
Addressing comments, fixing style issues Change-Id: I91b72ab5cdf80d68476858f442616ab3af41e709
1022 lines
26 KiB
C
1022 lines
26 KiB
C
/*
|
|
* Copyright (c) 2015 The WebM project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be
|
|
* found in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include <memory.h>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <assert.h>
|
|
|
|
#include "vp9_ransac.h"
|
|
|
|
#define MAX_PARAMDIM 9
|
|
#define MAX_MINPTS 4
|
|
|
|
#define MAX_DEGENERATE_ITER 10
|
|
#define MINPTS_MULTIPLIER 5
|
|
|
|
// svdcmp
|
|
// Adopted from Numerical Recipes in C
|
|
|
|
static const double TINY_NEAR_ZERO = 1.0E-12;
|
|
|
|
static inline double SIGN(double a, double b) {
|
|
return ((b) >= 0 ? fabs(a) : -fabs(a));
|
|
}
|
|
|
|
static inline double PYTHAG(double a, double b) {
|
|
double absa, absb, ct;
|
|
absa = fabs(a);
|
|
absb = fabs(b);
|
|
|
|
if(absa > absb) {
|
|
ct = absb / absa;
|
|
return absa * sqrt(1.0 + ct * ct);
|
|
} else {
|
|
ct = absa / absb;
|
|
return (absb == 0) ? 0 : absb * sqrt(1.0 + ct * ct);
|
|
}
|
|
}
|
|
|
|
int IMIN(int a, int b) {
|
|
return (((a) < (b)) ? (a) : (b));
|
|
}
|
|
|
|
int IMAX(int a, int b) {
|
|
return (((a) < (b)) ? (b) : (a));
|
|
}
|
|
|
|
void MultiplyMat(double *m1, double *m2, double *res,
|
|
const int M1, const int N1, const int N2) {
|
|
int timesInner = N1;
|
|
int timesRows = M1;
|
|
int timesCols = N2;
|
|
double sum;
|
|
|
|
int row, col, inner;
|
|
for( row = 0; row < timesRows; ++row ) {
|
|
for( col = 0; col < timesCols; ++col ) {
|
|
sum = 0;
|
|
for (inner = 0; inner < timesInner; ++inner )
|
|
sum += m1[row * N1 + inner] * m2[inner * N2 + col];
|
|
*(res++) = sum;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int svdcmp_(double **u, int m, int n, double w[], double **v) {
|
|
const int max_its = 30;
|
|
int flag, i, its, j, jj, k, l, nm;
|
|
double anorm, c, f, g, h, s, scale, x, y, z;
|
|
double *rv1 = (double *)malloc(sizeof(double) * (n + 1));
|
|
g = scale = anorm = 0.0;
|
|
for (i = 0; i < n; i++) {
|
|
l = i + 1;
|
|
rv1[i] = scale * g;
|
|
g = s = scale = 0.0;
|
|
if (i < m) {
|
|
for (k = i; k < m; k++) scale += fabs(u[k][i]);
|
|
if (scale) {
|
|
for (k = i; k < m; k++) {
|
|
u[k][i] /= scale;
|
|
s += u[k][i] * u[k][i];
|
|
}
|
|
f = u[i][i];
|
|
g = -SIGN(sqrt(s), f);
|
|
h = f * g - s;
|
|
u[i][i] = f - g;
|
|
for (j = l; j < n; j++) {
|
|
for (s = 0.0, k = i; k < m; k++) s += u[k][i] * u[k][j];
|
|
f = s / h;
|
|
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
|
}
|
|
for (k = i; k < m; k++) u[k][i] *= scale;
|
|
}
|
|
}
|
|
w[i] = scale * g;
|
|
g = s = scale = 0.0;
|
|
if (i < m && i != n - 1) {
|
|
for (k = l; k < n; k++)
|
|
scale += fabs(u[i][k]);
|
|
if (scale) {
|
|
for (k = l; k < n; k++) {
|
|
u[i][k] /= scale;
|
|
s += u[i][k] * u[i][k];
|
|
}
|
|
f = u[i][l];
|
|
g = -SIGN(sqrt(s),f);
|
|
h = f * g - s;
|
|
u[i][l] = f - g;
|
|
for (k = l; k < n; k++) rv1[k] = u[i][k] / h;
|
|
for (j = l; j < m; j++) {
|
|
for (s = 0.0, k = l; k < n; k++) s += u[j][k] * u[i][k];
|
|
for (k = l; k < n; k++) u[j][k] += s * rv1[k];
|
|
}
|
|
for (k = l; k < n; k++) u[i][k] *= scale;
|
|
}
|
|
}
|
|
anorm = fmax(anorm, (fabs(w[i]) + fabs(rv1[i])));
|
|
}
|
|
|
|
for (i = n - 1; i >= 0; i--) {
|
|
if (i < n - 1) {
|
|
if (g) {
|
|
for (j = l; j < n; j++) v[j][i] = (u[i][j] / u[i][l]) / g;
