vpx/vp8/encoder/onyx_if.c
Johann Koenig 3761254119 Merge changes from topic "clang-format"
* changes:
  clang-format v5.0.0 vp9/
  remove spurious comments
  clang-format v5.0.0 vp8/
  clang-format v5.0.0 vpx_dsp/
  clang-format v5.0.0 mem_ops.h
  clang-format v5.0.0 vpx_util/vpx_atomic.h
  clang-format v5.0.0 y4minput.c
  clang-format v5.0.0 vpxenc.c
  clang-format v5.0.0 examples/
  clang-format v5.0.0 test/
2018-01-22 19:38:42 +00:00

5483 lines
180 KiB
C

/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_config.h"
#include "./vpx_scale_rtcd.h"
#include "./vpx_dsp_rtcd.h"
#include "./vp8_rtcd.h"
#include "bitstream.h"
#include "vp8/common/onyxc_int.h"
#include "vp8/common/blockd.h"
#include "onyx_int.h"
#include "vp8/common/systemdependent.h"
#include "vp8/common/vp8_skin_detection.h"
#include "vp8/encoder/quantize.h"
#include "vp8/common/alloccommon.h"
#include "mcomp.h"
#include "firstpass.h"
#include "vpx_dsp/psnr.h"
#include "vpx_scale/vpx_scale.h"
#include "vp8/common/extend.h"
#include "ratectrl.h"
#include "vp8/common/quant_common.h"
#include "segmentation.h"
#if CONFIG_POSTPROC
#include "vp8/common/postproc.h"
#endif
#include "vpx_mem/vpx_mem.h"
#include "vp8/common/reconintra.h"
#include "vp8/common/swapyv12buffer.h"
#include "vp8/common/threading.h"
#include "vpx_ports/system_state.h"
#include "vpx_ports/vpx_timer.h"
#include "vpx_util/vpx_write_yuv_frame.h"
#if ARCH_ARM
#include "vpx_ports/arm.h"
#endif
#if CONFIG_MULTI_RES_ENCODING
#include "mr_dissim.h"
#endif
#include "encodeframe.h"
#if CONFIG_MULTITHREAD
#include "ethreading.h"
#endif
#include "picklpf.h"
#if !CONFIG_REALTIME_ONLY
#include "temporal_filter.h"
#endif
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <limits.h>
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
extern int vp8_update_coef_context(VP8_COMP *cpi);
#endif
extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *post, int filt_lvl,
int low_var_thresh, int flag);
extern void print_parms(VP8_CONFIG *ocf, char *filenam);
extern unsigned int vp8_get_processor_freq();
extern void print_tree_update_probs();
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest);
static void set_default_lf_deltas(VP8_COMP *cpi);
extern const int vp8_gf_interval_table[101];
#if CONFIG_INTERNAL_STATS
#include "math.h"
#include "vpx_dsp/ssim.h"
#endif
#ifdef OUTPUT_YUV_SRC
FILE *yuv_file;
#endif
#ifdef OUTPUT_YUV_DENOISED
FILE *yuv_denoised_file;
#endif
#ifdef OUTPUT_YUV_SKINMAP
static FILE *yuv_skinmap_file = NULL;
#endif
#if 0
FILE *framepsnr;
FILE *kf_list;
FILE *keyfile;
#endif
#if 0
extern int skip_true_count;
extern int skip_false_count;
#endif
#ifdef VP8_ENTROPY_STATS
extern int intra_mode_stats[10][10][10];
#endif
#ifdef SPEEDSTATS
unsigned int frames_at_speed[16] = { 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0 };
unsigned int tot_pm = 0;
unsigned int cnt_pm = 0;
unsigned int tot_ef = 0;
unsigned int cnt_ef = 0;
#endif
#ifdef MODE_STATS
extern unsigned __int64 Sectionbits[50];
extern int y_modes[5];
extern int uv_modes[4];
extern int b_modes[10];
extern int inter_y_modes[10];
extern int inter_uv_modes[4];
extern unsigned int inter_b_modes[15];
#endif
extern const int vp8_bits_per_mb[2][QINDEX_RANGE];
extern const int qrounding_factors[129];
extern const int qzbin_factors[129];
extern void vp8cx_init_quantizer(VP8_COMP *cpi);
extern const int vp8cx_base_skip_false_prob[128];
/* Tables relating active max Q to active min Q */
static const unsigned char kf_low_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5,
5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 11,
11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 16,
17, 17, 18, 18, 18, 18, 19, 20, 20, 21, 21, 22, 23, 23
};
static const unsigned char kf_high_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5,
5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10,
10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16,
16, 16, 16, 17, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21,
22, 22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30
};
static const unsigned char gf_low_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3,
3, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8,
8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 15,
15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24,
25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34,
34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58
};
static const unsigned char gf_mid_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 10, 11,
11, 11, 12, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16, 17, 17, 18,
18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27,
28, 28, 29, 29, 30, 30, 31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37,
37, 38, 39, 39, 40, 40, 41, 41, 42, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
};
static const unsigned char gf_high_motion_minq[QINDEX_RANGE] = {
0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11,
12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21,
21, 22, 22, 23, 23, 24, 24, 25, 25, 26, 26, 27, 27, 28, 28, 29, 29, 30, 30,
31, 31, 32, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37, 38, 38, 39, 39, 40,
40, 41, 41, 42, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56,
57, 58, 59, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80
};
static const unsigned char inter_minq[QINDEX_RANGE] = {
0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11,
11, 12, 13, 13, 14, 15, 15, 16, 17, 17, 18, 19, 20, 20, 21, 22, 22, 23, 24,
24, 25, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 33, 34, 35, 36, 36, 37, 38,
39, 39, 40, 41, 42, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 50, 51, 52, 53,
54, 55, 55, 56, 57, 58, 59, 60, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69,
70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 86,
87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
};
#ifdef PACKET_TESTING
extern FILE *vpxlogc;
#endif
static void save_layer_context(VP8_COMP *cpi) {
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->current_layer];
/* Save layer dependent coding state */
lc->target_bandwidth = cpi->target_bandwidth;
lc->starting_buffer_level = cpi->oxcf.starting_buffer_level;
lc->optimal_buffer_level = cpi->oxcf.optimal_buffer_level;
lc->maximum_buffer_size = cpi->oxcf.maximum_buffer_size;
lc->starting_buffer_level_in_ms = cpi->oxcf.starting_buffer_level_in_ms;
lc->optimal_buffer_level_in_ms = cpi->oxcf.optimal_buffer_level_in_ms;
lc->maximum_buffer_size_in_ms = cpi->oxcf.maximum_buffer_size_in_ms;
lc->buffer_level = cpi->buffer_level;
lc->bits_off_target = cpi->bits_off_target;
lc->total_actual_bits = cpi->total_actual_bits;
lc->worst_quality = cpi->worst_quality;
lc->active_worst_quality = cpi->active_worst_quality;
lc->best_quality = cpi->best_quality;
lc->active_best_quality = cpi->active_best_quality;
lc->ni_av_qi = cpi->ni_av_qi;
lc->ni_tot_qi = cpi->ni_tot_qi;
lc->ni_frames = cpi->ni_frames;
lc->avg_frame_qindex = cpi->avg_frame_qindex;
lc->rate_correction_factor = cpi->rate_correction_factor;
lc->key_frame_rate_correction_factor = cpi->key_frame_rate_correction_factor;
lc->gf_rate_correction_factor = cpi->gf_rate_correction_factor;
lc->zbin_over_quant = cpi->mb.zbin_over_quant;
lc->inter_frame_target = cpi->inter_frame_target;
lc->total_byte_count = cpi->total_byte_count;
lc->filter_level = cpi->common.filter_level;
lc->frames_since_last_drop_overshoot = cpi->frames_since_last_drop_overshoot;
lc->force_maxqp = cpi->force_maxqp;
lc->last_frame_percent_intra = cpi->last_frame_percent_intra;
memcpy(lc->count_mb_ref_frame_usage, cpi->mb.count_mb_ref_frame_usage,
sizeof(cpi->mb.count_mb_ref_frame_usage));
}
static void restore_layer_context(VP8_COMP *cpi, const int layer) {
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
/* Restore layer dependent coding state */
cpi->current_layer = layer;
cpi->target_bandwidth = lc->target_bandwidth;
cpi->oxcf.target_bandwidth = lc->target_bandwidth;
cpi->oxcf.starting_buffer_level = lc->starting_buffer_level;
cpi->oxcf.optimal_buffer_level = lc->optimal_buffer_level;
cpi->oxcf.maximum_buffer_size = lc->maximum_buffer_size;
cpi->oxcf.starting_buffer_level_in_ms = lc->starting_buffer_level_in_ms;
cpi->oxcf.optimal_buffer_level_in_ms = lc->optimal_buffer_level_in_ms;
cpi->oxcf.maximum_buffer_size_in_ms = lc->maximum_buffer_size_in_ms;
cpi->buffer_level = lc->buffer_level;
cpi->bits_off_target = lc->bits_off_target;
cpi->total_actual_bits = lc->total_actual_bits;
cpi->active_worst_quality = lc->active_worst_quality;
cpi->active_best_quality = lc->active_best_quality;
cpi->ni_av_qi = lc->ni_av_qi;
cpi->ni_tot_qi = lc->ni_tot_qi;
cpi->ni_frames = lc->ni_frames;
cpi->avg_frame_qindex = lc->avg_frame_qindex;
cpi->rate_correction_factor = lc->rate_correction_factor;
cpi->key_frame_rate_correction_factor = lc->key_frame_rate_correction_factor;
cpi->gf_rate_correction_factor = lc->gf_rate_correction_factor;
cpi->mb.zbin_over_quant = lc->zbin_over_quant;
cpi->inter_frame_target = lc->inter_frame_target;
cpi->total_byte_count = lc->total_byte_count;
cpi->common.filter_level = lc->filter_level;
cpi->frames_since_last_drop_overshoot = lc->frames_since_last_drop_overshoot;
cpi->force_maxqp = lc->force_maxqp;
cpi->last_frame_percent_intra = lc->last_frame_percent_intra;
memcpy(cpi->mb.count_mb_ref_frame_usage, lc->count_mb_ref_frame_usage,
sizeof(cpi->mb.count_mb_ref_frame_usage));
}
static int rescale(int val, int num, int denom) {
int64_t llnum = num;
int64_t llden = denom;
int64_t llval = val;
return (int)(llval * llnum / llden);
}
static void init_temporal_layer_context(VP8_COMP *cpi, VP8_CONFIG *oxcf,
const int layer,
double prev_layer_framerate) {
LAYER_CONTEXT *lc = &cpi->layer_context[layer];
lc->framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[layer];
lc->target_bandwidth = cpi->oxcf.target_bitrate[layer] * 1000;
lc->starting_buffer_level_in_ms = oxcf->starting_buffer_level;
lc->optimal_buffer_level_in_ms = oxcf->optimal_buffer_level;
lc->maximum_buffer_size_in_ms = oxcf->maximum_buffer_size;
lc->starting_buffer_level =
rescale((int)(oxcf->starting_buffer_level), lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0) {
lc->optimal_buffer_level = lc->target_bandwidth / 8;
} else {
lc->optimal_buffer_level =
rescale((int)(oxcf->optimal_buffer_level), lc->target_bandwidth, 1000);
}
if (oxcf->maximum_buffer_size == 0) {
lc->maximum_buffer_size = lc->target_bandwidth / 8;
} else {
lc->maximum_buffer_size =
rescale((int)(oxcf->maximum_buffer_size), lc->target_bandwidth, 1000);
}
/* Work out the average size of a frame within this layer */
if (layer > 0) {
lc->avg_frame_size_for_layer =
(int)((cpi->oxcf.target_bitrate[layer] -
cpi->oxcf.target_bitrate[layer - 1]) *
1000 / (lc->framerate - prev_layer_framerate));
}
lc->active_worst_quality = cpi->oxcf.worst_allowed_q;
lc->active_best_quality = cpi->oxcf.best_allowed_q;
lc->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
lc->buffer_level = lc->starting_buffer_level;
lc->bits_off_target = lc->starting_buffer_level;
lc->total_actual_bits = 0;
lc->ni_av_qi = 0;
lc->ni_tot_qi = 0;
lc->ni_frames = 0;
lc->rate_correction_factor = 1.0;
lc->key_frame_rate_correction_factor = 1.0;
lc->gf_rate_correction_factor = 1.0;
lc->inter_frame_target = 0;
}
// Upon a run-time change in temporal layers, reset the layer context parameters
// for any "new" layers. For "existing" layers, let them inherit the parameters
// from the previous layer state (at the same layer #). In future we may want
// to better map the previous layer state(s) to the "new" ones.
static void reset_temporal_layer_change(VP8_COMP *cpi, VP8_CONFIG *oxcf,
const int prev_num_layers) {
int i;
double prev_layer_framerate = 0;
const int curr_num_layers = cpi->oxcf.number_of_layers;
// If the previous state was 1 layer, get current layer context from cpi.
// We need this to set the layer context for the new layers below.
if (prev_num_layers == 1) {
cpi->current_layer = 0;
save_layer_context(cpi);
}
for (i = 0; i < curr_num_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
if (i >= prev_num_layers) {
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
}
// The initial buffer levels are set based on their starting levels.
// We could set the buffer levels based on the previous state (normalized
// properly by the layer bandwidths) but we would need to keep track of
// the previous set of layer bandwidths (i.e., target_bitrate[i])
// before the layer change. For now, reset to the starting levels.
lc->buffer_level =
cpi->oxcf.starting_buffer_level_in_ms * cpi->oxcf.target_bitrate[i];
lc->bits_off_target = lc->buffer_level;
// TDOD(marpan): Should we set the rate_correction_factor and
// active_worst/best_quality to values derived from the previous layer
// state (to smooth-out quality dips/rate fluctuation at transition)?
// We need to treat the 1 layer case separately: oxcf.target_bitrate[i]
// is not set for 1 layer, and the restore_layer_context/save_context()
// are not called in the encoding loop, so we need to call it here to
// pass the layer context state to |cpi|.
if (curr_num_layers == 1) {
lc->target_bandwidth = cpi->oxcf.target_bandwidth;
lc->buffer_level =
cpi->oxcf.starting_buffer_level_in_ms * lc->target_bandwidth / 1000;
lc->bits_off_target = lc->buffer_level;
restore_layer_context(cpi, 0);
}
prev_layer_framerate = cpi->output_framerate / cpi->oxcf.rate_decimator[i];
}
}
static void setup_features(VP8_COMP *cpi) {
// If segmentation enabled set the update flags
if (cpi->mb.e_mbd.segmentation_enabled) {
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
} else {
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
}
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
memset(cpi->mb.e_mbd.last_ref_lf_deltas, 0,
sizeof(cpi->mb.e_mbd.ref_lf_deltas));
memset(cpi->mb.e_mbd.last_mode_lf_deltas, 0,
sizeof(cpi->mb.e_mbd.mode_lf_deltas));
set_default_lf_deltas(cpi);
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi);
void vp8_initialize_enc(void) {
static volatile int init_done = 0;
if (!init_done) {
vpx_dsp_rtcd();
vp8_init_intra_predictors();
init_done = 1;
}
}
static void dealloc_compressor_data(VP8_COMP *cpi) {
vpx_free(cpi->tplist);
cpi->tplist = NULL;
/* Delete last frame MV storage buffers */
vpx_free(cpi->lfmv);
cpi->lfmv = 0;
vpx_free(cpi->lf_ref_frame_sign_bias);
cpi->lf_ref_frame_sign_bias = 0;
vpx_free(cpi->lf_ref_frame);
cpi->lf_ref_frame = 0;
/* Delete sementation map */
vpx_free(cpi->segmentation_map);
cpi->segmentation_map = 0;
vpx_free(cpi->active_map);
cpi->active_map = 0;
vp8_de_alloc_frame_buffers(&cpi->common);
vp8_yv12_de_alloc_frame_buffer(&cpi->pick_lf_lvl_frame);
vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source);
dealloc_raw_frame_buffers(cpi);
vpx_free(cpi->tok);
cpi->tok = 0;
/* Structure used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
cpi->gf_active_flags = 0;
/* Activity mask based per mb zbin adjustments */
vpx_free(cpi->mb_activity_map);
cpi->mb_activity_map = 0;
vpx_free(cpi->mb.pip);
cpi->mb.pip = 0;
#if CONFIG_MULTITHREAD
vpx_free(cpi->mt_current_mb_col);
cpi->mt_current_mb_col = NULL;
#endif
}
static void enable_segmentation(VP8_COMP *cpi) {
/* Set the appropriate feature bit */
cpi->mb.e_mbd.segmentation_enabled = 1;
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
static void disable_segmentation(VP8_COMP *cpi) {
/* Clear the appropriate feature bit */
cpi->mb.e_mbd.segmentation_enabled = 0;
}
/* Valid values for a segment are 0 to 3
* Segmentation map is arrange as [Rows][Columns]
*/
static void set_segmentation_map(VP8_COMP *cpi,
unsigned char *segmentation_map) {
/* Copy in the new segmentation map */
memcpy(cpi->segmentation_map, segmentation_map,
(cpi->common.mb_rows * cpi->common.mb_cols));
/* Signal that the map should be updated. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
}
/* The values given for each segment can be either deltas (from the default
* value chosen for the frame) or absolute values.
*
* Valid range for abs values is:
* (0-127 for MB_LVL_ALT_Q), (0-63 for SEGMENT_ALT_LF)
* Valid range for delta values are:
* (+/-127 for MB_LVL_ALT_Q), (+/-63 for SEGMENT_ALT_LF)
*
* abs_delta = SEGMENT_DELTADATA (deltas)
* abs_delta = SEGMENT_ABSDATA (use the absolute values given).
*
*/
static void set_segment_data(VP8_COMP *cpi, signed char *feature_data,
unsigned char abs_delta) {
cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta;
memcpy(cpi->segment_feature_data, feature_data,
sizeof(cpi->segment_feature_data));
}
/* A simple function to cyclically refresh the background at a lower Q */
static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) {
unsigned char *seg_map = cpi->segmentation_map;
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int i;
int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols;
cpi->cyclic_refresh_q = Q / 2;
if (cpi->oxcf.screen_content_mode) {
// Modify quality ramp-up based on Q. Above some Q level, increase the
// number of blocks to be refreshed, and reduce it below the thredhold.
// Turn-off under certain conditions (i.e., away from key frame, and if
// we are at good quality (low Q) and most of the blocks were
// skipped-encoded
// in previous frame.
int qp_thresh = (cpi->oxcf.screen_content_mode == 2) ? 80 : 100;
if (Q >= qp_thresh) {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 10;
} else if (cpi->frames_since_key > 250 && Q < 20 &&
cpi->mb.skip_true_count > (int)(0.95 * mbs_in_frame)) {
cpi->cyclic_refresh_mode_max_mbs_perframe = 0;
} else {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 20;
}
block_count = cpi->cyclic_refresh_mode_max_mbs_perframe;
}
// Set every macroblock to be eligible for update.
// For key frame this will reset seg map to 0.
memset(cpi->segmentation_map, 0, mbs_in_frame);
if (cpi->common.frame_type != KEY_FRAME && block_count > 0) {
/* Cycle through the macro_block rows */
/* MB loop to set local segmentation map */
i = cpi->cyclic_refresh_mode_index;
assert(i < mbs_in_frame);
do {
/* If the MB is as a candidate for clean up then mark it for
* possible boost/refresh (segment 1) The segment id may get
* reset to 0 later if the MB gets coded anything other than
* last frame 0,0 as only (last frame 0,0) MBs are eligable for
* refresh : that is to say Mbs likely to be background blocks.
*/
if (cpi->cyclic_refresh_map[i] == 0) {
seg_map[i] = 1;
block_count--;
} else if (cpi->cyclic_refresh_map[i] < 0) {
cpi->cyclic_refresh_map[i]++;
}
i++;
if (i == mbs_in_frame) i = 0;
} while (block_count && i != cpi->cyclic_refresh_mode_index);
cpi->cyclic_refresh_mode_index = i;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
if (cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive &&
Q < (int)cpi->denoiser.denoise_pars.qp_thresh &&
(cpi->frames_since_key >
2 * cpi->denoiser.denoise_pars.consec_zerolast)) {
// Under aggressive denoising, use segmentation to turn off loop
// filter below some qp thresh. The filter is reduced for all
// blocks that have been encoded as ZEROMV LAST x frames in a row,
// where x is set by cpi->denoiser.denoise_pars.consec_zerolast.
