/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ /* This is a simple program that encodes YV12 files and generates ivf * files using the new interface. */ #if defined(_WIN32) || !CONFIG_OS_SUPPORT #define USE_POSIX_MMAP 0 #else #define USE_POSIX_MMAP 1 #endif #include #include #include #include #include #include #include "vpx/vpx_encoder.h" #if USE_POSIX_MMAP #include #include #include #include #include #endif #include "vpx/vp8cx.h" #include "vpx_ports/mem_ops.h" #include "vpx_ports/vpx_timer.h" #include "tools_common.h" #include "y4minput.h" #include "libmkv/EbmlWriter.h" #include "libmkv/EbmlIDs.h" /* Need special handling of these functions on Windows */ #if defined(_MSC_VER) /* MSVS doesn't define off_t, and uses _f{seek,tell}i64 */ typedef __int64 off_t; #define fseeko _fseeki64 #define ftello _ftelli64 #elif defined(_WIN32) /* MinGW defines off_t as long and uses f{seek,tell}o64/off64_t for large files */ #define fseeko fseeko64 #define ftello ftello64 #define off_t off64_t #endif #if defined(_MSC_VER) #define LITERALU64(n) n #else #define LITERALU64(n) n##LLU #endif /* We should use 32-bit file operations in WebM file format * when building ARM executable file (.axf) with RVCT */ #if !CONFIG_OS_SUPPORT typedef long off_t; #define fseeko fseek #define ftello ftell #endif static const char *exec_name; static const struct codec_item { char const *name; const vpx_codec_iface_t *iface; unsigned int fourcc; } codecs[] = { #if CONFIG_VP8_ENCODER {"vp8", &vpx_codec_vp8_cx_algo, 0x30385056}, #endif }; static void usage_exit(); void die(const char *fmt, ...) { va_list ap; va_start(ap, fmt); vfprintf(stderr, fmt, ap); fprintf(stderr, "\n"); usage_exit(); } static void ctx_exit_on_error(vpx_codec_ctx_t *ctx, const char *s) { if (ctx->err) { const char *detail = vpx_codec_error_detail(ctx); fprintf(stderr, "%s: %s\n", s, vpx_codec_error(ctx)); if (detail) fprintf(stderr, " %s\n", detail); exit(EXIT_FAILURE); } } /* This structure is used to abstract the different ways of handling * first pass statistics. */ typedef struct { vpx_fixed_buf_t buf; int pass; FILE *file; char *buf_ptr; size_t buf_alloc_sz; } stats_io_t; int stats_open_file(stats_io_t *stats, const char *fpf, int pass) { int res; stats->pass = pass; if (pass == 0) { stats->file = fopen(fpf, "wb"); stats->buf.sz = 0; stats->buf.buf = NULL, res = (stats->file != NULL); } else { #if 0 #elif USE_POSIX_MMAP struct stat stat_buf; int fd; fd = open(fpf, O_RDONLY); stats->file = fdopen(fd, "rb"); fstat(fd, &stat_buf); stats->buf.sz = stat_buf.st_size; stats->buf.buf = mmap(NULL, stats->buf.sz, PROT_READ, MAP_PRIVATE, fd, 0); res = (stats->buf.buf != NULL); #else size_t nbytes; stats->file = fopen(fpf, "rb"); if (fseek(stats->file, 0, SEEK_END)) { fprintf(stderr, "First-pass stats file must be seekable!\n"); exit(EXIT_FAILURE); } stats->buf.sz = stats->buf_alloc_sz = ftell(stats->file); rewind(stats->file); stats->buf.buf = malloc(stats->buf_alloc_sz); if (!stats->buf.buf) { fprintf(stderr, "Failed to allocate first-pass stats buffer (%lu bytes)\n", (unsigned long)stats->buf_alloc_sz); exit(EXIT_FAILURE); } nbytes = fread(stats->buf.buf, 1, stats->buf.sz, stats->file); res = (nbytes == stats->buf.sz); #endif } return res; } int stats_open_mem(stats_io_t *stats, int pass) { int res; stats->pass = pass; if (!pass) { stats->buf.sz = 