|
|
for (j = l; j < n; j++) {
|
|
for (s = 0.0, k = l; k < n; k++) s += u[i][k] * v[k][j];
|
|
for (k = l; k < n; k++) v[k][j] += s * v[k][i];
|
|
}
|
|
}
|
|
for (j = l; j < n; j++) v[i][j] = v[j][i] = 0.0;
|
|
}
|
|
v[i][i] = 1.0;
|
|
g = rv1[i];
|
|
l = i;
|
|
}
|
|
|
|
for (i = IMIN(m, n) - 1; i >= 0; i--) {
|
|
l = i + 1;
|
|
g = w[i];
|
|
for (j = l; j < n; j++) u[i][j] = 0.0;
|
|
if (g) {
|
|
g = 1.0 / g;
|
|
for (j = l; j < n; j++) {
|
|
for (s = 0.0, k = l; k < m; k++) s += u[k][i] * u[k][j];
|
|
f = (s / u[i][i]) * g;
|
|
for (k = i; k < m; k++) u[k][j] += f * u[k][i];
|
|
}
|
|
for (j = i; j < m; j++) u[j][i] *= g;
|
|
} else {
|
|
for (j = i; j < m; j++) u[j][i] = 0.0;
|
|
}
|
|
++u[i][i];
|
|
}
|
|
for (k = n - 1; k >= 0; k--) {
|
|
for (its = 0; its < max_its; its++) {
|
|
flag = 1;
|
|
for (l = k; l >= 0; l--) {
|
|
nm = l - 1;
|
|
if ((double)(fabs(rv1[l]) + anorm) == anorm || nm < 0) {
|
|
flag = 0;
|
|
break;
|
|
}
|
|
if ((double)(fabs(w[nm]) + anorm) == anorm) break;
|
|
}
|
|
if (flag) {
|
|
c = 0.0;
|
|
s = 1.0;
|
|
for (i = l; i <= k; i++) {
|
|
f = s * rv1[i];
|
|
rv1[i] = c * rv1[i];
|
|
if ((double)(fabs(f) + anorm) == anorm) break;
|
|
g = w[i];
|
|
h = PYTHAG(f, g);
|
|
w[i] = h;
|
|
h = 1.0 / h;
|
|
c = g * h;
|
|
s = -f * h;
|
|
for (j = 0; j < m; j++) {
|
|
y = u[j][nm];
|
|
z = u[j][i];
|
|
u[j][nm] = y * c + z * s;
|
|
u[j][i] = z * c - y * s;
|
|
}
|
|
}
|
|
}
|
|
z = w[k];
|
|
if (l == k) {
|
|
if (z < 0.0) {
|
|
w[k] = -z;
|
|
for (j = 0; j < n; j++) v[j][k] = -v[j][k];
|
|
}
|
|
break;
|
|
}
|
|
if (its == max_its - 1) {
|
|
return 1;
|
|
}
|
|
assert(k > 0);
|
|
x = w[l];
|
|
nm = k - 1;
|
|
y = w[nm];
|
|
g = rv1[nm];
|
|
h = rv1[k];
|
|
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
|
|
g = PYTHAG(f, 1.0);
|
|
f = ((x - z) * (x + z) + h * ((y / (f + SIGN(g, f))) - h)) / x;
|
|
c = s = 1.0;
|
|
for (j = l; j <= nm; j++) {
|
|
i = j + 1;
|
|
g = rv1[i];
|
|
y = w[i];
|
|
h = s * g;
|
|
g = c * g;
|
|
z = PYTHAG(f, h);
|
|
rv1[j] = z;
|
|
c = f / z;
|
|
s = h / z;
|
|
f = x * c + g * s;
|
|
g = g * c - x * s;
|
|
h = y * s;
|
|
y *= c;
|
|
for (jj = 0; jj < n; jj++) {
|
|
x = v[jj][j];
|
|
z = v[jj][i];
|
|
v[jj][j] = x * c + z * s;
|
|
v[jj][i] = z * c - x * s;
|
|
}
|
|
z = PYTHAG(f, h);
|
|
w[j] = z;
|
|
if (z) {
|
|
z = 1.0 / z;
|
|
c = f * z;
|
|
s = h * z;
|
|
}
|
|
f = c * g + s * y;
|
|
x = c * y - s * g;
|
|
for (jj = 0; jj < m; jj++) {
|
|
y = u[jj][j];
|
|
z = u[jj][i];
|
|
u[jj][j] = y * c + z * s;
|
|
u[jj][i] = z * c - y * s;
|
|
}
|
|
}
|
|
rv1[l] = 0.0;
|
|
rv1[k] = f;
|
|
w[k] = x;
|
|
}
|
|
}
|
|
free(rv1);
|
|
return 0;
|
|
}
|
|
|
|
static int SVD(double *U, double *W, double *V, double *matx, int M, int N) {
|
|
// Assumes allocation for U is MxN
|
|
double **nrU, **nrV;
|
|
int problem, i;
|
|
|
|
nrU = (double **)malloc((M)*sizeof(double*));
|
|
nrV = (double **)malloc((N)*sizeof(double*));
|
|
problem = !(nrU && nrV);
|
|
if (!problem) {
|
|
problem = 0;
|
|
for (i = 0; i < M; i++) {
|
|
nrU[i] = &U[i * N];
|
|
}
|
|
for (i = 0; i < N; i++) {
|
|
nrV[i] = &V[i * N];
|
|
}
|
|
}
|
|
if (problem) {
|
|
return 1;
|
|
}
|
|
|
|
/* copy from given matx into nrU */
|
|
for (i = 0; i < M; i++) {
|
|
memcpy(&(nrU[i][0]), matx + N * i, N * sizeof(*matx));
|
|
}
|
|
|
|
/* HERE IT IS: do SVD */
|
|
if (svdcmp_(nrU, M, N, W, nrV)) {
