vpx/vpx_dsp/x86/quantize_avx.c
Johann bd990cad72 quantize x86: dedup some parts
Change-Id: I9f95f47bc7ecbb7980f21cbc3a91f699624141af
2017-11-27 13:09:21 -08:00

316 lines
11 KiB
C

/*
* Copyright (c) 2017 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include <assert.h>
#if defined(_MSC_VER)
#include <intrin.h>
#endif
#include <immintrin.h>
#include "./vpx_dsp_rtcd.h"
#include "vpx/vpx_integer.h"
#include "vpx_dsp/x86/bitdepth_conversion_sse2.h"
#include "vpx_dsp/x86/quantize_x86.h"
void vpx_quantize_b_avx(const tran_low_t *coeff_ptr, intptr_t n_coeffs,
int skip_block, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr,
uint16_t *eob_ptr, const int16_t *scan_ptr,
const int16_t *iscan_ptr) {
const __m128i zero = _mm_setzero_si128();
const __m256i big_zero = _mm256_setzero_si256();
int index;
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i eob = zero, eob0;
(void)scan_ptr;
(void)skip_block;
assert(!skip_block);
*eob_ptr = 0;
load_b_values(zbin_ptr, &zbin, round_ptr, &round, quant_ptr, &quant,
dequant_ptr, &dequant, quant_shift_ptr, &shift);
// Do DC and first 15 AC.
coeff0 = load_tran_low(coeff_ptr);
coeff1 = load_tran_low(coeff_ptr + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero);
#if CONFIG_VP9_HIGHBITDEPTH
_mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero);
#endif // CONFIG_VP9_HIGHBITDEPTH
if (n_coeffs == 16) return;
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff(&qcoeff0, round, quant, shift);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
// Reinsert signs
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr);
store_tran_low(qcoeff1, qcoeff_ptr + 8);
coeff0 = calculate_dqcoeff(qcoeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = calculate_dqcoeff(qcoeff1, dequant);
store_tran_low(coeff0, dqcoeff_ptr);
store_tran_low(coeff1, dqcoeff_ptr + 8);
eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0,
zero);
}
// AC only loop.
for (index = 16; index < n_coeffs; index += 16) {
coeff0 = load_tran_low(coeff_ptr + index);
coeff1 = load_tran_low(coeff_ptr + index + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero);
#if CONFIG_VP9_HIGHBITDEPTH
_mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero);
#endif // CONFIG_VP9_HIGHBITDEPTH
continue;
}
calculate_qcoeff(&qcoeff0, round, quant, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr + index);
store_tran_low(qcoeff1, qcoeff_ptr + index + 8);
coeff0 = calculate_dqcoeff(qcoeff0, dequant);
coeff1 = calculate_dqcoeff(qcoeff1, dequant);
store_tran_low(coeff0, dqcoeff_ptr + index);
store_tran_low(coeff1, dqcoeff_ptr + index + 8);
eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr,
index, zero);
eob = _mm_max_epi16(eob, eob0);
}
*eob_ptr = accumulate_eob(eob);
}
void vpx_quantize_b_32x32_avx(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, int skip_block,
const int16_t *zbin_ptr, const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan_ptr, const int16_t *iscan_ptr) {
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi16(1);
const __m256i big_zero = _mm256_setzero_si256();
int index;
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1;
__m128i all_zero;
__m128i eob = zero, eob0;
(void)scan_ptr;
(void)n_coeffs;
(void)skip_block;
assert(!skip_block);
// Setup global values.
// The 32x32 halves zbin and round.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
// Shift with rounding.
zbin = _mm_add_epi16(zbin, one);
zbin = _mm_srli_epi16(zbin, 1);
// x86 has no "greater *or equal*" comparison. Subtract 1 from zbin so
// it is a strict "greater" comparison.
zbin = _mm_sub_epi16(zbin, one);
round = _mm_load_si128((const __m128i *)round_ptr);
round = _mm_add_epi16(round, one);
round = _mm_srli_epi16(round, 1);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
shift = _mm_slli_epi16(shift, 1);
// Do DC and first 15 AC.
coeff0 = load_tran_low(coeff_ptr);
coeff1 = load_tran_low(coeff_ptr + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC.
