edge(cpi, mi_row, cpi->common.mib_size) ||
|
|
av1_active_v_edge(cpi, mi_col, cpi->common.mib_size);
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) {
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
const BLOCK_SIZE bsize = mbmi->sb_type;
|
|
const int rows =
|
|
(4 * num_4x4_blocks_high_lookup[bsize]) >> (xd->plane[1].subsampling_y);
|
|
const int cols =
|
|
(4 * num_4x4_blocks_wide_lookup[bsize]) >> (xd->plane[1].subsampling_x);
|
|
int src_stride = x->plane[1].src.stride;
|
|
const uint8_t *const src_u = x->plane[1].src.buf;
|
|
const uint8_t *const src_v = x->plane[2].src.buf;
|
|
float *const data = x->palette_buffer->kmeans_data_buf;
|
|
float centroids[2 * PALETTE_MAX_SIZE];
|
|
uint8_t *const color_map = xd->plane[1].color_index_map;
|
|
int r, c;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u);
|
|
const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
(void)cpi;
|
|
|
|
for (r = 0; r < rows; ++r) {
|
|
for (c = 0; c < cols; ++c) {
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (cpi->common.use_highbitdepth) {
|
|
data[(r * cols + c) * 2] = src_u16[r * src_stride + c];
|
|
data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c];
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
data[(r * cols + c) * 2] = src_u[r * src_stride + c];
|
|
data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c];
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
}
|
|
|
|
for (r = 1; r < 3; ++r) {
|
|
for (c = 0; c < pmi->palette_size[1]; ++c) {
|
|
centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c];
|
|
}
|
|
}
|
|
|
|
av1_calc_indices(data, centroids, color_map, rows * cols,
|
|
pmi->palette_size[1], 2);
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
static void pick_filter_intra_interframe(
|
|
const AV1_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
|
|
BLOCK_SIZE bsize, int *rate_uv_intra, int *rate_uv_tokenonly,
|
|
int64_t *dist_uv, int *skip_uv, PREDICTION_MODE *mode_uv,
|
|
FILTER_INTRA_MODE_INFO *filter_intra_mode_info_uv,
|
|
#if CONFIG_EXT_INTRA
|
|
int8_t *uv_angle_delta,
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_PALETTE
|
|
PALETTE_MODE_INFO *pmi_uv, int palette_ctx,
|
|
#endif // CONFIG_PALETTE
|
|
int skip_mask, unsigned int *ref_costs_single, int64_t *best_rd,
|
|
int64_t *best_intra_rd, PREDICTION_MODE *best_intra_mode,
|
|
int *best_mode_index, int *best_skip2, int *best_mode_skippable,
|
|
#if CONFIG_SUPERTX
|
|
int *returnrate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
int64_t *best_pred_rd, MB_MODE_INFO *best_mbmode, RD_COST *rd_cost) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
#if CONFIG_PALETTE
|
|
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
#endif // CONFIG_PALETTE
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
|
|
int rate2 = 0, rate_y = INT_MAX, skippable = 0, rate_uv, rate_dummy, i;
|
|
int dc_mode_index;
|
|
const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]];
|
|
int64_t distortion2 = 0, distortion_y = 0, this_rd = *best_rd, distortion_uv;
|
|
TX_SIZE uv_tx;
|
|
|
|
for (i = 0; i < MAX_MODES; ++i)
|
|
if (av1_mode_order[i].mode == DC_PRED &&
|
|
av1_mode_order[i].ref_frame[0] == INTRA_FRAME)
|
|
break;
|
|
dc_mode_index = i;
|
|
assert(i < MAX_MODES);
|
|
|
|
// TODO(huisu): use skip_mask for further speedup.
|
|
(void)skip_mask;
|
|
mbmi->mode = DC_PRED;
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->ref_frame[0] = INTRA_FRAME;
|
|
mbmi->ref_frame[1] = NONE;
|
|
if (!rd_pick_filter_intra_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y,
|
|
&skippable, bsize, intra_mode_cost[mbmi->mode],
|
|
&this_rd, 0)) {
|
|
return;
|
|
}
|
|
if (rate_y == INT_MAX) return;
|
|
|
|
uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x]
|
|
[xd->plane[1].subsampling_y];
|
|
if (rate_uv_intra[uv_tx] == INT_MAX) {
|
|
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
|
|
&rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx],
|
|
&skip_uv[uv_tx], &mode_uv[uv_tx]);
|
|
#if CONFIG_PALETTE
|
|
if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi;
|
|
#endif // CONFIG_PALETTE
|
|
filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info;
|
|
#if CONFIG_EXT_INTRA
|
|
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
|
|
#endif // CONFIG_EXT_INTRA
|
|
}
|
|
|
|
rate_uv = rate_uv_tokenonly[uv_tx];
|
|
distortion_uv = dist_uv[uv_tx];
|
|
skippable = skippable && skip_uv[uv_tx];
|
|
mbmi->uv_mode = mode_uv[uv_tx];
|
|
#if CONFIG_PALETTE
|
|
if (cm->allow_screen_content_tools) {
|
|
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
|
|
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
|
|
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
|
|
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_EXT_INTRA
|
|
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
|
|
#endif // CONFIG_EXT_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
|
|
filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1];
|
|
if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) {
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
|
|
filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1];
|
|
}
|
|
|
|
rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv +
|
|
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode];
|
|
#if CONFIG_PALETTE
|
|
if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED)
|
|
rate2 += av1_cost_bit(
|
|
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0);
|
|
#endif // CONFIG_PALETTE
|
|
|
|
if (!xd->lossless[mbmi->segment_id]) {
|
|
// super_block_yrd above includes the cost of the tx_size in the
|
|
// tokenonly rate, but for intra blocks, tx_size is always coded
|
|
// (prediction granularity), so we account for it in the full rate,
|
|
// not the tokenonly rate.
|
|
rate_y -= cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
|
|
[tx_size_to_depth(mbmi->tx_size)];
|
|
}
|
|
|
|
rate2 += av1_cost_bit(cm->fc->filter_intra_probs[0],
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0]);
|
|
rate2 += write_uniform_cost(
|
|
FILTER_INTRA_MODES, mbmi->filter_intra_mode_info.filter_intra_mode[0]);
|
|
#if CONFIG_EXT_INTRA
|
|
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) {
|
|
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
|
|
MAX_ANGLE_DELTAS + mbmi->angle_delta[1]);
|
|
}
|
|
#endif // CONFIG_EXT_INTRA
|
|
if (mbmi->mode == DC_PRED) {
|
|
rate2 +=
|
|
av1_cost_bit(cpi->common.fc->filter_intra_probs[1],
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1]);
|
|
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1])
|
|
rate2 +=
|
|
write_uniform_cost(FILTER_INTRA_MODES,
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1]);
|
|
}
|
|
distortion2 = distortion_y + distortion_uv;
|
|
av1_encode_intra_block_plane((AV1_COMMON *)cm, x, bsize, 0, 0);
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->recon_variance = av1_high_get_sby_perpixel_variance(
|
|
cpi, &xd->plane[0].dst, bsize, xd->bd);
|
|
} else {
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
}
|
|
#else
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
rate2 += ref_costs_single[INTRA_FRAME];
|
|
|
|
if (skippable) {
|
|
rate2 -= (rate_y + rate_uv);
|
|
rate_y = 0;
|
|
rate_uv = 0;
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
} else {
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
}
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
|
|
if (this_rd < *best_intra_rd) {
|
|
*best_intra_rd = this_rd;
|
|
*best_intra_mode = mbmi->mode;
|
|
}
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
|
|
|
|
if (this_rd < *best_rd) {
|
|
*best_mode_index = dc_mode_index;
|
|
mbmi->mv[0].as_int = 0;
|
|
rd_cost->rate = rate2;
|
|
#if CONFIG_SUPERTX
|
|
if (x->skip)
|
|
*returnrate_nocoef = rate2;
|
|
else
|
|
*returnrate_nocoef = rate2 - rate_y - rate_uv;
|
|
*returnrate_nocoef -= av1_cost_bit(av1_get_skip_prob(cm, xd), skippable);
|
|
*returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd),
|
|
mbmi->ref_frame[0] != INTRA_FRAME);
|
|
#endif // CONFIG_SUPERTX
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
*best_rd = this_rd;
|
|
*best_mbmode = *mbmi;
|
|
*best_skip2 = 0;
|
|
*best_mode_skippable = skippable;
|
|
}
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
|
|
const MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, const uint8_t *above,
|
|
int above_stride, const uint8_t *left,
|
|
int left_stride);
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
void av1_rd_pick_inter_mode_sb(const AV1_COMP *cpi, TileDataEnc *tile_data,
|
|
MACROBLOCK *x, int mi_row, int mi_col,
|
|
RD_COST *rd_cost,
|
|
#if CONFIG_SUPERTX
|
|
int *returnrate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd_so_far) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const RD_OPT *const rd_opt = &cpi->rd;
|
|
const SPEED_FEATURES *const sf = &cpi->sf;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
#if CONFIG_PALETTE
|
|
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
|
|
#endif // CONFIG_PALETTE
|
|
MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
PREDICTION_MODE this_mode;
|
|
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
|
|
unsigned char segment_id = mbmi->segment_id;
|
|
int comp_pred, i, k;
|
|
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
|
|
struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE];
|
|
#if CONFIG_EXT_INTER
|
|
int_mv single_newmvs[2][TOTAL_REFS_PER_FRAME] = { { { 0 } }, { { 0 } } };
|
|
int single_newmvs_rate[2][TOTAL_REFS_PER_FRAME] = { { 0 }, { 0 } };
|
|
int64_t modelled_rd[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
|
|
#else
|
|
int_mv single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } };
|
|
#endif // CONFIG_EXT_INTER
|
|
InterpFilter single_inter_filter[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
|
|
int single_skippable[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
|
|
static const int flag_list[TOTAL_REFS_PER_FRAME] = {
|
|
0,
|
|
AOM_LAST_FLAG,
|
|
#if CONFIG_EXT_REFS
|
|
AOM_LAST2_FLAG,
|
|
AOM_LAST3_FLAG,
|
|
#endif // CONFIG_EXT_REFS
|
|
AOM_GOLD_FLAG,
|
|
#if CONFIG_EXT_REFS
|
|
AOM_BWD_FLAG,
|
|
#endif // CONFIG_EXT_REFS
|
|
AOM_ALT_FLAG
|
|
};
|
|
int64_t best_rd = best_rd_so_far;
|
|
int best_rate_y = INT_MAX, best_rate_uv = INT_MAX;
|
|
int64_t best_pred_diff[REFERENCE_MODES];
|
|
int64_t best_pred_rd[REFERENCE_MODES];
|
|
MB_MODE_INFO best_mbmode;
|
|
#if CONFIG_REF_MV
|
|
int rate_skip0 = av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
int rate_skip1 = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
#endif
|
|
int best_mode_skippable = 0;
|
|
int midx, best_mode_index = -1;
|
|
unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME];
|
|
unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME];
|
|
aom_prob comp_mode_p;
|
|
int64_t best_intra_rd = INT64_MAX;
|
|
unsigned int best_pred_sse = UINT_MAX;
|
|
PREDICTION_MODE best_intra_mode = DC_PRED;
|
|
int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES];
|
|
int64_t dist_uvs[TX_SIZES];
|
|
int skip_uvs[TX_SIZES];
|
|
PREDICTION_MODE mode_uv[TX_SIZES];
|
|
#if CONFIG_PALETTE
|
|
PALETTE_MODE_INFO pmi_uv[TX_SIZES];
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_EXT_INTRA
|
|
int8_t uv_angle_delta[TX_SIZES];
|
|
int is_directional_mode, angle_stats_ready = 0;
|
|
int rate_overhead, rate_dummy;
|
|
uint8_t directional_mode_skip_mask[INTRA_MODES];
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
int8_t dc_skipped = 1;
|
|
FILTER_INTRA_MODE_INFO filter_intra_mode_info_uv[TX_SIZES];
|
|
#endif // CONFIG_FILTER_INTRA
|
|
const int intra_cost_penalty = av1_get_intra_cost_penalty(
|
|
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
|
|
const int *const intra_mode_cost = cpi->mbmode_cost[size_group_lookup[bsize]];
|
|
int best_skip2 = 0;
|
|
uint8_t ref_frame_skip_mask[2] = { 0 };
|
|
#if CONFIG_EXT_INTER
|
|
uint32_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 };
|
|
MV_REFERENCE_FRAME best_single_inter_ref = LAST_FRAME;
|
|
int64_t best_single_inter_rd = INT64_MAX;
|
|
#else
|
|
uint16_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 };
|
|
#endif // CONFIG_EXT_INTER
|
|
int mode_skip_start = sf->mode_skip_start + 1;
|
|
const int *const rd_threshes = rd_opt->threshes[segment_id][bsize];
|
|
const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize];
|
|
int64_t mode_threshold[MAX_MODES];
|
|
int *mode_map = tile_data->mode_map[bsize];
|
|
const int mode_search_skip_flags = sf->mode_search_skip_flags;
|
|
const TX_SIZE max_tx_size = max_txsize_lookup[bsize];
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_buf;
|
|
#endif
|
|
|
|
#if CONFIG_PALETTE || CONFIG_EXT_INTRA
|
|
const int rows = 4 * num_4x4_blocks_high_lookup[bsize];
|
|
const int cols = 4 * num_4x4_blocks_wide_lookup[bsize];
|
|
#endif // CONFIG_PALETTE || CONFIG_EXT_INTRA
|
|
#if CONFIG_PALETTE
|
|
int palette_ctx = 0;
|
|
const MODE_INFO *above_mi = xd->above_mi;
|
|
const MODE_INFO *left_mi = xd->left_mi;
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_MOTION_VAR
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[2 * MAX_MB_PLANE * MAX_SB_SQUARE]);
|
|
#else
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf1[MAX_MB_PLANE * MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(16, uint8_t, tmp_buf2[MAX_MB_PLANE * MAX_SB_SQUARE]);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
DECLARE_ALIGNED(16, int32_t, weighted_src_buf[MAX_SB_SQUARE]);
|
|
DECLARE_ALIGNED(16, int32_t, mask2d_buf[MAX_SB_SQUARE]);
|
|
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
|
|
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
|
|
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
|
|
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
|
|
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
|
|
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
|
|
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
|
|
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
int len = sizeof(uint16_t);
|
|
dst_buf1[0] = CONVERT_TO_BYTEPTR(tmp_buf1);
|
|
dst_buf1[1] = CONVERT_TO_BYTEPTR(tmp_buf1 + MAX_SB_SQUARE * len);
|
|
dst_buf1[2] = CONVERT_TO_BYTEPTR(tmp_buf1 + 2 * MAX_SB_SQUARE * len);
|
|
dst_buf2[0] = CONVERT_TO_BYTEPTR(tmp_buf2);
|
|