|
|
return 1;
|
|
}
|
|
|
|
/* free Numerical Recipes arrays */
|
|
free(nrU);
|
|
free(nrV);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int PseudoInverse(double *inv, double *matx, const int M, const int N) {
|
|
double *U, *W, *V, ans;
|
|
int i, j, k;
|
|
U = (double *)malloc(M * N * sizeof(*matx));
|
|
W = (double *)malloc(N * sizeof(*matx));
|
|
V = (double *)malloc(N * N * sizeof(*matx));
|
|
|
|
if (!(U && W && V)) {
|
|
return 1;
|
|
}
|
|
if (SVD(U, W, V, matx, M, N)) {
|
|
return 1;
|
|
}
|
|
for (i = 0; i < N; i++) {
|
|
if (fabs(W[i]) < TINY_NEAR_ZERO) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < N; i++) {
|
|
for (j = 0; j < M; j++) {
|
|
ans = 0;
|
|
for (k = 0; k < N; k++) {
|
|
ans += V[k + N * i] * U[k + N * j] / W[k];
|
|
}
|
|
inv[j + M * i] = ans;
|
|
}
|
|
}
|
|
free(U);
|
|
free(W);
|
|
free(V);
|
|
return 0;
|
|
}
|
|
|
|
static double compute_error(projectPointsType projectPoints,
|
|
double *points1, int stride1,
|
|
double *points2, int stride2,
|
|
int npoints, double *H, int *mask) {
|
|
int i, n = 0;
|
|
double pt[2];
|
|
double *mp1 = points1;
|
|
double *mp2 = points2;
|
|
double sqerr = 0.0;
|
|
|
|
if (projectPoints == NULL) return -1.0;
|
|
if (mask) {
|
|
for (i = 0; i < npoints; ++i, mp1 += stride1, mp2 += stride2) {
|
|
if (mask[i]) {
|
|
projectPoints(H, mp1, pt, 1, stride1, stride2);
|
|
sqerr += (pt[0] - mp2[0]) * (pt[0] - mp2[0]) +
|
|
(pt[1] - mp2[1]) * (pt[1] - mp2[1]);
|
|
n++;
|
|
}
|
|
}
|
|
} else {
|
|
for (i = 0; i < npoints; ++i, mp1 += stride1, mp2 += stride2) {
|
|
projectPoints(H, mp1, pt, 1, stride1, stride2);
|
|
sqerr += (pt[0] - mp2[0]) * (pt[0] - mp2[0]) +
|
|
(pt[1] - mp2[1]) * (pt[1] - mp2[1]);
|
|
n++;
|
|
}
|
|
}
|
|
return sqrt(sqerr / n);
|
|
}
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
// ransac
|
|
typedef int (*isDegenerateType)(double *p);
|
|
typedef void (*normalizeType)(double *p, int np, double *T);
|
|
typedef void (*denormalizeType)(double *H, double *T1, double *T2);
|
|
typedef int (*findTransformationType)(int points,
|
|
double *points1,
|
|
double *points2,
|
|
double *H);
|
|
|
|
static int get_rand_indices(int npoints, int minpts, int *indices) {
|
|
int i, j;
|
|
int ptr = rand() % npoints;
|
|
if (minpts > npoints)
|
|
return 0;
|
|
indices[0] = ptr;
|
|
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
|
|
i = 1;
|
|
while (i < minpts) {
|
|
int index = rand() % npoints;
|
|
while (index) {
|
|
ptr = (ptr == npoints - 1 ? 0 : ptr + 1);
|
|
for (j = 0; j < i; ++j) {
|
|
if (indices[j] == ptr)
|
|
break;
|
|
}
|
|
if (j == i)
|
|
index--;
|
|
}
|
|
indices[i++] = ptr;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
int ransac_(double *matched_points,
|
|
int npoints,
|
|
int *number_of_inliers,
|
|
int *best_inlier_mask,
|
|
double *bestH,
|
|
const int minpts,
|
|
const int paramdim,
|
|
isDegenerateType isDegenerate,
|
|
normalizeType normalize,
|
|
denormalizeType denormalize,
|
|
findTransformationType findTransformation,
|
|
projectPointsType projectPoints) {
|
|
|
|
static const double INLIER_THRESHOLD_NORMALIZED = 0.1;
|
|
static const double INLIER_THRESHOLD_UNNORMALIZED = 1.0;
|
|
static const double PROBABILITY_REQUIRED = 0.9;
|
|
static const double EPS = 1e-12;
|
|
static const int MIN_TRIALS = 20;
|
|
|
|
const double inlier_threshold = (normalize && denormalize ?