// This is to avoid "dot" artifacts that can occur from repeated
// loop filtering on noisy input source.
cpi->cyclic_refresh_q = Q;
// lf_adjustment = -MAX_LOOP_FILTER;
lf_adjustment = -40;
for (i = 0; i < mbs_in_frame; ++i) {
seg_map[i] = (cpi->consec_zero_last[i] >
cpi->denoiser.denoise_pars.consec_zerolast)
? 1
: 0;
}
}
}
#endif
}
/* Activate segmentation. */
cpi->mb.e_mbd.update_mb_segmentation_map = 1;
cpi->mb.e_mbd.update_mb_segmentation_data = 1;
enable_segmentation(cpi);
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = 0;
feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q);
feature_data[MB_LVL_ALT_Q][2] = 0;
feature_data[MB_LVL_ALT_Q][3] = 0;
/* Set up the loop segment data */
feature_data[MB_LVL_ALT_LF][0] = 0;
feature_data[MB_LVL_ALT_LF][1] = lf_adjustment;
feature_data[MB_LVL_ALT_LF][2] = 0;
feature_data[MB_LVL_ALT_LF][3] = 0;
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
}
static void compute_skin_map(VP8_COMP *cpi) {
int mb_row, mb_col, num_bl;
VP8_COMMON *cm = &cpi->common;
const uint8_t *src_y = cpi->Source->y_buffer;
const uint8_t *src_u = cpi->Source->u_buffer;
const uint8_t *src_v = cpi->Source->v_buffer;
const int src_ystride = cpi->Source->y_stride;
const int src_uvstride = cpi->Source->uv_stride;
const SKIN_DETECTION_BLOCK_SIZE bsize =
(cm->Width * cm->Height <= 352 * 288) ? SKIN_8X8 : SKIN_16X16;
for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) {
num_bl = 0;
for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) {
const int bl_index = mb_row * cm->mb_cols + mb_col;
cpi->skin_map[bl_index] =
vp8_compute_skin_block(src_y, src_u, src_v, src_ystride, src_uvstride,
bsize, cpi->consec_zero_last[bl_index], 0);
num_bl++;
src_y += 16;
src_u += 8;
src_v += 8;
}
src_y += (src_ystride << 4) - (num_bl << 4);
src_u += (src_uvstride << 3) - (num_bl << 3);
src_v += (src_uvstride << 3) - (num_bl << 3);
}
// Remove isolated skin blocks (none of its neighbors are skin) and isolated
// non-skin blocks (all of its neighbors are skin). Skip the boundary.
for (mb_row = 1; mb_row < cm->mb_rows - 1; mb_row++) {
for (mb_col = 1; mb_col < cm->mb_cols - 1; mb_col++) {
const int bl_index = mb_row * cm->mb_cols + mb_col;
int num_neighbor = 0;
int mi, mj;
int non_skin_threshold = 8;
for (mi = -1; mi <= 1; mi += 1) {
for (mj = -1; mj <= 1; mj += 1) {
int bl_neighbor_index = (mb_row + mi) * cm->mb_cols + mb_col + mj;
if (cpi->skin_map[bl_neighbor_index]) num_neighbor++;
}
}
if (cpi->skin_map[bl_index] && num_neighbor < 2)
cpi->skin_map[bl_index] = 0;
if (!cpi->skin_map[bl_index] && num_neighbor == non_skin_threshold)
cpi->skin_map[bl_index] = 1;
}
}
}
static void set_default_lf_deltas(VP8_COMP *cpi) {
cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 1;
memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas));
memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas));
/* Test of ref frame deltas */
cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2;
cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0;
cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2;
cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2;
cpi->mb.e_mbd.mode_lf_deltas[0] = 4; /* BPRED */
if (cpi->oxcf.Mode == MODE_REALTIME) {
cpi->mb.e_mbd.mode_lf_deltas[1] = -12; /* Zero */
} else {
cpi->mb.e_mbd.mode_lf_deltas[1] = -2; /* Zero */
}
cpi->mb.e_mbd.mode_lf_deltas[2] = 2; /* New mv */
cpi->mb.e_mbd.mode_lf_deltas[3] = 4; /* Split mv */
}
/* Convenience macros for mapping speed and mode into a continuous
* range
*/
#define GOOD(x) (x + 1)
#define RT(x) (x + 7)
static int speed_map(int speed, const int *map) {
int res;
do {
res = *map++;
} while (speed >= *map++);
return res;
}
static const int thresh_mult_map_znn[] = {
/* map common to zero, nearest, and near */
0, GOOD(2), 1500, GOOD(3), 2000, RT(0), 1000, RT(2), 2000, INT_MAX
};
static const int thresh_mult_map_vhpred[] = { 1000, GOOD(2), 1500, GOOD(3),
2000, RT(0), 1000, RT(1),
2000, RT(7), INT_MAX, INT_MAX };
static const int thresh_mult_map_bpred[] = { 2000, GOOD(0), 2500, GOOD(2),
5000, GOOD(3), 7500, RT(0),
2500, RT(1), 5000, RT(6),
INT_MAX, INT_MAX };
static const int thresh_mult_map_tm[] = { 1000, GOOD(2), 1500, GOOD(3),
2000, RT(0), 0, RT(1),
1000, RT(2), 2000, RT(7),
INT_MAX, INT_MAX };
static const int thresh_mult_map_new1[] = { 1000, GOOD(2), 2000,
RT(0), 2000, INT_MAX };
static const int thresh_mult_map_new2[] = { 1000, GOOD(2), 2000, GOOD(3),
2500, GOOD(5), 4000, RT(0),
2000, RT(2), 2500, RT(5),
4000, INT_MAX };
static const int thresh_mult_map_split1[] = {
2500, GOOD(0), 1700, GOOD(2), 10000, GOOD(3), 25000, GOOD(4), INT_MAX,
RT(0), 5000, RT(1), 10000, RT(2), 25000, RT(3), INT_MAX, INT_MAX
};
static const int thresh_mult_map_split2[] = {
5000, GOOD(0), 4500, GOOD(2), 20000, GOOD(3), 50000, GOOD(4), INT_MAX,
RT(0), 10000, RT(1), 20000, RT(2), 50000, RT(3), INT_MAX, INT_MAX
};
static const int mode_check_freq_map_zn2[] = {
/* {zero,nearest}{2,3} */
0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX
};
static const int mode_check_freq_map_vhbpred[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2, RT(5), 4, INT_MAX
};
static const int mode_check_freq_map_near2[] = {
0, GOOD(5), 2, RT(0), 0, RT(3), 2,
RT(10), 1 << 2, RT(11), 1 << 3, RT(12), 1 << 4, INT_MAX
};
static const int mode_check_freq_map_new1[] = {
0, RT(10), 1 << 1, RT(11), 1 << 2, RT(12), 1 << 3, INT_MAX
};
static const int mode_check_freq_map_new2[] = { 0, GOOD(5), 4, RT(0),
0, RT(3), 4, RT(10),
1 << 3, RT(11), 1 << 4, RT(12),
1 << 5, INT_MAX };
static const int mode_check_freq_map_split1[] = {
0, GOOD(2), 2, GOOD(3), 7, RT(1), 2, RT(2), 7, INT_MAX
};
static const int mode_check_freq_map_split2[] = {
0, GOOD(1), 2, GOOD(2), 4, GOOD(3), 15, RT(1), 4, RT(2), 15, INT_MAX
};
void vp8_set_speed_features(VP8_COMP *cpi) {
SPEED_FEATURES *sf = &cpi->sf;
int Mode = cpi->compressor_speed;
int Speed = cpi->Speed;
int Speed2;
int i;
VP8_COMMON *cm = &cpi->common;
int last_improved_quant = sf->improved_quant;
int ref_frames;
/* Initialise default mode frequency sampling variables */
for (i = 0; i < MAX_MODES; ++i) {
cpi->mode_check_freq[i] = 0;
}
cpi->mb.mbs_tested_so_far = 0;
cpi->mb.mbs_zero_last_dot_suppress = 0;
/* best quality defaults */
sf->RD = 1;
sf->search_method = NSTEP;
sf->improved_quant = 1;
sf->improved_dct = 1;
sf->auto_filter = 1;
sf->recode_loop = 1;
sf->quarter_pixel_search = 1;
sf->half_pixel_search = 1;
sf->iterative_sub_pixel = 1;
sf->optimize_coefficients = 1;
sf->use_fastquant_for_pick = 0;
sf->no_skip_block4x4_search = 1;
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
sf->improved_mv_pred = 1;
/* default thresholds to 0 */
for (i = 0; i < MAX_MODES; ++i) sf->thresh_mult[i] = 0;
/* Count enabled references */
ref_frames = 1;
if (cpi->ref_frame_flags & VP8_LAST_FRAME) ref_frames++;
if (cpi->ref_frame_flags & VP8_GOLD_FRAME) ref_frames++;
if (cpi->ref_frame_flags & VP8_ALTR_FRAME) ref_frames++;
/* Convert speed to continuous range, with clamping */
if (Mode == 0) {
Speed = 0;
} else if (Mode == 2) {
Speed = RT(Speed);
} else {
if (Speed > 5) Speed = 5;
Speed = GOOD(Speed);
}
sf->thresh_mult[THR_ZERO1] = sf->thresh_mult[THR_NEAREST1] =
sf->thresh_mult[THR_NEAR1] = sf->thresh_mult[THR_DC] = 0; /* always */
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO3] =
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST3] =
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR3] =
speed_map(Speed, thresh_mult_map_znn);
sf->thresh_mult[THR_V_PRED] = sf->thresh_mult[THR_H_PRED] =
speed_map(Speed, thresh_mult_map_vhpred);
sf->thresh_mult[THR_B_PRED] = speed_map(Speed, thresh_mult_map_bpred);
sf->thresh_mult[THR_TM] = speed_map(Speed, thresh_mult_map_tm);
sf->thresh_mult[THR_NEW1] = speed_map(Speed, thresh_mult_map_new1);
sf->thresh_mult[THR_NEW2] = sf->thresh_mult[THR_NEW3] =
speed_map(Speed, thresh_mult_map_new2);
sf->thresh_mult[THR_SPLIT1] = speed_map(Speed, thresh_mult_map_split1);
sf->thresh_mult[THR_SPLIT2] = sf->thresh_mult[THR_SPLIT3] =
speed_map(Speed, thresh_mult_map_split2);
// Special case for temporal layers.
// Reduce the thresholds for zero/nearest/near for GOLDEN, if GOLDEN is
// used as second reference. We don't modify thresholds for ALTREF case
// since ALTREF is usually used as long-term reference in temporal layers.
if ((cpi->Speed <= 6) && (cpi->oxcf.number_of_layers > 1) &&
(cpi->ref_frame_flags & VP8_LAST_FRAME) &&
(cpi->ref_frame_flags & VP8_GOLD_FRAME)) {
if (cpi->closest_reference_frame == GOLDEN_FRAME) {
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 3;
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 3;
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 3;
} else {
sf->thresh_mult[THR_ZERO2] = sf->thresh_mult[THR_ZERO2] >> 1;
sf->thresh_mult[THR_NEAREST2] = sf->thresh_mult[THR_NEAREST2] >> 1;
sf->thresh_mult[THR_NEAR2] = sf->thresh_mult[THR_NEAR2] >> 1;
}
}
cpi->mode_check_freq[THR_ZERO1] = cpi->mode_check_freq[THR_NEAREST1] =
cpi->mode_check_freq[THR_NEAR1] = cpi->mode_check_freq[THR_TM] =
cpi->mode_check_freq[THR_DC] = 0; /* always */
cpi->mode_check_freq[THR_ZERO2] = cpi->mode_check_freq[THR_ZERO3] =
cpi->mode_check_freq[THR_NEAREST2] = cpi->mode_check_freq[THR_NEAREST3] =
speed_map(Speed, mode_check_freq_map_zn2);
cpi->mode_check_freq[THR_NEAR2] = cpi->mode_check_freq[THR_NEAR3] =
speed_map(Speed, mode_check_freq_map_near2);
cpi->mode_check_freq[THR_V_PRED] = cpi->mode_check_freq[THR_H_PRED] =
cpi->mode_check_freq[THR_B_PRED] =
speed_map(Speed, mode_check_freq_map_vhbpred);
// For real-time mode at speed 10 keep the mode_check_freq threshold
// for NEW1 similar to that of speed 9.
Speed2 = Speed;
if (cpi->Speed == 10 && Mode == 2) Speed2 = RT(9);
cpi->mode_check_freq[THR_NEW1] = speed_map(Speed2, mode_check_freq_map_new1);
cpi->mode_check_freq[THR_NEW2] = cpi->mode_check_freq[THR_NEW3] =
speed_map(Speed, mode_check_freq_map_new2);
cpi->mode_check_freq[THR_SPLIT1] =
speed_map(Speed, mode_check_freq_map_split1);
cpi->mode_check_freq[THR_SPLIT2] = cpi->mode_check_freq[THR_SPLIT3] =
speed_map(Speed, mode_check_freq_map_split2);
Speed = cpi->Speed;
switch (Mode) {
#if !CONFIG_REALTIME_ONLY
case 0: /* best quality mode */
sf->first_step = 0;
sf->max_step_search_steps = MAX_MVSEARCH_STEPS;
break;
case 1:
case 3:
if (Speed > 0) {
/* Disable coefficient optimization above speed 0 */
sf->optimize_coefficients = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
}
if (Speed > 2) {
sf->improved_quant = 0;
sf->improved_dct = 0;
/* Only do recode loop on key frames, golden frames and
* alt ref frames
*/
sf->recode_loop = 2;
}
if (Speed > 3) {
sf->auto_filter = 1;
sf->recode_loop = 0; /* recode loop off */
sf->RD = 0; /* Turn rd off */
}
if (Speed > 4) {
sf->auto_filter = 0; /* Faster selection of loop filter */
}
break;
#endif
case 2:
sf->optimize_coefficients = 0;
sf->recode_loop = 0;
sf->auto_filter = 1;
sf->iterative_sub_pixel = 1;
sf->search_method = NSTEP;
if (Speed > 0) {
sf->improved_quant = 0;
sf->improved_dct = 0;
sf->use_fastquant_for_pick = 1;
sf->no_skip_block4x4_search = 0;
sf->first_step = 1;
}
if (Speed > 2) sf->auto_filter = 0; /* Faster selection of loop filter */
if (Speed > 3) {
sf->RD = 0;
sf->auto_filter = 1;
}
if (Speed > 4) {
sf->auto_filter = 0; /* Faster selection of loop filter */
sf->search_method = HEX;
sf->iterative_sub_pixel = 0;
}
if (Speed > 6) {
unsigned int sum = 0;
unsigned int total_mbs = cm->MBs;
int thresh;
unsigned int total_skip;
int min = 2000;
if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout;
min >>= 7;
for (i = 0; i < min; ++i) {
sum += cpi->mb.error_bins[i];
}
total_skip = sum;
sum = 0;
/* i starts from 2 to make sure thresh started from 2048 */
for (; i < 1024; ++i) {
sum += cpi->mb.error_bins[i];
if (10 * sum >=
(unsigned int)(cpi->Speed - 6) * (total_mbs - total_skip)) {
break;
}
}
i--;
thresh = (i << 7);
if (thresh < 2000) thresh = 2000;
if (ref_frames > 1) {
sf->thresh_mult[THR_NEW1] = thresh;
sf->thresh_mult[THR_NEAREST1] = thresh >> 1;
sf->thresh_mult[THR_NEAR1] = thresh >> 1;
}
if (ref_frames > 2) {
sf->thresh_mult[THR_NEW2] = thresh << 1;
sf->thresh_mult[THR_NEAREST2] = thresh;
sf->thresh_mult[THR_NEAR2] = thresh;
}
if (ref_frames > 3) {
sf->thresh_mult[THR_NEW3] = thresh << 1;
sf->thresh_mult[THR_NEAREST3] = thresh;
sf->thresh_mult[THR_NEAR3] = thresh;
}
sf->improved_mv_pred = 0;
}
if (Speed > 8) sf->quarter_pixel_search = 0;
if (cm->version == 0) {
cm->filter_type = NORMAL_LOOPFILTER;
if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER;
} else {
cm->filter_type = SIMPLE_LOOPFILTER;
}
/* This has a big hit on quality. Last resort */
if (Speed >= 15) sf->half_pixel_search = 0;
memset(cpi->mb.error_bins, 0, sizeof(cpi->mb.error_bins));
}; /* switch */
/* Slow quant, dct and trellis not worthwhile for first pass
* so make sure they are always turned off.
*/
if (cpi->pass == 1) {
sf->improved_quant = 0;
sf->optimize_coefficients = 0;
sf->improved_dct = 0;
}
if (cpi->sf.search_method == NSTEP) {
vp8_init3smotion_compensation(&cpi->mb,
cm->yv12_fb[cm->lst_fb_idx].y_stride);
} else if (cpi->sf.search_method == DIAMOND) {
vp8_init_dsmotion_compensation(&cpi->mb,
cm->yv12_fb[cm->lst_fb_idx].y_stride);
}
if (cpi->sf.improved_dct) {
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
} else {
/* No fast FDCT defined for any platform at this time. */
cpi->mb.short_fdct8x4 = vp8_short_fdct8x4;
cpi->mb.short_fdct4x4 = vp8_short_fdct4x4;
}
cpi->mb.short_walsh4x4 = vp8_short_walsh4x4;
if (cpi->sf.improved_quant) {
cpi->mb.quantize_b = vp8_regular_quantize_b;
} else {
cpi->mb.quantize_b = vp8_fast_quantize_b;
}
if (cpi->sf.improved_quant != last_improved_quant) vp8cx_init_quantizer(cpi);
if (cpi->sf.iterative_sub_pixel == 1) {
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively;
} else if (cpi->sf.quarter_pixel_search) {
cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step;
} else if (cpi->sf.half_pixel_search) {
cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step;
} else {
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
if (cpi->sf.optimize_coefficients == 1 && cpi->pass != 1) {
cpi->mb.optimize = 1;
} else {
cpi->mb.optimize = 0;
}
if (cpi->common.full_pixel) {
cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step;
}
#ifdef SPEEDSTATS
frames_at_speed[cpi->Speed]++;
#endif
}
#undef GOOD
#undef RT
static void alloc_raw_frame_buffers(VP8_COMP *cpi) {
#if VP8_TEMPORAL_ALT_REF
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
#endif
cpi->lookahead = vp8_lookahead_init(cpi->oxcf.Width, cpi->oxcf.Height,
cpi->oxcf.lag_in_frames);
if (!cpi->lookahead) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate lag buffers");
}
#if VP8_TEMPORAL_ALT_REF
if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer, width, height,
VP8BORDERINPIXELS)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate altref buffer");
}
#endif
}
static void dealloc_raw_frame_buffers(VP8_COMP *cpi) {
#if VP8_TEMPORAL_ALT_REF
vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer);
#endif
vp8_lookahead_destroy(cpi->lookahead);
}
static int vp8_alloc_partition_data(VP8_COMP *cpi) {
vpx_free(cpi->mb.pip);
cpi->mb.pip =
vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1),
sizeof(PARTITION_INFO));
if (!cpi->mb.pip) return 1;
cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1;
return 0;
}
void vp8_alloc_compressor_data(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
int width = cm->Width;
int height = cm->Height;
if (vp8_alloc_frame_buffers(cm, width, height)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate frame buffers");
}
if (vp8_alloc_partition_data(cpi)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate partition data");
}
if ((width & 0xf) != 0) width += 16 - (width & 0xf);
if ((height & 0xf) != 0) height += 16 - (height & 0xf);
if (vp8_yv12_alloc_frame_buffer(&cpi->pick_lf_lvl_frame, width, height,
VP8BORDERINPIXELS)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate last frame buffer");
}
if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height,
VP8BORDERINPIXELS)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate scaled source buffer");
}
vpx_free(cpi->tok);
{
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
unsigned int tokens = 8 * 24 * 16; /* one MB for each thread */
#else
unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16;
#endif
CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok)));
}
/* Data used for real time vc mode to see if gf needs refreshing */
cpi->zeromv_count = 0;
/* Structures used to monitor GF usage */
vpx_free(cpi->gf_active_flags);
CHECK_MEM_ERROR(
cpi->gf_active_flags,
vpx_calloc(sizeof(*cpi->gf_active_flags), cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
vpx_free(cpi->mb_activity_map);
CHECK_MEM_ERROR(
cpi->mb_activity_map,
vpx_calloc(sizeof(*cpi->mb_activity_map), cm->mb_rows * cm->mb_cols));
/* allocate memory for storing last frame's MVs for MV prediction. */
vpx_free(cpi->lfmv);
CHECK_MEM_ERROR(cpi->lfmv, vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
sizeof(*cpi->lfmv)));
vpx_free(cpi->lf_ref_frame_sign_bias);
CHECK_MEM_ERROR(cpi->lf_ref_frame_sign_bias,
vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
sizeof(*cpi->lf_ref_frame_sign_bias)));
vpx_free(cpi->lf_ref_frame);
CHECK_MEM_ERROR(cpi->lf_ref_frame,
vpx_calloc((cm->mb_rows + 2) * (cm->mb_cols + 2),
sizeof(*cpi->lf_ref_frame)));
/* Create the encoder segmentation map and set all entries to 0 */
vpx_free(cpi->segmentation_map);
CHECK_MEM_ERROR(
cpi->segmentation_map,
vpx_calloc(cm->mb_rows * cm->mb_cols, sizeof(*cpi->segmentation_map)));
cpi->cyclic_refresh_mode_index = 0;
vpx_free(cpi->active_map);
CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(*cpi->active_map)));
memset(cpi->active_map, 1, (cm->mb_rows * cm->mb_cols));
#if CONFIG_MULTITHREAD
if (width < 640) {
cpi->mt_sync_range = 1;
} else if (width <= 1280) {
cpi->mt_sync_range = 4;
} else if (width <= 2560) {
cpi->mt_sync_range = 8;
} else {
cpi->mt_sync_range = 16;
}
if (cpi->oxcf.multi_threaded > 1) {
int i;
vpx_free(cpi->mt_current_mb_col);
CHECK_MEM_ERROR(cpi->mt_current_mb_col,
vpx_malloc(sizeof(*cpi->mt_current_mb_col) * cm->mb_rows));
for (i = 0; i < cm->mb_rows; ++i)
vpx_atomic_init(&cpi->mt_current_mb_col[i], 0);
}
#endif
vpx_free(cpi->tplist);
CHECK_MEM_ERROR(cpi->tplist, vpx_malloc(sizeof(TOKENLIST) * cm->mb_rows));
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity > 0) {
vp8_denoiser_free(&cpi->denoiser);
if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows,
cm->mb_cols, cpi->oxcf.noise_sensitivity)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate denoiser");
}
}
#endif
}
/* Quant MOD */
static const int q_trans[] = {
0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19,
20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41,
43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79,
82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127,
};
int vp8_reverse_trans(int x) {
int i;
for (i = 0; i < 64; ++i) {
if (q_trans[i] >= x) return i;
}
return 63;
}
void vp8_new_framerate(VP8_COMP *cpi, double framerate) {
if (framerate < .1) framerate = 30;
cpi->framerate = framerate;
cpi->output_framerate = framerate;
cpi->per_frame_bandwidth =
(int)(cpi->oxcf.target_bandwidth / cpi->output_framerate);
cpi->av_per_frame_bandwidth = cpi->per_frame_bandwidth;
cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
/* Set Maximum gf/arf interval */
cpi->max_gf_interval = ((int)(cpi->output_framerate / 2.0) + 2);
if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12;
/* Extended interval for genuinely static scenes */
cpi->twopass.static_scene_max_gf_interval = cpi->key_frame_frequency >> 1;
/* Special conditions when altr ref frame enabled in lagged compress mode */
if (cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames) {
if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) {
cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
if (cpi->twopass.static_scene_max_gf_interval >
cpi->oxcf.lag_in_frames - 1) {
cpi->twopass.static_scene_max_gf_interval = cpi->oxcf.lag_in_frames - 1;
}
}
if (cpi->max_gf_interval > cpi->twopass.static_scene_max_gf_interval) {
cpi->max_gf_interval = cpi->twopass.static_scene_max_gf_interval;
}
}
static void init_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) {
VP8_COMMON *cm = &cpi->common;
cpi->oxcf = *oxcf;
cpi->auto_gold = 1;
cpi->auto_adjust_gold_quantizer = 1;
cm->version = oxcf->Version;
vp8_setup_version(cm);
/* Frame rate is not available on the first frame, as it's derived from
* the observed timestamps. The actual value used here doesn't matter
* too much, as it will adapt quickly.