dst_buf2[1] = CONVERT_TO_BYTEPTR(tmp_buf2 + MAX_SB_SQUARE * len);
|
|
dst_buf2[2] = CONVERT_TO_BYTEPTR(tmp_buf2 + 2 * MAX_SB_SQUARE * len);
|
|
} else {
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
dst_buf1[0] = tmp_buf1;
|
|
dst_buf1[1] = tmp_buf1 + MAX_SB_SQUARE;
|
|
dst_buf1[2] = tmp_buf1 + 2 * MAX_SB_SQUARE;
|
|
dst_buf2[0] = tmp_buf2;
|
|
dst_buf2[1] = tmp_buf2 + MAX_SB_SQUARE;
|
|
dst_buf2[2] = tmp_buf2 + 2 * MAX_SB_SQUARE;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
av1_zero(best_mbmode);
|
|
|
|
#if CONFIG_PALETTE
|
|
av1_zero(pmi_uv);
|
|
if (cm->allow_screen_content_tools) {
|
|
if (above_mi)
|
|
palette_ctx += (above_mi->mbmi.palette_mode_info.palette_size[0] > 0);
|
|
if (left_mi)
|
|
palette_ctx += (left_mi->mbmi.palette_mode_info.palette_size[0] > 0);
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
memset(directional_mode_skip_mask, 0,
|
|
sizeof(directional_mode_skip_mask[0]) * INTRA_MODES);
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
|
|
for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX;
|
|
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX;
|
|
for (i = 0; i < MB_MODE_COUNT; ++i) {
|
|
for (k = 0; k < TOTAL_REFS_PER_FRAME; ++k) {
|
|
single_inter_filter[i][k] = SWITCHABLE;
|
|
single_skippable[i][k] = 0;
|
|
}
|
|
}
|
|
|
|
rd_cost->rate = INT_MAX;
|
|
#if CONFIG_SUPERTX
|
|
*returnrate_nocoef = INT_MAX;
|
|
#endif // CONFIG_SUPERTX
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
x->pred_mv_sad[ref_frame] = INT_MAX;
|
|
x->mbmi_ext->mode_context[ref_frame] = 0;
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
x->mbmi_ext->compound_mode_context[ref_frame] = 0;
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
|
|
assert(get_ref_frame_buffer(cpi, ref_frame) != NULL);
|
|
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
|
|
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
|
|
}
|
|
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
|
|
#if CONFIG_GLOBAL_MOTION
|
|
frame_mv[ZEROMV][ref_frame].as_int =
|
|
gm_get_motion_vector(&cm->global_motion[ref_frame]).as_int;
|
|
#else // CONFIG_GLOBAL_MOTION
|
|
frame_mv[ZEROMV][ref_frame].as_int = 0;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
#if CONFIG_EXT_INTER
|
|
frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV;
|
|
frame_mv[NEW_NEWMV][ref_frame].as_int = INVALID_MV;
|
|
frame_mv[ZERO_ZEROMV][ref_frame].as_int = 0;
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
|
|
#if CONFIG_REF_MV
|
|
for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
|
|
MODE_INFO *const mi = xd->mi[0];
|
|
int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame];
|
|
x->mbmi_ext->mode_context[ref_frame] = 0;
|
|
av1_find_mv_refs(cm, xd, mi, ref_frame, &mbmi_ext->ref_mv_count[ref_frame],
|
|
mbmi_ext->ref_mv_stack[ref_frame],
|
|
#if CONFIG_EXT_INTER
|
|
mbmi_ext->compound_mode_context,
|
|
#endif // CONFIG_EXT_INTER
|
|
candidates, mi_row, mi_col, NULL, NULL,
|
|
mbmi_ext->mode_context);
|
|
}
|
|
#endif // CONFIG_REF_MV
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
|
|
dst_width1, dst_height1, dst_stride1);
|
|
av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
|
|
dst_width2, dst_height2, dst_stride2);
|
|
av1_setup_dst_planes(xd->plane, get_frame_new_buffer(cm), mi_row, mi_col);
|
|
x->mask_buf = mask2d_buf;
|
|
x->wsrc_buf = weighted_src_buf;
|
|
calc_target_weighted_pred(cm, x, xd, mi_row, mi_col, dst_buf1[0],
|
|
dst_stride1[0], dst_buf2[0], dst_stride2[0]);
|
|
#endif // CONFIG_MOTION_VAR
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
|
|
if (!(cpi->ref_frame_flags & flag_list[ref_frame])) {
|
|
// Skip checking missing references in both single and compound reference
|
|
// modes. Note that a mode will be skipped iff both reference frames
|
|
// are masked out.
|
|
#if CONFIG_EXT_REFS
|
|
if (ref_frame == BWDREF_FRAME || ref_frame == ALTREF_FRAME) {
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= ((1 << ref_frame) | 0x01);
|
|
} else {
|
|
#endif // CONFIG_EXT_REFS
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
#if CONFIG_EXT_REFS
|
|
}
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
|
|
// Skip fixed mv modes for poor references
|
|
if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) {
|
|
mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// If the segment reference frame feature is enabled....
|
|
// then do nothing if the current ref frame is not allowed..
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
|
|
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
}
|
|
}
|
|
|
|
// Disable this drop out case if the ref frame
|
|
// segment level feature is enabled for this segment. This is to
|
|
// prevent the possibility that we end up unable to pick any mode.
|
|
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
|
|
// unless ARNR filtering is enabled in which case we want
|
|
// an unfiltered alternative. We allow near/nearest as well
|
|
// because they may result in zero-zero MVs but be cheaper.
|
|
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) {
|
|
int_mv zeromv;
|
|
ref_frame_skip_mask[0] = (1 << LAST_FRAME) |
|
|
#if CONFIG_EXT_REFS
|
|
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
|
|
(1 << BWDREF_FRAME) |
|
|
#endif // CONFIG_EXT_REFS
|
|
(1 << GOLDEN_FRAME);
|
|
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
|
|
// TODO(zoeliu): To further explore whether following needs to be done for
|
|
// BWDREF_FRAME as well.
|
|
mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
|
|
#if CONFIG_GLOBAL_MOTION
|
|
zeromv.as_int =
|
|
gm_get_motion_vector(&cm->global_motion[ALTREF_FRAME]).as_int;
|
|
#else
|
|
zeromv.as_int = 0;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
if (frame_mv[NEARMV][ALTREF_FRAME].as_int != zeromv.as_int)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV);
|
|
if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV);
|
|
#if CONFIG_EXT_INTER
|
|
if (frame_mv[NEAREST_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARESTMV);
|
|
if (frame_mv[NEAREST_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARMV);
|
|
if (frame_mv[NEAR_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARESTMV);
|
|
if (frame_mv[NEAR_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int)
|
|
mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARMV);
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
}
|
|
|
|
if (cpi->rc.is_src_frame_alt_ref) {
|
|
if (sf->alt_ref_search_fp) {
|
|
assert(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]);
|
|
mode_skip_mask[ALTREF_FRAME] = 0;
|
|
ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK;
|
|
}
|
|
}
|
|
|
|
if (sf->alt_ref_search_fp)
|
|
if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX)
|
|
if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1))
|
|
mode_skip_mask[ALTREF_FRAME] |= INTER_ALL;
|
|
|
|
if (sf->adaptive_mode_search) {
|
|
if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref &&
|
|
cpi->rc.frames_since_golden >= 3)
|
|
if (x->pred_mv_sad[GOLDEN_FRAME] > (x->pred_mv_sad[LAST_FRAME] << 1))
|
|
mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL;
|
|
}
|
|
|
|
if (bsize > sf->max_intra_bsize) {
|
|
ref_frame_skip_mask[0] |= (1 << INTRA_FRAME);
|
|
ref_frame_skip_mask[1] |= (1 << INTRA_FRAME);
|
|
}
|
|
|
|
mode_skip_mask[INTRA_FRAME] |=
|
|
~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]);
|
|
|
|
for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0;
|
|
for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i)
|
|
mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5;
|
|
|
|
midx = sf->schedule_mode_search ? mode_skip_start : 0;
|
|
while (midx > 4) {
|
|
uint8_t end_pos = 0;
|
|
for (i = 5; i < midx; ++i) {
|
|
if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) {
|
|
uint8_t tmp = mode_map[i];
|
|
mode_map[i] = mode_map[i - 1];
|
|
mode_map[i - 1] = tmp;
|
|
end_pos = i;
|
|
}
|
|
}
|
|
midx = end_pos;
|
|
}
|
|
|
|
if (cpi->sf.tx_type_search.fast_intra_tx_type_search)
|
|
x->use_default_intra_tx_type = 1;
|
|
else
|
|
x->use_default_intra_tx_type = 0;
|
|
|
|
if (cpi->sf.tx_type_search.fast_inter_tx_type_search)
|
|
x->use_default_inter_tx_type = 1;
|
|
else
|
|
x->use_default_inter_tx_type = 0;
|
|
#if CONFIG_PVQ
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
for (i = 0; i < MB_MODE_COUNT; ++i)
|
|
for (ref_frame = 0; ref_frame < TOTAL_REFS_PER_FRAME; ++ref_frame)
|
|
modelled_rd[i][ref_frame] = INT64_MAX;
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
for (midx = 0; midx < MAX_MODES; ++midx) {
|
|
int mode_index;
|
|
int mode_excluded = 0;
|
|
int64_t this_rd = INT64_MAX;
|
|
int disable_skip = 0;
|
|
int compmode_cost = 0;
|
|
#if CONFIG_EXT_INTER
|
|
int compmode_interintra_cost = 0;
|
|
int compmode_wedge_cost = 0;
|
|
#endif // CONFIG_EXT_INTER
|
|
int rate2 = 0, rate_y = 0, rate_uv = 0;
|
|
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
|
|
int skippable = 0;
|
|
int this_skip2 = 0;
|
|
int64_t total_sse = INT64_MAX;
|
|
#if CONFIG_REF_MV
|
|
uint8_t ref_frame_type;
|
|
#endif
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
mode_index = mode_map[midx];
|
|
this_mode = av1_mode_order[mode_index].mode;
|
|
ref_frame = av1_mode_order[mode_index].ref_frame[0];
|
|
second_ref_frame = av1_mode_order[mode_index].ref_frame[1];
|
|
#if CONFIG_REF_MV
|
|
mbmi->ref_mv_idx = 0;
|
|
#endif
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (ref_frame > INTRA_FRAME && second_ref_frame == INTRA_FRAME) {
|
|
// Mode must by compatible
|
|
assert(is_interintra_allowed_mode(this_mode));
|
|
|
|
if (!is_interintra_allowed_bsize(bsize)) continue;
|
|
}
|
|
|
|
if (is_inter_compound_mode(this_mode)) {
|
|
frame_mv[this_mode][ref_frame].as_int =
|
|
frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int;
|
|
frame_mv[this_mode][second_ref_frame].as_int =
|
|
frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int;
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
// Look at the reference frame of the best mode so far and set the
|
|
// skip mask to look at a subset of the remaining modes.
|
|
if (midx == mode_skip_start && best_mode_index >= 0) {
|
|
switch (best_mbmode.ref_frame[0]) {
|
|
case INTRA_FRAME: break;
|
|
case LAST_FRAME:
|
|
ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#if CONFIG_EXT_REFS
|
|
case LAST2_FRAME:
|
|
ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
case LAST3_FRAME:
|
|
ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#endif // CONFIG_EXT_REFS
|
|
case GOLDEN_FRAME:
|
|
ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#if CONFIG_EXT_REFS
|
|
case BWDREF_FRAME:
|
|
ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK;
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#endif // CONFIG_EXT_REFS
|
|
case ALTREF_FRAME: ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK;
|
|
#if CONFIG_EXT_REFS
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
#endif // CONFIG_EXT_REFS
|
|
break;
|
|
case NONE:
|
|
case TOTAL_REFS_PER_FRAME:
|
|
assert(0 && "Invalid Reference frame");
|
|
break;
|
|
}
|
|
}
|
|
|
|
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
|
(ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame))))
|
|
continue;
|
|
|
|
if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue;
|
|
|
|
// Test best rd so far against threshold for trying this mode.
|
|
if (best_mode_skippable && sf->schedule_mode_search)
|
|
mode_threshold[mode_index] <<= 1;
|
|
|
|
if (best_rd < mode_threshold[mode_index]) continue;
|
|
|
|
comp_pred = second_ref_frame > INTRA_FRAME;
|
|
if (comp_pred) {
|
|
if (!cpi->allow_comp_inter_inter) continue;
|
|
|
|
// Skip compound inter modes if ARF is not available.
|
|
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
|
|
|
|
// Do not allow compound prediction if the segment level reference frame
|
|
// feature is in use as in this case there can only be one reference.
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
|
|
|
|
if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
|
|
best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME)
|
|
continue;
|
|
|
|
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
|
|
} else {
|
|
if (ref_frame != INTRA_FRAME)
|
|
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
|
|
}
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
if (sf->adaptive_mode_search)
|
|
if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse)
|
|
continue;
|
|
|
|
if (this_mode != DC_PRED) {
|
|
// Disable intra modes other than DC_PRED for blocks with low variance
|
|
// Threshold for intra skipping based on source variance
|
|
// TODO(debargha): Specialize the threshold for super block sizes
|
|
const unsigned int skip_intra_var_thresh = 64;
|
|
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
|
|
x->source_variance < skip_intra_var_thresh)
|
|
continue;
|
|
// Only search the oblique modes if the best so far is
|
|
// one of the neighboring directional modes
|
|
if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
|
|
(this_mode >= D45_PRED && this_mode <= TM_PRED)) {
|
|
if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME)
|
|
continue;
|
|
}
|
|
if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
|
|
if (conditional_skipintra(this_mode, best_intra_mode)) continue;
|
|
}
|
|
}
|
|
#if CONFIG_GLOBAL_MOTION
|
|
} else if (get_gmtype(&cm->global_motion[ref_frame]) == GLOBAL_ZERO &&
|
|
(!comp_pred ||
|
|
get_gmtype(&cm->global_motion[second_ref_frame]) ==
|
|
GLOBAL_ZERO)) {
|
|
#else // CONFIG_GLOBAL_MOTION
|
|
} else {
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame };
|
|
if (!check_best_zero_mv(cpi, mbmi_ext->mode_context,
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
mbmi_ext->compound_mode_context,
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
frame_mv, this_mode, ref_frames, bsize, -1))
|
|
continue;
|
|
}
|
|
|
|
mbmi->mode = this_mode;
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->ref_frame[0] = ref_frame;
|
|
mbmi->ref_frame[1] = second_ref_frame;
|
|
#if CONFIG_PALETTE
|
|
pmi->palette_size[0] = 0;
|
|
pmi->palette_size[1] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
// Evaluate all sub-pel filters irrespective of whether we can use
|
|
// them for this frame.