0; stats->buf_alloc_sz = 64 * 1024; stats->buf.buf = malloc(stats->buf_alloc_sz); } stats->buf_ptr = stats->buf.buf; res = (stats->buf.buf != NULL); return res; } void stats_close(stats_io_t *stats, int last_pass) { if (stats->file) { if (stats->pass == last_pass) { #if 0 #elif USE_POSIX_MMAP munmap(stats->buf.buf, stats->buf.sz); #else free(stats->buf.buf); #endif } fclose(stats->file); stats->file = NULL; } else { if (stats->pass == last_pass) free(stats->buf.buf); } } void stats_write(stats_io_t *stats, const void *pkt, size_t len) { if (stats->file) { if(fwrite(pkt, 1, len, stats->file)); } else { if (stats->buf.sz + len > stats->buf_alloc_sz) { size_t new_sz = stats->buf_alloc_sz + 64 * 1024; char *new_ptr = realloc(stats->buf.buf, new_sz); if (new_ptr) { stats->buf_ptr = new_ptr + (stats->buf_ptr - (char *)stats->buf.buf); stats->buf.buf = new_ptr; stats->buf_alloc_sz = new_sz; } else { fprintf(stderr, "\nFailed to realloc firstpass stats buffer.\n"); exit(EXIT_FAILURE); } } memcpy(stats->buf_ptr, pkt, len); stats->buf.sz += len; stats->buf_ptr += len; } } vpx_fixed_buf_t stats_get(stats_io_t *stats) { return stats->buf; } /* Stereo 3D packed frame format */ typedef enum stereo_format { STEREO_FORMAT_MONO = 0, STEREO_FORMAT_LEFT_RIGHT = 1, STEREO_FORMAT_BOTTOM_TOP = 2, STEREO_FORMAT_TOP_BOTTOM = 3, STEREO_FORMAT_RIGHT_LEFT = 11 } stereo_format_t; enum video_file_type { FILE_TYPE_RAW, FILE_TYPE_IVF, FILE_TYPE_Y4M }; struct detect_buffer { char buf[4]; size_t buf_read; size_t position; }; #define IVF_FRAME_HDR_SZ (4+8) /* 4 byte size + 8 byte timestamp */ static int read_frame(FILE *f, vpx_image_t *img, unsigned int file_type, y4m_input *y4m, struct detect_buffer *detect) { int plane = 0; int shortread = 0; if (file_type == FILE_TYPE_Y4M) { if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0; } else { if (file_type == FILE_TYPE_IVF) { char junk[IVF_FRAME_HDR_SZ]; /* Skip the frame header. We know how big the frame should be. See * write_ivf_frame_header() for documentation on the frame header * layout. */ if(fread(junk, 1, IVF_FRAME_HDR_SZ, f)); } for (plane = 0; plane < 3; plane++) { unsigned char *ptr; int w = (plane ? (1 + img->d_w) / 2 : img->d_w); int h = (plane ? (1 + img->d_h) / 2 : img->d_h); int r; /* Determine the correct plane based on the image format. The for-loop * always counts in Y,U,V order, but this may not match the order of * the data on disk. */ switch (plane) { case 1: ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12? VPX_PLANE_V : VPX_PLANE_U]; break; case 2: ptr = img->planes[img->fmt==VPX_IMG_FMT_YV12?VPX_PLANE_U : VPX_PLANE_V]; break; default: ptr = img->planes[plane]; } for (r = 0; r < h; r++) { size_t needed = w; size_t buf_position = 0; const size_t left = detect->buf_read - detect->position; if (left > 0) { const size_t more = (left < needed) ? left : needed; memcpy(ptr, detect->buf + detect->position, more); buf_position = more; needed -= more; detect->position += more; } if (needed > 0) { shortread |= (fread(ptr + buf_position, 1, needed, f) < needed); } ptr += img->stride[plane]; } } } return !shortread; } unsigned int file_is_y4m(FILE *infile, y4m_input *y4m, char detect[4]) { if(memcmp(detect, "YUV4", 4) == 0) { return 1; } return 0; } #define IVF_FILE_HDR_SZ (32) unsigned int file_is_ivf(FILE *infile, unsigned int *fourcc, unsigned