*/
if (oxcf->timebase.num > 0) {
cpi->framerate =
(double)(oxcf->timebase.den) / (double)(oxcf->timebase.num);
} else {
cpi->framerate = 30;
}
/* If the reciprocal of the timebase seems like a reasonable framerate,
* then use that as a guess, otherwise use 30.
*/
if (cpi->framerate > 180) cpi->framerate = 30;
cpi->ref_framerate = cpi->framerate;
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->refresh_entropy_probs = 1;
/* change includes all joint functionality */
vp8_change_config(cpi, oxcf);
/* Initialize active best and worst q and average q values. */
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q;
/* Initialise the starting buffer levels */
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth;
cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth;
cpi->total_actual_bits = 0;
cpi->total_target_vs_actual = 0;
/* Temporal scalabilty */
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
double prev_layer_framerate = 0;
for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
init_temporal_layer_context(cpi, oxcf, i, prev_layer_framerate);
prev_layer_framerate =
cpi->output_framerate / cpi->oxcf.rate_decimator[i];
}
}
#if VP8_TEMPORAL_ALT_REF
{
int i;
cpi->fixed_divide[0] = 0;
for (i = 1; i < 512; ++i) cpi->fixed_divide[i] = 0x80000 / i;
}
#endif
}
static void update_layer_contexts(VP8_COMP *cpi) {
VP8_CONFIG *oxcf = &cpi->oxcf;
/* Update snapshots of the layer contexts to reflect new parameters */
if (oxcf->number_of_layers > 1) {
unsigned int i;
double prev_layer_framerate = 0;
assert(oxcf->number_of_layers <= VPX_TS_MAX_LAYERS);
for (i = 0; i < oxcf->number_of_layers && i < VPX_TS_MAX_LAYERS; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->framerate = cpi->ref_framerate / oxcf->rate_decimator[i];
lc->target_bandwidth = oxcf->target_bitrate[i] * 1000;
lc->starting_buffer_level = rescale(
(int)oxcf->starting_buffer_level_in_ms, lc->target_bandwidth, 1000);
if (oxcf->optimal_buffer_level == 0) {
lc->optimal_buffer_level = lc->target_bandwidth / 8;
} else {
lc->optimal_buffer_level = rescale(
(int)oxcf->optimal_buffer_level_in_ms, lc->target_bandwidth, 1000);
}
if (oxcf->maximum_buffer_size == 0) {
lc->maximum_buffer_size = lc->target_bandwidth / 8;
} else {
lc->maximum_buffer_size = rescale((int)oxcf->maximum_buffer_size_in_ms,
lc->target_bandwidth, 1000);
}
/* Work out the average size of a frame within this layer */
if (i > 0) {
lc->avg_frame_size_for_layer =
(int)((oxcf->target_bitrate[i] - oxcf->target_bitrate[i - 1]) *
1000 / (lc->framerate - prev_layer_framerate));
}
prev_layer_framerate = lc->framerate;
}
}
}
void vp8_change_config(VP8_COMP *cpi, VP8_CONFIG *oxcf) {
VP8_COMMON *cm = &cpi->common;
int last_w, last_h;
unsigned int prev_number_of_layers;
if (!cpi) return;
if (!oxcf) return;
if (cm->version != oxcf->Version) {
cm->version = oxcf->Version;
vp8_setup_version(cm);
}
last_w = cpi->oxcf.Width;
last_h = cpi->oxcf.Height;
prev_number_of_layers = cpi->oxcf.number_of_layers;
cpi->oxcf = *oxcf;
switch (cpi->oxcf.Mode) {
case MODE_REALTIME:
cpi->pass = 0;
cpi->compressor_speed = 2;
if (cpi->oxcf.cpu_used < -16) {
cpi->oxcf.cpu_used = -16;
}
if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16;
break;
case MODE_GOODQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5) {
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5;
break;
case MODE_BESTQUALITY:
cpi->pass = 0;
cpi->compressor_speed = 0;
break;
case MODE_FIRSTPASS:
cpi->pass = 1;
cpi->compressor_speed = 1;
break;
case MODE_SECONDPASS:
cpi->pass = 2;
cpi->compressor_speed = 1;
if (cpi->oxcf.cpu_used < -5) {
cpi->oxcf.cpu_used = -5;
}
if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5;
break;
case MODE_SECONDPASS_BEST:
cpi->pass = 2;
cpi->compressor_speed = 0;
break;
}
if (cpi->pass == 0) cpi->auto_worst_q = 1;
cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q];
cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q];
cpi->oxcf.cq_level = q_trans[cpi->oxcf.cq_level];
if (oxcf->fixed_q >= 0) {
if (oxcf->worst_allowed_q < 0) {
cpi->oxcf.fixed_q = q_trans[0];
} else {
cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q];
}
if (oxcf->alt_q < 0) {
cpi->oxcf.alt_q = q_trans[0];
} else {
cpi->oxcf.alt_q = q_trans[oxcf->alt_q];
}
if (oxcf->key_q < 0) {
cpi->oxcf.key_q = q_trans[0];
} else {
cpi->oxcf.key_q = q_trans[oxcf->key_q];
}
if (oxcf->gold_q < 0) {
cpi->oxcf.gold_q = q_trans[0];
} else {
cpi->oxcf.gold_q = q_trans[oxcf->gold_q];
}
}
cpi->baseline_gf_interval =
cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL;
// GF behavior for 1 pass CBR, used when error_resilience is off.
if (!cpi->oxcf.error_resilient_mode &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
cpi->oxcf.Mode == MODE_REALTIME)
cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr;
#if (CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
cpi->oxcf.token_partitions = 3;
#endif
if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) {
cm->multi_token_partition = (TOKEN_PARTITION)cpi->oxcf.token_partitions;
}
setup_features(cpi);
if (!cpi->use_roi_static_threshold) {
int i;
for (i = 0; i < MAX_MB_SEGMENTS; ++i) {
cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout;
}
}
/* At the moment the first order values may not be > MAXQ */
if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ;
/* local file playback mode == really big buffer */
if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) {
cpi->oxcf.starting_buffer_level = 60000;
cpi->oxcf.optimal_buffer_level = 60000;
cpi->oxcf.maximum_buffer_size = 240000;
cpi->oxcf.starting_buffer_level_in_ms = 60000;
cpi->oxcf.optimal_buffer_level_in_ms = 60000;
cpi->oxcf.maximum_buffer_size_in_ms = 240000;
}
/* Convert target bandwidth from Kbit/s to Bit/s */
cpi->oxcf.target_bandwidth *= 1000;
cpi->oxcf.starting_buffer_level = rescale(
(int)cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000);
/* Set or reset optimal and maximum buffer levels. */
if (cpi->oxcf.optimal_buffer_level == 0) {
cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8;
} else {
cpi->oxcf.optimal_buffer_level = rescale(
(int)cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000);
}
if (cpi->oxcf.maximum_buffer_size == 0) {
cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8;
} else {
cpi->oxcf.maximum_buffer_size = rescale((int)cpi->oxcf.maximum_buffer_size,
cpi->oxcf.target_bandwidth, 1000);
}
// Under a configuration change, where maximum_buffer_size may change,
// keep buffer level clipped to the maximum allowed buffer size.
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
cpi->buffer_level = cpi->bits_off_target;
}
/* Set up frame rate and related parameters rate control values. */
vp8_new_framerate(cpi, cpi->framerate);
/* Set absolute upper and lower quality limits */
cpi->worst_quality = cpi->oxcf.worst_allowed_q;
cpi->best_quality = cpi->oxcf.best_allowed_q;
/* active values should only be modified if out of new range */
if (cpi->active_worst_quality > cpi->oxcf.worst_allowed_q) {
cpi->active_worst_quality = cpi->oxcf.worst_allowed_q;
}
/* less likely */
else if (cpi->active_worst_quality < cpi->oxcf.best_allowed_q) {
cpi->active_worst_quality = cpi->oxcf.best_allowed_q;
}
if (cpi->active_best_quality < cpi->oxcf.best_allowed_q) {
cpi->active_best_quality = cpi->oxcf.best_allowed_q;
}
/* less likely */
else if (cpi->active_best_quality > cpi->oxcf.worst_allowed_q) {
cpi->active_best_quality = cpi->oxcf.worst_allowed_q;
}
cpi->buffered_mode = cpi->oxcf.optimal_buffer_level > 0;
cpi->cq_target_quality = cpi->oxcf.cq_level;
/* Only allow dropped frames in buffered mode */
cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode;
cpi->target_bandwidth = cpi->oxcf.target_bandwidth;
// Check if the number of temporal layers has changed, and if so reset the
// pattern counter and set/initialize the temporal layer context for the
// new layer configuration.
if (cpi->oxcf.number_of_layers != prev_number_of_layers) {
// If the number of temporal layers are changed we must start at the
// base of the pattern cycle, so set the layer id to 0 and reset
// the temporal pattern counter.
if (cpi->temporal_layer_id > 0) {
cpi->temporal_layer_id = 0;
}
cpi->temporal_pattern_counter = 0;
reset_temporal_layer_change(cpi, oxcf, prev_number_of_layers);
}
if (!cpi->initial_width) {
cpi->initial_width = cpi->oxcf.Width;
cpi->initial_height = cpi->oxcf.Height;
}
cm->Width = cpi->oxcf.Width;
cm->Height = cpi->oxcf.Height;
assert(cm->Width <= cpi->initial_width);
assert(cm->Height <= cpi->initial_height);
/* TODO(jkoleszar): if an internal spatial resampling is active,
* and we downsize the input image, maybe we should clear the
* internal scale immediately rather than waiting for it to
* correct.
*/
/* VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) */
if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7;
cm->sharpness_level = cpi->oxcf.Sharpness;
if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) {
int hr, hs, vr, vs;
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
/* always go to the next whole number */
cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs;
cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs;
}
if (last_w != cpi->oxcf.Width || last_h != cpi->oxcf.Height) {
cpi->force_next_frame_intra = 1;
}
if (((cm->Width + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_width ||
((cm->Height + 15) & ~15) != cm->yv12_fb[cm->lst_fb_idx].y_height ||
cm->yv12_fb[cm->lst_fb_idx].y_width == 0) {
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
vp8_alloc_compressor_data(cpi);
}
if (cpi->oxcf.fixed_q >= 0) {
cpi->last_q[0] = cpi->oxcf.fixed_q;
cpi->last_q[1] = cpi->oxcf.fixed_q;
}
cpi->Speed = cpi->oxcf.cpu_used;
/* force to allowlag to 0 if lag_in_frames is 0; */
if (cpi->oxcf.lag_in_frames == 0) {
cpi->oxcf.allow_lag = 0;
}
/* Limit on lag buffers as these are not currently dynamically allocated */
else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) {
cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS;
}
/* YX Temp */
cpi->alt_ref_source = NULL;
cpi->is_src_frame_alt_ref = 0;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity) {
if (!cpi->denoiser.yv12_mc_running_avg.buffer_alloc) {
int width = (cpi->oxcf.Width + 15) & ~15;
int height = (cpi->oxcf.Height + 15) & ~15;
if (vp8_denoiser_allocate(&cpi->denoiser, width, height, cm->mb_rows,
cm->mb_cols, cpi->oxcf.noise_sensitivity)) {
vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR,
"Failed to allocate denoiser");
}
}
}
#endif
#if 0
/* Experimental RD Code */
cpi->frame_distortion = 0;
cpi->last_frame_distortion = 0;
#endif
}
#ifndef M_LOG2_E
#define M_LOG2_E 0.693147180559945309417
#endif
#define log2f(x) (log(x) / (float)M_LOG2_E)
static void cal_mvsadcosts(int *mvsadcost[2]) {
int i = 1;
mvsadcost[0][0] = 300;
mvsadcost[1][0] = 300;
do {
double z = 256 * (2 * (log2f(8 * i) + .6));
mvsadcost[0][i] = (int)z;
mvsadcost[1][i] = (int)z;
mvsadcost[0][-i] = (int)z;
mvsadcost[1][-i] = (int)z;
} while (++i <= mvfp_max);
}
struct VP8_COMP *vp8_create_compressor(VP8_CONFIG *oxcf) {
int i;
VP8_COMP *cpi;
VP8_COMMON *cm;
cpi = vpx_memalign(32, sizeof(VP8_COMP));
/* Check that the CPI instance is valid */
if (!cpi) return 0;
cm = &cpi->common;
memset(cpi, 0, sizeof(VP8_COMP));
if (setjmp(cm->error.jmp)) {
cpi->common.error.setjmp = 0;
vp8_remove_compressor(&cpi);
return 0;
}
cpi->common.error.setjmp = 1;
CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site),
(MAX_MVSEARCH_STEPS * 8) + 1));
vp8_create_common(&cpi->common);
init_config(cpi, oxcf);
memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob,
sizeof(vp8cx_base_skip_false_prob));
cpi->common.current_video_frame = 0;
cpi->temporal_pattern_counter = 0;
cpi->temporal_layer_id = -1;
cpi->kf_overspend_bits = 0;
cpi->kf_bitrate_adjustment = 0;
cpi->frames_till_gf_update_due = 0;
cpi->gf_overspend_bits = 0;
cpi->non_gf_bitrate_adjustment = 0;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
cpi->prob_intra_coded = 63;
/* Prime the recent reference frame usage counters.
* Hereafter they will be maintained as a sort of moving average
*/
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* Set reference frame sign bias for ALTREF frame to 1 (for now) */
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
cpi->twopass.gf_decay_rate = 0;
cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL;
cpi->gold_is_last = 0;
cpi->alt_is_last = 0;
cpi->gold_is_alt = 0;
cpi->active_map_enabled = 0;
cpi->use_roi_static_threshold = 0;
#if 0
/* Experimental code for lagged and one pass */
/* Initialise one_pass GF frames stats */
/* Update stats used for GF selection */
if (cpi->pass == 0)
{
cpi->one_pass_frame_index = 0;
for (i = 0; i < MAX_LAG_BUFFERS; ++i)
{
cpi->one_pass_frame_stats[i].frames_so_far = 0;
cpi->one_pass_frame_stats[i].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[i].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr = 0.0;
cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc = 0.0;
cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0;
}
}
#endif
cpi->mse_source_denoised = 0;
/* Should we use the cyclic refresh method.
* Currently there is no external control for this.
* Enable it for error_resilient_mode, or for 1 pass CBR mode.
*/
cpi->cyclic_refresh_mode_enabled =
(cpi->oxcf.error_resilient_mode ||
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER &&
cpi->oxcf.Mode <= 2));
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 7;
if (cpi->oxcf.number_of_layers == 1) {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 20;
} else if (cpi->oxcf.number_of_layers == 2) {
cpi->cyclic_refresh_mode_max_mbs_perframe =
(cpi->common.mb_rows * cpi->common.mb_cols) / 10;
}
cpi->cyclic_refresh_mode_index = 0;
cpi->cyclic_refresh_q = 32;
// GF behavior for 1 pass CBR, used when error_resilience is off.