|
|
#if CONFIG_DUAL_FILTER
|
|
for (i = 0; i < 4; ++i) {
|
|
mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE
|
|
? EIGHTTAP_REGULAR
|
|
: cm->interp_filter;
|
|
}
|
|
#else
|
|
mbmi->interp_filter =
|
|
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
|
|
#endif
|
|
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
|
|
mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
|
|
x->skip = 0;
|
|
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
|
|
|
|
// Select prediction reference frames.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
|
|
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
TX_SIZE uv_tx;
|
|
struct macroblockd_plane *const pd = &xd->plane[1];
|
|
#if CONFIG_EXT_INTRA
|
|
is_directional_mode = (mbmi->mode != DC_PRED && mbmi->mode != TM_PRED);
|
|
if (is_directional_mode) {
|
|
if (!angle_stats_ready) {
|
|
const int src_stride = x->plane[0].src.stride;
|
|
const uint8_t *src = x->plane[0].src.buf;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
|
|
highbd_angle_estimation(src, src_stride, rows, cols,
|
|
directional_mode_skip_mask);
|
|
else
|
|
#endif
|
|
angle_estimation(src, src_stride, rows, cols,
|
|
directional_mode_skip_mask);
|
|
angle_stats_ready = 1;
|
|
}
|
|
if (directional_mode_skip_mask[mbmi->mode]) continue;
|
|
rate_overhead = write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1, 0) +
|
|
intra_mode_cost[mbmi->mode];
|
|
rate_y = INT_MAX;
|
|
this_rd =
|
|
rd_pick_intra_angle_sby(cpi, x, &rate_dummy, &rate_y, &distortion_y,
|
|
&skippable, bsize, rate_overhead, best_rd);
|
|
} else {
|
|
mbmi->angle_delta[0] = 0;
|
|
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
|
|
best_rd);
|
|
}
|
|
#else
|
|
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
|
|
best_rd);
|
|
#endif // CONFIG_EXT_INTRA
|
|
|
|
if (rate_y == INT_MAX) continue;
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
if (mbmi->mode == DC_PRED) dc_skipped = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][pd->subsampling_x]
|
|
[pd->subsampling_y];
|
|
if (rate_uv_intra[uv_tx] == INT_MAX) {
|
|
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
|
|
&rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx],
|
|
&skip_uvs[uv_tx], &mode_uv[uv_tx]);
|
|
#if CONFIG_PALETTE
|
|
if (cm->allow_screen_content_tools) pmi_uv[uv_tx] = *pmi;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
}
|
|
|
|
rate_uv = rate_uv_tokenonly[uv_tx];
|
|
distortion_uv = dist_uvs[uv_tx];
|
|
skippable = skippable && skip_uvs[uv_tx];
|
|
mbmi->uv_mode = mode_uv[uv_tx];
|
|
#if CONFIG_PALETTE
|
|
if (cm->allow_screen_content_tools) {
|
|
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
|
|
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
|
|
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
|
|
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_EXT_INTRA
|
|
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
|
|
filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1];
|
|
if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) {
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
|
|
filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1];
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
rate2 = rate_y + intra_mode_cost[mbmi->mode] + rate_uv +
|
|
cpi->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode];
|
|
#if CONFIG_PALETTE
|
|
if (cpi->common.allow_screen_content_tools && mbmi->mode == DC_PRED)
|
|
rate2 += av1_cost_bit(
|
|
av1_default_palette_y_mode_prob[bsize - BLOCK_8X8][palette_ctx], 0);
|
|
#endif // CONFIG_PALETTE
|
|
|
|
if (!xd->lossless[mbmi->segment_id]) {
|
|
// super_block_yrd above includes the cost of the tx_size in the
|
|
// tokenonly rate, but for intra blocks, tx_size is always coded
|
|
// (prediction granularity), so we account for it in the full rate,
|
|
// not the tokenonly rate.
|
|
rate_y -=
|
|
cpi->tx_size_cost[max_tx_size - TX_8X8][get_tx_size_context(xd)]
|
|
[tx_size_to_depth(mbmi->tx_size)];
|
|
}
|
|
#if CONFIG_EXT_INTRA
|
|
if (is_directional_mode) {
|
|
int p_angle;
|
|
const int intra_filter_ctx = av1_get_pred_context_intra_interp(xd);
|
|
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
|
|
MAX_ANGLE_DELTAS + mbmi->angle_delta[0]);
|
|
p_angle =
|
|
mode_to_angle_map[mbmi->mode] + mbmi->angle_delta[0] * ANGLE_STEP;
|
|
if (av1_is_intra_filter_switchable(p_angle))
|
|
rate2 += cpi->intra_filter_cost[intra_filter_ctx][mbmi->intra_filter];
|
|
}
|
|
if (mbmi->uv_mode != DC_PRED && mbmi->uv_mode != TM_PRED) {
|
|
rate2 += write_uniform_cost(2 * MAX_ANGLE_DELTAS + 1,
|
|
MAX_ANGLE_DELTAS + mbmi->angle_delta[1]);
|
|
}
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
if (mbmi->mode == DC_PRED) {
|
|
rate2 +=
|
|
av1_cost_bit(cm->fc->filter_intra_probs[0],
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0]);
|
|
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[0]) {
|
|
rate2 += write_uniform_cost(
|
|
FILTER_INTRA_MODES,
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[0]);
|
|
}
|
|
}
|
|
if (mbmi->uv_mode == DC_PRED) {
|
|
rate2 +=
|
|
av1_cost_bit(cpi->common.fc->filter_intra_probs[1],
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1]);
|
|
if (mbmi->filter_intra_mode_info.use_filter_intra_mode[1])
|
|
rate2 += write_uniform_cost(
|
|
FILTER_INTRA_MODES,
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1]);
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
if (this_mode != DC_PRED && this_mode != TM_PRED)
|
|
rate2 += intra_cost_penalty;
|
|
distortion2 = distortion_y + distortion_uv;
|
|
av1_encode_intra_block_plane((AV1_COMMON *)cm, x, bsize, 0, 1);
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
|
|
x->recon_variance = av1_high_get_sby_perpixel_variance(
|
|
cpi, &xd->plane[0].dst, bsize, xd->bd);
|
|
} else {
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
}
|
|
#else
|
|
x->recon_variance =
|
|
av1_get_sby_perpixel_variance(cpi, &xd->plane[0].dst, bsize);
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
} else {
|
|
#if CONFIG_REF_MV
|
|
int_mv backup_ref_mv[2];
|
|
|
|
backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0];
|
|
if (comp_pred) backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0];
|
|
#endif
|
|
#if CONFIG_EXT_INTER
|
|
if (second_ref_frame == INTRA_FRAME) {
|
|
if (best_single_inter_ref != ref_frame) continue;
|
|
mbmi->interintra_mode = intra_to_interintra_mode[best_intra_mode];
|
|
// TODO(debargha|geza.lore):
|
|
// Should we use ext_intra modes for interintra?
|
|
#if CONFIG_EXT_INTRA
|
|
mbmi->angle_delta[0] = 0;
|
|
mbmi->angle_delta[1] = 0;
|
|
mbmi->intra_filter = INTRA_FILTER_LINEAR;
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#if CONFIG_REF_MV
|
|
mbmi->ref_mv_idx = 0;
|
|
ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
|
|
|
|
if (this_mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1) {
|
|
int ref;
|
|
for (ref = 0; ref < 1 + comp_pred; ++ref) {
|
|
int_mv this_mv =
|
|
(ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv
|
|
: mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv;
|
|
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
|
|
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
|
|
}
|
|
}
|
|
#endif
|
|
this_rd = handle_inter_mode(
|
|
cpi, x, bsize, &rate2, &distortion2, &skippable, &rate_y, &rate_uv,
|
|
&disable_skip, frame_mv, mi_row, mi_col,
|
|
#if CONFIG_MOTION_VAR
|
|
dst_buf1, dst_stride1, dst_buf2, dst_stride2,
|
|
#endif // CONFIG_MOTION_VAR
|
|
#if CONFIG_EXT_INTER
|
|
single_newmvs, single_newmvs_rate, &compmode_interintra_cost,
|
|
&compmode_wedge_cost, modelled_rd,
|
|
#else
|
|
single_newmv,
|
|
#endif // CONFIG_EXT_INTER
|
|
single_inter_filter, single_skippable, &total_sse, best_rd);
|
|
|
|
#if CONFIG_REF_MV
|
|
// TODO(jingning): This needs some refactoring to improve code quality
|
|
// and reduce redundant steps.
|
|
if ((mbmi->mode == NEARMV &&
|
|
mbmi_ext->ref_mv_count[ref_frame_type] > 2) ||
|
|
(mbmi->mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1)) {
|
|
int_mv backup_mv = frame_mv[NEARMV][ref_frame];
|
|
MB_MODE_INFO backup_mbmi = *mbmi;
|
|
int backup_skip = x->skip;
|
|
int64_t tmp_ref_rd = this_rd;
|
|
int ref_idx;
|
|
|
|
// TODO(jingning): This should be deprecated shortly.
|
|
int idx_offset = (mbmi->mode == NEARMV) ? 1 : 0;
|
|
int ref_set =
|
|
AOMMIN(2, mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset);
|
|
|
|
uint8_t drl_ctx =
|
|
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx_offset);
|
|
// Dummy
|
|
int_mv backup_fmv[2];
|
|
backup_fmv[0] = frame_mv[NEWMV][ref_frame];
|
|
if (comp_pred) backup_fmv[1] = frame_mv[NEWMV][second_ref_frame];
|
|
|
|
rate2 += (rate2 < INT_MAX ? cpi->drl_mode_cost0[drl_ctx][0] : 0);
|
|
|
|
if (this_rd < INT64_MAX) {
|
|
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
|
|
RDCOST(x->rdmult, x->rddiv, 0, total_sse))
|
|
tmp_ref_rd =
|
|
RDCOST(x->rdmult, x->rddiv,
|
|
rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
|
|
distortion2);
|
|
else
|
|
tmp_ref_rd =
|
|
RDCOST(x->rdmult, x->rddiv,
|
|
rate2 + av1_cost_bit(av1_get_skip_prob(cm, xd), 1) -
|
|
rate_y - rate_uv,
|
|
total_sse);
|
|
}
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(x->blk_skip_drl[i], x->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
#endif
|
|
|
|
for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) {
|
|
int64_t tmp_alt_rd = INT64_MAX;
|
|
int tmp_rate = 0, tmp_rate_y = 0, tmp_rate_uv = 0;
|
|
int tmp_skip = 1;
|
|
int64_t tmp_dist = 0, tmp_sse = 0;
|
|
int dummy_disable_skip = 0;
|
|
int ref;
|
|
int_mv cur_mv;
|
|
|
|
mbmi->ref_mv_idx = 1 + ref_idx;
|
|
|
|
for (ref = 0; ref < 1 + comp_pred; ++ref) {
|
|
int_mv this_mv =
|
|
(ref == 0)
|
|
? mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
|
|
.this_mv
|
|
: mbmi_ext->ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
|
|
.comp_mv;
|
|
clamp_mv_ref(&this_mv.as_mv, xd->n8_w << 3, xd->n8_h << 3, xd);
|
|
mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv;
|
|
}
|
|
|
|
cur_mv =
|
|
mbmi_ext->ref_mv_stack[ref_frame][mbmi->ref_mv_idx + idx_offset]
|
|
.this_mv;
|
|
clamp_mv2(&cur_mv.as_mv, xd);
|
|
|
|
if (!mv_check_bounds(x, &cur_mv.as_mv)) {
|
|
int dummy_single_skippable[MB_MODE_COUNT]
|
|
[TOTAL_REFS_PER_FRAME] = { { 0 } };
|
|
#if CONFIG_EXT_INTER
|
|
int_mv dummy_single_newmvs[2][TOTAL_REFS_PER_FRAME] = { { { 0 } },
|
|
{ { 0 } } };
|
|
int dummy_single_newmvs_rate[2][TOTAL_REFS_PER_FRAME] = { { 0 },
|
|
{ 0 } };
|
|
int dummy_compmode_interintra_cost = 0;
|
|
int dummy_compmode_wedge_cost = 0;
|
|
#else
|
|
int_mv dummy_single_newmv[TOTAL_REFS_PER_FRAME] = { { 0 } };
|
|
#endif
|
|
|
|
frame_mv[NEARMV][ref_frame] = cur_mv;
|
|
tmp_alt_rd = handle_inter_mode(
|
|
cpi, x, bsize, &tmp_rate, &tmp_dist, &tmp_skip, &tmp_rate_y,
|
|
&tmp_rate_uv, &dummy_disable_skip, frame_mv, mi_row, mi_col,
|
|
#if CONFIG_MOTION_VAR
|
|
dst_buf1, dst_stride1, dst_buf2, dst_stride2,
|
|
#endif // CONFIG_MOTION_VAR
|
|
#if CONFIG_EXT_INTER
|
|
dummy_single_newmvs, dummy_single_newmvs_rate,
|
|
&dummy_compmode_interintra_cost, &dummy_compmode_wedge_cost,
|
|
NULL,
|
|
#else
|
|
dummy_single_newmv,
|
|
#endif
|
|
single_inter_filter, dummy_single_skippable, &tmp_sse, best_rd);
|
|
}
|
|
|
|
for (i = 0; i < mbmi->ref_mv_idx; ++i) {
|
|
uint8_t drl1_ctx = 0;
|
|
drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
|
|
i + idx_offset);
|
|
tmp_rate +=
|
|
(tmp_rate < INT_MAX ? cpi->drl_mode_cost0[drl1_ctx][1] : 0);
|
|
}
|
|
|
|
if (mbmi_ext->ref_mv_count[ref_frame_type] >
|
|
mbmi->ref_mv_idx + idx_offset + 1 &&
|
|
ref_idx < ref_set - 1) {
|
|
uint8_t drl1_ctx =
|
|
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type],
|
|
mbmi->ref_mv_idx + idx_offset);
|
|
tmp_rate += cpi->drl_mode_cost0[drl1_ctx][0];
|
|
}
|
|
|
|
if (tmp_alt_rd < INT64_MAX) {
|
|
#if CONFIG_MOTION_VAR
|
|
tmp_alt_rd = RDCOST(x->rdmult, x->rddiv, tmp_rate, tmp_dist);
|
|
#else
|
|
if (RDCOST(x->rdmult, x->rddiv, tmp_rate_y + tmp_rate_uv,
|
|
tmp_dist) < RDCOST(x->rdmult, x->rddiv, 0, tmp_sse))
|
|
tmp_alt_rd =
|
|
RDCOST(x->rdmult, x->rddiv,
|
|
tmp_rate + av1_cost_bit(av1_get_skip_prob(cm, xd), 0),
|
|
tmp_dist);
|
|
else
|
|
tmp_alt_rd =
|
|
RDCOST(x->rdmult, x->rddiv,
|
|
tmp_rate + av1_cost_bit(av1_get_skip_prob(cm, xd), 1) -
|
|
tmp_rate_y - tmp_rate_uv,
|
|
tmp_sse);
|
|
#endif // CONFIG_MOTION_VAR
|
|
}
|
|
|
|
if (tmp_ref_rd > tmp_alt_rd) {
|
|
rate2 = tmp_rate;
|
|
disable_skip = dummy_disable_skip;
|
|
distortion2 = tmp_dist;
|
|
skippable = tmp_skip;
|
|
rate_y = tmp_rate_y;
|
|
rate_uv = tmp_rate_uv;
|
|
total_sse = tmp_sse;
|
|
this_rd = tmp_alt_rd;
|
|
tmp_ref_rd = tmp_alt_rd;
|
|
backup_mbmi = *mbmi;
|
|
backup_skip = x->skip;
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(x->blk_skip_drl[i], x->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
#endif
|
|
} else {
|
|
*mbmi = backup_mbmi;
|
|
x->skip = backup_skip;
|
|
}
|
|
}
|
|
|
|
frame_mv[NEARMV][ref_frame] = backup_mv;
|
|
frame_mv[NEWMV][ref_frame] = backup_fmv[0];
|
|
if (comp_pred) frame_mv[NEWMV][second_ref_frame] = backup_fmv[1];
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(x->blk_skip[i], x->blk_skip_drl[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
#endif
|
|
}
|
|
mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0];
|
|
if (comp_pred) mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1];
|
|
#endif // CONFIG_REF_MV
|
|
|
|
if (this_rd == INT64_MAX) continue;
|
|
|
|
compmode_cost = av1_cost_bit(comp_mode_p, comp_pred);
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
|
|
}
|
|
|
|
#if CONFIG_EXT_INTER
|
|
rate2 += compmode_interintra_cost;
|
|
if (cm->reference_mode != SINGLE_REFERENCE && comp_pred)
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
if (mbmi->motion_mode == SIMPLE_TRANSLATION)
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
rate2 += compmode_wedge_cost;
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
if (comp_pred) {
|
|
rate2 += ref_costs_comp[ref_frame];
|
|
#if CONFIG_EXT_REFS
|
|
rate2 += ref_costs_comp[second_ref_frame];
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
rate2 += ref_costs_single[ref_frame];
|
|
}
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
if (ref_frame == INTRA_FRAME) {
|
|
#else
|
|
if (!disable_skip) {
|
|
#endif // CONFIG_MOTION_VAR
|
|
if (skippable) {
|
|
// Back out the coefficient coding costs
|
|
rate2 -= (rate_y + rate_uv);
|
|
rate_y = 0;
|
|
rate_uv = 0;
|
|
// Cost the skip mb case
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
} else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
|
|
#if CONFIG_REF_MV
|
|
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv + rate_skip0,
|
|
distortion2) <
|
|
RDCOST(x->rdmult, x->rddiv, rate_skip1, total_sse)) {
|
|
#else
|
|
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
|
|
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
|
|
#endif
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
} else {
|
|
// FIXME(rbultje) make this work for splitmv also
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
distortion2 = total_sse;
|
|
assert(total_sse >= 0);
|
|
rate2 -= (rate_y + rate_uv);
|
|
this_skip2 = 1;
|
|
rate_y = 0;
|
|
rate_uv = 0;
|
|
}
|
|
} else {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
}
|
|
|
|
// Calculate the final RD estimate for this mode.