int *width, unsigned int *height, struct detect_buffer *detect) { char raw_hdr[IVF_FILE_HDR_SZ]; int is_ivf = 0; if(memcmp(detect->buf, "DKIF", 4) != 0) return 0; /* See write_ivf_file_header() for more documentation on the file header * layout. */ if (fread(raw_hdr + 4, 1, IVF_FILE_HDR_SZ - 4, infile) == IVF_FILE_HDR_SZ - 4) { { is_ivf = 1; if (mem_get_le16(raw_hdr + 4) != 0) fprintf(stderr, "Error: Unrecognized IVF version! This file may not" " decode properly."); *fourcc = mem_get_le32(raw_hdr + 8); } } if (is_ivf) { *width = mem_get_le16(raw_hdr + 12); *height = mem_get_le16(raw_hdr + 14); detect->position = 4; } return is_ivf; } static void write_ivf_file_header(FILE *outfile, const vpx_codec_enc_cfg_t *cfg, unsigned int fourcc, int frame_cnt) { char header[32]; if (cfg->g_pass != VPX_RC_ONE_PASS && cfg->g_pass != VPX_RC_LAST_PASS) return; header[0] = 'D'; header[1] = 'K'; header[2] = 'I'; header[3] = 'F'; mem_put_le16(header + 4, 0); /* version */ mem_put_le16(header + 6, 32); /* headersize */ mem_put_le32(header + 8, fourcc); /* headersize */ mem_put_le16(header + 12, cfg->g_w); /* width */ mem_put_le16(header + 14, cfg->g_h); /* height */ mem_put_le32(header + 16, cfg->g_timebase.den); /* rate */ mem_put_le32(header + 20, cfg->g_timebase.num); /* scale */ mem_put_le32(header + 24, frame_cnt); /* length */ mem_put_le32(header + 28, 0); /* unused */ if(fwrite(header, 1, 32, outfile)); } static void write_ivf_frame_header(FILE *outfile, const vpx_codec_cx_pkt_t *pkt) { char header[12]; vpx_codec_pts_t pts; if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) return; pts = pkt->data.frame.pts; mem_put_le32(header, pkt->data.frame.sz); mem_put_le32(header + 4, pts & 0xFFFFFFFF); mem_put_le32(header + 8, pts >> 32); if(fwrite(header, 1, 12, outfile)); } typedef off_t EbmlLoc; struct cue_entry { unsigned int time; uint64_t loc; }; struct EbmlGlobal { int debug; FILE *stream; int64_t last_pts_ms; vpx_rational_t framerate; /* These pointers are to the start of an element */ off_t position_reference; off_t seek_info_pos; off_t segment_info_pos; off_t track_pos; off_t cue_pos; off_t cluster_pos; /* This pointer is to a specific element to be serialized */ off_t track_id_pos; /* These pointers are to the size field of the element */ EbmlLoc startSegment; EbmlLoc startCluster; uint32_t cluster_timecode; int cluster_open; struct cue_entry *cue_list; unsigned int cues; }; void Ebml_Write(EbmlGlobal *glob, const void *buffer_in, unsigned long len) { if(fwrite(buffer_in, 1, len, glob->stream)); } #define WRITE_BUFFER(s) \ for(i = len-1; i>=0; i--)\ { \ x = *(const s *)buffer_in >> (i * CHAR_BIT); \ Ebml_Write(glob, &x, 1); \ } void Ebml_Serialize(EbmlGlobal *glob, const void *buffer_in, int buffer_size, unsigned long len) { char x; int i; /* buffer_size: * 1 - int8_t; * 2 - int16_t; * 3 - int32_t; * 4 - int64_t; */ switch (buffer_size) { case 1: WRITE_BUFFER(int8_t) break; case 2: WRITE_BUFFER(int16_t) break; case 4: WRITE_BUFFER(int32_t) break; case 8: WRITE_BUFFER(int64_t) break; default: break; } } #undef WRITE_BUFFER /* Need a fixed size serializer for the track ID. libmkv provides a 64 bit * one, but not a 32 bit one. */ static void Ebml_SerializeUnsigned32(EbmlGlobal *glob, unsigned long class_id, uint64_t ui) { unsigned char sizeSerialized = 4 | 