cpi->gf_update_onepass_cbr = 0;
cpi->gf_noboost_onepass_cbr = 0;
if (!cpi->oxcf.error_resilient_mode &&
cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER && cpi->oxcf.Mode <= 2) {
cpi->gf_update_onepass_cbr = 1;
cpi->gf_noboost_onepass_cbr = 1;
cpi->gf_interval_onepass_cbr =
cpi->cyclic_refresh_mode_max_mbs_perframe > 0
? (2 * (cpi->common.mb_rows * cpi->common.mb_cols) /
cpi->cyclic_refresh_mode_max_mbs_perframe)
: 10;
cpi->gf_interval_onepass_cbr =
VPXMIN(40, VPXMAX(6, cpi->gf_interval_onepass_cbr));
cpi->baseline_gf_interval = cpi->gf_interval_onepass_cbr;
}
if (cpi->cyclic_refresh_mode_enabled) {
CHECK_MEM_ERROR(cpi->cyclic_refresh_map,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
} else {
cpi->cyclic_refresh_map = (signed char *)NULL;
}
CHECK_MEM_ERROR(cpi->skin_map, vpx_calloc(cm->mb_rows * cm->mb_cols,
sizeof(cpi->skin_map[0])));
CHECK_MEM_ERROR(cpi->consec_zero_last,
vpx_calloc(cm->mb_rows * cm->mb_cols, 1));
CHECK_MEM_ERROR(cpi->consec_zero_last_mvbias,
vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1));
#ifdef VP8_ENTROPY_STATS
init_context_counters();
#endif
/*Initialize the feed-forward activity masking.*/
cpi->activity_avg = 90 << 12;
/* Give a sensible default for the first frame. */
cpi->frames_since_key = 8;
cpi->key_frame_frequency = cpi->oxcf.key_freq;
cpi->this_key_frame_forced = 0;
cpi->next_key_frame_forced = 0;
cpi->source_alt_ref_pending = 0;
cpi->source_alt_ref_active = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->force_maxqp = 0;
cpi->frames_since_last_drop_overshoot = 0;
cpi->b_calculate_psnr = CONFIG_INTERNAL_STATS;
#if CONFIG_INTERNAL_STATS
cpi->b_calculate_ssimg = 0;
cpi->count = 0;
cpi->bytes = 0;
if (cpi->b_calculate_psnr) {
cpi->total_sq_error = 0.0;
cpi->total_sq_error2 = 0.0;
cpi->total_y = 0.0;
cpi->total_u = 0.0;
cpi->total_v = 0.0;
cpi->total = 0.0;
cpi->totalp_y = 0.0;
cpi->totalp_u = 0.0;
cpi->totalp_v = 0.0;
cpi->totalp = 0.0;
cpi->tot_recode_hits = 0;
cpi->summed_quality = 0;
cpi->summed_weights = 0;
}
#endif
cpi->first_time_stamp_ever = 0x7FFFFFFF;
cpi->frames_till_gf_update_due = 0;
cpi->key_frame_count = 1;
cpi->ni_av_qi = cpi->oxcf.worst_allowed_q;
cpi->ni_tot_qi = 0;
cpi->ni_frames = 0;
cpi->total_byte_count = 0;
cpi->drop_frame = 0;
cpi->rate_correction_factor = 1.0;
cpi->key_frame_rate_correction_factor = 1.0;
cpi->gf_rate_correction_factor = 1.0;
cpi->twopass.est_max_qcorrection_factor = 1.0;
for (i = 0; i < KEY_FRAME_CONTEXT; ++i) {
cpi->prior_key_frame_distance[i] = (int)cpi->output_framerate;
}
#ifdef OUTPUT_YUV_SRC
yuv_file = fopen("bd.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_DENOISED
yuv_denoised_file = fopen("denoised.yuv", "ab");
#endif
#ifdef OUTPUT_YUV_SKINMAP
yuv_skinmap_file = fopen("skinmap.yuv", "wb");
#endif
#if 0
framepsnr = fopen("framepsnr.stt", "a");
kf_list = fopen("kf_list.stt", "w");
#endif
cpi->output_pkt_list = oxcf->output_pkt_list;
#if !CONFIG_REALTIME_ONLY
if (cpi->pass == 1) {
vp8_init_first_pass(cpi);
} else if (cpi->pass == 2) {
size_t packet_sz = sizeof(FIRSTPASS_STATS);
int packets = (int)(oxcf->two_pass_stats_in.sz / packet_sz);
cpi->twopass.stats_in_start = oxcf->two_pass_stats_in.buf;
cpi->twopass.stats_in = cpi->twopass.stats_in_start;
cpi->twopass.stats_in_end =
(void *)((char *)cpi->twopass.stats_in + (packets - 1) * packet_sz);
vp8_init_second_pass(cpi);
}
#endif
if (cpi->compressor_speed == 2) {
cpi->avg_encode_time = 0;
cpi->avg_pick_mode_time = 0;
}
vp8_set_speed_features(cpi);
/* Set starting values of RD threshold multipliers (128 = *1) */
for (i = 0; i < MAX_MODES; ++i) {
cpi->mb.rd_thresh_mult[i] = 128;
}
#ifdef VP8_ENTROPY_STATS
init_mv_ref_counts();
#endif
#if CONFIG_MULTITHREAD
if (vp8cx_create_encoder_threads(cpi)) {
vp8_remove_compressor(&cpi);
return 0;
}
#endif
cpi->fn_ptr[BLOCK_16X16].sdf = vpx_sad16x16;
cpi->fn_ptr[BLOCK_16X16].vf = vpx_variance16x16;
cpi->fn_ptr[BLOCK_16X16].svf = vpx_sub_pixel_variance16x16;
cpi->fn_ptr[BLOCK_16X16].sdx3f = vpx_sad16x16x3;
cpi->fn_ptr[BLOCK_16X16].sdx8f = vpx_sad16x16x8;
cpi->fn_ptr[BLOCK_16X16].sdx4df = vpx_sad16x16x4d;
cpi->fn_ptr[BLOCK_16X8].sdf = vpx_sad16x8;
cpi->fn_ptr[BLOCK_16X8].vf = vpx_variance16x8;
cpi->fn_ptr[BLOCK_16X8].svf = vpx_sub_pixel_variance16x8;
cpi->fn_ptr[BLOCK_16X8].sdx3f = vpx_sad16x8x3;
cpi->fn_ptr[BLOCK_16X8].sdx8f = vpx_sad16x8x8;
cpi->fn_ptr[BLOCK_16X8].sdx4df = vpx_sad16x8x4d;
cpi->fn_ptr[BLOCK_8X16].sdf = vpx_sad8x16;
cpi->fn_ptr[BLOCK_8X16].vf = vpx_variance8x16;
cpi->fn_ptr[BLOCK_8X16].svf = vpx_sub_pixel_variance8x16;
cpi->fn_ptr[BLOCK_8X16].sdx3f = vpx_sad8x16x3;
cpi->fn_ptr[BLOCK_8X16].sdx8f = vpx_sad8x16x8;
cpi->fn_ptr[BLOCK_8X16].sdx4df = vpx_sad8x16x4d;
cpi->fn_ptr[BLOCK_8X8].sdf = vpx_sad8x8;
cpi->fn_ptr[BLOCK_8X8].vf = vpx_variance8x8;
cpi->fn_ptr[BLOCK_8X8].svf = vpx_sub_pixel_variance8x8;
cpi->fn_ptr[BLOCK_8X8].sdx3f = vpx_sad8x8x3;
cpi->fn_ptr[BLOCK_8X8].sdx8f = vpx_sad8x8x8;
cpi->fn_ptr[BLOCK_8X8].sdx4df = vpx_sad8x8x4d;
cpi->fn_ptr[BLOCK_4X4].sdf = vpx_sad4x4;
cpi->fn_ptr[BLOCK_4X4].vf = vpx_variance4x4;
cpi->fn_ptr[BLOCK_4X4].svf = vpx_sub_pixel_variance4x4;
cpi->fn_ptr[BLOCK_4X4].sdx3f = vpx_sad4x4x3;
cpi->fn_ptr[BLOCK_4X4].sdx8f = vpx_sad4x4x8;
cpi->fn_ptr[BLOCK_4X4].sdx4df = vpx_sad4x4x4d;
#if ARCH_X86 || ARCH_X86_64
cpi->fn_ptr[BLOCK_16X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_16X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X16].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_8X8].copymem = vp8_copy32xn;
cpi->fn_ptr[BLOCK_4X4].copymem = vp8_copy32xn;
#endif
cpi->full_search_sad = vp8_full_search_sad;
cpi->diamond_search_sad = vp8_diamond_search_sad;
cpi->refining_search_sad = vp8_refining_search_sad;
/* make sure frame 1 is okay */
cpi->mb.error_bins[0] = cpi->common.MBs;
/* vp8cx_init_quantizer() is first called here. Add check in
* vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only
* called later when needed. This will avoid unnecessary calls of
* vp8cx_init_quantizer() for every frame.
*/
vp8cx_init_quantizer(cpi);
vp8_loop_filter_init(cm);
cpi->common.error.setjmp = 0;
#if CONFIG_MULTI_RES_ENCODING
/* Calculate # of MBs in a row in lower-resolution level image. */
if (cpi->oxcf.mr_encoder_id > 0) vp8_cal_low_res_mb_cols(cpi);
#endif
/* setup RD costs to MACROBLOCK struct */
cpi->mb.mvcost[0] = &cpi->rd_costs.mvcosts[0][mv_max + 1];
cpi->mb.mvcost[1] = &cpi->rd_costs.mvcosts[1][mv_max + 1];
cpi->mb.mvsadcost[0] = &cpi->rd_costs.mvsadcosts[0][mvfp_max + 1];
cpi->mb.mvsadcost[1] = &cpi->rd_costs.mvsadcosts[1][mvfp_max + 1];
cal_mvsadcosts(cpi->mb.mvsadcost);
cpi->mb.mbmode_cost = cpi->rd_costs.mbmode_cost;
cpi->mb.intra_uv_mode_cost = cpi->rd_costs.intra_uv_mode_cost;
cpi->mb.bmode_costs = cpi->rd_costs.bmode_costs;
cpi->mb.inter_bmode_costs = cpi->rd_costs.inter_bmode_costs;
cpi->mb.token_costs = cpi->rd_costs.token_costs;
/* setup block ptrs & offsets */
vp8_setup_block_ptrs(&cpi->mb);
vp8_setup_block_dptrs(&cpi->mb.e_mbd);
return cpi;
}
void vp8_remove_compressor(VP8_COMP **ptr) {
VP8_COMP *cpi = *ptr;
if (!cpi) return;
if (cpi && (cpi->common.current_video_frame > 0)) {
#if !CONFIG_REALTIME_ONLY
if (cpi->pass == 2) {
vp8_end_second_pass(cpi);
}
#endif
#ifdef VP8_ENTROPY_STATS
print_context_counters();
print_tree_update_probs();
print_mode_context();
#endif
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
FILE *f = fopen("opsnr.stt", "a");
double time_encoded =
(cpi->last_end_time_stamp_seen - cpi->first_time_stamp_ever) /
10000000.000;
double dr = (double)cpi->bytes * 8.0 / 1000.0 / time_encoded;
if (cpi->b_calculate_psnr) {
if (cpi->oxcf.number_of_layers > 1) {
int i;
fprintf(f,
"Layer\tBitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\n");
for (i = 0; i < (int)cpi->oxcf.number_of_layers; ++i) {
double dr =
(double)cpi->bytes_in_layer[i] * 8.0 / 1000.0 / time_encoded;
double samples = 3.0 / 2 * cpi->frames_in_layer[i] *
cpi->common.Width * cpi->common.Height;
double total_psnr =
vpx_sse_to_psnr(samples, 255.0, cpi->total_error2[i]);
double total_psnr2 =
vpx_sse_to_psnr(samples, 255.0, cpi->total_error2_p[i]);
double total_ssim =
100 * pow(cpi->sum_ssim[i] / cpi->sum_weights[i], 8.0);
fprintf(f,
"%5d\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\t%7.3f\n",
i, dr, cpi->sum_psnr[i] / cpi->frames_in_layer[i],
total_psnr, cpi->sum_psnr_p[i] / cpi->frames_in_layer[i],
total_psnr2, total_ssim);
}
} else {
double samples =
3.0 / 2 * cpi->count * cpi->common.Width * cpi->common.Height;
double total_psnr =
vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error);
double total_psnr2 =
vpx_sse_to_psnr(samples, 255.0, cpi->total_sq_error2);
double total_ssim =
100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0);
fprintf(f,
"Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\t"
"GLPsnrP\tVPXSSIM\n");
fprintf(f,
"%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t"
"%7.3f\n",
dr, cpi->total / cpi->count, total_psnr,
cpi->totalp / cpi->count, total_psnr2, total_ssim);
}
}
fclose(f);
#if 0
f = fopen("qskip.stt", "a");
fprintf(f, "minq:%d -maxq:%d skiptrue:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount);
fclose(f);
#endif
}
#endif
#ifdef SPEEDSTATS
if (cpi->compressor_speed == 2) {
int i;
FILE *f = fopen("cxspeed.stt", "a");
cnt_pm /= cpi->common.MBs;
for (i = 0; i < 16; ++i) fprintf(f, "%5d", frames_at_speed[i]);
fprintf(f, "\n");
fclose(f);
}
#endif
#ifdef MODE_STATS
{
extern int count_mb_seg[4];
FILE *f = fopen("modes.stt", "a");
double dr = (double)cpi->framerate * (double)bytes * (double)8 /
(double)count / (double)1000;
fprintf(f, "intra_mode in Intra Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1],
y_modes[2], y_modes[3], y_modes[4]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1],
uv_modes[2], uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 10; ++i) fprintf(f, "%8d, ", b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "Modes in Inter Frames:\n");
fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n",
inter_y_modes[0], inter_y_modes[1], inter_y_modes[2],
inter_y_modes[3], inter_y_modes[4], inter_y_modes[5],
inter_y_modes[6], inter_y_modes[7], inter_y_modes[8],
inter_y_modes[9]);
fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0],
inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]);
fprintf(f, "B: ");
{
int i;
for (i = 0; i < 15; ++i) fprintf(f, "%8d, ", inter_b_modes[i]);
fprintf(f, "\n");
}
fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1],
count_mb_seg[2], count_mb_seg[3]);
fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4],
inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4],
inter_b_modes[NEW4X4]);
fclose(f);
}
#endif
#ifdef VP8_ENTROPY_STATS
{
int i, j, k;
FILE *fmode = fopen("modecontext.c", "w");
fprintf(fmode, "\n#include \"entropymode.h\"\n\n");
fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts ");
fprintf(fmode,
"[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n");
for (i = 0; i < 10; ++i) {
fprintf(fmode, " { /* Above Mode : %d */\n", i);
for (j = 0; j < 10; ++j) {
fprintf(fmode, " {");
for (k = 0; k < 10; ++k) {
if (!intra_mode_stats[i][j][k])
fprintf(fmode, " %5d, ", 1);
else
fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]);
}
fprintf(fmode, "}, /* left_mode %d */\n", j);
}
fprintf(fmode, " },\n");
}
fprintf(fmode, "};\n");
fclose(fmode);
}
#endif
#if defined(SECTIONBITS_OUTPUT)
if (0) {
int i;
FILE *f = fopen("tokenbits.stt", "a");
for (i = 0; i < 28; ++i) fprintf(f, "%8d", (int)(Sectionbits[i] / 256));
fprintf(f, "\n");
fclose(f);
}
#endif
#if 0
{
printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000);
printf("\n_frames recive_data encod_mb_row compress_frame Total\n");
printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000);
}
#endif
}
#if CONFIG_MULTITHREAD
vp8cx_remove_encoder_threads(cpi);
#endif
#if CONFIG_TEMPORAL_DENOISING
vp8_denoiser_free(&cpi->denoiser);
#endif
dealloc_compressor_data(cpi);
vpx_free(cpi->mb.ss);
vpx_free(cpi->tok);
vpx_free(cpi->skin_map);
vpx_free(cpi->cyclic_refresh_map);
vpx_free(cpi->consec_zero_last);
vpx_free(cpi->consec_zero_last_mvbias);
vp8_remove_common(&cpi->common);
vpx_free(cpi);
*ptr = 0;
#ifdef OUTPUT_YUV_SRC
fclose(yuv_file);
#endif
#ifdef OUTPUT_YUV_DENOISED
fclose(yuv_denoised_file);
#endif
#ifdef OUTPUT_YUV_SKINMAP
fclose(yuv_skinmap_file);
#endif
#if 0
if (keyfile)
fclose(keyfile);
if (framepsnr)
fclose(framepsnr);
if (kf_list)
fclose(kf_list);
#endif
}
static uint64_t calc_plane_error(unsigned char *orig, int orig_stride,
unsigned char *recon, int recon_stride,
unsigned int cols, unsigned int rows) {
unsigned int row, col;
uint64_t total_sse = 0;
int diff;
for (row = 0; row + 16 <= rows; row += 16) {
for (col = 0; col + 16 <= cols; col += 16) {
unsigned int sse;
vpx_mse16x16(orig + col, orig_stride, recon + col, recon_stride, &sse);
total_sse += sse;
}
/* Handle odd-sized width */
if (col < cols) {
unsigned int border_row, border_col;
unsigned char *border_orig = orig;
unsigned char *border_recon = recon;
for (border_row = 0; border_row < 16; ++border_row) {
for (border_col = col; border_col < cols; ++border_col) {
diff = border_orig[border_col] - border_recon[border_col];
total_sse += diff * diff;
}
border_orig += orig_stride;
border_recon += recon_stride;
}
}
orig += orig_stride * 16;
recon += recon_stride * 16;
}
/* Handle odd-sized height */
for (; row < rows; ++row) {
for (col = 0; col < cols; ++col) {
diff = orig[col] - recon[col];
total_sse += diff * diff;
}
orig += orig_stride;
recon += recon_stride;
}
vpx_clear_system_state();
return total_sse;
}
static void generate_psnr_packet(VP8_COMP *cpi) {
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
struct vpx_codec_cx_pkt pkt;
uint64_t sse;
int i;
unsigned int width = cpi->common.Width;
unsigned int height = cpi->common.Height;
pkt.kind = VPX_CODEC_PSNR_PKT;
sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, width, height);
pkt.data.psnr.sse[0] = sse;
pkt.data.psnr.sse[1] = sse;
pkt.data.psnr.samples[0] = width * height;
pkt.data.psnr.samples[1] = width * height;
width = (width + 1) / 2;
height = (height + 1) / 2;
sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer,
recon->uv_stride, width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[2] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[2] = width * height;
sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer,
recon->uv_stride, width, height);
pkt.data.psnr.sse[0] += sse;
pkt.data.psnr.sse[3] = sse;
pkt.data.psnr.samples[0] += width * height;
pkt.data.psnr.samples[3] = width * height;
for (i = 0; i < 4; ++i) {
pkt.data.psnr.psnr[i] = vpx_sse_to_psnr(pkt.data.psnr.samples[i], 255.0,
(double)(pkt.data.psnr.sse[i]));
}
vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt);
}
int vp8_use_as_reference(VP8_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > 7) return -1;
cpi->ref_frame_flags = ref_frame_flags;
return 0;
}
int vp8_update_reference(VP8_COMP *cpi, int ref_frame_flags) {
if (ref_frame_flags > 7) return -1;
cpi->common.refresh_golden_frame = 0;
cpi->common.refresh_alt_ref_frame = 0;
cpi->common.refresh_last_frame = 0;
if (ref_frame_flags & VP8_LAST_FRAME) cpi->common.refresh_last_frame = 1;
if (ref_frame_flags & VP8_GOLD_FRAME) cpi->common.refresh_golden_frame = 1;
if (ref_frame_flags & VP8_ALTR_FRAME) cpi->common.refresh_alt_ref_frame = 1;
return 0;
}
int vp8_get_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FRAME) {
ref_fb_idx = cm->lst_fb_idx;
} else if (ref_frame_flag == VP8_GOLD_FRAME) {
ref_fb_idx = cm->gld_fb_idx;
} else if (ref_frame_flag == VP8_ALTR_FRAME) {
ref_fb_idx = cm->alt_fb_idx;
} else {
return -1;
}
vp8_yv12_copy_frame(&cm->yv12_fb[ref_fb_idx], sd);
return 0;
}
int vp8_set_reference(VP8_COMP *cpi, enum vpx_ref_frame_type ref_frame_flag,
YV12_BUFFER_CONFIG *sd) {
VP8_COMMON *cm = &cpi->common;
int ref_fb_idx;
if (ref_frame_flag == VP8_LAST_FRAME) {
ref_fb_idx = cm->lst_fb_idx;
} else if (ref_frame_flag == VP8_GOLD_FRAME) {
ref_fb_idx = cm->gld_fb_idx;
} else if (ref_frame_flag == VP8_ALTR_FRAME) {
ref_fb_idx = cm->alt_fb_idx;
} else {
return -1;
}
vp8_yv12_copy_frame(sd, &cm->yv12_fb[ref_fb_idx]);
return 0;
}
int vp8_update_entropy(VP8_COMP *cpi, int update) {
VP8_COMMON *cm = &cpi->common;
cm->refresh_entropy_probs = update;
return 0;
}
static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
/* are we resizing the image */
if (cm->horiz_scale != 0 || cm->vert_scale != 0) {
#if CONFIG_SPATIAL_RESAMPLING
int hr, hs, vr, vs;
int tmp_height;
if (cm->vert_scale == 3) {
tmp_height = 9;
} else {
tmp_height = 11;
}
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
vpx_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer,
tmp_height, hs, hr, vs, vr, 0);
vp8_yv12_extend_frame_borders(&cpi->scaled_source);
cpi->Source = &cpi->scaled_source;
#endif
} else {
cpi->Source = sd;
}
}
static int resize_key_frame(VP8_COMP *cpi) {
#if CONFIG_SPATIAL_RESAMPLING
VP8_COMMON *cm = &cpi->common;
/* Do we need to apply resampling for one pass cbr.
* In one pass this is more limited than in two pass cbr.
* The test and any change is only made once per key frame sequence.
*/
if (cpi->oxcf.allow_spatial_resampling &&
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) {
int hr, hs, vr, vs;
int new_width, new_height;
/* If we are below the resample DOWN watermark then scale down a
* notch.
*/
if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark *
cpi->oxcf.optimal_buffer_level / 100)) {
cm->horiz_scale =
(cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO;
cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO;
}
/* Should we now start scaling back up */
else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark *
cpi->oxcf.optimal_buffer_level / 100)) {
cm->horiz_scale =
(cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL;
cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL;
}
/* Get the new height and width */
Scale2Ratio(cm->horiz_scale, &hr, &hs);
Scale2Ratio(cm->vert_scale, &vr, &vs);
new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs;
new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs;
/* If the image size has changed we need to reallocate the buffers
* and resample the source image
*/
if ((cm->Width != new_width) || (cm->Height != new_height)) {
cm->Width = new_width;
cm->Height = new_height;
vp8_alloc_compressor_data(cpi);
scale_and_extend_source(cpi->un_scaled_source, cpi);
return 1;
}
}
#endif
return 0;
}
static void update_alt_ref_frame_stats(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
/* Select an interval before next GF or altref */
if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) {
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames is
* dealt with elsewhere.
*/
cpi->gf_overspend_bits += cpi->projected_frame_size;
cpi->non_gf_bitrate_adjustment =
cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
/* this frame refreshes means next frames don't unless specified by user */
cpi->frames_since_golden = 0;
/* Clear the alternate reference update pending flag. */
cpi->source_alt_ref_pending = 0;
/* Set the alternate reference frame active flag */
cpi->source_alt_ref_active = 1;
}
static void update_golden_frame_stats(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
/* Update the Golden frame usage counts. */
if (cm->refresh_golden_frame) {
/* Select an interval before next GF */
if (!cpi->auto_gold) cpi->frames_till_gf_update_due = DEFAULT_GF_INTERVAL;
if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) {
cpi->current_gf_interval = cpi->frames_till_gf_update_due;
/* Set the bits per frame that we should try and recover in
* subsequent inter frames to account for the extra GF spend...
* note that his does not apply for GF updates that occur
* coincident with a key frame as the extra cost of key frames
* is dealt with elsewhere.
*/
if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) {
/* Calcluate GF bits to be recovered
* Projected size - av frame bits available for inter
* frames for clip as a whole
*/
cpi->gf_overspend_bits +=
(cpi->projected_frame_size - cpi->inter_frame_target);
}
cpi->non_gf_bitrate_adjustment =
cpi->gf_overspend_bits / cpi->frames_till_gf_update_due;
}
/* Update data structure that monitors level of reference to last GF */
memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols));
cpi->gf_active_count = cm->mb_rows * cm->mb_cols;
/* this frame refreshes means next frames don't unless specified by
* user
*/
cm->refresh_golden_frame = 0;
cpi->frames_since_golden = 0;
cpi->recent_ref_frame_usage[INTRA_FRAME] = 1;
cpi->recent_ref_frame_usage[LAST_FRAME] = 1;
cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1;
cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1;
/* ******** Fixed Q test code only ************ */
/* If we are going to use the ALT reference for the next group of
* frames set a flag to say so.