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr), big_zero);
#if CONFIG_VP9_HIGHBITDEPTH
_mm256_store_si256((__m256i *)(qcoeff_ptr + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + 8), big_zero);
#endif // CONFIG_VP9_HIGHBITDEPTH
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
calculate_qcoeff(&qcoeff0, round, quant, shift);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
// Reinsert signs.
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
// Mask out zbin threshold coeffs.
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr);
store_tran_low(qcoeff1, qcoeff_ptr + 8);
// Un-sign to bias rounding like C.
// dequant is almost always negative, so this is probably the backwards way
// to handle the sign. However, it matches the previous assembly.
coeff0 = _mm_abs_epi16(qcoeff0);
coeff1 = _mm_abs_epi16(qcoeff1);
coeff0 = calculate_dqcoeff(coeff0, dequant);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = calculate_dqcoeff(coeff1, dequant);
// "Divide" by 2.
coeff0 = _mm_srli_epi16(coeff0, 1);
coeff1 = _mm_srli_epi16(coeff1, 1);
coeff0 = _mm_sign_epi16(coeff0, qcoeff0);
coeff1 = _mm_sign_epi16(coeff1, qcoeff1);
store_tran_low(coeff0, dqcoeff_ptr);
store_tran_low(coeff1, dqcoeff_ptr + 8);
eob = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr, 0,
zero);
}
// AC only loop.
for (index = 16; index < 32 * 32; index += 16) {
coeff0 = load_tran_low(coeff_ptr + index);
coeff1 = load_tran_low(coeff_ptr + index + 8);
qcoeff0 = _mm_abs_epi16(coeff0);
qcoeff1 = _mm_abs_epi16(coeff1);
cmp_mask0 = _mm_cmpgt_epi16(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi16(qcoeff1, zbin);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_test_all_zeros(all_zero, all_zero)) {
_mm256_store_si256((__m256i *)(qcoeff_ptr + index), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index), big_zero);
#if CONFIG_VP9_HIGHBITDEPTH
_mm256_store_si256((__m256i *)(qcoeff_ptr + index + 8), big_zero);
_mm256_store_si256((__m256i *)(dqcoeff_ptr + index + 8), big_zero);
#endif // CONFIG_VP9_HIGHBITDEPTH
continue;
}
calculate_qcoeff(&qcoeff0, round, quant, shift);
calculate_qcoeff(&qcoeff1, round, quant, shift);
qcoeff0 = _mm_sign_epi16(qcoeff0, coeff0);
qcoeff1 = _mm_sign_epi16(qcoeff1, coeff1);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
store_tran_low(qcoeff0, qcoeff_ptr + index);
store_tran_low(qcoeff1, qcoeff_ptr + index + 8);
coeff0 = _mm_abs_epi16(qcoeff0);
coeff1 = _mm_abs_epi16(qcoeff1);
coeff0 = calculate_dqcoeff(coeff0, dequant);
coeff1 = calculate_dqcoeff(coeff1, dequant);
coeff0 = _mm_srli_epi16(coeff0, 1);
coeff1 = _mm_srli_epi16(coeff1, 1);
coeff0 = _mm_sign_epi16(coeff0, qcoeff0);
coeff1 = _mm_sign_epi16(coeff1, qcoeff1);
store_tran_low(coeff0, dqcoeff_ptr + index);
store_tran_low(coeff1, dqcoeff_ptr + index + 8);
eob0 = scan_for_eob(&coeff0, &coeff1, cmp_mask0, cmp_mask1, iscan_ptr,
index, zero);
eob = _mm_max_epi16(eob, eob0);
}
*eob_ptr = accumulate_eob(eob);
}