0x80; Ebml_WriteID(glob, class_id); Ebml_Serialize(glob, &sizeSerialized, sizeof(sizeSerialized), 1); Ebml_Serialize(glob, &ui, sizeof(ui), 4); } static void Ebml_StartSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc, unsigned long class_id) { //todo this is always taking 8 bytes, this may need later optimization //this is a key that says length unknown uint64_t unknownLen = LITERALU64(0x01FFFFFFFFFFFFFF); Ebml_WriteID(glob, class_id); *ebmlLoc = ftello(glob->stream); Ebml_Serialize(glob, &unknownLen, sizeof(unknownLen), 8); } static void Ebml_EndSubElement(EbmlGlobal *glob, EbmlLoc *ebmlLoc) { off_t pos; uint64_t size; /* Save the current stream pointer */ pos = ftello(glob->stream); /* Calculate the size of this element */ size = pos - *ebmlLoc - 8; size |= LITERALU64(0x0100000000000000); /* Seek back to the beginning of the element and write the new size */ fseeko(glob->stream, *ebmlLoc, SEEK_SET); Ebml_Serialize(glob, &size, sizeof(size), 8); /* Reset the stream pointer */ fseeko(glob->stream, pos, SEEK_SET); } static void write_webm_seek_element(EbmlGlobal *ebml, unsigned long id, off_t pos) { uint64_t offset = pos - ebml->position_reference; EbmlLoc start; Ebml_StartSubElement(ebml, &start, Seek); Ebml_SerializeBinary(ebml, SeekID, id); Ebml_SerializeUnsigned64(ebml, SeekPosition, offset); Ebml_EndSubElement(ebml, &start); } static void write_webm_seek_info(EbmlGlobal *ebml) { off_t pos; /* Save the current stream pointer */ pos = ftello(ebml->stream); if(ebml->seek_info_pos) fseeko(ebml->stream, ebml->seek_info_pos, SEEK_SET); else ebml->seek_info_pos = pos; { EbmlLoc start; Ebml_StartSubElement(ebml, &start, SeekHead); write_webm_seek_element(ebml, Tracks, ebml->track_pos); write_webm_seek_element(ebml, Cues, ebml->cue_pos); write_webm_seek_element(ebml, Info, ebml->segment_info_pos); Ebml_EndSubElement(ebml, &start); } { //segment info EbmlLoc startInfo; uint64_t frame_time; char version_string[64]; /* Assemble version string */ if(ebml->debug) strcpy(version_string, "vpxenc"); else { strcpy(version_string, "vpxenc "); strncat(version_string, vpx_codec_version_str(), sizeof(version_string) - 1 - strlen(version_string)); } frame_time = (uint64_t)1000 * ebml->framerate.den / ebml->framerate.num; ebml->segment_info_pos = ftello(ebml->stream); Ebml_StartSubElement(ebml, &startInfo, Info); Ebml_SerializeUnsigned(ebml, TimecodeScale, 1000000); Ebml_SerializeFloat(ebml, Segment_Duration, ebml->last_pts_ms + frame_time); Ebml_SerializeString(ebml, 0x4D80, version_string); Ebml_SerializeString(ebml, 0x5741, version_string); Ebml_EndSubElement(ebml, &startInfo); } } static void write_webm_file_header(EbmlGlobal *glob, const vpx_codec_enc_cfg_t *cfg, const struct vpx_rational *fps, stereo_format_t stereo_fmt) { { EbmlLoc start; Ebml_StartSubElement(glob, &start, EBML); Ebml_SerializeUnsigned(glob, EBMLVersion, 1); Ebml_SerializeUnsigned(glob, EBMLReadVersion, 1); //EBML Read Version Ebml_SerializeUnsigned(glob, EBMLMaxIDLength, 4); //EBML Max ID Length Ebml_SerializeUnsigned(glob, EBMLMaxSizeLength, 8); //EBML Max Size Length Ebml_SerializeString(glob, DocType, "webm"); //Doc Type Ebml_SerializeUnsigned(glob, DocTypeVersion, 2); //Doc Type Version Ebml_SerializeUnsigned(glob, DocTypeReadVersion, 2); //Doc Type Read Version Ebml_EndSubElement(glob, &start); } { Ebml_StartSubElement(glob, &glob->startSegment, Segment); //segment