*/
if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate &&
!cpi->common.refresh_alt_ref_frame) {
cpi->source_alt_ref_pending = 1;
cpi->frames_till_gf_update_due = cpi->baseline_gf_interval;
}
if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = 0;
/* Decrement count down till next gf */
if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--;
} else if (!cpi->common.refresh_alt_ref_frame) {
/* Decrement count down till next gf */
if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--;
if (cpi->frames_till_alt_ref_frame) cpi->frames_till_alt_ref_frame--;
cpi->frames_since_golden++;
if (cpi->frames_since_golden > 1) {
cpi->recent_ref_frame_usage[INTRA_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[INTRA_FRAME];
cpi->recent_ref_frame_usage[LAST_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[LAST_FRAME];
cpi->recent_ref_frame_usage[GOLDEN_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[GOLDEN_FRAME];
cpi->recent_ref_frame_usage[ALTREF_FRAME] +=
cpi->mb.count_mb_ref_frame_usage[ALTREF_FRAME];
}
}
}
/* This function updates the reference frame probability estimates that
* will be used during mode selection
*/
static void update_rd_ref_frame_probs(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
const int *const rfct = cpi->mb.count_mb_ref_frame_usage;
const int rf_intra = rfct[INTRA_FRAME];
const int rf_inter =
rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME];
if (cm->frame_type == KEY_FRAME) {
cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
} else if (!(rf_intra + rf_inter)) {
cpi->prob_intra_coded = 63;
cpi->prob_last_coded = 128;
cpi->prob_gf_coded = 128;
}
/* update reference frame costs since we can do better than what we got
* last frame.
*/
if (cpi->oxcf.number_of_layers == 1) {
if (cpi->common.refresh_alt_ref_frame) {
cpi->prob_intra_coded += 40;
if (cpi->prob_intra_coded > 255) cpi->prob_intra_coded = 255;
cpi->prob_last_coded = 200;
cpi->prob_gf_coded = 1;
} else if (cpi->frames_since_golden == 0) {
cpi->prob_last_coded = 214;
} else if (cpi->frames_since_golden == 1) {
cpi->prob_last_coded = 192;
cpi->prob_gf_coded = 220;
} else if (cpi->source_alt_ref_active) {
cpi->prob_gf_coded -= 20;
if (cpi->prob_gf_coded < 10) cpi->prob_gf_coded = 10;
}
if (!cpi->source_alt_ref_active) cpi->prob_gf_coded = 255;
}
}
#if !CONFIG_REALTIME_ONLY
/* 1 = key, 0 = inter */
static int decide_key_frame(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
int code_key_frame = 0;
cpi->kf_boost = 0;
if (cpi->Speed > 11) return 0;
/* Clear down mmx registers */
vpx_clear_system_state();
if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) {
double change = 1.0 *
abs((int)(cpi->mb.intra_error - cpi->last_intra_error)) /
(1 + cpi->last_intra_error);
double change2 =
1.0 *
abs((int)(cpi->mb.prediction_error - cpi->last_prediction_error)) /
(1 + cpi->last_prediction_error);
double minerror = cm->MBs * 256;
cpi->last_intra_error = cpi->mb.intra_error;
cpi->last_prediction_error = cpi->mb.prediction_error;
if (10 * cpi->mb.intra_error / (1 + cpi->mb.prediction_error) < 15 &&
cpi->mb.prediction_error > minerror &&
(change > .25 || change2 > .25)) {
/*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra >
* cpi->last_frame_percent_intra + 3*/
return 1;
}
return 0;
}
/* If the following are true we might as well code a key frame */
if (((cpi->this_frame_percent_intra == 100) &&
(cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) ||
((cpi->this_frame_percent_intra > 95) &&
(cpi->this_frame_percent_intra >=
(cpi->last_frame_percent_intra + 5)))) {
code_key_frame = 1;
}
/* in addition if the following are true and this is not a golden frame
* then code a key frame Note that on golden frames there often seems
* to be a pop in intra useage anyway hence this restriction is
* designed to prevent spurious key frames. The Intra pop needs to be
* investigated.
*/
else if (((cpi->this_frame_percent_intra > 60) &&
(cpi->this_frame_percent_intra >
(cpi->last_frame_percent_intra * 2))) ||
((cpi->this_frame_percent_intra > 75) &&
(cpi->this_frame_percent_intra >
(cpi->last_frame_percent_intra * 3 / 2))) ||
((cpi->this_frame_percent_intra > 90) &&
(cpi->this_frame_percent_intra >
(cpi->last_frame_percent_intra + 10)))) {
if (!cm->refresh_golden_frame) code_key_frame = 1;
}
return code_key_frame;
}
static void Pass1Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest,
unsigned int *frame_flags) {
(void)size;
(void)dest;
(void)frame_flags;
vp8_set_quantizer(cpi, 26);
vp8_first_pass(cpi);
}
#endif
#if 0
void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame)
{
/* write the frame */
FILE *yframe;
int i;
char filename[255];
sprintf(filename, "cx\\y%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->y_height; ++i)
fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\u%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; ++i)
fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
sprintf(filename, "cx\\v%04d.raw", this_frame);
yframe = fopen(filename, "wb");
for (i = 0; i < frame->uv_height; ++i)
fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe);
fclose(yframe);
}
#endif
#if !CONFIG_REALTIME_ONLY
/* Function to test for conditions that indeicate we should loop
* back and recode a frame.
*/
static int recode_loop_test(VP8_COMP *cpi, int high_limit, int low_limit, int q,
int maxq, int minq) {
int force_recode = 0;
VP8_COMMON *cm = &cpi->common;
/* Is frame recode allowed at all
* Yes if either recode mode 1 is selected or mode two is selcted
* and the frame is a key frame. golden frame or alt_ref_frame
*/
if ((cpi->sf.recode_loop == 1) ||
((cpi->sf.recode_loop == 2) &&
((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ||
cm->refresh_alt_ref_frame))) {
/* General over and under shoot tests */
if (((cpi->projected_frame_size > high_limit) && (q < maxq)) ||
((cpi->projected_frame_size < low_limit) && (q > minq))) {
force_recode = 1;
}
/* Special Constrained quality tests */
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
/* Undershoot and below auto cq level */
if ((q > cpi->cq_target_quality) &&
(cpi->projected_frame_size < ((cpi->this_frame_target * 7) >> 3))) {
force_recode = 1;
}
/* Severe undershoot and between auto and user cq level */
else if ((q > cpi->oxcf.cq_level) &&
(cpi->projected_frame_size < cpi->min_frame_bandwidth) &&
(cpi->active_best_quality > cpi->oxcf.cq_level)) {
force_recode = 1;
cpi->active_best_quality = cpi->oxcf.cq_level;
}
}
}
return force_recode;
}
#endif // !CONFIG_REALTIME_ONLY
static void update_reference_frames(VP8_COMP *cpi) {
VP8_COMMON *cm = &cpi->common;
YV12_BUFFER_CONFIG *yv12_fb = cm->yv12_fb;
/* At this point the new frame has been encoded.
* If any buffer copy / swapping is signaled it should be done here.
*/
if (cm->frame_type == KEY_FRAME) {
yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME | VP8_ALTR_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
} else {
if (cm->refresh_alt_ref_frame) {
assert(!cm->copy_buffer_to_arf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_ALTR_FRAME;
cm->yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[ALTREF_FRAME] = cm->current_video_frame;
} else if (cm->copy_buffer_to_arf) {
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_arf == 1) {
if (cm->alt_fb_idx != cm->lst_fb_idx) {
yv12_fb[cm->lst_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->lst_fb_idx;
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
}
} else {
if (cm->alt_fb_idx != cm->gld_fb_idx) {
yv12_fb[cm->gld_fb_idx].flags |= VP8_ALTR_FRAME;
yv12_fb[cm->alt_fb_idx].flags &= ~VP8_ALTR_FRAME;
cm->alt_fb_idx = cm->gld_fb_idx;
cpi->current_ref_frames[ALTREF_FRAME] =
cpi->current_ref_frames[GOLDEN_FRAME];
}
}
}
if (cm->refresh_golden_frame) {
assert(!cm->copy_buffer_to_gf);
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_GOLD_FRAME;
cm->yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] = cm->current_video_frame;
} else if (cm->copy_buffer_to_gf) {
assert(!(cm->copy_buffer_to_arf & ~0x3));
if (cm->copy_buffer_to_gf == 1) {
if (cm->gld_fb_idx != cm->lst_fb_idx) {
yv12_fb[cm->lst_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->lst_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[LAST_FRAME];
}
} else {
if (cm->alt_fb_idx != cm->gld_fb_idx) {
yv12_fb[cm->alt_fb_idx].flags |= VP8_GOLD_FRAME;
yv12_fb[cm->gld_fb_idx].flags &= ~VP8_GOLD_FRAME;
cm->gld_fb_idx = cm->alt_fb_idx;
cpi->current_ref_frames[GOLDEN_FRAME] =
cpi->current_ref_frames[ALTREF_FRAME];
}
}
}
}
if (cm->refresh_last_frame) {
cm->yv12_fb[cm->new_fb_idx].flags |= VP8_LAST_FRAME;
cm->yv12_fb[cm->lst_fb_idx].flags &= ~VP8_LAST_FRAME;
cm->lst_fb_idx = cm->new_fb_idx;
cpi->current_ref_frames[LAST_FRAME] = cm->current_video_frame;
}
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity) {
/* we shouldn't have to keep multiple copies as we know in advance which
* buffer we should start - for now to get something up and running
* I've chosen to copy the buffers
*/
if (cm->frame_type == KEY_FRAME) {
int i;
for (i = LAST_FRAME; i < MAX_REF_FRAMES; ++i)
vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_running_avg[i]);
} else {
vp8_yv12_extend_frame_borders(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
if (cm->refresh_alt_ref_frame || cm->copy_buffer_to_arf) {
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[ALTREF_FRAME]);
}
if (cm->refresh_golden_frame || cm->copy_buffer_to_gf) {
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[GOLDEN_FRAME]);
}
if (cm->refresh_last_frame) {
vp8_yv12_copy_frame(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
&cpi->denoiser.yv12_running_avg[LAST_FRAME]);
}
}
if (cpi->oxcf.noise_sensitivity == 4)
vp8_yv12_copy_frame(cpi->Source, &cpi->denoiser.yv12_last_source);
}
#endif
}
static int measure_square_diff_partial(YV12_BUFFER_CONFIG *source,
YV12_BUFFER_CONFIG *dest,
VP8_COMP *cpi) {
int i, j;
int Total = 0;
int num_blocks = 0;
int skip = 2;
int min_consec_zero_last = 10;
int tot_num_blocks = (source->y_height * source->y_width) >> 8;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
/* Loop through the Y plane, every |skip| blocks along rows and colmumns,
* summing the square differences, and only for blocks that have been
* zero_last mode at least |x| frames in a row.
*/
for (i = 0; i < source->y_height; i += 16 * skip) {
int block_index_row = (i >> 4) * cpi->common.mb_cols;
for (j = 0; j < source->y_width; j += 16 * skip) {
int index = block_index_row + (j >> 4);
if (cpi->consec_zero_last[index] >= min_consec_zero_last) {
unsigned int sse;
Total += vpx_mse16x16(src + j, source->y_stride, dst + j,
dest->y_stride, &sse);
num_blocks++;
}
}
src += 16 * skip * source->y_stride;
dst += 16 * skip * dest->y_stride;
}
// Only return non-zero if we have at least ~1/16 samples for estimate.
if (num_blocks > (tot_num_blocks >> 4)) {
assert(num_blocks != 0);
return (Total / num_blocks);
} else {
return 0;
}
}
#if CONFIG_TEMPORAL_DENOISING
static void process_denoiser_mode_change(VP8_COMP *cpi) {
const VP8_COMMON *const cm = &cpi->common;
int i, j;
int total = 0;
int num_blocks = 0;
// Number of blocks skipped along row/column in computing the
// nmse (normalized mean square error) of source.
int skip = 2;
// Only select blocks for computing nmse that have been encoded
// as ZERO LAST min_consec_zero_last frames in a row.
// Scale with number of temporal layers.
int min_consec_zero_last = 12 / cpi->oxcf.number_of_layers;
// Decision is tested for changing the denoising mode every
// num_mode_change times this function is called. Note that this
// function called every 8 frames, so (8 * num_mode_change) is number
// of frames where denoising mode change is tested for switch.
int num_mode_change = 20;
// Framerate factor, to compensate for larger mse at lower framerates.
// Use ref_framerate, which is full source framerate for temporal layers.
// TODO(marpan): Adjust this factor.
int fac_framerate = cpi->ref_framerate < 25.0f ? 80 : 100;
int tot_num_blocks = cm->mb_rows * cm->mb_cols;
int ystride = cpi->Source->y_stride;
unsigned char *src = cpi->Source->y_buffer;
unsigned char *dst = cpi->denoiser.yv12_last_source.y_buffer;
static const unsigned char const_source[16] = { 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128,
128, 128, 128, 128 };
int bandwidth = (int)(cpi->target_bandwidth);
// For temporal layers, use full bandwidth (top layer).
if (cpi->oxcf.number_of_layers > 1) {
LAYER_CONTEXT *lc = &cpi->layer_context[cpi->oxcf.number_of_layers - 1];
bandwidth = (int)(lc->target_bandwidth);
}
// Loop through the Y plane, every skip blocks along rows and columns,
// summing the normalized mean square error, only for blocks that have
// been encoded as ZEROMV LAST at least min_consec_zero_last least frames in
// a row and have small sum difference between current and previous frame.
// Normalization here is by the contrast of the current frame block.
for (i = 0; i < cm->Height; i += 16 * skip) {
int block_index_row = (i >> 4) * cm->mb_cols;
for (j = 0; j < cm->Width; j += 16 * skip) {
int index = block_index_row + (j >> 4);
if (cpi->consec_zero_last[index] >= min_consec_zero_last) {
unsigned int sse;
const unsigned int var =
vpx_variance16x16(src + j, ystride, dst + j, ystride, &sse);
// Only consider this block as valid for noise measurement
// if the sum_diff average of the current and previous frame
// is small (to avoid effects from lighting change).
if ((sse - var) < 128) {
unsigned int sse2;
const unsigned int act =
vpx_variance16x16(src + j, ystride, const_source, 0, &sse2);
if (act > 0) total += sse / act;
num_blocks++;
}
}
}
src += 16 * skip * ystride;
dst += 16 * skip * ystride;
}
total = total * fac_framerate / 100;
// Only consider this frame as valid sample if we have computed nmse over
// at least ~1/16 blocks, and Total > 0 (Total == 0 can happen if the
// application inputs duplicate frames, or contrast is all zero).
if (total > 0 && (num_blocks > (tot_num_blocks >> 4))) {
// Update the recursive mean square source_diff.
total = (total << 8) / num_blocks;
if (cpi->denoiser.nmse_source_diff_count == 0) {
// First sample in new interval.
cpi->denoiser.nmse_source_diff = total;
cpi->denoiser.qp_avg = cm->base_qindex;
} else {
// For subsequent samples, use average with weight ~1/4 for new sample.
cpi->denoiser.nmse_source_diff =
(int)((total + 3 * cpi->denoiser.nmse_source_diff) >> 2);
cpi->denoiser.qp_avg =
(int)((cm->base_qindex + 3 * cpi->denoiser.qp_avg) >> 2);
}
cpi->denoiser.nmse_source_diff_count++;
}
// Check for changing the denoiser mode, when we have obtained #samples =
// num_mode_change. Condition the change also on the bitrate and QP.
if (cpi->denoiser.nmse_source_diff_count == num_mode_change) {
// Check for going up: from normal to aggressive mode.
if ((cpi->denoiser.denoiser_mode == kDenoiserOnYUV) &&
(cpi->denoiser.nmse_source_diff >
cpi->denoiser.threshold_aggressive_mode) &&
(cpi->denoiser.qp_avg < cpi->denoiser.qp_threshold_up &&
bandwidth > cpi->denoiser.bitrate_threshold)) {
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUVAggressive);
} else {
// Check for going down: from aggressive to normal mode.
if (((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) &&
(cpi->denoiser.nmse_source_diff <
cpi->denoiser.threshold_aggressive_mode)) ||
((cpi->denoiser.denoiser_mode == kDenoiserOnYUVAggressive) &&
(cpi->denoiser.qp_avg > cpi->denoiser.qp_threshold_down ||
bandwidth < cpi->denoiser.bitrate_threshold))) {
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV);
}
}
// Reset metric and counter for next interval.
cpi->denoiser.nmse_source_diff = 0;
cpi->denoiser.qp_avg = 0;
cpi->denoiser.nmse_source_diff_count = 0;
}
}
#endif
void vp8_loopfilter_frame(VP8_COMP *cpi, VP8_COMMON *cm) {
const FRAME_TYPE frame_type = cm->frame_type;
int update_any_ref_buffers = 1;
if (cpi->common.refresh_last_frame == 0 &&
cpi->common.refresh_golden_frame == 0 &&
cpi->common.refresh_alt_ref_frame == 0) {
update_any_ref_buffers = 0;
}
if (cm->no_lpf) {
cm->filter_level = 0;
} else {
struct vpx_usec_timer timer;
vpx_clear_system_state();
vpx_usec_timer_start(&timer);
if (cpi->sf.auto_filter == 0) {
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) {
// Use the denoised buffer for selecting base loop filter level.
// Denoised signal for current frame is stored in INTRA_FRAME.
// No denoising on key frames.
vp8cx_pick_filter_level_fast(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi);
} else {
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
}
#else
vp8cx_pick_filter_level_fast(cpi->Source, cpi);
#endif
} else {
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity && cm->frame_type != KEY_FRAME) {
// Use the denoised buffer for selecting base loop filter level.
// Denoised signal for current frame is stored in INTRA_FRAME.
// No denoising on key frames.
vp8cx_pick_filter_level(&cpi->denoiser.yv12_running_avg[INTRA_FRAME],
cpi);
} else {
vp8cx_pick_filter_level(cpi->Source, cpi);
}
#else
vp8cx_pick_filter_level(cpi->Source, cpi);
#endif
}
if (cm->filter_level > 0) {
vp8cx_set_alt_lf_level(cpi, cm->filter_level);
}
vpx_usec_timer_mark(&timer);
cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer);
}
#if CONFIG_MULTITHREAD
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) {
sem_post(&cpi->h_event_end_lpf); /* signal that we have set filter_level */
}
#endif
// No need to apply loop-filter if the encoded frame does not update
// any reference buffers.
if (cm->filter_level > 0 && update_any_ref_buffers) {
vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, frame_type);
}
vp8_yv12_extend_frame_borders(cm->frame_to_show);
}
static void encode_frame_to_data_rate(VP8_COMP *cpi, size_t *size,
unsigned char *dest,
unsigned char *dest_end,
unsigned int *frame_flags) {
int Q;
int frame_over_shoot_limit;
int frame_under_shoot_limit;
int Loop = 0;
int loop_count;
VP8_COMMON *cm = &cpi->common;
int active_worst_qchanged = 0;
#if !CONFIG_REALTIME_ONLY
int q_low;
int q_high;
int zbin_oq_high;
int zbin_oq_low = 0;
int top_index;
int bottom_index;
int overshoot_seen = 0;
int undershoot_seen = 0;
#endif
int drop_mark = (int)(cpi->oxcf.drop_frames_water_mark *
cpi->oxcf.optimal_buffer_level / 100);
int drop_mark75 = drop_mark * 2 / 3;
int drop_mark50 = drop_mark / 4;
int drop_mark25 = drop_mark / 8;
/* Clear down mmx registers to allow floating point in what follows */
vpx_clear_system_state();
if (cpi->force_next_frame_intra) {
cm->frame_type = KEY_FRAME; /* delayed intra frame */
cpi->force_next_frame_intra = 0;
}
/* For an alt ref frame in 2 pass we skip the call to the second pass
* function that sets the target bandwidth
*/
switch (cpi->pass) {
#if !CONFIG_REALTIME_ONLY
case 2:
if (cpi->common.refresh_alt_ref_frame) {
/* Per frame bit target for the alt ref frame */
cpi->per_frame_bandwidth = cpi->twopass.gf_bits;
/* per second target bitrate */
cpi->target_bandwidth =
(int)(cpi->twopass.gf_bits * cpi->output_framerate);
}
break;
#endif // !CONFIG_REALTIME_ONLY
default:
cpi->per_frame_bandwidth =
(int)(cpi->target_bandwidth / cpi->output_framerate);
break;
}
/* Default turn off buffer to buffer copying */
cm->copy_buffer_to_gf = 0;
cm->copy_buffer_to_arf = 0;
/* Clear zbin over-quant value and mode boost values. */
cpi->mb.zbin_over_quant = 0;
cpi->mb.zbin_mode_boost = 0;
/* Enable or disable mode based tweaking of the zbin
* For 2 Pass Only used where GF/ARF prediction quality
* is above a threshold
*/
cpi->mb.zbin_mode_boost_enabled = 1;
if (cpi->pass == 2) {
if (cpi->gfu_boost <= 400) {
cpi->mb.zbin_mode_boost_enabled = 0;
}
}
/* Current default encoder behaviour for the altref sign bias */
if (cpi->source_alt_ref_active) {
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1;
} else {
cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0;
}
/* Check to see if a key frame is signaled
* For two pass with auto key frame enabled cm->frame_type may already
* be set, but not for one pass.