|
|
INLIER_THRESHOLD_NORMALIZED :
|
|
INLIER_THRESHOLD_UNNORMALIZED);
|
|
int N = 10000, trial_count = 0;
|
|
int i;
|
|
int ret_val = 0;
|
|
|
|
int max_inliers = 0;
|
|
double best_variance = 0.0;
|
|
double H[MAX_PARAMDIM];
|
|
double points1[2 * MAX_MINPTS];
|
|
double points2[2 * MAX_MINPTS];
|
|
int indices[MAX_MINPTS];
|
|
|
|
double *best_inlier_set1;
|
|
double *best_inlier_set2;
|
|
double *inlier_set1;
|
|
double *inlier_set2;
|
|
double *corners1;
|
|
double *corners2;
|
|
double *image1_coord;
|
|
double *image2_coord;
|
|
int *inlier_mask;
|
|
|
|
double *cnp1, *cnp2;
|
|
double T1[9], T2[9];
|
|
|
|
// srand((unsigned)time(NULL)) ;
|
|
// better to make this deterministic for a given sequence for ease of testing
|
|
srand(npoints);
|
|
|
|
*number_of_inliers = 0;
|
|
if (npoints < minpts * MINPTS_MULTIPLIER) {
|
|
printf("Cannot find motion with %d matches\n", npoints);
|
|
return 1;
|
|
}
|
|
|
|
best_inlier_set1 = (double *)malloc(sizeof(double) * npoints * 2);
|
|
best_inlier_set2 = (double *)malloc(sizeof(double) * npoints * 2);
|
|
inlier_set1 = (double *)malloc(sizeof(double) * npoints * 2);
|
|
inlier_set2 = (double *)malloc(sizeof(double) * npoints * 2);
|
|
corners1 = (double *)malloc(sizeof(double) * npoints * 2);
|
|
corners2 = (double *)malloc(sizeof(double) * npoints * 2);
|
|
image1_coord = (double *)malloc(sizeof(double) * npoints * 2);
|
|
image2_coord = (double *)malloc(sizeof(double) * npoints * 2);
|
|
inlier_mask = (int*)malloc(sizeof(int) * npoints);
|
|
|
|
for(cnp1 = corners1, cnp2 = corners2, i = 0; i < npoints; ++i) {
|
|
*(cnp1++) = *(matched_points++);
|
|
*(cnp1++) = *(matched_points++);
|
|
*(cnp2++) = *(matched_points++);
|
|
*(cnp2++) = *(matched_points++);
|
|
}
|
|
matched_points -= 4 * npoints;
|
|
|
|
if (normalize && denormalize) {
|
|
normalize(corners1, npoints, T1);
|
|
normalize(corners2, npoints, T2);
|
|
}
|
|
|
|
while (N > trial_count) {
|
|
int num_inliers = 0;
|
|
double sum_distance = 0.0;
|
|
double sum_distance_squared = 0.0;
|
|
|
|
int degenerate = 1;
|
|
int num_degenerate_iter = 0;
|
|
while (degenerate) {
|
|
num_degenerate_iter++;
|
|
if (!get_rand_indices(npoints, minpts, indices)) {
|
|
ret_val = 1;
|
|
goto finish_ransac;
|
|
}
|
|
i = 0;
|
|
while (i < minpts) {
|
|
int index = indices[i];
|
|
// add to list
|
|
points1[i*2] = corners1[index*2];
|
|
points1[i*2+1] = corners1[index*2+1];
|
|
points2[i*2] = corners2[index*2];
|
|
points2[i*2+1] = corners2[index*2+1];
|
|
i++;
|
|
}
|
|
degenerate = isDegenerate(points1);
|
|
if (num_degenerate_iter > MAX_DEGENERATE_ITER) {
|
|
ret_val = 1;
|
|
goto finish_ransac;
|
|
}
|
|
}
|
|
|
|
if (findTransformation(minpts, points1, points2, H)) {
|
|
trial_count++;
|
|
continue;
|
|
}
|
|
|
|
projectPoints(H, corners1, image1_coord, npoints, 2, 2);
|
|
|
|
for( i = 0; i < npoints; ++i ) {
|
|
double dx = image1_coord[i*2] - corners2[i*2];
|
|
double dy = image1_coord[i*2 + 1] - corners2[i*2 + 1];
|
|
double distance = sqrt(dx*dx + dy*dy);
|
|
|
|
inlier_mask[i] = distance < inlier_threshold;
|
|
if (inlier_mask[i]) {
|
|
inlier_set1[num_inliers*2] = corners1[i*2];
|
|