glob->position_reference = ftello(glob->stream); glob->framerate = *fps; write_webm_seek_info(glob); { EbmlLoc trackStart; glob->track_pos = ftello(glob->stream); Ebml_StartSubElement(glob, &trackStart, Tracks); { unsigned int trackNumber = 1; uint64_t trackID = 0; EbmlLoc start; Ebml_StartSubElement(glob, &start, TrackEntry); Ebml_SerializeUnsigned(glob, TrackNumber, trackNumber); glob->track_id_pos = ftello(glob->stream); Ebml_SerializeUnsigned32(glob, TrackUID, trackID); Ebml_SerializeUnsigned(glob, TrackType, 1); //video is always 1 Ebml_SerializeString(glob, CodecID, "V_VP8"); { unsigned int pixelWidth = cfg->g_w; unsigned int pixelHeight = cfg->g_h; float frameRate = (float)fps->num/(float)fps->den; EbmlLoc videoStart; Ebml_StartSubElement(glob, &videoStart, Video); Ebml_SerializeUnsigned(glob, PixelWidth, pixelWidth); Ebml_SerializeUnsigned(glob, PixelHeight, pixelHeight); Ebml_SerializeUnsigned(glob, StereoMode, stereo_fmt); Ebml_SerializeFloat(glob, FrameRate, frameRate); Ebml_EndSubElement(glob, &videoStart); //Video } Ebml_EndSubElement(glob, &start); //Track Entry } Ebml_EndSubElement(glob, &trackStart); } // segment element is open } } static void write_webm_block(EbmlGlobal *glob, const vpx_codec_enc_cfg_t *cfg, const vpx_codec_cx_pkt_t *pkt) { unsigned long block_length; unsigned char track_number; unsigned short block_timecode = 0; unsigned char flags; int64_t pts_ms; int start_cluster = 0, is_keyframe; /* Calculate the PTS of this frame in milliseconds */ pts_ms = pkt->data.frame.pts * 1000 * (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den; if(pts_ms <= glob->last_pts_ms) pts_ms = glob->last_pts_ms + 1; glob->last_pts_ms = pts_ms; /* Calculate the relative time of this block */ if(pts_ms - glob->cluster_timecode > SHRT_MAX) start_cluster = 1; else block_timecode = pts_ms - glob->cluster_timecode; is_keyframe = (pkt->data.frame.flags & VPX_FRAME_IS_KEY); if(start_cluster || is_keyframe) { if(glob->cluster_open) Ebml_EndSubElement(glob, &glob->startCluster); /* Open the new cluster */ block_timecode = 0; glob->cluster_open = 1; glob->cluster_timecode = pts_ms; glob->cluster_pos = ftello(glob->stream); Ebml_StartSubElement(glob, &glob->startCluster, Cluster); //cluster Ebml_SerializeUnsigned(glob, Timecode, glob->cluster_timecode); /* Save a cue point if this is a keyframe. */ if(is_keyframe) { struct cue_entry *cue, *new_cue_list; new_cue_list = realloc(glob->cue_list, (glob->cues+1) * sizeof(struct cue_entry)); if(new_cue_list) glob->cue_list = new_cue_list; else { fprintf(stderr, "\nFailed to realloc cue list.\n"); exit(EXIT_FAILURE); } cue = &glob->cue_list[glob->cues]; cue->time = glob->cluster_timecode; cue->loc = glob->cluster_pos; glob->cues++; } } /* Write the Simple Block */ Ebml_WriteID(glob, SimpleBlock); block_length = pkt->data.frame.sz + 4; block_length |= 0x10000000; Ebml_Serialize(glob, &block_length, sizeof(block_length), 4); track_number = 1; track_number |= 0x80; Ebml_Write(glob, &track_number, 1); Ebml_Serialize(glob, &block_timecode, sizeof(block_timecode), 2); flags = 0; if(is_keyframe) flags |= 0x80; if(pkt->data.frame.flags & VPX_FRAME_IS_INVISIBLE) flags |= 0x08; Ebml_Write(glob, &flags, 1); Ebml_Write(glob, pkt->data.frame.buf, pkt->data.frame.sz); } static void write_webm_file_footer(EbmlGlobal *glob, long