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
#if CONFIG_MOTION_VAR
|
|
} else {
|
|
this_skip2 = mbmi->skip;
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
if (this_skip2) {
|
|
rate_y = 0;
|
|
rate_uv = 0;
|
|
}
|
|
#endif // CONFIG_MOTION_VAR
|
|
}
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
// Keep record of best intra rd
|
|
if (this_rd < best_intra_rd) {
|
|
best_intra_rd = this_rd;
|
|
best_intra_mode = mbmi->mode;
|
|
}
|
|
#if CONFIG_EXT_INTER
|
|
} else if (second_ref_frame == NONE) {
|
|
if (this_rd < best_single_inter_rd) {
|
|
best_single_inter_rd = this_rd;
|
|
best_single_inter_ref = mbmi->ref_frame[0];
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
|
|
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
|
|
}
|
|
|
|
// Did this mode help.. i.e. is it the new best mode
|
|
if (this_rd < best_rd || x->skip) {
|
|
if (!mode_excluded) {
|
|
// Note index of best mode so far
|
|
best_mode_index = mode_index;
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
/* required for left and above block mv */
|
|
mbmi->mv[0].as_int = 0;
|
|
} else {
|
|
best_pred_sse = x->pred_sse[ref_frame];
|
|
}
|
|
|
|
rd_cost->rate = rate2;
|
|
#if CONFIG_SUPERTX
|
|
if (x->skip)
|
|
*returnrate_nocoef = rate2;
|
|
else
|
|
*returnrate_nocoef = rate2 - rate_y - rate_uv;
|
|
*returnrate_nocoef -= av1_cost_bit(
|
|
av1_get_skip_prob(cm, xd), disable_skip || skippable || this_skip2);
|
|
*returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd),
|
|
mbmi->ref_frame[0] != INTRA_FRAME);
|
|
#if CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
if (is_inter_block(mbmi) && is_motion_variation_allowed(mbmi))
|
|
*returnrate_nocoef -= cpi->motion_mode_cost[bsize][mbmi->motion_mode];
|
|
#endif // CONFIG_MOTION_VAR || CONFIG_WARPED_MOTION
|
|
#endif // CONFIG_SUPERTX
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
best_rd = this_rd;
|
|
best_mbmode = *mbmi;
|
|
best_skip2 = this_skip2;
|
|
best_mode_skippable = skippable;
|
|
best_rate_y = rate_y + av1_cost_bit(av1_get_skip_prob(cm, xd),
|
|
this_skip2 || skippable);
|
|
best_rate_uv = rate_uv;
|
|
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(ctx->blk_skip[i], x->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* keep record of best compound/single-only prediction */
|
|
if (!disable_skip && ref_frame != INTRA_FRAME) {
|
|
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
single_rate = rate2 - compmode_cost;
|
|
hybrid_rate = rate2;
|
|
} else {
|
|
single_rate = rate2;
|
|
hybrid_rate = rate2 + compmode_cost;
|
|
}
|
|
|
|
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
|
|
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
|
|
|
|
if (!comp_pred) {
|
|
if (single_rd < best_pred_rd[SINGLE_REFERENCE])
|
|
best_pred_rd[SINGLE_REFERENCE] = single_rd;
|
|
} else {
|
|
if (single_rd < best_pred_rd[COMPOUND_REFERENCE])
|
|
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
|
|
}
|
|
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
|
|
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
|
|
}
|
|
|
|
if (x->skip && !comp_pred) break;
|
|
}
|
|
|
|
if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 &&
|
|
((sf->tx_type_search.fast_inter_tx_type_search == 1 &&
|
|
is_inter_mode(best_mbmode.mode)) ||
|
|
(sf->tx_type_search.fast_intra_tx_type_search == 1 &&
|
|
!is_inter_mode(best_mbmode.mode)))) {
|
|
int rate_y = 0, rate_uv = 0;
|
|
int64_t dist_y = 0, dist_uv = 0;
|
|
int skip_y = 0, skip_uv = 0, skip_blk = 0;
|
|
int64_t sse_y = 0, sse_uv = 0;
|
|
|
|
x->use_default_inter_tx_type = 0;
|
|
x->use_default_intra_tx_type = 0;
|
|
|
|
*mbmi = best_mbmode;
|
|
|
|
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
|
|
|
|
// Select prediction reference frames.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
|
|
if (has_second_ref(mbmi))
|
|
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
|
|
}
|
|
|
|
if (is_inter_mode(mbmi->mode)) {
|
|
#if CONFIG_VAR_TX
|
|
RD_STATS rd_stats_uv;
|
|
#endif
|
|
av1_build_inter_predictors_sb(xd, mi_row, mi_col, bsize);
|
|
#if CONFIG_MOTION_VAR
|
|
if (mbmi->motion_mode == OBMC_CAUSAL)
|
|
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1,
|
|
dst_stride1, dst_buf2, dst_stride2);
|
|
#endif // CONFIG_MOTION_VAR
|
|
av1_subtract_plane(x, bsize, 0);
|
|
#if CONFIG_VAR_TX
|
|
if (cm->tx_mode == TX_MODE_SELECT || xd->lossless[mbmi->segment_id]) {
|
|
RD_STATS rd_stats_y;
|
|
select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX);
|
|
rate_y = rd_stats_y.rate;
|
|
dist_y = rd_stats_y.dist;
|
|
sse_y = rd_stats_y.sse;
|
|
skip_y = rd_stats_y.skip;
|
|
} else {
|
|
int idx, idy;
|
|
super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize,
|
|
INT64_MAX);
|
|
for (idy = 0; idy < xd->n8_h; ++idy)
|
|
for (idx = 0; idx < xd->n8_w; ++idx)
|
|
mbmi->inter_tx_size[idy][idx] = mbmi->tx_size;
|
|
memset(x->blk_skip[0], skip_y,
|
|
sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4);
|
|
}
|
|
|
|
inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
|
|
rate_uv = rd_stats_uv.rate;
|
|
dist_uv = rd_stats_uv.dist;
|
|
skip_uv = rd_stats_uv.skip;
|
|
sse_uv = rd_stats_uv.sse;
|
|
#else
|
|
super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize,
|
|
INT64_MAX);
|
|
super_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv, &sse_uv, bsize,
|
|
INT64_MAX);
|
|
#endif // CONFIG_VAR_TX
|
|
} else {
|
|
super_block_yrd(cpi, x, &rate_y, &dist_y, &skip_y, &sse_y, bsize,
|
|
INT64_MAX);
|
|
super_block_uvrd(cpi, x, &rate_uv, &dist_uv, &skip_uv, &sse_uv, bsize,
|
|
INT64_MAX);
|
|
}
|
|
|
|
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, (dist_y + dist_uv)) >
|
|
RDCOST(x->rdmult, x->rddiv, 0, (sse_y + sse_uv))) {
|
|
skip_blk = 1;
|
|
rate_y = av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
rate_uv = 0;
|
|
dist_y = sse_y;
|
|
dist_uv = sse_uv;
|
|
} else {
|
|
skip_blk = 0;
|
|
rate_y += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
}
|
|
|
|
if (RDCOST(x->rdmult, x->rddiv, best_rate_y + best_rate_uv, rd_cost->dist) >
|
|
RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, (dist_y + dist_uv))) {
|
|
#if CONFIG_VAR_TX
|
|
int idx, idy;
|
|
#endif
|
|
best_mbmode.tx_type = mbmi->tx_type;
|
|
best_mbmode.tx_size = mbmi->tx_size;
|
|
#if CONFIG_VAR_TX
|
|
for (idy = 0; idy < xd->n8_h; ++idy)
|
|
for (idx = 0; idx < xd->n8_w; ++idx)
|
|
best_mbmode.inter_tx_size[idy][idx] = mbmi->inter_tx_size[idy][idx];
|
|
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memcpy(ctx->blk_skip[i], x->blk_skip[i],
|
|
sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
|
|
best_mbmode.min_tx_size = mbmi->min_tx_size;
|
|
#endif
|
|
rd_cost->rate += (rate_y + rate_uv - best_rate_y - best_rate_uv);
|
|
rd_cost->dist = dist_y + dist_uv;
|
|
rd_cost->rdcost =
|
|
RDCOST(x->rdmult, x->rddiv, rd_cost->rate, rd_cost->dist);
|
|
best_skip2 = skip_blk;
|
|
}
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
// Only try palette mode when the best mode so far is an intra mode.
|
|
if (cm->allow_screen_content_tools && !is_inter_mode(best_mbmode.mode)) {
|
|
PREDICTION_MODE mode_selected;
|
|
int rate2 = 0, rate_y = 0;
|
|
#if CONFIG_SUPERTX
|
|
int best_rate_nocoef;
|
|
#endif
|
|
int64_t distortion2 = 0, distortion_y = 0, dummy_rd = best_rd, this_rd;
|
|
int skippable = 0, rate_overhead_palette = 0;
|
|
TX_SIZE best_tx_size, uv_tx;
|
|
TX_TYPE best_tx_type;
|
|
PALETTE_MODE_INFO palette_mode_info;
|
|
uint8_t *const best_palette_color_map =
|
|
x->palette_buffer->best_palette_color_map;
|
|
uint8_t *const color_map = xd->plane[0].color_index_map;
|
|
|
|
mbmi->mode = DC_PRED;
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->ref_frame[0] = INTRA_FRAME;
|
|
mbmi->ref_frame[1] = NONE;
|
|
palette_mode_info.palette_size[0] = 0;
|
|
rate_overhead_palette = rd_pick_palette_intra_sby(
|
|
cpi, x, bsize, palette_ctx, intra_mode_cost[DC_PRED],
|
|
&palette_mode_info, best_palette_color_map, &best_tx_size,
|
|
&best_tx_type, &mode_selected, &dummy_rd);
|
|
if (palette_mode_info.palette_size[0] == 0) goto PALETTE_EXIT;
|
|
|
|
pmi->palette_size[0] = palette_mode_info.palette_size[0];
|
|
if (palette_mode_info.palette_size[0] > 0) {
|
|
memcpy(pmi->palette_colors, palette_mode_info.palette_colors,
|
|
PALETTE_MAX_SIZE * sizeof(palette_mode_info.palette_colors[0]));
|
|
memcpy(color_map, best_palette_color_map,
|
|
rows * cols * sizeof(best_palette_color_map[0]));
|
|
}
|
|
super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize,
|
|
best_rd);
|
|
if (rate_y == INT_MAX) goto PALETTE_EXIT;
|
|
uv_tx = uv_txsize_lookup[bsize][mbmi->tx_size][xd->plane[1].subsampling_x]
|
|
[xd->plane[1].subsampling_y];
|
|
if (rate_uv_intra[uv_tx] == INT_MAX) {
|
|
choose_intra_uv_mode(cpi, x, ctx, bsize, uv_tx, &rate_uv_intra[uv_tx],
|
|
&rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx],
|
|
&skip_uvs[uv_tx], &mode_uv[uv_tx]);
|
|
pmi_uv[uv_tx] = *pmi;
|
|
#if CONFIG_EXT_INTRA
|
|
uv_angle_delta[uv_tx] = mbmi->angle_delta[1];
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
filter_intra_mode_info_uv[uv_tx] = mbmi->filter_intra_mode_info;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
}
|
|
mbmi->uv_mode = mode_uv[uv_tx];
|
|
pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1];
|
|
if (pmi->palette_size[1] > 0)
|
|
memcpy(pmi->palette_colors + PALETTE_MAX_SIZE,
|
|
pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE,
|
|
2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0]));
|
|
#if CONFIG_EXT_INTRA
|
|
mbmi->angle_delta[1] = uv_angle_delta[uv_tx];
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] =
|
|
filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1];
|
|
if (filter_intra_mode_info_uv[uv_tx].use_filter_intra_mode[1]) {
|
|
mbmi->filter_intra_mode_info.filter_intra_mode[1] =
|
|
filter_intra_mode_info_uv[uv_tx].filter_intra_mode[1];
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
skippable = skippable && skip_uvs[uv_tx];
|
|
distortion2 = distortion_y + dist_uvs[uv_tx];
|
|
rate2 = rate_y + rate_overhead_palette + rate_uv_intra[uv_tx];
|
|
rate2 += ref_costs_single[INTRA_FRAME];
|
|
|
|
if (skippable) {
|
|
rate2 -= (rate_y + rate_uv_tokenonly[uv_tx]);
|
|
#if CONFIG_SUPERTX
|
|
best_rate_nocoef = rate2;
|
|
#endif
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
} else {
|
|
#if CONFIG_SUPERTX
|
|
best_rate_nocoef = rate2 - (rate_y + rate_uv_tokenonly[uv_tx]);
|
|
#endif
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
}
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
if (this_rd < best_rd) {
|
|
best_mode_index = 3;
|
|
mbmi->mv[0].as_int = 0;
|
|
rd_cost->rate = rate2;
|
|
#if CONFIG_SUPERTX
|
|
*returnrate_nocoef = best_rate_nocoef;
|
|
#endif
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
best_rd = this_rd;
|
|
best_mbmode = *mbmi;
|
|
best_skip2 = 0;
|
|
best_mode_skippable = skippable;
|
|
}
|
|
}
|
|
PALETTE_EXIT:
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
// TODO(huisu): filter-intra is turned off in lossless mode for now to
|
|
// avoid a unit test failure
|
|
if (!xd->lossless[mbmi->segment_id] &&
|
|
#if CONFIG_PALETTE
|
|
mbmi->palette_mode_info.palette_size[0] == 0 &&
|
|
#endif // CONFIG_PALETTE
|
|
!dc_skipped && best_mode_index >= 0 &&
|
|
best_intra_rd < (best_rd + (best_rd >> 3))) {
|
|
pick_filter_intra_interframe(
|
|
cpi, x, ctx, bsize, rate_uv_intra, rate_uv_tokenonly, dist_uvs,
|
|
skip_uvs, mode_uv, filter_intra_mode_info_uv,
|
|
#if CONFIG_EXT_INTRA
|
|
uv_angle_delta,
|
|
#endif // CONFIG_EXT_INTRA
|
|
#if CONFIG_PALETTE
|
|
pmi_uv, palette_ctx,
|
|
#endif // CONFIG_PALETTE
|
|
0, ref_costs_single, &best_rd, &best_intra_rd, &best_intra_mode,
|
|
&best_mode_index, &best_skip2, &best_mode_skippable,
|
|
#if CONFIG_SUPERTX
|
|
returnrate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
best_pred_rd, &best_mbmode, rd_cost);
|
|
}
|
|
#endif // CONFIG_FILTER_INTRA
|
|
|
|
// The inter modes' rate costs are not calculated precisely in some cases.