inlier_set1[num_inliers*2 + 1] = corners1[i*2 + 1];
|
|
inlier_set2[num_inliers*2] = corners2[i*2];
|
|
inlier_set2[num_inliers*2 + 1] = corners2[i*2 + 1];
|
|
num_inliers++;
|
|
sum_distance += distance;
|
|
sum_distance_squared += distance*distance;
|
|
}
|
|
}
|
|
|
|
if (num_inliers >= max_inliers) {
|
|
double mean_distance = sum_distance / ((double)num_inliers);
|
|
double variance = sum_distance_squared / ((double)num_inliers - 1.0) -
|
|
mean_distance * mean_distance *
|
|
((double)num_inliers) / ((double)num_inliers - 1.0);
|
|
if ((num_inliers > max_inliers) ||
|
|
(num_inliers==max_inliers && variance < best_variance)) {
|
|
best_variance = variance;
|
|
max_inliers = num_inliers;
|
|
memcpy(bestH, H, paramdim * sizeof(double));
|
|
memcpy(best_inlier_set1, inlier_set1, num_inliers*2 * sizeof(double));
|
|
memcpy(best_inlier_set2, inlier_set2, num_inliers*2 * sizeof(double));
|
|
memcpy(best_inlier_mask, inlier_mask, npoints * sizeof(int));
|
|
|
|
if (num_inliers > 0) {
|
|
double fracinliers = (double)num_inliers/(double)npoints;
|
|
double pNoOutliers = 1 - pow(fracinliers, minpts);
|
|
int temp;
|
|
pNoOutliers = fmax(EPS, pNoOutliers);
|
|
pNoOutliers = fmin(1 - EPS, pNoOutliers);
|
|
temp = (int)(log(1.0 - PROBABILITY_REQUIRED)/log(pNoOutliers));
|
|
if (temp > 0 && temp < N) {
|
|
N = IMAX(temp, MIN_TRIALS);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
trial_count++;
|
|
}
|
|
// printf("Number of trials = %d\n", trial_count);
|
|
findTransformation(max_inliers, best_inlier_set1, best_inlier_set2, bestH);
|
|
if (normalize && denormalize) {
|
|
denormalize(bestH, T1, T2);
|
|
}
|
|
*number_of_inliers = max_inliers;
|
|
/*
|
|
printf("Error score (all) = %g\n",
|
|
compute_error(projectPoints, matched_points, 4,
|
|
matched_points + 2, 4,
|
|
npoints, bestH, NULL));
|
|
printf("Error score (inliers) = %g\n",
|
|
compute_error(projectPoints, matched_points, 4,
|
|
matched_points + 2, 4,
|
|
npoints, bestH,
|
|
best_inlier_mask));
|
|
*/
|
|
finish_ransac:
|
|
free(best_inlier_set1);
|
|
free(best_inlier_set2);
|
|
free(inlier_set1);
|
|
free(inlier_set2);
|
|
free(corners1);
|
|
free(corners2);
|
|
free(image1_coord);
|
|
free(image2_coord);
|
|
free(inlier_mask);
|
|
return ret_val;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////////////////////
|
|
|
|
static void normalizeHomography(double *pts, int n, double *T) {
|
|
// Assume the points are 2d coordinates with scale = 1
|
|
double *p = pts;
|
|
double mean[2] = {0, 0};
|
|
double msqe = 0;
|
|
double scale;
|
|
int i;
|
|
for (i = 0; i < n; ++i, p+=2) {
|
|
mean[0] += p[0];
|
|
mean[1] += p[1];
|
|
}
|
|
mean[0] /= n;
|
|
mean[1] /= n;
|
|
for (p = pts, i = 0; i < n; ++i, p+=2) {
|
|
p[0] -= mean[0];
|
|
p[1] -= mean[1];
|
|
msqe += sqrt(p[0] * p[0] + p[1] * p[1]);
|
|
}
|
|
msqe /= n;
|
|
scale = sqrt(2)/msqe;
|
|
T[0] = scale;
|
|
T[1] = 0;
|
|
T[2] = -scale * mean[0];
|
|
T[3] = 0;
|
|
T[4] = scale;
|
|
T[5] = -scale * mean[1];
|
|
T[6] = 0;
|
|
T[7] = 0;
|
|
T[8] = 1;
|
|
for (p = pts, i = 0; i < n; ++i, p+=2) {
|
|
p[0] *= scale;
|
|
p[1] *= scale;
|
|
}
|
|
}
|
|
|
|
static void invnormalize_mat(double *T, double *iT) {