hash) { if(glob->cluster_open) Ebml_EndSubElement(glob, &glob->startCluster); { EbmlLoc start; unsigned int i; glob->cue_pos = ftello(glob->stream); Ebml_StartSubElement(glob, &start, Cues); for(i=0; icues; i++) { struct cue_entry *cue = &glob->cue_list[i]; EbmlLoc start; Ebml_StartSubElement(glob, &start, CuePoint); { EbmlLoc start; Ebml_SerializeUnsigned(glob, CueTime, cue->time); Ebml_StartSubElement(glob, &start, CueTrackPositions); Ebml_SerializeUnsigned(glob, CueTrack, 1); Ebml_SerializeUnsigned64(glob, CueClusterPosition, cue->loc - glob->position_reference); //Ebml_SerializeUnsigned(glob, CueBlockNumber, cue->blockNumber); Ebml_EndSubElement(glob, &start); } Ebml_EndSubElement(glob, &start); } Ebml_EndSubElement(glob, &start); } Ebml_EndSubElement(glob, &glob->startSegment); /* Patch up the seek info block */ write_webm_seek_info(glob); /* Patch up the track id */ fseeko(glob->stream, glob->track_id_pos, SEEK_SET); Ebml_SerializeUnsigned32(glob, TrackUID, glob->debug ? 0xDEADBEEF : hash); fseeko(glob->stream, 0, SEEK_END); } /* Murmur hash derived from public domain reference implementation at * http://sites.google.com/site/murmurhash/ */ static unsigned int murmur ( const void * key, int len, unsigned int seed ) { const unsigned int m = 0x5bd1e995; const int r = 24; unsigned int h = seed ^ len; const unsigned char * data = (const unsigned char *)key; while(len >= 4) { unsigned int k; k = data[0]; k |= data[1] << 8; k |= data[2] << 16; k |= data[3] << 24; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } switch(len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } #include "math.h" static double vp8_mse2psnr(double Samples, double Peak, double Mse) { double psnr; if ((double)Mse > 0.0) psnr = 10.0 * log10(Peak * Peak * Samples / Mse); else psnr = 60; // Limit to prevent / 0 if (psnr > 60) psnr = 60; return psnr; } #include "args.h" static const arg_def_t debugmode = ARG_DEF("D", "debug", 0, "Debug mode (makes output deterministic)"); static const arg_def_t outputfile = ARG_DEF("o", "output", 1, "Output filename"); static const arg_def_t use_yv12 = ARG_DEF(NULL, "yv12", 0, "Input file is YV12 "); static const arg_def_t use_i420 = ARG_DEF(NULL, "i420", 0, "Input file is I420 (default)"); static const arg_def_t codecarg = ARG_DEF(NULL, "codec", 1, "Codec to use"); static const arg_def_t passes = ARG_DEF("p", "passes", 1, "Number of passes (1/2)"); static const arg_def_t pass_arg = ARG_DEF(NULL, "pass", 1, "Pass to execute (1/2)"); static const arg_def_t fpf_name = ARG_DEF(NULL, "fpf", 1, "First pass statistics file name"); static const arg_def_t limit = ARG_DEF(NULL, "limit", 1, "Stop encoding after n input frames"); static const arg_def_t deadline = ARG_DEF("d", "deadline", 1, "Deadline per frame (usec)"); static const arg_def_t best_dl = ARG_DEF(NULL, "best", 0, "Use Best Quality Deadline"); static const arg_def_t good_dl = ARG_DEF(NULL, "good", 0, "Use Good Quality Deadline"); static const arg_def_t rt_dl = ARG_DEF(NULL, "rt", 0, "Use Realtime Quality Deadline"); static const arg_def_t verbosearg = ARG_DEF("v", "verbose", 0, "Show encoder parameters"); static const arg_def_t psnrarg = ARG_DEF(NULL, "psnr", 0, "Show PSNR in status line"); static const arg_def_t framerate = ARG_DEF(NULL, "fps", 1, "Stream frame rate (rate/scale)"); static const arg_def_t use_ivf = ARG_DEF(NULL, "ivf", 