|
|
// Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and
|
|
// ZEROMV. Here, checks are added for those cases, and the mode decisions
|
|
// are corrected.
|
|
if (best_mbmode.mode == NEWMV
|
|
#if CONFIG_EXT_INTER
|
|
|| best_mbmode.mode == NEWFROMNEARMV || best_mbmode.mode == NEW_NEWMV
|
|
#endif // CONFIG_EXT_INTER
|
|
) {
|
|
const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0],
|
|
best_mbmode.ref_frame[1] };
|
|
int comp_pred_mode = refs[1] > INTRA_FRAME;
|
|
int_mv zeromv[2];
|
|
#if CONFIG_REF_MV
|
|
const uint8_t rf_type = av1_ref_frame_type(best_mbmode.ref_frame);
|
|
#endif // CONFIG_REF_MV
|
|
#if CONFIG_GLOBAL_MOTION
|
|
zeromv[0].as_int = gm_get_motion_vector(&cm->global_motion[refs[0]]).as_int;
|
|
zeromv[1].as_int =
|
|
comp_pred_mode
|
|
? gm_get_motion_vector(&cm->global_motion[refs[1]]).as_int
|
|
: 0;
|
|
#else
|
|
zeromv[0].as_int = 0;
|
|
zeromv[1].as_int = 0;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
#if CONFIG_REF_MV
|
|
if (!comp_pred_mode) {
|
|
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2)
|
|
? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2)
|
|
: INT_MAX;
|
|
|
|
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
|
|
int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
|
|
if (cur_mv.as_int == best_mbmode.mv[0].as_int) {
|
|
best_mbmode.mode = NEARMV;
|
|
best_mbmode.ref_mv_idx = i;
|
|
}
|
|
}
|
|
|
|
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int)
|
|
best_mbmode.mode = NEARESTMV;
|
|
else if (best_mbmode.mv[0].as_int == zeromv[0].as_int)
|
|
best_mbmode.mode = ZEROMV;
|
|
} else {
|
|
int_mv nearestmv[2];
|
|
int_mv nearmv[2];
|
|
|
|
#if CONFIG_EXT_INTER
|
|
if (mbmi_ext->ref_mv_count[rf_type] > 1) {
|
|
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][1].this_mv;
|
|
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][1].comp_mv;
|
|
} else {
|
|
nearmv[0] = frame_mv[NEARMV][refs[0]];
|
|
nearmv[1] = frame_mv[NEARMV][refs[1]];
|
|
}
|
|
#else
|
|
int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2)
|
|
? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2)
|
|
: INT_MAX;
|
|
|
|
for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) {
|
|
nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv;
|
|
nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv;
|
|
|
|
if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
|
|
nearmv[1].as_int == best_mbmode.mv[1].as_int) {
|
|
best_mbmode.mode = NEARMV;
|
|
best_mbmode.ref_mv_idx = i;
|
|
}
|
|
}
|
|
#endif
|
|
if (mbmi_ext->ref_mv_count[rf_type] >= 1) {
|
|
nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv;
|
|
nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv;
|
|
} else {
|
|
nearestmv[0] = frame_mv[NEARESTMV][refs[0]];
|
|
nearestmv[1] = frame_mv[NEARESTMV][refs[1]];
|
|
}
|
|
|
|
if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
|
|
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
|
|
#if CONFIG_EXT_INTER
|
|
best_mbmode.mode = NEAREST_NEARESTMV;
|
|
else if (nearestmv[0].as_int == best_mbmode.mv[0].as_int &&
|
|
nearmv[1].as_int == best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAREST_NEARMV;
|
|
else if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
|
|
nearestmv[1].as_int == best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAR_NEARESTMV;
|
|
else if (nearmv[0].as_int == best_mbmode.mv[0].as_int &&
|
|
nearmv[1].as_int == best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAR_NEARMV;
|
|
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
|
|
best_mbmode.mode = ZERO_ZEROMV;
|
|
#else
|
|
best_mbmode.mode = NEARESTMV;
|
|
else if (best_mbmode.mv[0].as_int == zeromv[0].as_int &&
|
|
best_mbmode.mv[1].as_int == zeromv[1].as_int)
|
|
best_mbmode.mode = ZEROMV;
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
#else
|
|
#if CONFIG_EXT_INTER
|
|
if (!comp_pred_mode) {
|
|
#endif // CONFIG_EXT_INTER
|
|
if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
|
|
((comp_pred_mode &&
|
|
frame_mv[NEARESTMV][refs[1]].as_int == best_mbmode.mv[1].as_int) ||
|
|
!comp_pred_mode))
|
|
best_mbmode.mode = NEARESTMV;
|
|
else if (frame_mv[NEARMV][refs[0]].as_int == best_mbmode.mv[0].as_int &&
|
|
((comp_pred_mode &&
|
|
frame_mv[NEARMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int) ||
|
|
!comp_pred_mode))
|
|
best_mbmode.mode = NEARMV;
|
|
else if (best_mbmode.mv[0].as_int == zeromv[0].as_int &&
|
|
((comp_pred_mode &&
|
|
best_mbmode.mv[1].as_int == zeromv[1].as_int) ||
|
|
!comp_pred_mode))
|
|
best_mbmode.mode = ZEROMV;
|
|
#if CONFIG_EXT_INTER
|
|
} else {
|
|
if (frame_mv[NEAREST_NEARESTMV][refs[0]].as_int ==
|
|
best_mbmode.mv[0].as_int &&
|
|
frame_mv[NEAREST_NEARESTMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAREST_NEARESTMV;
|
|
else if (frame_mv[NEAREST_NEARMV][refs[0]].as_int ==
|
|
best_mbmode.mv[0].as_int &&
|
|
frame_mv[NEAREST_NEARMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAREST_NEARMV;
|
|
else if (frame_mv[NEAR_NEARESTMV][refs[0]].as_int ==
|
|
best_mbmode.mv[0].as_int &&
|
|
frame_mv[NEAR_NEARESTMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAR_NEARESTMV;
|
|
else if (frame_mv[NEAR_NEARMV][refs[0]].as_int ==
|
|
best_mbmode.mv[0].as_int &&
|
|
frame_mv[NEAR_NEARMV][refs[1]].as_int ==
|
|
best_mbmode.mv[1].as_int)
|
|
best_mbmode.mode = NEAR_NEARMV;
|
|
else if (best_mbmode.mv[0].as_int == 0 && best_mbmode.mv[1].as_int == 0)
|
|
best_mbmode.mode = ZERO_ZEROMV;
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
#endif
|
|
}
|
|
|
|
#if CONFIG_REF_MV
|
|
if (best_mbmode.ref_frame[0] > INTRA_FRAME && best_mbmode.mv[0].as_int == 0 &&
|
|
#if CONFIG_EXT_INTER
|
|
(best_mbmode.ref_frame[1] <= INTRA_FRAME)
|
|
#else
|
|
(best_mbmode.ref_frame[1] == NONE || best_mbmode.mv[1].as_int == 0)
|
|
#endif // CONFIG_EXT_INTER
|
|
) {
|
|
int16_t mode_ctx = mbmi_ext->mode_context[best_mbmode.ref_frame[0]];
|
|
#if !CONFIG_EXT_INTER
|
|
if (best_mbmode.ref_frame[1] > NONE)
|
|
mode_ctx &= (mbmi_ext->mode_context[best_mbmode.ref_frame[1]] | 0x00ff);
|
|
#endif // !CONFIG_EXT_INTER
|
|
|
|
if (mode_ctx & (1 << ALL_ZERO_FLAG_OFFSET)) best_mbmode.mode = ZEROMV;
|
|
}
|
|
#endif
|
|
|
|
if (best_mode_index < 0 || best_rd >= best_rd_so_far) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
return;
|
|
}
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter[0]) ||
|
|
!is_inter_block(&best_mbmode));
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter[1]) ||
|
|
!is_inter_block(&best_mbmode));
|
|
if (best_mbmode.ref_frame[1] > INTRA_FRAME) {
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter[2]) ||
|
|
!is_inter_block(&best_mbmode));
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter[3]) ||
|
|
!is_inter_block(&best_mbmode));
|
|
}
|
|
#else
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter) ||
|
|
!is_inter_block(&best_mbmode));
|
|
#endif
|
|
|
|
if (!cpi->rc.is_src_frame_alt_ref)
|
|
av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
|
|
sf->adaptive_rd_thresh, bsize, best_mode_index);
|
|
|
|
// macroblock modes
|
|
*mbmi = best_mbmode;
|
|
x->skip |= best_skip2;
|
|
|
|
#if CONFIG_REF_MV
|
|
for (i = 0; i < 1 + has_second_ref(mbmi); ++i) {
|
|
if (mbmi->mode != NEWMV)
|
|
mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int;
|
|
else
|
|
mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int;
|
|
}
|
|
#endif
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i) {
|
|
if (best_pred_rd[i] == INT64_MAX)
|
|
best_pred_diff[i] = INT_MIN;
|
|
else
|
|
best_pred_diff[i] = best_rd - best_pred_rd[i];
|
|
}
|
|
|
|
x->skip |= best_mode_skippable;
|
|
|
|
assert(best_mode_index >= 0);
|
|
|
|
store_coding_context(x, ctx, best_mode_index, best_pred_diff,
|
|
best_mode_skippable);
|
|
|
|
#if CONFIG_PALETTE
|
|
if (cm->allow_screen_content_tools && pmi->palette_size[1] > 0) {
|
|
restore_uv_color_map(cpi, x);
|
|
}
|
|
#endif // CONFIG_PALETTE
|
|
}
|
|
|
|
void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
|
|
TileDataEnc *tile_data, MACROBLOCK *x,
|
|
RD_COST *rd_cost, BLOCK_SIZE bsize,
|
|
PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd_so_far) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
unsigned char segment_id = mbmi->segment_id;
|
|
const int comp_pred = 0;
|
|
int i;
|
|
int64_t best_pred_diff[REFERENCE_MODES];
|
|
unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME];
|
|
unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME];
|
|
aom_prob comp_mode_p;
|
|
InterpFilter best_filter = SWITCHABLE;
|
|
int64_t this_rd = INT64_MAX;
|
|
int rate2 = 0;
|
|
const int64_t distortion2 = 0;
|
|
|
|
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
|
|
for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX;
|
|
for (i = LAST_FRAME; i < TOTAL_REFS_PER_FRAME; ++i)
|
|
x->pred_mv_sad[i] = INT_MAX;
|
|
|
|
rd_cost->rate = INT_MAX;
|
|
|
|
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
|
|
|
|
#if CONFIG_PALETTE
|
|
mbmi->palette_mode_info.palette_size[0] = 0;
|
|
mbmi->palette_mode_info.palette_size[1] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
mbmi->mode = ZEROMV;
|
|
mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->ref_frame[0] = LAST_FRAME;
|
|
mbmi->ref_frame[1] = NONE;
|
|
#if CONFIG_GLOBAL_MOTION
|
|
mbmi->mv[0].as_int =
|
|
gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]]).as_int;
|
|
#else // CONFIG_GLOBAL_MOTION
|
|
mbmi->mv[0].as_int = 0;
|
|
#endif // CONFIG_GLOBAL_MOTION
|
|
mbmi->tx_size = max_txsize_lookup[bsize];
|
|
x->skip = 1;
|
|
|
|
#if CONFIG_REF_MV
|
|
mbmi->ref_mv_idx = 0;
|
|
mbmi->pred_mv[0].as_int = 0;
|
|
#endif
|
|
|
|
if (cm->interp_filter != BILINEAR) {
|
|
best_filter = EIGHTTAP_REGULAR;
|
|
if (cm->interp_filter == SWITCHABLE &&
|
|
#if CONFIG_EXT_INTERP
|
|
av1_is_interp_needed(xd) &&
|
|
#endif // CONFIG_EXT_INTERP
|
|
x->source_variance >= cpi->sf.disable_filter_search_var_thresh) {
|
|
int rs;
|
|
int best_rs = INT_MAX;
|
|
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
|
|
#if CONFIG_DUAL_FILTER
|
|
int k;
|
|
for (k = 0; k < 4; ++k) mbmi->interp_filter[k] = i;
|
|
#else
|
|
mbmi->interp_filter = i;
|
|
#endif
|
|
rs = av1_get_switchable_rate(cpi, xd);
|
|
if (rs < best_rs) {
|
|
best_rs = rs;
|
|
#if CONFIG_DUAL_FILTER
|
|
best_filter = mbmi->interp_filter[0];
|
|
#else
|
|
best_filter = mbmi->interp_filter;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Set the appropriate filter
|
|
if (cm->interp_filter == SWITCHABLE) {
|
|
#if CONFIG_DUAL_FILTER
|
|
for (i = 0; i < 4; ++i) mbmi->interp_filter[i] = best_filter;
|
|
#else
|
|
mbmi->interp_filter = best_filter;
|
|
#endif
|
|
rate2 += av1_get_switchable_rate(cpi, xd);
|
|
} else {
|
|
#if CONFIG_DUAL_FILTER
|
|
for (i = 0; i < 4; ++i) mbmi->interp_filter[0] = cm->interp_filter;
|
|
#else
|
|
mbmi->interp_filter = cm->interp_filter;
|
|
#endif
|
|
}
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT)
|
|
rate2 += av1_cost_bit(comp_mode_p, comp_pred);