|
|
double is = 1.0/T[0];
|
|
double m0 = -T[2]*is;
|
|
double m1 = -T[5]*is;
|
|
iT[0] = is;
|
|
iT[1] = 0;
|
|
iT[2] = m0;
|
|
iT[3] = 0;
|
|
iT[4] = is;
|
|
iT[5] = m1;
|
|
iT[6] = 0;
|
|
iT[7] = 0;
|
|
iT[8] = 1;
|
|
}
|
|
|
|
static void denormalizeHomography(double *H, double *T1, double *T2) {
|
|
double iT2[9];
|
|
double H2[9];
|
|
invnormalize_mat(T2, iT2);
|
|
MultiplyMat(H, T1, H2, 3, 3, 3);
|
|
MultiplyMat(iT2, H2, H, 3, 3, 3);
|
|
}
|
|
|
|
static void denormalizeAffine(double *H, double *T1, double *T2) {
|
|
double Ha[MAX_PARAMDIM];
|
|
Ha[0] = H[0];
|
|
Ha[1] = H[1];
|
|
Ha[2] = H[4];
|
|
Ha[3] = H[2];
|
|
Ha[4] = H[3];
|
|
Ha[5] = H[5];
|
|
Ha[6] = Ha[7] = 0;
|
|
Ha[8] = 1;
|
|
denormalizeHomography(Ha, T1, T2);
|
|
H[0] = Ha[0];
|
|
H[1] = Ha[1];
|
|
H[2] = Ha[3];
|
|
H[3] = Ha[4];
|
|
H[4] = Ha[2];
|
|
H[5] = Ha[5];
|
|
}
|
|
|
|
static void denormalizeRotZoom(double *H, double *T1, double *T2) {
|
|
double Ha[MAX_PARAMDIM];
|
|
Ha[0] = H[0];
|
|
Ha[1] = H[1];
|
|
Ha[2] = H[2];
|
|
Ha[3] = -H[1];
|
|
Ha[4] = H[0];
|
|
Ha[5] = H[3];
|
|
Ha[6] = Ha[7] = 0;
|
|
Ha[8] = 1;
|
|
denormalizeHomography(Ha, T1, T2);
|
|
H[0] = Ha[0];
|
|
H[1] = Ha[1];
|
|
H[2] = Ha[2];
|
|
H[3] = Ha[5];
|
|
}
|
|
|
|
static void denormalizeTranslation(double *H, double *T1, double *T2) {
|
|
double Ha[MAX_PARAMDIM];
|
|
Ha[0] = 1;
|
|
Ha[1] = 0;
|
|
Ha[2] = H[0];
|
|
Ha[3] = 0;
|
|
Ha[4] = 1;
|
|
Ha[5] = H[1];
|
|
Ha[6] = Ha[7] = 0;
|
|
Ha[8] = 1;
|
|
denormalizeHomography(Ha, T1, T2);
|
|
H[0] = Ha[2];
|
|
H[1] = Ha[5];
|
|
}
|
|
|
|
static int is_collinear3(double *p1, double *p2, double *p3) {
|
|
static const double collinear_eps = 1e-3;
|
|
const double v = (p2[0] - p1[0]) * (p3[1] - p1[1]) -
|
|
(p2[1] - p1[1]) * (p3[0] - p1[0]);
|
|
return fabs(v) < collinear_eps;
|
|
}
|
|
|
|
static int isDegenerateTranslation(double *p) {
|
|
return (p[0] - p[2]) * (p[0] - p[2]) + (p[1] - p[3]) * (p[1] - p[3]) <= 2;
|
|
}
|
|
|
|
static int isDegenerateAffine(double *p) {
|
|
return is_collinear3(p, p + 2, p + 4);
|
|
}
|
|
|
|
static int isDegenerateHomography(double *p) {
|
|
return is_collinear3(p, p + 2, p + 4) ||
|
|
is_collinear3(p, p + 2, p + 6) ||
|
|
is_collinear3(p, p + 4, p + 6) ||
|
|
is_collinear3(p + 2, p + 4, p + 6);
|
|
}
|
|
|
|
int findTranslation(const int np, double *pts1, double *pts2, double *mat) {
|
|
int i;
|
|
double sx, sy, dx, dy;
|
|
double sumx, sumy;
|
|
|
|
double T1[9], T2[9];
|
|
normalizeHomography(pts1, np, T1);
|
|
normalizeHomography(pts2, np, T2);
|
|
|
|
sumx = 0;
|
|
sumy = 0;
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
sumx += dx - sx;
|
|
sumy += dy - sy;
|
|
}
|
|
mat[0] = sumx / np;
|
|
mat[1] = sumy / np;
|
|
denormalizeTranslation(mat, T1, T2);
|
|
return 0;
|
|
}
|
|
|
|
int findRotZoom(const int np, double *pts1, double *pts2, double *mat) {
|
|
const int np2 = np * 2;
|
|
double *a = (double *)malloc(sizeof(double) * np2 * 9);
|
|
double *b = a + np2 * 4;
|
|
double *temp = b + np2;
|
|
int i;
|
|
double sx, sy, dx, dy;
|
|
|
|
double T1[9], T2[9];
|
|
normalizeHomography(pts1, np, T1);
|
|
normalizeHomography(pts2, np, T2);
|
|