*/
if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) ||
(cpi->oxcf.auto_key &&
(cpi->frames_since_key % cpi->key_frame_frequency == 0))) {
/* Key frame from VFW/auto-keyframe/first frame */
cm->frame_type = KEY_FRAME;
#if CONFIG_TEMPORAL_DENOISING
if (cpi->oxcf.noise_sensitivity == 4) {
// For adaptive mode, reset denoiser to normal mode on key frame.
vp8_denoiser_set_parameters(&cpi->denoiser, kDenoiserOnYUV);
}
#endif
}
#if CONFIG_MULTI_RES_ENCODING
if (cpi->oxcf.mr_total_resolutions > 1) {
LOWER_RES_FRAME_INFO *low_res_frame_info =
(LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
if (cpi->oxcf.mr_encoder_id) {
// Check if lower resolution is available for motion vector reuse.
if (cm->frame_type != KEY_FRAME) {
cpi->mr_low_res_mv_avail = 1;
cpi->mr_low_res_mv_avail &= !(low_res_frame_info->is_frame_dropped);
if (cpi->ref_frame_flags & VP8_LAST_FRAME)
cpi->mr_low_res_mv_avail &=
(cpi->current_ref_frames[LAST_FRAME] ==
low_res_frame_info->low_res_ref_frames[LAST_FRAME]);
if (cpi->ref_frame_flags & VP8_GOLD_FRAME)
cpi->mr_low_res_mv_avail &=
(cpi->current_ref_frames[GOLDEN_FRAME] ==
low_res_frame_info->low_res_ref_frames[GOLDEN_FRAME]);
// Don't use altref to determine whether low res is available.
// TODO (marpan): Should we make this type of condition on a
// per-reference frame basis?
/*
if (cpi->ref_frame_flags & VP8_ALTR_FRAME)
cpi->mr_low_res_mv_avail &= (cpi->current_ref_frames[ALTREF_FRAME]
== low_res_frame_info->low_res_ref_frames[ALTREF_FRAME]);
*/
}
// Disable motion vector reuse (i.e., disable any usage of the low_res)
// if the previous lower stream is skipped/disabled.
if (low_res_frame_info->skip_encoding_prev_stream) {
cpi->mr_low_res_mv_avail = 0;
}
}
// This stream is not skipped (i.e., it's being encoded), so set this skip
// flag to 0. This is needed for the next stream (i.e., which is the next
// frame to be encoded).
low_res_frame_info->skip_encoding_prev_stream = 0;
// On a key frame: For the lowest resolution, keep track of the key frame
// counter value. For the higher resolutions, reset the current video
// frame counter to that of the lowest resolution.
// This is done to the handle the case where we may stop/start encoding
// higher layer(s). The restart-encoding of higher layer is only signaled
// by a key frame for now.
// TODO (marpan): Add flag to indicate restart-encoding of higher layer.
if (cm->frame_type == KEY_FRAME) {
if (cpi->oxcf.mr_encoder_id) {
// If the initial starting value of the buffer level is zero (this can
// happen because we may have not started encoding this higher stream),
// then reset it to non-zero value based on |starting_buffer_level|.
if (cpi->common.current_video_frame == 0 && cpi->buffer_level == 0) {
unsigned int i;
cpi->bits_off_target = cpi->oxcf.starting_buffer_level;
cpi->buffer_level = cpi->oxcf.starting_buffer_level;
for (i = 0; i < cpi->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->bits_off_target = lc->starting_buffer_level;
lc->buffer_level = lc->starting_buffer_level;
}
}
cpi->common.current_video_frame =
low_res_frame_info->key_frame_counter_value;
} else {
low_res_frame_info->key_frame_counter_value =
cpi->common.current_video_frame;
}
}
}
#endif
// Find the reference frame closest to the current frame.
cpi->closest_reference_frame = LAST_FRAME;
if (cm->frame_type != KEY_FRAME) {
int i;
MV_REFERENCE_FRAME closest_ref = INTRA_FRAME;
if (cpi->ref_frame_flags & VP8_LAST_FRAME) {
closest_ref = LAST_FRAME;
} else if (cpi->ref_frame_flags & VP8_GOLD_FRAME) {
closest_ref = GOLDEN_FRAME;
} else if (cpi->ref_frame_flags & VP8_ALTR_FRAME) {
closest_ref = ALTREF_FRAME;
}
for (i = 1; i <= 3; ++i) {
vpx_ref_frame_type_t ref_frame_type =
(vpx_ref_frame_type_t)((i == 3) ? 4 : i);
if (cpi->ref_frame_flags & ref_frame_type) {
if ((cm->current_video_frame - cpi->current_ref_frames[i]) <
(cm->current_video_frame - cpi->current_ref_frames[closest_ref])) {
closest_ref = i;
}
}
}
cpi->closest_reference_frame = closest_ref;
}
/* Set various flags etc to special state if it is a key frame */
if (cm->frame_type == KEY_FRAME) {
int i;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
/* The alternate reference frame cannot be active for a key frame */
cpi->source_alt_ref_active = 0;
/* Reset the RD threshold multipliers to default of * 1 (128) */
for (i = 0; i < MAX_MODES; ++i) {
cpi->mb.rd_thresh_mult[i] = 128;
}
// Reset the zero_last counter to 0 on key frame.
memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols);
memset(cpi->consec_zero_last_mvbias, 0,
(cpi->common.mb_rows * cpi->common.mb_cols));
}
#if 0
/* Experimental code for lagged compress and one pass
* Initialise one_pass GF frames stats
* Update stats used for GF selection
*/
{
cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0;
}
#endif
update_rd_ref_frame_probs(cpi);
if (cpi->drop_frames_allowed) {
/* The reset to decimation 0 is only done here for one pass.
* Once it is set two pass leaves decimation on till the next kf.
*/
if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) {
cpi->decimation_factor--;
}
if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) {
cpi->decimation_factor = 1;
} else if (cpi->buffer_level < drop_mark25 &&
(cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) {
cpi->decimation_factor = 3;
} else if (cpi->buffer_level < drop_mark50 &&
(cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) {
cpi->decimation_factor = 2;
} else if (cpi->buffer_level < drop_mark75 &&
(cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) {
cpi->decimation_factor = 1;
}
}
/* The following decimates the frame rate according to a regular
* pattern (i.e. to 1/2 or 2/3 frame rate) This can be used to help
* prevent buffer under-run in CBR mode. Alternatively it might be
* desirable in some situations to drop frame rate but throw more bits
* at each frame.
*
* Note that dropping a key frame can be problematic if spatial
* resampling is also active
*/
if (cpi->decimation_factor > 0) {
switch (cpi->decimation_factor) {
case 1:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2;
break;
case 2:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
case 3:
cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4;
break;
}
/* Note that we should not throw out a key frame (especially when
* spatial resampling is enabled).
*/
if (cm->frame_type == KEY_FRAME) {
cpi->decimation_count = cpi->decimation_factor;
} else if (cpi->decimation_count > 0) {
cpi->decimation_count--;
cpi->bits_off_target += cpi->av_per_frame_bandwidth;
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
}
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
cm->current_video_frame++;
cpi->frames_since_key++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
#if CONFIG_INTERNAL_STATS
cpi->count++;
#endif
cpi->buffer_level = cpi->bits_off_target;
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
/* Propagate bits saved by dropping the frame to higher
* layers
*/
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->bits_off_target += (int)(lc->target_bandwidth / lc->framerate);
if (lc->bits_off_target > lc->maximum_buffer_size) {
lc->bits_off_target = lc->maximum_buffer_size;
}
lc->buffer_level = lc->bits_off_target;
}
}
return;
} else {
cpi->decimation_count = cpi->decimation_factor;
}
} else {
cpi->decimation_count = 0;
}
/* Decide how big to make the frame */
if (!vp8_pick_frame_size(cpi)) {
/*TODO: 2 drop_frame and return code could be put together. */
#if CONFIG_MULTI_RES_ENCODING
vp8_store_drop_frame_info(cpi);
#endif
cm->current_video_frame++;
cpi->frames_since_key++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
return;
}
/* Reduce active_worst_allowed_q for CBR if our buffer is getting too full.
* This has a knock on effect on active best quality as well.
* For CBR if the buffer reaches its maximum level then we can no longer
* save up bits for later frames so we might as well use them up
* on the current frame.
*/
if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) &&
(cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) &&
cpi->buffered_mode) {
/* Max adjustment is 1/4 */
int Adjustment = cpi->active_worst_quality / 4;
if (Adjustment) {
int buff_lvl_step;
if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) {
buff_lvl_step = (int)((cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level) /
Adjustment);
if (buff_lvl_step) {
Adjustment =
(int)((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) /
buff_lvl_step);
} else {
Adjustment = 0;
}
}
cpi->active_worst_quality -= Adjustment;
if (cpi->active_worst_quality < cpi->active_best_quality) {
cpi->active_worst_quality = cpi->active_best_quality;
}
}
}
/* Set an active best quality and if necessary active worst quality
* There is some odd behavior for one pass here that needs attention.
*/
if ((cpi->pass == 2) || (cpi->ni_frames > 150)) {
vpx_clear_system_state();
Q = cpi->active_worst_quality;
if (cm->frame_type == KEY_FRAME) {
if (cpi->pass == 2) {
if (cpi->gfu_boost > 600) {
cpi->active_best_quality = kf_low_motion_minq[Q];
} else {
cpi->active_best_quality = kf_high_motion_minq[Q];
}
/* Special case for key frames forced because we have reached
* the maximum key frame interval. Here force the Q to a range
* based on the ambient Q to reduce the risk of popping
*/
if (cpi->this_key_frame_forced) {
if (cpi->active_best_quality > cpi->avg_frame_qindex * 7 / 8) {
cpi->active_best_quality = cpi->avg_frame_qindex * 7 / 8;
} else if (cpi->active_best_quality<cpi->avg_frame_qindex>> 2) {
cpi->active_best_quality = cpi->avg_frame_qindex >> 2;
}
}
}
/* One pass more conservative */
else {
cpi->active_best_quality = kf_high_motion_minq[Q];
}
}
else if (cpi->oxcf.number_of_layers == 1 &&
(cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame)) {
/* Use the lower of cpi->active_worst_quality and recent
* average Q as basis for GF/ARF Q limit unless last frame was
* a key frame.
*/
if ((cpi->frames_since_key > 1) &&
(cpi->avg_frame_qindex < cpi->active_worst_quality)) {
Q = cpi->avg_frame_qindex;
}
/* For constrained quality dont allow Q less than the cq level */
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < cpi->cq_target_quality)) {
Q = cpi->cq_target_quality;
}
if (cpi->pass == 2) {
if (cpi->gfu_boost > 1000) {
cpi->active_best_quality = gf_low_motion_minq[Q];
} else if (cpi->gfu_boost < 400) {
cpi->active_best_quality = gf_high_motion_minq[Q];
} else {
cpi->active_best_quality = gf_mid_motion_minq[Q];
}
/* Constrained quality use slightly lower active best. */
if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
cpi->active_best_quality = cpi->active_best_quality * 15 / 16;
}
}
/* One pass more conservative */
else {
cpi->active_best_quality = gf_high_motion_minq[Q];
}
} else {
cpi->active_best_quality = inter_minq[Q];
/* For the constant/constrained quality mode we dont want
* q to fall below the cq level.
*/
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(cpi->active_best_quality < cpi->cq_target_quality)) {
/* If we are strongly undershooting the target rate in the last
* frames then use the user passed in cq value not the auto
* cq value.
*/
if (cpi->rolling_actual_bits < cpi->min_frame_bandwidth) {
cpi->active_best_quality = cpi->oxcf.cq_level;
} else {
cpi->active_best_quality = cpi->cq_target_quality;
}
}
}
/* If CBR and the buffer is as full then it is reasonable to allow
* higher quality on the frames to prevent bits just going to waste.
*/
if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
/* Note that the use of >= here elliminates the risk of a devide
* by 0 error in the else if clause
*/
if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) {
cpi->active_best_quality = cpi->best_quality;
} else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) {
int Fraction =
(int)(((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) /
(cpi->oxcf.maximum_buffer_size -
cpi->oxcf.optimal_buffer_level));
int min_qadjustment =
((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128;
cpi->active_best_quality -= min_qadjustment;
}
}
}
/* Make sure constrained quality mode limits are adhered to for the first
* few frames of one pass encodes
*/
else if (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) {
if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ||
cpi->common.refresh_alt_ref_frame) {
cpi->active_best_quality = cpi->best_quality;
} else if (cpi->active_best_quality < cpi->cq_target_quality) {
cpi->active_best_quality = cpi->cq_target_quality;
}
}
/* Clip the active best and worst quality values to limits */
if (cpi->active_worst_quality > cpi->worst_quality) {
cpi->active_worst_quality = cpi->worst_quality;
}
if (cpi->active_best_quality < cpi->best_quality) {
cpi->active_best_quality = cpi->best_quality;
}
if (cpi->active_worst_quality < cpi->active_best_quality) {
cpi->active_worst_quality = cpi->active_best_quality;
}
/* Determine initial Q to try */
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
#if !CONFIG_REALTIME_ONLY
/* Set highest allowed value for Zbin over quant */
if (cm->frame_type == KEY_FRAME) {
zbin_oq_high = 0;
} else if ((cpi->oxcf.number_of_layers == 1) &&
((cm->refresh_alt_ref_frame ||
(cm->refresh_golden_frame && !cpi->source_alt_ref_active)))) {
zbin_oq_high = 16;
} else {
zbin_oq_high = ZBIN_OQ_MAX;
}
#endif
compute_skin_map(cpi);
/* Setup background Q adjustment for error resilient mode.
* For multi-layer encodes only enable this for the base layer.
*/
if (cpi->cyclic_refresh_mode_enabled) {
// Special case for screen_content_mode with golden frame updates.
int disable_cr_gf =
(cpi->oxcf.screen_content_mode == 2 && cm->refresh_golden_frame);
if (cpi->current_layer == 0 && cpi->force_maxqp == 0 && !disable_cr_gf) {
cyclic_background_refresh(cpi, Q, 0);
} else {
disable_segmentation(cpi);
}
}
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
#if !CONFIG_REALTIME_ONLY
/* Limit Q range for the adaptive loop. */
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
#endif
vp8_save_coding_context(cpi);
loop_count = 0;
scale_and_extend_source(cpi->un_scaled_source, cpi);
#if CONFIG_TEMPORAL_DENOISING && CONFIG_POSTPROC
// Option to apply spatial blur under the aggressive or adaptive
// (temporal denoising) mode.
if (cpi->oxcf.noise_sensitivity >= 3) {
if (cpi->denoiser.denoise_pars.spatial_blur != 0) {
vp8_de_noise(cm, cpi->Source, cpi->Source,
cpi->denoiser.denoise_pars.spatial_blur, 1, 0, 0);
}
}
#endif
#if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC && !(CONFIG_TEMPORAL_DENOISING)
if (cpi->oxcf.noise_sensitivity > 0) {
unsigned char *src;
int l = 0;
switch (cpi->oxcf.noise_sensitivity) {
case 1: l = 20; break;
case 2: l = 40; break;
case 3: l = 60; break;
case 4: l = 80; break;
case 5: l = 100; break;
case 6: l = 150; break;
}
if (cm->frame_type == KEY_FRAME) {
vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1);
} else {
vp8_de_noise(cm, cpi->Source, cpi->Source, l, 1, 0, 1);
src = cpi->Source->y_buffer;
if (cpi->Source->y_stride < 0) {
src += cpi->Source->y_stride * (cpi->Source->y_height - 1);
}
}
}
#endif
#ifdef OUTPUT_YUV_SRC
vpx_write_yuv_frame(yuv_file, cpi->Source);
#endif
do {
vpx_clear_system_state();
vp8_set_quantizer(cpi, Q);
/* setup skip prob for costing in mode/mv decision */
if (cpi->common.mb_no_coeff_skip) {
cpi->prob_skip_false = cpi->base_skip_false_prob[Q];
if (cm->frame_type != KEY_FRAME) {
if (cpi->common.refresh_alt_ref_frame) {
if (cpi->last_skip_false_probs[2] != 0) {
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
}
/*
if(cpi->last_skip_false_probs[2]!=0 && abs(Q-
cpi->last_skip_probs_q[2])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[2];
else if (cpi->last_skip_false_probs[2]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[2] +
cpi->prob_skip_false ) / 2;
*/
} else if (cpi->common.refresh_golden_frame) {
if (cpi->last_skip_false_probs[1] != 0) {
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
}
/*
if(cpi->last_skip_false_probs[1]!=0 && abs(Q-
cpi->last_skip_probs_q[1])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[1];
else if (cpi->last_skip_false_probs[1]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[1] +
cpi->prob_skip_false ) / 2;
*/
} else {
if (cpi->last_skip_false_probs[0] != 0) {
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
}
/*
if(cpi->last_skip_false_probs[0]!=0 && abs(Q-
cpi->last_skip_probs_q[0])<=16 )
cpi->prob_skip_false = cpi->last_skip_false_probs[0];
else if(cpi->last_skip_false_probs[0]!=0)
cpi->prob_skip_false = (cpi->last_skip_false_probs[0] +
cpi->prob_skip_false ) / 2;
*/
}
/* as this is for cost estimate, let's make sure it does not
* go extreme eitehr way
*/
if (cpi->prob_skip_false < 5) cpi->prob_skip_false = 5;
if (cpi->prob_skip_false > 250) cpi->prob_skip_false = 250;
if (cpi->oxcf.number_of_layers == 1 && cpi->is_src_frame_alt_ref) {
cpi->prob_skip_false = 1;
}
}
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false);
fclose(f);
}
#endif
}
if (cm->frame_type == KEY_FRAME) {
if (resize_key_frame(cpi)) {
/* If the frame size has changed, need to reset Q, quantizer,
* and background refresh.
*/
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
if (cpi->cyclic_refresh_mode_enabled) {
if (cpi->current_layer == 0) {
cyclic_background_refresh(cpi, Q, 0);
} else {
disable_segmentation(cpi);
}
}
// Reset the zero_last counter to 0 on key frame.
memset(cpi->consec_zero_last, 0, cm->mb_rows * cm->mb_cols);
memset(cpi->consec_zero_last_mvbias, 0,
(cpi->common.mb_rows * cpi->common.mb_cols));
vp8_set_quantizer(cpi, Q);
}
vp8_setup_key_frame(cpi);
}
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
if (cpi->oxcf.error_resilient_mode) cm->refresh_entropy_probs = 0;
if (cpi->oxcf.error_resilient_mode & VPX_ERROR_RESILIENT_PARTITIONS) {
if (cm->frame_type == KEY_FRAME) cm->refresh_entropy_probs = 1;
}
if (cm->refresh_entropy_probs == 0) {
/* save a copy for later refresh */
memcpy(&cm->lfc, &cm->fc, sizeof(cm->fc));
}
vp8_update_coef_context(cpi);
vp8_update_coef_probs(cpi);
/* transform / motion compensation build reconstruction frame
* +pack coef partitions
*/
vp8_encode_frame(cpi);
/* cpi->projected_frame_size is not needed for RT mode */
}
#else
/* transform / motion compensation build reconstruction frame */
vp8_encode_frame(cpi);
if (cpi->pass == 0 && cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) {
if (vp8_drop_encodedframe_overshoot(cpi, Q)) return;
}
cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi);
cpi->projected_frame_size =
(cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0;
#endif
vpx_clear_system_state();
/* Test to see if the stats generated for this frame indicate that
* we should have coded a key frame (assuming that we didn't)!
*/
if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME &&
cpi->compressor_speed != 2) {
#if !CONFIG_REALTIME_ONLY
if (decide_key_frame(cpi)) {
/* Reset all our sizing numbers and recode */
cm->frame_type = KEY_FRAME;
vp8_pick_frame_size(cpi);
/* Clear the Alt reference frame active flag when we have
* a key frame
*/
cpi->source_alt_ref_active = 0;
// Set the loop filter deltas and segmentation map update
setup_features(cpi);
vp8_restore_coding_context(cpi);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit,
&frame_over_shoot_limit);
/* Limit Q range for the adaptive loop. */
bottom_index = cpi->active_best_quality;
top_index = cpi->active_worst_quality;
q_low = cpi->active_best_quality;
q_high = cpi->active_worst_quality;
loop_count++;
Loop = 1;
continue;
}
#endif
}
vpx_clear_system_state();
if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1;
/* Are we are overshooting and up against the limit of active max Q. */
if (((cpi->pass != 2) ||
(cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) &&
(Q == cpi->active_worst_quality) &&
(cpi->active_worst_quality < cpi->worst_quality) &&
(cpi->projected_frame_size > frame_over_shoot_limit)) {
int over_size_percent =
((cpi->projected_frame_size - frame_over_shoot_limit) * 100) /
frame_over_shoot_limit;
/* If so is there any scope for relaxing it */
while ((cpi->active_worst_quality < cpi->worst_quality) &&
(over_size_percent > 0)) {
cpi->active_worst_quality++;
/* Assume 1 qstep = about 4% on frame size. */
over_size_percent = (int)(over_size_percent * 0.96);
}
#if !CONFIG_REALTIME_ONLY
top_index = cpi->active_worst_quality;
#endif // !CONFIG_REALTIME_ONLY
/* If we have updated the active max Q do not call
* vp8_update_rate_correction_factors() this loop.