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
rate2 += ref_costs_single[LAST_FRAME];
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
|
|
rd_cost->rate = rate2;
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
|
|
if (this_rd >= best_rd_so_far) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
return;
|
|
}
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == mbmi->interp_filter[0]));
|
|
#else
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == mbmi->interp_filter));
|
|
#endif
|
|
|
|
av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
|
|
cpi->sf.adaptive_rd_thresh, bsize, THR_ZEROMV);
|
|
|
|
av1_zero(best_pred_diff);
|
|
|
|
store_coding_context(x, ctx, THR_ZEROMV, best_pred_diff, 0);
|
|
}
|
|
|
|
void av1_rd_pick_inter_mode_sub8x8(const struct AV1_COMP *cpi,
|
|
TileDataEnc *tile_data, struct macroblock *x,
|
|
int mi_row, int mi_col,
|
|
struct RD_COST *rd_cost,
|
|
#if CONFIG_SUPERTX
|
|
int *returnrate_nocoef,
|
|
#endif // CONFIG_SUPERTX
|
|
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
|
|
int64_t best_rd_so_far) {
|
|
const AV1_COMMON *const cm = &cpi->common;
|
|
const RD_OPT *const rd_opt = &cpi->rd;
|
|
const SPEED_FEATURES *const sf = &cpi->sf;
|
|
MACROBLOCKD *const xd = &x->e_mbd;
|
|
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
|
|
const struct segmentation *const seg = &cm->seg;
|
|
MV_REFERENCE_FRAME ref_frame, second_ref_frame;
|
|
unsigned char segment_id = mbmi->segment_id;
|
|
int comp_pred, i;
|
|
int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME];
|
|
struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE];
|
|
static const int flag_list[TOTAL_REFS_PER_FRAME] = {
|
|
0,
|
|
AOM_LAST_FLAG,
|
|
#if CONFIG_EXT_REFS
|
|
AOM_LAST2_FLAG,
|
|
AOM_LAST3_FLAG,
|
|
#endif // CONFIG_EXT_REFS
|
|
AOM_GOLD_FLAG,
|
|
#if CONFIG_EXT_REFS
|
|
AOM_BWD_FLAG,
|
|
#endif // CONFIG_EXT_REFS
|
|
AOM_ALT_FLAG
|
|
};
|
|
int64_t best_rd = best_rd_so_far;
|
|
int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise
|
|
int64_t best_pred_diff[REFERENCE_MODES];
|
|
int64_t best_pred_rd[REFERENCE_MODES];
|
|
MB_MODE_INFO best_mbmode;
|
|
int ref_index, best_ref_index = 0;
|
|
unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME];
|
|
unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME];
|
|
aom_prob comp_mode_p;
|
|
#if CONFIG_DUAL_FILTER
|
|
InterpFilter tmp_best_filter[4] = { 0 };
|
|
#else
|
|
InterpFilter tmp_best_filter = SWITCHABLE;
|
|
#endif
|
|
int rate_uv_intra, rate_uv_tokenonly = INT_MAX;
|
|
int64_t dist_uv = INT64_MAX;
|
|
int skip_uv;
|
|
PREDICTION_MODE mode_uv = DC_PRED;
|
|
const int intra_cost_penalty = av1_get_intra_cost_penalty(
|
|
cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth);
|
|
#if CONFIG_EXT_INTER
|
|
int_mv seg_mvs[4][2][TOTAL_REFS_PER_FRAME];
|
|
#else
|
|
int_mv seg_mvs[4][TOTAL_REFS_PER_FRAME];
|
|
#endif // CONFIG_EXT_INTER
|
|
b_mode_info best_bmodes[4];
|
|
int best_skip2 = 0;
|
|
int ref_frame_skip_mask[2] = { 0 };
|
|
int internal_active_edge =
|
|
av1_active_edge_sb(cpi, mi_row, mi_col) && av1_internal_image_edge(cpi);
|
|
#if CONFIG_PVQ
|
|
od_rollback_buffer pre_buf;
|
|
|
|
od_encode_checkpoint(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
|
|
#if CONFIG_SUPERTX
|
|
best_rd_so_far = INT64_MAX;
|
|
best_rd = best_rd_so_far;
|
|
best_yrd = best_rd_so_far;
|
|
#endif // CONFIG_SUPERTX
|
|
av1_zero(best_mbmode);
|
|
|
|
#if CONFIG_FILTER_INTRA
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[0] = 0;
|
|
mbmi->filter_intra_mode_info.use_filter_intra_mode[1] = 0;
|
|
#endif // CONFIG_FILTER_INTRA
|
|
mbmi->motion_mode = SIMPLE_TRANSLATION;
|
|
#if CONFIG_EXT_INTER
|
|
mbmi->use_wedge_interinter = 0;
|
|
mbmi->use_wedge_interintra = 0;
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
int j;
|
|
#if CONFIG_EXT_INTER
|
|
int k;
|
|
|
|
for (k = 0; k < 2; k++)
|
|
for (j = 0; j < TOTAL_REFS_PER_FRAME; j++)
|
|
seg_mvs[i][k][j].as_int = INVALID_MV;
|
|
#else
|
|
for (j = 0; j < TOTAL_REFS_PER_FRAME; j++)
|
|
seg_mvs[i][j].as_int = INVALID_MV;
|
|
#endif // CONFIG_EXT_INTER
|
|
}
|
|
|
|
estimate_ref_frame_costs(cm, xd, segment_id, ref_costs_single, ref_costs_comp,
|
|
&comp_mode_p);
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX;
|
|
rate_uv_intra = INT_MAX;
|
|
|
|
rd_cost->rate = INT_MAX;
|
|
#if CONFIG_SUPERTX
|
|
*returnrate_nocoef = INT_MAX;
|
|
#endif
|
|
|
|
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) {
|
|
x->mbmi_ext->mode_context[ref_frame] = 0;
|
|
#if CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
x->mbmi_ext->compound_mode_context[ref_frame] = 0;
|
|
#endif // CONFIG_REF_MV && CONFIG_EXT_INTER
|
|
if (cpi->ref_frame_flags & flag_list[ref_frame]) {
|
|
setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col,
|
|
frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb);
|
|
} else {
|
|
ref_frame_skip_mask[0] |= (1 << ref_frame);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
}
|
|
frame_mv[NEWMV][ref_frame].as_int = INVALID_MV;
|
|
#if CONFIG_EXT_INTER
|
|
frame_mv[NEWFROMNEARMV][ref_frame].as_int = INVALID_MV;
|
|
#endif // CONFIG_EXT_INTER
|
|
frame_mv[ZEROMV][ref_frame].as_int = 0;
|
|
}
|
|
|
|
#if CONFIG_PALETTE
|
|
mbmi->palette_mode_info.palette_size[0] = 0;
|
|
mbmi->palette_mode_info.palette_size[1] = 0;
|
|
#endif // CONFIG_PALETTE
|
|
|
|
for (ref_index = 0; ref_index < MAX_REFS; ++ref_index) {
|
|
int mode_excluded = 0;
|
|
int64_t this_rd = INT64_MAX;
|
|
int disable_skip = 0;
|
|
int compmode_cost = 0;
|
|
int rate2 = 0, rate_y = 0, rate_uv = 0;
|
|
int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0;
|
|
int skippable = 0;
|
|
int this_skip2 = 0;
|
|
int64_t total_sse = INT_MAX;
|
|
|
|
#if CONFIG_PVQ
|
|
od_encode_rollback(&x->daala_enc, &pre_buf);
|
|
#endif
|
|
|
|
ref_frame = av1_ref_order[ref_index].ref_frame[0];
|
|
second_ref_frame = av1_ref_order[ref_index].ref_frame[1];
|
|
|
|
#if CONFIG_REF_MV
|
|
mbmi->ref_mv_idx = 0;
|
|
#endif
|
|
|
|
// Look at the reference frame of the best mode so far and set the
|
|
// skip mask to look at a subset of the remaining modes.
|
|
if (ref_index > 2 && sf->mode_skip_start < MAX_MODES) {
|
|
if (ref_index == 3) {
|
|
switch (best_mbmode.ref_frame[0]) {
|
|
case INTRA_FRAME: break;
|
|
case LAST_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << GOLDEN_FRAME) |
|
|
#if CONFIG_EXT_REFS
|
|
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
|
|
(1 << BWDREF_FRAME) |
|
|
#endif // CONFIG_EXT_REFS
|
|
(1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#if CONFIG_EXT_REFS
|
|
case LAST2_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST3_FRAME) |
|
|
(1 << GOLDEN_FRAME) |
|
|
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
case LAST3_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
|
|
(1 << GOLDEN_FRAME) |
|
|
(1 << BWDREF_FRAME) | (1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#endif // CONFIG_EXT_REFS
|
|
case GOLDEN_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
|
|
#if CONFIG_EXT_REFS
|
|
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
|
|
(1 << BWDREF_FRAME) |
|
|
#endif // CONFIG_EXT_REFS
|
|
(1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK;
|
|
break;
|
|
#if CONFIG_EXT_REFS
|
|
case BWDREF_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) | (1 << LAST2_FRAME) |
|
|
(1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) |
|
|
(1 << ALTREF_FRAME);
|
|
ref_frame_skip_mask[1] |= (1 << ALTREF_FRAME) | 0x01;
|
|
break;
|
|
#endif // CONFIG_EXT_REFS
|
|
case ALTREF_FRAME:
|
|
ref_frame_skip_mask[0] |= (1 << LAST_FRAME) |
|
|
#if CONFIG_EXT_REFS
|
|
(1 << LAST2_FRAME) | (1 << LAST3_FRAME) |
|
|
(1 << BWDREF_FRAME) |
|
|
#endif // CONFIG_EXT_REFS
|
|
(1 << GOLDEN_FRAME);
|
|
#if CONFIG_EXT_REFS
|
|
ref_frame_skip_mask[1] |= (1 << BWDREF_FRAME) | 0x01;
|
|
#endif // CONFIG_EXT_REFS
|
|
break;
|
|
case NONE:
|
|
case TOTAL_REFS_PER_FRAME:
|
|
assert(0 && "Invalid Reference frame");
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ((ref_frame_skip_mask[0] & (1 << ref_frame)) &&
|
|
(ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame))))
|
|
continue;
|
|
|
|
// Test best rd so far against threshold for trying this mode.
|
|
if (!internal_active_edge &&
|
|
rd_less_than_thresh(best_rd,
|
|
rd_opt->threshes[segment_id][bsize][ref_index],
|
|
tile_data->thresh_freq_fact[bsize][ref_index]))
|
|
continue;
|
|
|
|
comp_pred = second_ref_frame > INTRA_FRAME;
|
|
if (comp_pred) {
|
|
if (!cpi->allow_comp_inter_inter) continue;
|
|
if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue;
|
|
// Do not allow compound prediction if the segment level reference frame
|
|
// feature is in use as in this case there can only be one reference.
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue;
|
|
|
|
if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) &&
|
|
best_mbmode.ref_frame[0] == INTRA_FRAME)
|
|
continue;
|
|
}
|
|
|
|
// TODO(jingning, jkoleszar): scaling reference frame not supported for
|
|
// sub8x8 blocks.
|
|
if (ref_frame > INTRA_FRAME &&
|
|
av1_is_scaled(&cm->frame_refs[ref_frame - 1].sf))
|
|
continue;
|
|
|
|
if (second_ref_frame > INTRA_FRAME &&
|
|
av1_is_scaled(&cm->frame_refs[second_ref_frame - 1].sf))
|
|
continue;
|
|
|
|
if (comp_pred)
|
|
mode_excluded = cm->reference_mode == SINGLE_REFERENCE;
|
|
else if (ref_frame != INTRA_FRAME)
|
|
mode_excluded = cm->reference_mode == COMPOUND_REFERENCE;
|
|
|
|
// If the segment reference frame feature is enabled....
|
|
// then do nothing if the current ref frame is not allowed..
|
|
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
|
|
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
|
|
continue;
|
|
// Disable this drop out case if the ref frame
|
|
// segment level feature is enabled for this segment. This is to
|
|
// prevent the possibility that we end up unable to pick any mode.
|
|
} else if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
|
|
// Only consider ZEROMV/ALTREF_FRAME for alt ref frame,
|
|
// unless ARNR filtering is enabled in which case we want
|
|
// an unfiltered alternative. We allow near/nearest as well
|
|
// because they may result in zero-zero MVs but be cheaper.
|
|
if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0))
|
|
continue;
|
|
}
|
|
|
|
mbmi->tx_size = TX_4X4;
|
|
mbmi->uv_mode = DC_PRED;
|
|
mbmi->ref_frame[0] = ref_frame;
|
|
mbmi->ref_frame[1] = second_ref_frame;
|
|
// Evaluate all sub-pel filters irrespective of whether we can use
|
|
// them for this frame.
|
|
#if CONFIG_DUAL_FILTER
|
|
for (i = 0; i < 4; ++i)
|
|
mbmi->interp_filter[i] = cm->interp_filter == SWITCHABLE
|
|
? EIGHTTAP_REGULAR
|
|
: cm->interp_filter;
|
|
#else
|
|
mbmi->interp_filter =
|
|
cm->interp_filter == SWITCHABLE ? EIGHTTAP_REGULAR : cm->interp_filter;
|
|
#endif
|
|
x->skip = 0;
|
|
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
|
|
|
|
// Select prediction reference frames.