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
a[i * 2 * 4 + 0] = sx;
|
|
a[i * 2 * 4 + 1] = sy;
|
|
a[i * 2 * 4 + 2] = 1;
|
|
a[i * 2 * 4 + 3] = 0;
|
|
a[(i * 2 + 1) * 4 + 0] = sy;
|
|
a[(i * 2 + 1) * 4 + 1] = -sx;
|
|
a[(i * 2 + 1) * 4 + 2] = 0;
|
|
a[(i * 2 + 1) * 4 + 3] = 1;
|
|
|
|
b[2 * i] = dx;
|
|
b[2 * i + 1] = dy;
|
|
}
|
|
if (PseudoInverse(temp, a, np2, 4)){
|
|
free(a);
|
|
return 1;
|
|
}
|
|
MultiplyMat(temp, b, mat, 4, np2, 1);
|
|
denormalizeRotZoom(mat, T1, T2);
|
|
free(a);
|
|
return 0;
|
|
}
|
|
|
|
int findAffine(const int np, double *pts1, double *pts2, double *mat) {
|
|
const int np2 = np * 2;
|
|
double *a = (double *)malloc(sizeof(double) * np2 * 13);
|
|
double *b = a + np2 * 6;
|
|
double *temp = b + np2;
|
|
int i;
|
|
double sx, sy, dx, dy;
|
|
|
|
double T1[9], T2[9];
|
|
normalizeHomography(pts1, np, T1);
|
|
normalizeHomography(pts2, np, T2);
|
|
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
a[i * 2 * 6 + 0] = sx;
|
|
a[i * 2 * 6 + 1] = sy;
|
|
a[i * 2 * 6 + 2] = 0;
|
|
a[i * 2 * 6 + 3] = 0;
|
|
a[i * 2 * 6 + 4] = 1;
|
|
a[i * 2 * 6 + 5] = 0;
|
|
a[(i * 2 + 1) * 6 + 0] = 0;
|
|
a[(i * 2 + 1) * 6 + 1] = 0;
|
|
a[(i * 2 + 1) * 6 + 2] = sx;
|
|
a[(i * 2 + 1) * 6 + 3] = sy;
|
|
a[(i * 2 + 1) * 6 + 4] = 0;
|
|
a[(i * 2 + 1) * 6 + 5] = 1;
|
|
|
|
b[2 * i] = dx;
|
|
b[2 * i + 1] = dy;
|
|
}
|
|
if (PseudoInverse(temp, a, np2, 6)){
|
|
free(a);
|
|
return 1;
|
|
}
|
|
MultiplyMat(temp, b, mat, 6, np2, 1);
|
|
denormalizeAffine(mat, T1, T2);
|
|
free(a);
|
|
return 0;
|
|
}
|
|
|
|
int findHomography(const int np, double *pts1, double *pts2, double *mat) {
|
|
// Implemented from Peter Kovesi's normalized implementation
|
|
const int np3 = np * 3;
|
|
double *a = (double *)malloc(sizeof(double) * np3 * 18);
|
|
double *U = a + np3 * 9;
|
|
double S[9], V[9 * 9];
|
|
int i, mini;
|
|
double sx, sy, dx, dy;
|
|
double T1[9], T2[9];
|
|
|
|
normalizeHomography(pts1, np, T1);
|
|
normalizeHomography(pts2, np, T2);
|
|
|
|
for (i = 0; i < np; ++i) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
|
|
a[i * 3 * 9 + 0] = a[i * 3 * 9 + 1] = a[i * 3 * 9 + 2] = 0;
|
|
a[i * 3 * 9 + 3] = -sx;
|
|
a[i * 3 * 9 + 4] = -sy;
|
|
a[i * 3 * 9 + 5] = -1;
|
|
a[i * 3 * 9 + 6] = dy * sx;
|
|
a[i * 3 * 9 + 7] = dy * sy;
|
|
a[i * 3 * 9 + 8] = dy;
|
|
|
|
a[(i * 3 + 1) * 9 + 0] = sx;
|
|
a[(i * 3 + 1) * 9 + 1] = sy;
|
|
a[(i * 3 + 1) * 9 + 2] = 1;
|
|
a[(i * 3 + 1) * 9 + 3] = a[(i * 3 + 1) * 9 + 4] =
|
|
a[(i * 3 + 1) * 9 + 5] = 0;
|
|
a[(i * 3 + 1) * 9 + 6] = -dx * sx;
|
|
a[(i * 3 + 1) * 9 + 7] = -dx * sy;
|
|
a[(i * 3 + 1) * 9 + 8] = -dx;
|
|
|
|
a[(i * 3 + 2) * 9 + 0] = -dy * sx;
|
|
a[(i * 3 + 2) * 9 + 1] = -dy * sy;
|
|
a[(i * 3 + 2) * 9 + 2] = -dy;
|
|
a[(i * 3 + 2) * 9 + 3] = dx * sx;
|
|
a[(i * 3 + 2) * 9 + 4] = dx * sy;
|
|
a[(i * 3 + 2) * 9 + 5] = dx;
|
|
a[(i * 3 + 2) * 9 + 6] = a[(i * 3 + 2) * 9 + 7] =
|
|
a[(i * 3 + 2) * 9 + 8] = 0;
|
|
}
|
|
|
|
if (SVD(U, S, V, a, np3, 9)) {
|
|
free(a);
|
|
return 1;
|
|
} else {
|
|
double minS = 1e12;
|
|
mini = -1;
|
|
for (i = 0; i < 9; ++i) {
|
|
if (S[i] < minS) {
|
|
minS = S[i];
|
|