*/
active_worst_qchanged = 1;
} else {
active_worst_qchanged = 0;
}
#if CONFIG_REALTIME_ONLY
Loop = 0;
#else
/* Special case handling for forced key frames */
if ((cm->frame_type == KEY_FRAME) && cpi->this_key_frame_forced) {
int last_q = Q;
int kf_err = vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
/* The key frame is not good enough */
if (kf_err > ((cpi->ambient_err * 7) >> 3)) {
/* Lower q_high */
q_high = (Q > q_low) ? (Q - 1) : q_low;
/* Adjust Q */
Q = (q_high + q_low) >> 1;
}
/* The key frame is much better than the previous frame */
else if (kf_err < (cpi->ambient_err >> 1)) {
/* Raise q_low */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* Adjust Q */
Q = (q_high + q_low + 1) >> 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high) {
Q = q_high;
} else if (Q < q_low) {
Q = q_low;
}
Loop = Q != last_q;
}
/* Is the projected frame size out of range and are we allowed
* to attempt to recode.
*/
else if (recode_loop_test(cpi, frame_over_shoot_limit,
frame_under_shoot_limit, Q, top_index,
bottom_index)) {
int last_q = Q;
int Retries = 0;
/* Frame size out of permitted range. Update correction factor
* & compute new Q to try...
*/
/* Frame is too large */
if (cpi->projected_frame_size > cpi->this_frame_target) {
/* Raise Qlow as to at least the current value */
q_low = (Q < q_high) ? (Q + 1) : q_high;
/* If we are using over quant do the same for zbin_oq_low */
if (cpi->mb.zbin_over_quant > 0) {
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high)
? (cpi->mb.zbin_over_quant + 1)
: zbin_oq_high;
}
if (undershoot_seen) {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 1);
}
Q = (q_high + q_low + 1) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
if (Q < MAXQ) {
cpi->mb.zbin_over_quant = 0;
} else {
zbin_oq_low = (cpi->mb.zbin_over_quant < zbin_oq_high)
? (cpi->mb.zbin_over_quant + 1)
: zbin_oq_high;
cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
} else {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 0);
}
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
while (((Q < q_low) || (cpi->mb.zbin_over_quant < zbin_oq_low)) &&
(Retries < 10)) {
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries++;
}
}
overshoot_seen = 1;
}
/* Frame is too small */
else {
if (cpi->mb.zbin_over_quant == 0) {
/* Lower q_high if not using over quant */
q_high = (Q > q_low) ? (Q - 1) : q_low;
} else {
/* else lower zbin_oq_high */
zbin_oq_high = (cpi->mb.zbin_over_quant > zbin_oq_low)
? (cpi->mb.zbin_over_quant - 1)
: zbin_oq_low;
}
if (overshoot_seen) {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 1);
}
Q = (q_high + q_low) / 2;
/* Adjust cpi->zbin_over_quant (only allowed when Q
* is max)
*/
if (Q < MAXQ) {
cpi->mb.zbin_over_quant = 0;
} else {
cpi->mb.zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2;
}
} else {
/* Update rate_correction_factor unless
* cpi->active_worst_quality has changed.
*/
if (!active_worst_qchanged) {
vp8_update_rate_correction_factors(cpi, 0);
}
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
/* Special case reset for qlow for constrained quality.
* This should only trigger where there is very substantial
* undershoot on a frame and the auto cq level is above
* the user passsed in value.
*/
if ((cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) &&
(Q < q_low)) {
q_low = Q;
}
while (((Q > q_high) || (cpi->mb.zbin_over_quant > zbin_oq_high)) &&
(Retries < 10)) {
vp8_update_rate_correction_factors(cpi, 0);
Q = vp8_regulate_q(cpi, cpi->this_frame_target);
Retries++;
}
}
undershoot_seen = 1;
}
/* Clamp Q to upper and lower limits: */
if (Q > q_high) {
Q = q_high;
} else if (Q < q_low) {
Q = q_low;
}
/* Clamp cpi->zbin_over_quant */
cpi->mb.zbin_over_quant = (cpi->mb.zbin_over_quant < zbin_oq_low)
? zbin_oq_low
: (cpi->mb.zbin_over_quant > zbin_oq_high)
? zbin_oq_high
: cpi->mb.zbin_over_quant;
Loop = Q != last_q;
} else {
Loop = 0;
}
#endif // CONFIG_REALTIME_ONLY
if (cpi->is_src_frame_alt_ref) Loop = 0;
if (Loop == 1) {
vp8_restore_coding_context(cpi);
loop_count++;
#if CONFIG_INTERNAL_STATS
cpi->tot_recode_hits++;
#endif
}
} while (Loop == 1);
#if defined(DROP_UNCODED_FRAMES)
/* if there are no coded macroblocks at all drop this frame */
if (cpi->common.MBs == cpi->mb.skip_true_count &&
(cpi->drop_frame_count & 7) != 7 && cm->frame_type != KEY_FRAME) {
cpi->common.current_video_frame++;
cpi->frames_since_key++;
cpi->drop_frame_count++;
// We advance the temporal pattern for dropped frames.
cpi->temporal_pattern_counter++;
return;
}
cpi->drop_frame_count = 0;
#endif
#if 0
/* Experimental code for lagged and one pass
* Update stats used for one pass GF selection
*/
{
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error;
cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0;
}
#endif
/* Special case code to reduce pulsing when key frames are forced at a
* fixed interval. Note the reconstruction error if it is the frame before
* the force key frame
*/
if (cpi->next_key_frame_forced && (cpi->twopass.frames_to_key == 0)) {
cpi->ambient_err =
vp8_calc_ss_err(cpi->Source, &cm->yv12_fb[cm->new_fb_idx]);
}
/* This frame's MVs are saved and will be used in next frame's MV predictor.
* Last frame has one more line(add to bottom) and one more column(add to
* right) than cm->mip. The edge elements are initialized to 0.
*/
#if CONFIG_MULTI_RES_ENCODING
if (!cpi->oxcf.mr_encoder_id && cm->show_frame)
#else
if (cm->show_frame) /* do not save for altref frame */
#endif
{
int mb_row;
int mb_col;
/* Point to beginning of allocated MODE_INFO arrays. */
MODE_INFO *tmp = cm->mip;
if (cm->frame_type != KEY_FRAME) {
for (mb_row = 0; mb_row < cm->mb_rows + 1; ++mb_row) {
for (mb_col = 0; mb_col < cm->mb_cols + 1; ++mb_col) {
if (tmp->mbmi.ref_frame != INTRA_FRAME) {
cpi->lfmv[mb_col + mb_row * (cm->mode_info_stride + 1)].as_int =
tmp->mbmi.mv.as_int;
}
cpi->lf_ref_frame_sign_bias[mb_col +
mb_row * (cm->mode_info_stride + 1)] =
cm->ref_frame_sign_bias[tmp->mbmi.ref_frame];
cpi->lf_ref_frame[mb_col + mb_row * (cm->mode_info_stride + 1)] =
tmp->mbmi.ref_frame;
tmp++;
}
}
}
}
/* Count last ref frame 0,0 usage on current encoded frame. */
{
int mb_row;
int mb_col;
/* Point to beginning of MODE_INFO arrays. */
MODE_INFO *tmp = cm->mi;
cpi->zeromv_count = 0;
if (cm->frame_type != KEY_FRAME) {
for (mb_row = 0; mb_row < cm->mb_rows; ++mb_row) {
for (mb_col = 0; mb_col < cm->mb_cols; ++mb_col) {
if (tmp->mbmi.mode == ZEROMV && tmp->mbmi.ref_frame == LAST_FRAME) {
cpi->zeromv_count++;
}
tmp++;
}
tmp++;
}
}
}
#if CONFIG_MULTI_RES_ENCODING
vp8_cal_dissimilarity(cpi);
#endif
/* Update the GF useage maps.
* This is done after completing the compression of a frame when all
* modes etc. are finalized but before loop filter
*/
if (cpi->oxcf.number_of_layers == 1) {
vp8_update_gf_useage_maps(cpi, cm, &cpi->mb);
}
if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1;
#if 0
{
FILE *f = fopen("gfactive.stt", "a");
fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame);
fclose(f);
}
#endif
/* For inter frames the current default behavior is that when
* cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer
* This is purely an encoder decision at present.
*/
if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) {
cm->copy_buffer_to_arf = 2;
} else {
cm->copy_buffer_to_arf = 0;
}
cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx];
#if CONFIG_TEMPORAL_DENOISING
// Get some measure of the amount of noise, by measuring the (partial) mse
// between source and denoised buffer, for y channel. Partial refers to
// computing the sse for a sub-sample of the frame (i.e., skip x blocks along
// row/column),
// and only for blocks in that set that are consecutive ZEROMV_LAST mode.
// Do this every ~8 frames, to further reduce complexity.
// TODO(marpan): Keep this for now for the case cpi->oxcf.noise_sensitivity <
// 4,
// should be removed in favor of the process_denoiser_mode_change() function
// below.
if (cpi->oxcf.noise_sensitivity > 0 && cpi->oxcf.noise_sensitivity < 4 &&
!cpi->oxcf.screen_content_mode && cpi->frames_since_key % 8 == 0 &&
cm->frame_type != KEY_FRAME) {
cpi->mse_source_denoised = measure_square_diff_partial(
&cpi->denoiser.yv12_running_avg[INTRA_FRAME], cpi->Source, cpi);
}
// For the adaptive denoising mode (noise_sensitivity == 4), sample the mse
// of source diff (between current and previous frame), and determine if we
// should switch the denoiser mode. Sampling refers to computing the mse for
// a sub-sample of the frame (i.e., skip x blocks along row/column), and
// only for blocks in that set that have used ZEROMV LAST, along with some
// constraint on the sum diff between blocks. This process is called every
// ~8 frames, to further reduce complexity.
if (cpi->oxcf.noise_sensitivity == 4 && !cpi->oxcf.screen_content_mode &&
cpi->frames_since_key % 8 == 0 && cm->frame_type != KEY_FRAME) {
process_denoiser_mode_change(cpi);
}
#endif
#ifdef OUTPUT_YUV_SKINMAP
if (cpi->common.current_video_frame > 1) {
vp8_compute_skin_map(cpi, yuv_skinmap_file);
}
#endif
#if CONFIG_MULTITHREAD
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded)) {
/* start loopfilter in separate thread */
sem_post(&cpi->h_event_start_lpf);
cpi->b_lpf_running = 1;
/* wait for the filter_level to be picked so that we can continue with
* stream packing */
sem_wait(&cpi->h_event_end_lpf);
} else
#endif
{
vp8_loopfilter_frame(cpi, cm);
}
update_reference_frames(cpi);
#ifdef OUTPUT_YUV_DENOISED
vpx_write_yuv_frame(yuv_denoised_file,
&cpi->denoiser.yv12_running_avg[INTRA_FRAME]);
#endif
#if !(CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING)
if (cpi->oxcf.error_resilient_mode) {
cm->refresh_entropy_probs = 0;
}
#endif
/* build the bitstream */
vp8_pack_bitstream(cpi, dest, dest_end, size);
/* Move storing frame_type out of the above loop since it is also
* needed in motion search besides loopfilter */
cm->last_frame_type = cm->frame_type;
/* Update rate control heuristics */
cpi->total_byte_count += (*size);
cpi->projected_frame_size = (int)(*size) << 3;
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
cpi->layer_context[i].total_byte_count += (*size);
}
}
if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2);
cpi->last_q[cm->frame_type] = cm->base_qindex;
if (cm->frame_type == KEY_FRAME) {
vp8_adjust_key_frame_context(cpi);
}
/* Keep a record of ambient average Q. */
if (cm->frame_type != KEY_FRAME) {
cpi->avg_frame_qindex =
(2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2;
}
/* Keep a record from which we can calculate the average Q excluding
* GF updates and key frames
*/
if ((cm->frame_type != KEY_FRAME) &&
((cpi->oxcf.number_of_layers > 1) ||
(!cm->refresh_golden_frame && !cm->refresh_alt_ref_frame))) {
cpi->ni_frames++;
/* Calculate the average Q for normal inter frames (not key or GFU
* frames).
*/
if (cpi->pass == 2) {
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
} else {
/* Damp value for first few frames */
if (cpi->ni_frames > 150) {
cpi->ni_tot_qi += Q;
cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames);
}
/* For one pass, early in the clip ... average the current frame Q
* value with the worstq entered by the user as a dampening measure
*/
else {
cpi->ni_tot_qi += Q;
cpi->ni_av_qi =
((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2;
}
/* If the average Q is higher than what was used in the last
* frame (after going through the recode loop to keep the frame
* size within range) then use the last frame value - 1. The -1
* is designed to stop Q and hence the data rate, from
* progressively falling away during difficult sections, but at
* the same time reduce the number of itterations around the
* recode loop.
*/
if (Q > cpi->ni_av_qi) cpi->ni_av_qi = Q - 1;
}
}
/* Update the buffer level variable. */
/* Non-viewable frames are a special case and are treated as pure overhead. */
if (!cm->show_frame) {
cpi->bits_off_target -= cpi->projected_frame_size;
} else {
cpi->bits_off_target +=
cpi->av_per_frame_bandwidth - cpi->projected_frame_size;
}
/* Clip the buffer level to the maximum specified buffer size */
if (cpi->bits_off_target > cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = cpi->oxcf.maximum_buffer_size;
}
// If the frame dropper is not enabled, don't let the buffer level go below
// some threshold, given here by -|maximum_buffer_size|. For now we only do
// this for screen content input.
if (cpi->drop_frames_allowed == 0 && cpi->oxcf.screen_content_mode &&
cpi->bits_off_target < -cpi->oxcf.maximum_buffer_size) {
cpi->bits_off_target = -cpi->oxcf.maximum_buffer_size;
}
/* Rolling monitors of whether we are over or underspending used to
* help regulate min and Max Q in two pass.
*/
cpi->rolling_target_bits =
((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4;
cpi->rolling_actual_bits =
((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4;
cpi->long_rolling_target_bits =
((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32;
cpi->long_rolling_actual_bits =
((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) /
32;
/* Actual bits spent */
cpi->total_actual_bits += cpi->projected_frame_size;
/* Debug stats */
cpi->total_target_vs_actual +=
(cpi->this_frame_target - cpi->projected_frame_size);
cpi->buffer_level = cpi->bits_off_target;
/* Propagate values to higher temporal layers */
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
for (i = cpi->current_layer + 1; i < cpi->oxcf.number_of_layers; ++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
int bits_off_for_this_layer = (int)(lc->target_bandwidth / lc->framerate -
cpi->projected_frame_size);
lc->bits_off_target += bits_off_for_this_layer;
/* Clip buffer level to maximum buffer size for the layer */
if (lc->bits_off_target > lc->maximum_buffer_size) {
lc->bits_off_target = lc->maximum_buffer_size;
}
lc->total_actual_bits += cpi->projected_frame_size;
lc->total_target_vs_actual += bits_off_for_this_layer;
lc->buffer_level = lc->bits_off_target;
}
}
/* Update bits left to the kf and gf groups to account for overshoot
* or undershoot on these frames
*/
if (cm->frame_type == KEY_FRAME) {
cpi->twopass.kf_group_bits +=
cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0;
} else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) {
cpi->twopass.gf_group_bits +=
cpi->this_frame_target - cpi->projected_frame_size;
if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0;
}
if (cm->frame_type != KEY_FRAME) {
if (cpi->common.refresh_alt_ref_frame) {
cpi->last_skip_false_probs[2] = cpi->prob_skip_false;
cpi->last_skip_probs_q[2] = cm->base_qindex;
} else if (cpi->common.refresh_golden_frame) {
cpi->last_skip_false_probs[1] = cpi->prob_skip_false;
cpi->last_skip_probs_q[1] = cm->base_qindex;
} else {
cpi->last_skip_false_probs[0] = cpi->prob_skip_false;
cpi->last_skip_probs_q[0] = cm->base_qindex;
/* update the baseline */
cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false;
}
}
#if 0 && CONFIG_INTERNAL_STATS
{
FILE *f = fopen("tmp.stt", "a");
vpx_clear_system_state();
if (cpi->twopass.total_left_stats.coded_error != 0.0)
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
"%8.2lf %"PRId64" %10.3lf %10"PRId64" %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
(double)cpi->twopass.bits_left /
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
else
fprintf(f, "%10d %10d %10d %10d %10d %10"PRId64" %10"PRId64
"%10"PRId64" %10d %6d %6d %6d %6d %5d %5d %5d %8d "
"%8.2lf %"PRId64" %10.3lf %8d\n",
cpi->common.current_video_frame, cpi->this_frame_target,
cpi->projected_frame_size,
(cpi->projected_frame_size - cpi->this_frame_target),
cpi->total_target_vs_actual,
cpi->buffer_level,
(cpi->oxcf.starting_buffer_level-cpi->bits_off_target),
cpi->total_actual_bits, cm->base_qindex,
cpi->active_best_quality, cpi->active_worst_quality,
cpi->ni_av_qi, cpi->cq_target_quality,
cm->refresh_golden_frame, cm->refresh_alt_ref_frame,
cm->frame_type, cpi->gfu_boost,
cpi->twopass.est_max_qcorrection_factor,
cpi->twopass.bits_left,
cpi->twopass.total_left_stats.coded_error,
cpi->tot_recode_hits);
fclose(f);
{
FILE *fmodes = fopen("Modes.stt", "a");
fprintf(fmodes, "%6d:%1d:%1d:%1d ",
cpi->common.current_video_frame,
cm->frame_type, cm->refresh_golden_frame,
cm->refresh_alt_ref_frame);
fprintf(fmodes, "\n");
fclose(fmodes);
}
}
#endif
if (cm->refresh_golden_frame == 1) {
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN;
} else {
cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_GOLDEN;
}
if (cm->refresh_alt_ref_frame == 1) {
cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF;
} else {
cm->frame_flags = cm->frame_flags & ~FRAMEFLAGS_ALTREF;
}
if (cm->refresh_last_frame & cm->refresh_golden_frame) { /* both refreshed */
cpi->gold_is_last = 1;
} else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) {
/* 1 refreshed but not the other */
cpi->gold_is_last = 0;
}
if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) { /* both refreshed */
cpi->alt_is_last = 1;
} else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) {
/* 1 refreshed but not the other */
cpi->alt_is_last = 0;
}
if (cm->refresh_alt_ref_frame &
cm->refresh_golden_frame) { /* both refreshed */
cpi->gold_is_alt = 1;
} else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) {
/* 1 refreshed but not the other */
cpi->gold_is_alt = 0;
}
cpi->ref_frame_flags = VP8_ALTR_FRAME | VP8_GOLD_FRAME | VP8_LAST_FRAME;
if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FRAME;
if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALTR_FRAME;
if (!cpi->oxcf.error_resilient_mode) {
if (cpi->oxcf.play_alternate && cm->refresh_alt_ref_frame &&
(cm->frame_type != KEY_FRAME)) {
/* Update the alternate reference frame stats as appropriate. */
update_alt_ref_frame_stats(cpi);
} else {
/* Update the Golden frame stats as appropriate. */
update_golden_frame_stats(cpi);
}
}
if (cm->frame_type == KEY_FRAME) {
/* Tell the caller that the frame was coded as a key frame */
*frame_flags = cm->frame_flags | FRAMEFLAGS_KEY;
/* As this frame is a key frame the next defaults to an inter frame. */
cm->frame_type = INTER_FRAME;
cpi->last_frame_percent_intra = 100;
} else {
*frame_flags = cm->frame_flags & ~FRAMEFLAGS_KEY;
cpi->last_frame_percent_intra = cpi->this_frame_percent_intra;
}
/* Clear the one shot update flags for segmentation map and mode/ref
* loop filter deltas.