|
|
for (i = 0; i < MAX_MB_PLANE; i++) {
|
|
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
|
|
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
|
|
}
|
|
|
|
#if CONFIG_VAR_TX
|
|
mbmi->inter_tx_size[0][0] = mbmi->tx_size;
|
|
mbmi->min_tx_size = get_min_tx_size(mbmi->tx_size);
|
|
#endif
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
int rate;
|
|
if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y,
|
|
NULL, best_rd) >= best_rd)
|
|
continue;
|
|
rate2 += rate;
|
|
rate2 += intra_cost_penalty;
|
|
distortion2 += distortion_y;
|
|
|
|
if (rate_uv_intra == INT_MAX) {
|
|
choose_intra_uv_mode(cpi, x, ctx, bsize, TX_4X4, &rate_uv_intra,
|
|
&rate_uv_tokenonly, &dist_uv, &skip_uv, &mode_uv);
|
|
}
|
|
rate2 += rate_uv_intra;
|
|
rate_uv = rate_uv_tokenonly;
|
|
distortion2 += dist_uv;
|
|
distortion_uv = dist_uv;
|
|
mbmi->uv_mode = mode_uv;
|
|
} else {
|
|
int rate;
|
|
int64_t distortion;
|
|
int64_t this_rd_thresh;
|
|
int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX;
|
|
int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX;
|
|
int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse;
|
|
int tmp_best_skippable = 0;
|
|
int switchable_filter_index;
|
|
int_mv *second_ref =
|
|
comp_pred ? &x->mbmi_ext->ref_mvs[second_ref_frame][0] : NULL;
|
|
b_mode_info tmp_best_bmodes[16]; // Should this be 4 ?
|
|
MB_MODE_INFO tmp_best_mbmode;
|
|
#if CONFIG_DUAL_FILTER
|
|
#if CONFIG_EXT_INTERP
|
|
BEST_SEG_INFO bsi[25];
|
|
#else
|
|
BEST_SEG_INFO bsi[9];
|
|
#endif
|
|
#else
|
|
BEST_SEG_INFO bsi[SWITCHABLE_FILTERS];
|
|
#endif
|
|
int pred_exists = 0;
|
|
int uv_skippable;
|
|
#if CONFIG_EXT_INTER
|
|
int_mv compound_seg_newmvs[4][2];
|
|
for (i = 0; i < 4; i++) {
|
|
compound_seg_newmvs[i][0].as_int = INVALID_MV;
|
|
compound_seg_newmvs[i][1].as_int = INVALID_MV;
|
|
}
|
|
#endif // CONFIG_EXT_INTER
|
|
|
|
this_rd_thresh = (ref_frame == LAST_FRAME)
|
|
? rd_opt->threshes[segment_id][bsize][THR_LAST]
|
|
: rd_opt->threshes[segment_id][bsize][THR_ALTR];
|
|
#if CONFIG_EXT_REFS
|
|
this_rd_thresh = (ref_frame == LAST2_FRAME)
|
|
? rd_opt->threshes[segment_id][bsize][THR_LAST2]
|
|
: this_rd_thresh;
|
|
this_rd_thresh = (ref_frame == LAST3_FRAME)
|
|
? rd_opt->threshes[segment_id][bsize][THR_LAST3]
|
|
: this_rd_thresh;
|
|
this_rd_thresh = (ref_frame == BWDREF_FRAME)
|
|
? rd_opt->threshes[segment_id][bsize][THR_BWDR]
|
|
: this_rd_thresh;
|
|
#endif // CONFIG_EXT_REFS
|
|
this_rd_thresh = (ref_frame == GOLDEN_FRAME)
|
|
? rd_opt->threshes[segment_id][bsize][THR_GOLD]
|
|
: this_rd_thresh;
|
|
|
|
// TODO(any): Add search of the tx_type to improve rd performance at the
|
|
// expense of speed.
|
|
mbmi->tx_type = DCT_DCT;
|
|
|
|
if (cm->interp_filter != BILINEAR) {
|
|
#if CONFIG_DUAL_FILTER
|
|
tmp_best_filter[0] = EIGHTTAP_REGULAR;
|
|
tmp_best_filter[1] = EIGHTTAP_REGULAR;
|
|
tmp_best_filter[2] = EIGHTTAP_REGULAR;
|
|
tmp_best_filter[3] = EIGHTTAP_REGULAR;
|
|
#else
|
|
tmp_best_filter = EIGHTTAP_REGULAR;
|
|
#endif
|
|
if (x->source_variance < sf->disable_filter_search_var_thresh) {
|
|
#if CONFIG_DUAL_FILTER
|
|
tmp_best_filter[0] = EIGHTTAP_REGULAR;
|
|
#else
|
|
tmp_best_filter = EIGHTTAP_REGULAR;
|
|
#endif
|
|
} else if (sf->adaptive_pred_interp_filter == 1 &&
|
|
ctx->pred_interp_filter < SWITCHABLE) {
|
|
#if CONFIG_DUAL_FILTER
|
|
tmp_best_filter[0] = ctx->pred_interp_filter;
|
|
#else
|
|
tmp_best_filter = ctx->pred_interp_filter;
|
|
#endif
|
|
} else if (sf->adaptive_pred_interp_filter == 2) {
|
|
#if CONFIG_DUAL_FILTER
|
|
tmp_best_filter[0] = ctx->pred_interp_filter < SWITCHABLE
|
|
? ctx->pred_interp_filter
|
|
: 0;
|
|
#else
|
|
tmp_best_filter = ctx->pred_interp_filter < SWITCHABLE
|
|
? ctx->pred_interp_filter
|
|
: 0;
|
|
#endif
|
|
} else {
|
|
#if CONFIG_DUAL_FILTER
|
|
for (switchable_filter_index = 0;
|
|
#if CONFIG_EXT_INTERP
|
|
switchable_filter_index < 25;
|
|
#else
|
|
switchable_filter_index < 9;
|
|
#endif
|
|
++switchable_filter_index) {
|
|
#else
|
|
for (switchable_filter_index = 0;
|
|
switchable_filter_index < SWITCHABLE_FILTERS;
|
|
++switchable_filter_index) {
|
|
#endif
|
|
int newbest, rs;
|
|
int64_t rs_rd;
|
|
MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext;
|
|
#if CONFIG_DUAL_FILTER
|
|
mbmi->interp_filter[0] = filter_sets[switchable_filter_index][0];
|
|
mbmi->interp_filter[1] = filter_sets[switchable_filter_index][1];
|
|
mbmi->interp_filter[2] = filter_sets[switchable_filter_index][0];
|
|
mbmi->interp_filter[3] = filter_sets[switchable_filter_index][1];
|
|
#else
|
|
mbmi->interp_filter = switchable_filter_index;
|
|
#endif
|
|
tmp_rd = rd_pick_best_sub8x8_mode(
|
|
cpi, x, &mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
|
|
&rate, &rate_y, &distortion, &skippable, &total_sse,
|
|
(int)this_rd_thresh, seg_mvs,
|
|
#if CONFIG_EXT_INTER
|
|
compound_seg_newmvs,
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi, switchable_filter_index, mi_row, mi_col);
|
|
#if CONFIG_EXT_INTERP
|
|
#if CONFIG_DUAL_FILTER
|
|
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
|
|
(mbmi->interp_filter[0] != EIGHTTAP_REGULAR ||
|
|
mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) // invalid config
|
|
continue;
|
|
#else
|
|
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
|
|
mbmi->interp_filter != EIGHTTAP_REGULAR) // invalid config
|
|
continue;
|
|
#endif
|
|
#endif // CONFIG_EXT_INTERP
|
|
if (tmp_rd == INT64_MAX) continue;
|
|
rs = av1_get_switchable_rate(cpi, xd);
|
|
rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0);
|
|
if (cm->interp_filter == SWITCHABLE) tmp_rd += rs_rd;
|
|
|
|
newbest = (tmp_rd < tmp_best_rd);
|
|
if (newbest) {
|
|
#if CONFIG_DUAL_FILTER
|
|
tmp_best_filter[0] = mbmi->interp_filter[0];
|
|
tmp_best_filter[1] = mbmi->interp_filter[1];
|
|
tmp_best_filter[2] = mbmi->interp_filter[2];
|
|
tmp_best_filter[3] = mbmi->interp_filter[3];
|
|
#else
|
|
tmp_best_filter = mbmi->interp_filter;
|
|
#endif
|
|
tmp_best_rd = tmp_rd;
|
|
}
|
|
if ((newbest && cm->interp_filter == SWITCHABLE) ||
|
|
(
|
|
#if CONFIG_DUAL_FILTER
|
|
mbmi->interp_filter[0] == cm->interp_filter
|
|
#else
|
|
mbmi->interp_filter == cm->interp_filter
|
|
#endif
|
|
&& cm->interp_filter != SWITCHABLE)) {
|
|
tmp_best_rdu = tmp_rd;
|
|
tmp_best_rate = rate;
|
|
tmp_best_ratey = rate_y;
|
|
tmp_best_distortion = distortion;
|
|
tmp_best_sse = total_sse;
|
|
tmp_best_skippable = skippable;
|
|
tmp_best_mbmode = *mbmi;
|
|
for (i = 0; i < 4; i++) {
|
|
tmp_best_bmodes[i] = xd->mi[0]->bmi[i];
|
|
}
|
|
pred_exists = 1;
|
|
}
|
|
} // switchable_filter_index loop
|
|
}
|
|
}
|
|
|
|
if (tmp_best_rdu == INT64_MAX && pred_exists) continue;
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
mbmi->interp_filter[0] =
|
|
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[0]
|
|
: cm->interp_filter);
|
|
mbmi->interp_filter[1] =
|
|
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[1]
|
|
: cm->interp_filter);
|
|
mbmi->interp_filter[2] =
|
|
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[2]
|
|
: cm->interp_filter);
|
|
mbmi->interp_filter[3] =
|
|
(cm->interp_filter == SWITCHABLE ? tmp_best_filter[3]
|
|
: cm->interp_filter);
|
|
#else
|
|
mbmi->interp_filter =
|
|
(cm->interp_filter == SWITCHABLE ? tmp_best_filter
|
|
: cm->interp_filter);
|
|
#endif
|
|
|
|
if (!pred_exists) {
|
|
// Handles the special case when a filter that is not in the
|
|
// switchable list (bilinear) is indicated at the frame level
|
|
tmp_rd = rd_pick_best_sub8x8_mode(
|
|
cpi, x, &x->mbmi_ext->ref_mvs[ref_frame][0], second_ref, best_yrd,
|
|
&rate, &rate_y, &distortion, &skippable, &total_sse,
|
|
(int)this_rd_thresh, seg_mvs,
|
|
#if CONFIG_EXT_INTER
|
|
compound_seg_newmvs,
|
|
#endif // CONFIG_EXT_INTER
|
|
bsi, 0, mi_row, mi_col);
|
|
#if CONFIG_EXT_INTERP
|
|
#if CONFIG_DUAL_FILTER
|
|
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
|
|
(mbmi->interp_filter[0] != EIGHTTAP_REGULAR ||
|
|
mbmi->interp_filter[1] != EIGHTTAP_REGULAR)) {
|
|
mbmi->interp_filter[0] = EIGHTTAP_REGULAR;
|
|
mbmi->interp_filter[1] = EIGHTTAP_REGULAR;
|
|
}
|
|
#else
|
|
if (!av1_is_interp_needed(xd) && cm->interp_filter == SWITCHABLE &&
|
|
mbmi->interp_filter != EIGHTTAP_REGULAR)
|
|
mbmi->interp_filter = EIGHTTAP_REGULAR;
|
|
#endif // CONFIG_DUAL_FILTER
|
|
#endif // CONFIG_EXT_INTERP
|
|
if (tmp_rd == INT64_MAX) continue;
|
|
} else {
|
|
total_sse = tmp_best_sse;
|
|
rate = tmp_best_rate;
|
|
rate_y = tmp_best_ratey;
|
|
distortion = tmp_best_distortion;
|
|
skippable = tmp_best_skippable;
|
|
*mbmi = tmp_best_mbmode;
|
|
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i] = tmp_best_bmodes[i];
|
|
}
|
|
// Add in the cost of the transform type
|
|
if (!xd->lossless[mbmi->segment_id]) {
|
|
int rate_tx_type = 0;
|
|
#if CONFIG_EXT_TX
|
|
if (get_ext_tx_types(mbmi->tx_size, bsize, 1) > 1) {
|
|
const int eset = get_ext_tx_set(mbmi->tx_size, bsize, 1);
|
|
rate_tx_type =
|
|
cpi->inter_tx_type_costs[eset][mbmi->tx_size][mbmi->tx_type];
|
|
}
|
|
#else
|
|
if (mbmi->tx_size < TX_32X32) {
|
|
rate_tx_type = cpi->inter_tx_type_costs[mbmi->tx_size][mbmi->tx_type];
|
|
}
|
|
#endif
|
|
rate += rate_tx_type;
|
|
rate_y += rate_tx_type;
|
|
}
|
|
|
|
rate2 += rate;
|
|
distortion2 += distortion;
|
|
|
|
if (cm->interp_filter == SWITCHABLE)
|
|
rate2 += av1_get_switchable_rate(cpi, xd);
|
|
|
|
if (!mode_excluded)
|
|
mode_excluded = comp_pred ? cm->reference_mode == SINGLE_REFERENCE
|
|
: cm->reference_mode == COMPOUND_REFERENCE;
|
|
|
|
compmode_cost = av1_cost_bit(comp_mode_p, comp_pred);
|
|
|
|
tmp_best_rdu =
|
|
best_rd - AOMMIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2),
|
|
RDCOST(x->rdmult, x->rddiv, 0, total_sse));
|
|
|
|
if (tmp_best_rdu > 0) {
|
|
// If even the 'Y' rd value of split is higher than best so far
|
|
// then dont bother looking at UV
|
|
int is_cost_valid_uv;
|
|
#if CONFIG_VAR_TX
|
|
RD_STATS rd_stats_uv;
|
|
#endif
|
|
av1_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8);
|
|
#if CONFIG_VAR_TX
|
|
is_cost_valid_uv =
|
|
inter_block_uvrd(cpi, x, &rd_stats_uv, BLOCK_8X8, tmp_best_rdu);
|
|
rate_uv = rd_stats_uv.rate;
|
|
distortion_uv = rd_stats_uv.dist;
|
|
uv_skippable = rd_stats_uv.skip;
|
|
uv_sse = rd_stats_uv.sse;
|
|
#else
|
|
is_cost_valid_uv =
|
|
super_block_uvrd(cpi, x, &rate_uv, &distortion_uv, &uv_skippable,
|
|
&uv_sse, BLOCK_8X8, tmp_best_rdu);
|
|
#endif
|
|
if (!is_cost_valid_uv) continue;
|
|
rate2 += rate_uv;
|
|
distortion2 += distortion_uv;
|
|
skippable = skippable && uv_skippable;
|
|
total_sse += uv_sse;
|
|
} else {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost;
|
|
|
|
// Estimate the reference frame signaling cost and add it
|
|
// to the rolling cost variable.