mini = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < 9; i++) mat[i] = V[i * 9 + mini];
|
|
denormalizeHomography(mat, T1, T2);
|
|
free(a);
|
|
if (mat[8] == 0.0) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int findHomographyScale1(const int np, double *pts1, double *pts2,
|
|
double *mat) {
|
|
// This implementation assumes h33 = 1, but does not seem to give good results
|
|
const int np2 = np * 2;
|
|
double *a = (double *)malloc(sizeof(double) * np2 * 17);
|
|
double *b = a + np2 * 8;
|
|
double *temp = b + np2;
|
|
int i, j;
|
|
double sx, sy, dx, dy;
|
|
double T1[9], T2[9];
|
|
|
|
normalizeHomography(pts1, np, T1);
|
|
normalizeHomography(pts2, np, T2);
|
|
|
|
for (i = 0, j = np; i < np; ++i, ++j) {
|
|
dx = *(pts2++);
|
|
dy = *(pts2++);
|
|
sx = *(pts1++);
|
|
sy = *(pts1++);
|
|
a[i * 8 + 0] = a[j * 8 + 3] = sx;
|
|
a[i * 8 + 1] = a[j * 8 + 4] = sy;
|
|
a[i * 8 + 2] = a[j * 8 + 5] = 1;
|
|
a[i * 8 + 3] = a[i * 8 + 4] = a[i * 8 + 5] =
|
|
a[j * 8 + 0] = a[j * 8 + 1] = a[j * 8 + 2] = 0;
|
|
a[i * 8 + 6] = -dx * sx;
|
|
a[i * 8 + 7] = -dx * sy;
|
|
a[j * 8 + 6] = -dy * sx;
|
|
a[j * 8 + 7] = -dy * sy;
|
|
b[i] = dx;
|
|
b[j] = dy;
|
|
}
|
|
|
|
if (PseudoInverse(temp, a, np2, 8)) {
|
|
free(a);
|
|
return 1;
|
|
}
|
|
MultiplyMat(temp, b, &*mat, 8, np2, 1);
|
|
mat[8] = 1;
|
|
|
|
denormalizeHomography(mat, T1, T2);
|
|
free(a);
|
|
return 0;
|
|
}
|
|
|
|
int ransacTranslation(double *matched_points, int npoints,
|
|
int *number_of_inliers,
|
|
int *best_inlier_mask, double *bestH) {
|
|
return ransac_(matched_points,
|
|
npoints,
|
|
number_of_inliers,
|
|
best_inlier_mask,
|
|
bestH,
|
|
3,
|
|
2,
|
|
isDegenerateTranslation,
|
|
NULL, // normalizeHomography,
|
|
NULL, // denormalizeRotZoom,
|
|
findTranslation,
|
|
projectPointsTranslation);
|
|
}
|
|
|
|
int ransacRotZoom(double *matched_points, int npoints,
|
|
int *number_of_inliers,
|
|
int *best_inlier_mask, double *bestH) {
|
|
return ransac_(matched_points,
|
|
npoints,
|
|
number_of_inliers,
|
|
best_inlier_mask,
|
|
bestH,
|
|
3,
|
|
4,
|
|
isDegenerateAffine,
|
|
NULL, // normalizeHomography,
|
|
NULL, // denormalizeRotZoom,
|
|
findRotZoom,
|
|
projectPointsRotZoom);
|
|
}
|
|
|
|
int ransacAffine(double *matched_points, int npoints,
|
|
int *number_of_inliers,
|
|
int *best_inlier_mask, double *bestH) {
|
|
return ransac_(matched_points,
|
|
npoints,
|
|
number_of_inliers,
|
|
best_inlier_mask,
|
|
bestH,
|
|
3,
|
|
6,
|
|
isDegenerateAffine,
|
|
NULL, // normalizeHomography,
|
|
NULL, // denormalizeAffine,
|
|
findAffine,
|
|
projectPointsAffine);
|
|
}
|
|
|
|
int ransacHomography(double *matched_points, int npoints,
|
|
int *number_of_inliers,
|
|
int *best_inlier_mask, double *bestH) {
|
|
int result =
|
|
ransac_(matched_points,
|
|
npoints,
|
|
number_of_inliers,
|
|
best_inlier_mask,
|
|
bestH,
|
|
4,
|
|
8,
|
|
isDegenerateHomography,
|
|
NULL, // normalizeHomography,
|
|
NULL, // denormalizeHomography,
|
|
findHomography,
|
|
projectPointsHomography);
|
|
if (!result) {
|
|
// normalize so that H33 = 1
|
|
int i;
|
|
double m = 1.0 / bestH[8];
|
|
for (i = 0; i < 8; ++i)
|
|
bestH[i] *= m;
|
|
bestH[8] = 1.0;
|
|
}
|
|
return result;
|
|
}
|