*/
cpi->mb.e_mbd.update_mb_segmentation_map = 0;
cpi->mb.e_mbd.update_mb_segmentation_data = 0;
cpi->mb.e_mbd.mode_ref_lf_delta_update = 0;
/* Dont increment frame counters if this was an altref buffer update
* not a real frame
*/
if (cm->show_frame) {
cm->current_video_frame++;
cpi->frames_since_key++;
cpi->temporal_pattern_counter++;
}
#if 0
{
char filename[512];
FILE *recon_file;
sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame);
recon_file = fopen(filename, "wb");
fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc,
cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file);
fclose(recon_file);
}
#endif
/* DEBUG */
/* vpx_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); */
}
#if !CONFIG_REALTIME_ONLY
static void Pass2Encode(VP8_COMP *cpi, size_t *size, unsigned char *dest,
unsigned char *dest_end, unsigned int *frame_flags) {
if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi);
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
cpi->twopass.bits_left -= 8 * (int)(*size);
if (!cpi->common.refresh_alt_ref_frame) {
double two_pass_min_rate =
(double)(cpi->oxcf.target_bandwidth *
cpi->oxcf.two_pass_vbrmin_section / 100);
cpi->twopass.bits_left += (int64_t)(two_pass_min_rate / cpi->framerate);
}
}
#endif
int vp8_receive_raw_frame(VP8_COMP *cpi, unsigned int frame_flags,
YV12_BUFFER_CONFIG *sd, int64_t time_stamp,
int64_t end_time) {
struct vpx_usec_timer timer;
int res = 0;
vpx_usec_timer_start(&timer);
/* Reinit the lookahead buffer if the frame size changes */
if (sd->y_width != cpi->oxcf.Width || sd->y_height != cpi->oxcf.Height) {
assert(cpi->oxcf.lag_in_frames < 2);
dealloc_raw_frame_buffers(cpi);
alloc_raw_frame_buffers(cpi);
}
if (vp8_lookahead_push(cpi->lookahead, sd, time_stamp, end_time, frame_flags,
cpi->active_map_enabled ? cpi->active_map : NULL)) {
res = -1;
}
vpx_usec_timer_mark(&timer);
cpi->time_receive_data += vpx_usec_timer_elapsed(&timer);
return res;
}
static int frame_is_reference(const VP8_COMP *cpi) {
const VP8_COMMON *cm = &cpi->common;
const MACROBLOCKD *xd = &cpi->mb.e_mbd;
return cm->frame_type == KEY_FRAME || cm->refresh_last_frame ||
cm->refresh_golden_frame || cm->refresh_alt_ref_frame ||
cm->copy_buffer_to_gf || cm->copy_buffer_to_arf ||
cm->refresh_entropy_probs || xd->mode_ref_lf_delta_update ||
xd->update_mb_segmentation_map || xd->update_mb_segmentation_data;
}
int vp8_get_compressed_data(VP8_COMP *cpi, unsigned int *frame_flags,
size_t *size, unsigned char *dest,
unsigned char *dest_end, int64_t *time_stamp,
int64_t *time_end, int flush) {
VP8_COMMON *cm;
struct vpx_usec_timer tsctimer;
struct vpx_usec_timer ticktimer;
struct vpx_usec_timer cmptimer;
YV12_BUFFER_CONFIG *force_src_buffer = NULL;
if (!cpi) return -1;
cm = &cpi->common;
if (setjmp(cpi->common.error.jmp)) {
cpi->common.error.setjmp = 0;
vpx_clear_system_state();
return VPX_CODEC_CORRUPT_FRAME;
}
cpi->common.error.setjmp = 1;
vpx_usec_timer_start(&cmptimer);
cpi->source = NULL;
#if !CONFIG_REALTIME_ONLY
/* Should we code an alternate reference frame */
if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.play_alternate &&
cpi->source_alt_ref_pending) {
if ((cpi->source = vp8_lookahead_peek(
cpi->lookahead, cpi->frames_till_gf_update_due, PEEK_FORWARD))) {
cpi->alt_ref_source = cpi->source;
if (cpi->oxcf.arnr_max_frames > 0) {
vp8_temporal_filter_prepare_c(cpi, cpi->frames_till_gf_update_due);
force_src_buffer = &cpi->alt_ref_buffer;
}
cpi->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due;
cm->refresh_alt_ref_frame = 1;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
cm->show_frame = 0;
/* Clear Pending alt Ref flag. */
cpi->source_alt_ref_pending = 0;
cpi->is_src_frame_alt_ref = 0;
}
}
#endif
if (!cpi->source) {
/* Read last frame source if we are encoding first pass. */
if (cpi->pass == 1 && cm->current_video_frame > 0) {
if ((cpi->last_source =
vp8_lookahead_peek(cpi->lookahead, 1, PEEK_BACKWARD)) == NULL) {
return -1;
}
}
if ((cpi->source = vp8_lookahead_pop(cpi->lookahead, flush))) {
cm->show_frame = 1;
cpi->is_src_frame_alt_ref =
cpi->alt_ref_source && (cpi->source == cpi->alt_ref_source);
if (cpi->is_src_frame_alt_ref) cpi->alt_ref_source = NULL;
}
}
if (cpi->source) {
cpi->Source = force_src_buffer ? force_src_buffer : &cpi->source->img;
cpi->un_scaled_source = cpi->Source;
*time_stamp = cpi->source->ts_start;
*time_end = cpi->source->ts_end;
*frame_flags = cpi->source->flags;
if (cpi->pass == 1 && cm->current_video_frame > 0) {
cpi->last_frame_unscaled_source = &cpi->last_source->img;
}
} else {
*size = 0;
#if !CONFIG_REALTIME_ONLY
if (flush && cpi->pass == 1 && !cpi->twopass.first_pass_done) {
vp8_end_first_pass(cpi); /* get last stats packet */
cpi->twopass.first_pass_done = 1;
}
#endif
return -1;
}
if (cpi->source->ts_start < cpi->first_time_stamp_ever) {
cpi->first_time_stamp_ever = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_start;
}
/* adjust frame rates based on timestamps given */
if (cm->show_frame) {
int64_t this_duration;
int step = 0;
if (cpi->source->ts_start == cpi->first_time_stamp_ever) {
this_duration = cpi->source->ts_end - cpi->source->ts_start;
step = 1;
} else {
int64_t last_duration;
this_duration = cpi->source->ts_end - cpi->last_end_time_stamp_seen;
last_duration = cpi->last_end_time_stamp_seen - cpi->last_time_stamp_seen;
/* do a step update if the duration changes by 10% */
if (last_duration) {
step = (int)(((this_duration - last_duration) * 10 / last_duration));
}
}
if (this_duration) {
if (step) {
cpi->ref_framerate = 10000000.0 / this_duration;
} else {
double avg_duration, interval;
/* Average this frame's rate into the last second's average
* frame rate. If we haven't seen 1 second yet, then average
* over the whole interval seen.
*/
interval = (double)(cpi->source->ts_end - cpi->first_time_stamp_ever);
if (interval > 10000000.0) interval = 10000000;
avg_duration = 10000000.0 / cpi->ref_framerate;
avg_duration *= (interval - avg_duration + this_duration);
avg_duration /= interval;
cpi->ref_framerate = 10000000.0 / avg_duration;
}
#if CONFIG_MULTI_RES_ENCODING
if (cpi->oxcf.mr_total_resolutions > 1) {
LOWER_RES_FRAME_INFO *low_res_frame_info =
(LOWER_RES_FRAME_INFO *)cpi->oxcf.mr_low_res_mode_info;
// Frame rate should be the same for all spatial layers in
// multi-res-encoding (simulcast), so we constrain the frame for
// higher layers to be that of lowest resolution. This is needed
// as he application may decide to skip encoding a high layer and
// then start again, in which case a big jump in time-stamps will
// be received for that high layer, which will yield an incorrect
// frame rate (from time-stamp adjustment in above calculation).
if (cpi->oxcf.mr_encoder_id) {
if (!low_res_frame_info->skip_encoding_base_stream)
cpi->ref_framerate = low_res_frame_info->low_res_framerate;
} else {
// Keep track of frame rate for lowest resolution.
low_res_frame_info->low_res_framerate = cpi->ref_framerate;
// The base stream is being encoded so set skip flag to 0.
low_res_frame_info->skip_encoding_base_stream = 0;
}
}
#endif
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
/* Update frame rates for each layer */
assert(cpi->oxcf.number_of_layers <= VPX_TS_MAX_LAYERS);
for (i = 0; i < cpi->oxcf.number_of_layers && i < VPX_TS_MAX_LAYERS;
++i) {
LAYER_CONTEXT *lc = &cpi->layer_context[i];
lc->framerate = cpi->ref_framerate / cpi->oxcf.rate_decimator[i];
}
} else {
vp8_new_framerate(cpi, cpi->ref_framerate);
}
}
cpi->last_time_stamp_seen = cpi->source->ts_start;
cpi->last_end_time_stamp_seen = cpi->source->ts_end;
}
if (cpi->oxcf.number_of_layers > 1) {
int layer;
update_layer_contexts(cpi);
/* Restore layer specific context & set frame rate */
if (cpi->temporal_layer_id >= 0) {
layer = cpi->temporal_layer_id;
} else {
layer =
cpi->oxcf
.layer_id[cpi->temporal_pattern_counter % cpi->oxcf.periodicity];
}
restore_layer_context(cpi, layer);
vp8_new_framerate(cpi, cpi->layer_context[layer].framerate);
}
if (cpi->compressor_speed == 2) {
vpx_usec_timer_start(&tsctimer);
vpx_usec_timer_start(&ticktimer);
}
cpi->lf_zeromv_pct = (cpi->zeromv_count * 100) / cm->MBs;
#if CONFIG_REALTIME_ONLY & CONFIG_ONTHEFLY_BITPACKING
{
int i;
const int num_part = (1 << cm->multi_token_partition);
/* the available bytes in dest */
const unsigned long dest_size = dest_end - dest;
const int tok_part_buff_size = (dest_size * 9) / (10 * num_part);
unsigned char *dp = dest;
cpi->partition_d[0] = dp;
dp += dest_size / 10; /* reserve 1/10 for control partition */
cpi->partition_d_end[0] = dp;
for (i = 0; i < num_part; ++i) {
cpi->partition_d[i + 1] = dp;
dp += tok_part_buff_size;
cpi->partition_d_end[i + 1] = dp;
}
}
#endif
/* start with a 0 size frame */
*size = 0;
/* Clear down mmx registers */
vpx_clear_system_state();
cm->frame_type = INTER_FRAME;
cm->frame_flags = *frame_flags;
#if 0
if (cm->refresh_alt_ref_frame)
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 0;
}
else
{
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
}
#endif
/* find a free buffer for the new frame */
{
int i = 0;
for (; i < NUM_YV12_BUFFERS; ++i) {
if (!cm->yv12_fb[i].flags) {
cm->new_fb_idx = i;
break;
}
}
assert(i < NUM_YV12_BUFFERS);
}
switch (cpi->pass) {
#if !CONFIG_REALTIME_ONLY
case 1: Pass1Encode(cpi, size, dest, frame_flags); break;
case 2: Pass2Encode(cpi, size, dest, dest_end, frame_flags); break;
#endif // !CONFIG_REALTIME_ONLY
default:
encode_frame_to_data_rate(cpi, size, dest, dest_end, frame_flags);
break;
}
if (cpi->compressor_speed == 2) {
unsigned int duration, duration2;
vpx_usec_timer_mark(&tsctimer);
vpx_usec_timer_mark(&ticktimer);
duration = (int)(vpx_usec_timer_elapsed(&ticktimer));
duration2 = (unsigned int)((double)duration / 2);
if (cm->frame_type != KEY_FRAME) {
if (cpi->avg_encode_time == 0) {
cpi->avg_encode_time = duration;
} else {
cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3;
}
}
if (duration2) {
{
if (cpi->avg_pick_mode_time == 0) {
cpi->avg_pick_mode_time = duration2;
} else {
cpi->avg_pick_mode_time =
(7 * cpi->avg_pick_mode_time + duration2) >> 3;
}
}
}
}
if (cm->refresh_entropy_probs == 0) {
memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc));
}
/* Save the contexts separately for alt ref, gold and last. */
/* (TODO jbb -> Optimize this with pointers to avoid extra copies. ) */
if (cm->refresh_alt_ref_frame) memcpy(&cpi->lfc_a, &cm->fc, sizeof(cm->fc));
if (cm->refresh_golden_frame) memcpy(&cpi->lfc_g, &cm->fc, sizeof(cm->fc));
if (cm->refresh_last_frame) memcpy(&cpi->lfc_n, &cm->fc, sizeof(cm->fc));
/* if its a dropped frame honor the requests on subsequent frames */
if (*size > 0) {
cpi->droppable = !frame_is_reference(cpi);
/* return to normal state */
cm->refresh_entropy_probs = 1;
cm->refresh_alt_ref_frame = 0;
cm->refresh_golden_frame = 0;
cm->refresh_last_frame = 1;
cm->frame_type = INTER_FRAME;
}
/* Save layer specific state */
if (cpi->oxcf.number_of_layers > 1) save_layer_context(cpi);
vpx_usec_timer_mark(&cmptimer);
cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer);
if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) {
generate_psnr_packet(cpi);
}
#if CONFIG_INTERNAL_STATS
if (cpi->pass != 1) {
cpi->bytes += *size;
if (cm->show_frame) {
cpi->common.show_frame_mi = cpi->common.mi;
cpi->count++;
if (cpi->b_calculate_psnr) {
uint64_t ye, ue, ve;
double frame_psnr;
YV12_BUFFER_CONFIG *orig = cpi->Source;
YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show;
unsigned int y_width = cpi->common.Width;
unsigned int y_height = cpi->common.Height;
unsigned int uv_width = (y_width + 1) / 2;
unsigned int uv_height = (y_height + 1) / 2;
int y_samples = y_height * y_width;
int uv_samples = uv_height * uv_width;
int t_samples = y_samples + 2 * uv_samples;
double sq_error;
ye = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer,
recon->y_stride, y_width, y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer,
recon->uv_stride, uv_width, uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer,
recon->uv_stride, uv_width, uv_height);
sq_error = (double)(ye + ue + ve);
frame_psnr = vpx_sse_to_psnr(t_samples, 255.0, sq_error);
cpi->total_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
cpi->total_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
cpi->total_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
cpi->total_sq_error += sq_error;
cpi->total += frame_psnr;
#if CONFIG_POSTPROC
{
YV12_BUFFER_CONFIG *pp = &cm->post_proc_buffer;
double sq_error2;
double frame_psnr2, frame_ssim2 = 0;
double weight = 0;
vp8_deblock(cm, cm->frame_to_show, &cm->post_proc_buffer,
cm->filter_level * 10 / 6, 1, 0);
vpx_clear_system_state();
ye = calc_plane_error(orig->y_buffer, orig->y_stride, pp->y_buffer,
pp->y_stride, y_width, y_height);
ue = calc_plane_error(orig->u_buffer, orig->uv_stride, pp->u_buffer,
pp->uv_stride, uv_width, uv_height);
ve = calc_plane_error(orig->v_buffer, orig->uv_stride, pp->v_buffer,
pp->uv_stride, uv_width, uv_height);
sq_error2 = (double)(ye + ue + ve);
frame_psnr2 = vpx_sse_to_psnr(t_samples, 255.0, sq_error2);
cpi->totalp_y += vpx_sse_to_psnr(y_samples, 255.0, (double)ye);
cpi->totalp_u += vpx_sse_to_psnr(uv_samples, 255.0, (double)ue);
cpi->totalp_v += vpx_sse_to_psnr(uv_samples, 255.0, (double)ve);
cpi->total_sq_error2 += sq_error2;
cpi->totalp += frame_psnr2;
frame_ssim2 =
vpx_calc_ssim(cpi->Source, &cm->post_proc_buffer, &weight);
cpi->summed_quality += frame_ssim2 * weight;
cpi->summed_weights += weight;
if (cpi->oxcf.number_of_layers > 1) {
unsigned int i;
for (i = cpi->current_layer; i < cpi->oxcf.number_of_layers; ++i) {
cpi->frames_in_layer[i]++;
cpi->bytes_in_layer[i] += *size;
cpi->sum_psnr[i] += frame_psnr;
cpi->sum_psnr_p[i] += frame_psnr2;
cpi->total_error2[i] += sq_error;
cpi->total_error2_p[i] += sq_error2;
cpi->sum_ssim[i] += frame_ssim2 * weight;
cpi->sum_weights[i] += weight;
}
}
}
#endif
}
}
}
#if 0
if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q)
{
skiptruecount += cpi->skip_true_count;
skipfalsecount += cpi->skip_false_count;
}
#endif
#if 0
if (cpi->pass != 1)
{
FILE *f = fopen("skip.stt", "a");
fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size);
if (cpi->is_src_frame_alt_ref == 1)
fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size);
fclose(f);
}
#endif
#endif
cpi->common.error.setjmp = 0;
#if CONFIG_MULTITHREAD
/* wait for the lpf thread done */
if (vpx_atomic_load_acquire(&cpi->b_multi_threaded) && cpi->b_lpf_running) {
sem_wait(&cpi->h_event_end_lpf);
cpi->b_lpf_running = 0;
}
#endif
return 0;
}
int vp8_get_preview_raw_frame(VP8_COMP *cpi, YV12_BUFFER_CONFIG *dest,
vp8_ppflags_t *flags) {
if (cpi->common.refresh_alt_ref_frame) {
return -1;
} else {
int ret;
#if CONFIG_POSTPROC
cpi->common.show_frame_mi = cpi->common.mi;
ret = vp8_post_proc_frame(&cpi->common, dest, flags);
#else
(void)flags;
if (cpi->common.frame_to_show) {
*dest = *cpi->common.frame_to_show;
dest->y_width = cpi->common.Width;
dest->y_height = cpi->common.Height;
dest->uv_height = cpi->common.Height / 2;
ret = 0;
} else {
ret = -1;
}
#endif
vpx_clear_system_state();
return ret;
}
}
int vp8_set_roimap(VP8_COMP *cpi, unsigned char *map, unsigned int rows,
unsigned int cols, int delta_q[4], int delta_lf[4],
unsigned int threshold[4]) {
signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS];
int internal_delta_q[MAX_MB_SEGMENTS];
const int range = 63;
int i;
// Check number of rows and columns match
if (cpi->common.mb_rows != (int)rows || cpi->common.mb_cols != (int)cols) {
return -1;
}
// Range check the delta Q values and convert the external Q range values
// to internal ones.
if ((abs(delta_q[0]) > range) || (abs(delta_q[1]) > range) ||
(abs(delta_q[2]) > range) || (abs(delta_q[3]) > range)) {
return -1;
}
// Range check the delta lf values
if ((abs(delta_lf[0]) > range) || (abs(delta_lf[1]) > range) ||
(abs(delta_lf[2]) > range) || (abs(delta_lf[3]) > range)) {
return -1;
}
// Also disable segmentation if no deltas are specified.
if (!map || (delta_q[0] == 0 && delta_q[1] == 0 && delta_q[2] == 0 &&
delta_q[3] == 0 && delta_lf[0] == 0 && delta_lf[1] == 0 &&
delta_lf[2] == 0 && delta_lf[3] == 0 && threshold[0] == 0 &&
threshold[1] == 0 && threshold[2] == 0 && threshold[3] == 0)) {
disable_segmentation(cpi);
return 0;
}
// Translate the external delta q values to internal values.
for (i = 0; i < MAX_MB_SEGMENTS; ++i) {
internal_delta_q[i] =
(delta_q[i] >= 0) ? q_trans[delta_q[i]] : -q_trans[-delta_q[i]];
}
/* Set the segmentation Map */
set_segmentation_map(cpi, map);
/* Activate segmentation. */
enable_segmentation(cpi);
/* Set up the quant segment data */
feature_data[MB_LVL_ALT_Q][0] = internal_delta_q[0];
feature_data[MB_LVL_ALT_Q][1] = internal_delta_q[1];
feature_data[MB_LVL_ALT_Q][2] = internal_delta_q[2];
feature_data[MB_LVL_ALT_Q][3] = internal_delta_q[3];
/* Set up the loop segment data s */
feature_data[MB_LVL_ALT_LF][0] = delta_lf[0];
feature_data[MB_LVL_ALT_LF][1] = delta_lf[1];
feature_data[MB_LVL_ALT_LF][2] = delta_lf[2];
feature_data[MB_LVL_ALT_LF][3] = delta_lf[3];
cpi->segment_encode_breakout[0] = threshold[0];
cpi->segment_encode_breakout[1] = threshold[1];
cpi->segment_encode_breakout[2] = threshold[2];
cpi->segment_encode_breakout[3] = threshold[3];
/* Initialise the feature data structure */
set_segment_data(cpi, &feature_data[0][0], SEGMENT_DELTADATA);
if (threshold[0] != 0 || threshold[1] != 0 || threshold[2] != 0 ||
threshold[3] != 0)
cpi->use_roi_static_threshold = 1;
cpi->cyclic_refresh_mode_enabled = 0;
return 0;
}
int vp8_set_active_map(VP8_COMP *cpi, unsigned char *map, unsigned int rows,
unsigned int cols) {
if ((int)rows == cpi->common.mb_rows && (int)cols == cpi->common.mb_cols) {
if (map) {
memcpy(cpi->active_map, map, rows * cols);
cpi->active_map_enabled = 1;
} else {
cpi->active_map_enabled = 0;
}
return 0;
} else {
return -1;
}
}
int vp8_set_internal_size(VP8_COMP *cpi, VPX_SCALING horiz_mode,
VPX_SCALING vert_mode) {
if (horiz_mode <= ONETWO) {
cpi->common.horiz_scale = horiz_mode;
} else {
return -1;
}
if (vert_mode <= ONETWO) {
cpi->common.vert_scale = vert_mode;
} else {
return -1;
}
return 0;
}
int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest) {
int i, j;
int Total = 0;
unsigned char *src = source->y_buffer;
unsigned char *dst = dest->y_buffer;
/* Loop through the Y plane raw and reconstruction data summing
* (square differences)
*/
for (i = 0; i < source->y_height; i += 16) {
for (j = 0; j < source->y_width; j += 16) {
unsigned int sse;
Total += vpx_mse16x16(src + j, source->y_stride, dst + j, dest->y_stride,
&sse);
}
src += 16 * source->y_stride;
dst += 16 * dest->y_stride;
}
return Total;
}
int vp8_get_quantizer(VP8_COMP *cpi) { return cpi->common.base_qindex; }