|
|
if (second_ref_frame > INTRA_FRAME) {
|
|
rate2 += ref_costs_comp[ref_frame];
|
|
#if CONFIG_EXT_REFS
|
|
rate2 += ref_costs_comp[second_ref_frame];
|
|
#endif // CONFIG_EXT_REFS
|
|
} else {
|
|
rate2 += ref_costs_single[ref_frame];
|
|
}
|
|
|
|
if (!disable_skip) {
|
|
// Skip is never coded at the segment level for sub8x8 blocks and instead
|
|
// always coded in the bitstream at the mode info level.
|
|
|
|
if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) {
|
|
if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) <
|
|
RDCOST(x->rdmult, x->rddiv, 0, total_sse)) {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
} else {
|
|
// FIXME(rbultje) make this work for splitmv also
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 1);
|
|
distortion2 = total_sse;
|
|
assert(total_sse >= 0);
|
|
rate2 -= (rate_y + rate_uv);
|
|
rate_y = 0;
|
|
rate_uv = 0;
|
|
this_skip2 = 1;
|
|
}
|
|
} else {
|
|
// Add in the cost of the no skip flag.
|
|
rate2 += av1_cost_bit(av1_get_skip_prob(cm, xd), 0);
|
|
}
|
|
|
|
// Calculate the final RD estimate for this mode.
|
|
this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2);
|
|
}
|
|
|
|
if (!disable_skip && ref_frame == INTRA_FRAME) {
|
|
for (i = 0; i < REFERENCE_MODES; ++i)
|
|
best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd);
|
|
}
|
|
|
|
// Did this mode help.. i.e. is it the new best mode
|
|
if (this_rd < best_rd || x->skip) {
|
|
if (!mode_excluded) {
|
|
// Note index of best mode so far
|
|
best_ref_index = ref_index;
|
|
|
|
if (ref_frame == INTRA_FRAME) {
|
|
/* required for left and above block mv */
|
|
mbmi->mv[0].as_int = 0;
|
|
}
|
|
|
|
rd_cost->rate = rate2;
|
|
#if CONFIG_SUPERTX
|
|
*returnrate_nocoef = rate2 - rate_y - rate_uv;
|
|
if (!disable_skip)
|
|
*returnrate_nocoef -=
|
|
av1_cost_bit(av1_get_skip_prob(cm, xd), this_skip2);
|
|
*returnrate_nocoef -= av1_cost_bit(av1_get_intra_inter_prob(cm, xd),
|
|
mbmi->ref_frame[0] != INTRA_FRAME);
|
|
assert(*returnrate_nocoef > 0);
|
|
#endif // CONFIG_SUPERTX
|
|
rd_cost->dist = distortion2;
|
|
rd_cost->rdcost = this_rd;
|
|
best_rd = this_rd;
|
|
best_yrd =
|
|
best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv);
|
|
best_mbmode = *mbmi;
|
|
best_skip2 = this_skip2;
|
|
|
|
#if CONFIG_VAR_TX
|
|
for (i = 0; i < MAX_MB_PLANE; ++i)
|
|
memset(ctx->blk_skip[i], 0, sizeof(uint8_t) * ctx->num_4x4_blk);
|
|
#endif
|
|
|
|
for (i = 0; i < 4; i++) best_bmodes[i] = xd->mi[0]->bmi[i];
|
|
}
|
|
}
|
|
|
|
/* keep record of best compound/single-only prediction */
|
|
if (!disable_skip && ref_frame != INTRA_FRAME) {
|
|
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
|
|
|
|
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
|
|
single_rate = rate2 - compmode_cost;
|
|
hybrid_rate = rate2;
|
|
} else {
|
|
single_rate = rate2;
|
|
hybrid_rate = rate2 + compmode_cost;
|
|
}
|
|
|
|
single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2);
|
|
hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2);
|
|
|
|
if (!comp_pred && single_rd < best_pred_rd[SINGLE_REFERENCE])
|
|
best_pred_rd[SINGLE_REFERENCE] = single_rd;
|
|
else if (comp_pred && single_rd < best_pred_rd[COMPOUND_REFERENCE])
|
|
best_pred_rd[COMPOUND_REFERENCE] = single_rd;
|
|
|
|
if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT])
|
|
best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
|
|
}
|
|
|
|
if (x->skip && !comp_pred) break;
|
|
}
|
|
|
|
if (best_rd >= best_rd_so_far) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
*returnrate_nocoef = INT_MAX;
|
|
#endif // CONFIG_SUPERTX
|
|
return;
|
|
}
|
|
|
|
if (best_rd == INT64_MAX) {
|
|
rd_cost->rate = INT_MAX;
|
|
rd_cost->dist = INT64_MAX;
|
|
rd_cost->rdcost = INT64_MAX;
|
|
#if CONFIG_SUPERTX
|
|
*returnrate_nocoef = INT_MAX;
|
|
#endif // CONFIG_SUPERTX
|
|
return;
|
|
}
|
|
|
|
#if CONFIG_DUAL_FILTER
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter[0]) ||
|
|
!is_inter_block(&best_mbmode));
|
|
#else
|
|
assert((cm->interp_filter == SWITCHABLE) ||
|
|
(cm->interp_filter == best_mbmode.interp_filter) ||
|
|
!is_inter_block(&best_mbmode));
|
|
#endif
|
|
|
|
av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact,
|
|
sf->adaptive_rd_thresh, bsize, best_ref_index);
|
|
|
|
// macroblock modes
|
|
*mbmi = best_mbmode;
|
|
#if CONFIG_VAR_TX && CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
mbmi->inter_tx_size[0][0] = mbmi->tx_size;
|
|
#endif // CONFIG_EXT_TX && CONFIG_RECT_TX
|
|
|
|
x->skip |= best_skip2;
|
|
if (!is_inter_block(&best_mbmode)) {
|
|
for (i = 0; i < 4; i++) xd->mi[0]->bmi[i].as_mode = best_bmodes[i].as_mode;
|
|
} else {
|
|
for (i = 0; i < 4; ++i)
|
|
memcpy(&xd->mi[0]->bmi[i], &best_bmodes[i], sizeof(b_mode_info));
|
|
|
|
#if CONFIG_REF_MV
|
|
mbmi->pred_mv[0].as_int = xd->mi[0]->bmi[3].pred_mv[0].as_int;
|
|
mbmi->pred_mv[1].as_int = xd->mi[0]->bmi[3].pred_mv[1].as_int;
|
|
#endif
|
|
mbmi->mv[0].as_int = xd->mi[0]->bmi[3].as_mv[0].as_int;
|
|
mbmi->mv[1].as_int = xd->mi[0]->bmi[3].as_mv[1].as_int;
|
|
}
|
|
|
|
for (i = 0; i < REFERENCE_MODES; ++i) {
|
|
if (best_pred_rd[i] == INT64_MAX)
|
|
best_pred_diff[i] = INT_MIN;
|
|
else
|
|
best_pred_diff[i] = best_rd - best_pred_rd[i];
|
|
}
|
|
|
|
store_coding_context(x, ctx, best_ref_index, best_pred_diff, 0);
|
|
}
|
|
|
|
#if CONFIG_MOTION_VAR
|
|
// This function has a structure similar to av1_build_obmc_inter_prediction
|
|
//
|
|
// The OBMC predictor is computed as:
|
|
//
|
|
// PObmc(x,y) =
|
|
// AOM_BLEND_A64(Mh(x),
|
|
// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
|
|
// PLeft(x, y))
|
|
//
|
|
// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
|
|
// rounding, this can be written as:
|
|
//
|
|
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
|
|
// Mh(x) * Mv(y) * P(x,y) +
|
|
// Mh(x) * Cv(y) * Pabove(x,y) +
|
|
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
|
|
//
|
|
// Where :
|
|
//
|
|
// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
|
|
// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
|
|
//
|
|
// This function computes 'wsrc' and 'mask' as:
|
|
//
|
|
// wsrc(x, y) =
|
|
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
|
|
// Mh(x) * Cv(y) * Pabove(x,y) +
|
|
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
|
|
//
|
|
// mask(x, y) = Mh(x) * Mv(y)
|
|
//
|
|
// These can then be used to efficiently approximate the error for any
|
|
// predictor P in the context of the provided neighbouring predictors by
|
|
// computing:
|
|
//
|
|
// error(x, y) =
|
|
// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
|
|
//
|
|
static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x,
|
|
const MACROBLOCKD *xd, int mi_row,
|
|
int mi_col, const uint8_t *above,
|
|
int above_stride, const uint8_t *left,
|
|
int left_stride) {
|
|
const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type;
|
|
int row, col, i;
|
|
const int bw = 8 * xd->n8_w;
|
|
const int bh = 8 * xd->n8_h;
|
|
int32_t *mask_buf = x->mask_buf;
|
|
int32_t *wsrc_buf = x->wsrc_buf;
|
|
const int wsrc_stride = bw;
|
|
const int mask_stride = bw;
|
|
const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0;
|
|
#else
|
|
const int is_hbd = 0;
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
|
|
// plane 0 should not be subsampled
|
|
assert(xd->plane[0].subsampling_x == 0);
|
|
assert(xd->plane[0].subsampling_y == 0);
|
|
|
|
av1_zero_array(wsrc_buf, bw * bh);
|
|
for (i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;
|
|
|
|
// handle above row
|
|
if (xd->up_available) {
|
|
const int overlap = num_4x4_blocks_high_lookup[bsize] * 2;
|
|
const int miw = AOMMIN(xd->n8_w, cm->mi_cols - mi_col);
|
|
const int mi_row_offset = -1;
|
|
const uint8_t *const mask1d = av1_get_obmc_mask(overlap);
|
|
|
|
assert(miw > 0);
|
|
|
|
i = 0;
|
|
do { // for each mi in the above row
|
|
const int mi_col_offset = i;
|
|
const MB_MODE_INFO *const above_mbmi =
|
|
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
|
|
const int mi_step =
|
|
AOMMIN(xd->n8_w, num_8x8_blocks_wide_lookup[above_mbmi->sb_type]);
|
|
const int neighbor_bw = mi_step * MI_SIZE;
|
|
|
|
if (is_neighbor_overlappable(above_mbmi)) {
|
|
const int tmp_stride = above_stride;
|
|
int32_t *wsrc = wsrc_buf + (i * MI_SIZE);
|
|
int32_t *mask = mask_buf + (i * MI_SIZE);
|
|
|
|
if (!is_hbd) {
|
|
const uint8_t *tmp = above;
|
|
|
|
for (row = 0; row < overlap; ++row) {
|
|
const uint8_t m0 = mask1d[row];
|
|
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
|
|
for (col = 0; col < neighbor_bw; ++col) {
|
|
wsrc[col] = m1 * tmp[col];
|
|
mask[col] = m0;
|
|
}
|
|
wsrc += wsrc_stride;
|
|
mask += mask_stride;
|
|
tmp += tmp_stride;
|
|
}
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
} else {
|
|
const uint16_t *tmp = CONVERT_TO_SHORTPTR(above);
|
|
|
|
for (row = 0; row < overlap; ++row) {
|
|
const uint8_t m0 = mask1d[row];
|
|
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
|
|
for (col = 0; col < neighbor_bw; ++col) {
|
|
wsrc[col] = m1 * tmp[col];
|
|
mask[col] = m0;
|
|
}
|
|
wsrc += wsrc_stride;
|
|
mask += mask_stride;
|
|
tmp += tmp_stride;
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
}
|
|
|
|
above += neighbor_bw;
|
|
i += mi_step;
|
|
} while (i < miw);
|
|
}
|
|
|
|
for (i = 0; i < bw * bh; ++i) {
|
|
wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
|
|
mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
|
|
}
|
|
|
|
// handle left column
|
|
if (xd->left_available) {
|
|
const int overlap = num_4x4_blocks_wide_lookup[bsize] * 2;
|
|
const int mih = AOMMIN(xd->n8_h, cm->mi_rows - mi_row);
|
|
const int mi_col_offset = -1;
|
|
const uint8_t *const mask1d = av1_get_obmc_mask(overlap);
|
|
|
|
assert(mih > 0);
|
|
|
|
i = 0;
|
|
do { // for each mi in the left column
|
|
const int mi_row_offset = i;
|
|
const MB_MODE_INFO *const left_mbmi =
|
|
&xd->mi[mi_col_offset + mi_row_offset * xd->mi_stride]->mbmi;
|
|
const int mi_step =
|
|
AOMMIN(xd->n8_h, num_8x8_blocks_high_lookup[left_mbmi->sb_type]);
|
|
const int neighbor_bh = mi_step * MI_SIZE;
|
|
|
|
if (is_neighbor_overlappable(left_mbmi)) {
|
|
const int tmp_stride = left_stride;
|
|
int32_t *wsrc = wsrc_buf + (i * MI_SIZE * wsrc_stride);
|
|
int32_t *mask = mask_buf + (i * MI_SIZE * mask_stride);
|
|
|
|
if (!is_hbd) {
|
|
const uint8_t *tmp = left;
|
|
|
|
for (row = 0; row < neighbor_bh; ++row) {
|
|
for (col = 0; col < overlap; ++col) {
|
|
const uint8_t m0 = mask1d[col];
|
|
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
|
|
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
|
|
(tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
|
|
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
|
|
}
|
|
wsrc += wsrc_stride;
|
|
mask += mask_stride;
|
|
tmp += tmp_stride;
|
|
}
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
} else {
|
|
const uint16_t *tmp = CONVERT_TO_SHORTPTR(left);
|
|
|
|
for (row = 0; row < neighbor_bh; ++row) {
|
|
for (col = 0; col < overlap; ++col) {
|
|
const uint8_t m0 = mask1d[col];
|
|
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
|
|
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
|
|
(tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
|
|
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
|
|
}
|
|
wsrc += wsrc_stride;
|
|
mask += mask_stride;
|
|
tmp += tmp_stride;
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
}
|
|
|
|
left += neighbor_bh * left_stride;
|
|
i += mi_step;
|
|
} while (i < mih);
|
|
}
|
|
|
|
if (!is_hbd) {
|
|
const uint8_t *src = x->plane[0].src.buf;
|
|
|
|
for (row = 0; row < bh; ++row) {
|
|
for (col = 0; col < bw; ++col) {
|
|
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
|
|
}
|
|
wsrc_buf += wsrc_stride;
|
|
src += x->plane[0].src.stride;
|
|
}
|
|
#if CONFIG_AOM_HIGHBITDEPTH
|
|
} else {
|
|
const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
|
|
|
|
for (row = 0; row < bh; ++row) {
|
|
for (col = 0; col < bw; ++col) {
|
|
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
|
|
}
|
|
wsrc_buf += wsrc_stride;
|
|
src += x->plane[0].src.stride;
|
|
}
|
|
#endif // CONFIG_AOM_HIGHBITDEPTH
|
|
}
|
|
}
|
|
#endif // CONFIG_MOTION_VAR
|