0, "Output IVF (default is WebM)"); static const arg_def_t q_hist_n = ARG_DEF(NULL, "q-hist", 1, "Show quantizer histogram (n-buckets)"); static const arg_def_t rate_hist_n = ARG_DEF(NULL, "rate-hist", 1, "Show rate histogram (n-buckets)"); static const arg_def_t *main_args[] = { &debugmode, &outputfile, &codecarg, &passes, &pass_arg, &fpf_name, &limit, &deadline, &best_dl, &good_dl, &rt_dl, &verbosearg, &psnrarg, &use_ivf, &q_hist_n, &rate_hist_n, NULL }; static const arg_def_t usage = ARG_DEF("u", "usage", 1, "Usage profile number to use"); static const arg_def_t threads = ARG_DEF("t", "threads", 1, "Max number of threads to use"); static const arg_def_t profile = ARG_DEF(NULL, "profile", 1, "Bitstream profile number to use"); static const arg_def_t width = ARG_DEF("w", "width", 1, "Frame width"); static const arg_def_t height = ARG_DEF("h", "height", 1, "Frame height"); static const struct arg_enum_list stereo_mode_enum[] = { {"mono" , STEREO_FORMAT_MONO}, {"left-right", STEREO_FORMAT_LEFT_RIGHT}, {"bottom-top", STEREO_FORMAT_BOTTOM_TOP}, {"top-bottom", STEREO_FORMAT_TOP_BOTTOM}, {"right-left", STEREO_FORMAT_RIGHT_LEFT}, {NULL, 0} }; static const arg_def_t stereo_mode = ARG_DEF_ENUM(NULL, "stereo-mode", 1, "Stereo 3D video format", stereo_mode_enum); static const arg_def_t timebase = ARG_DEF(NULL, "timebase", 1, "Output timestamp precision (fractional seconds)"); static const arg_def_t error_resilient = ARG_DEF(NULL, "error-resilient", 1, "Enable error resiliency features"); static const arg_def_t lag_in_frames = ARG_DEF(NULL, "lag-in-frames", 1, "Max number of frames to lag"); static const arg_def_t *global_args[] = { &use_yv12, &use_i420, &usage, &threads, &profile, &width, &height, &stereo_mode, &timebase, &framerate, &error_resilient, &lag_in_frames, NULL }; static const arg_def_t dropframe_thresh = ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); static const arg_def_t resize_allowed = ARG_DEF(NULL, "resize-allowed", 1, "Spatial resampling enabled (bool)"); static const arg_def_t resize_up_thresh = ARG_DEF(NULL, "resize-up", 1, "Upscale threshold (buf %)"); static const arg_def_t resize_down_thresh = ARG_DEF(NULL, "resize-down", 1, "Downscale threshold (buf %)"); static const struct arg_enum_list end_usage_enum[] = { {"vbr", VPX_VBR}, {"cbr", VPX_CBR}, {"cq", VPX_CQ}, {NULL, 0} }; static const arg_def_t end_usage = ARG_DEF_ENUM(NULL, "end-usage", 1, "Rate control mode", end_usage_enum); static const arg_def_t target_bitrate = ARG_DEF(NULL, "target-bitrate", 1, "Bitrate (kbps)"); static const arg_def_t min_quantizer = ARG_DEF(NULL, "min-q", 1, "Minimum (best) quantizer"); static const arg_def_t max_quantizer = ARG_DEF(NULL, "max-q", 1, "Maximum (worst) quantizer"); static const arg_def_t undershoot_pct = ARG_DEF(NULL, "undershoot-pct", 1, "Datarate undershoot (min) target (%)"); static const arg_def_t overshoot_pct = ARG_DEF(NULL, "overshoot-pct", 1, "Datarate overshoot (max) target (%)"); static const arg_def_t buf_sz = ARG_DEF(NULL, "buf-sz", 1, "Client buffer size (ms)"); static const arg_def_t buf_initial_sz = ARG_DEF(NULL, "buf-initial-sz", 1, "Client initial buffer size (ms)"); static const arg_def_t buf_optimal_sz = ARG_DEF(NULL, "buf-optimal-sz", 1, "Client optimal buffer size (ms)"); static const arg_def_t *rc_args[] = { &dropframe_thresh, &resize_allowed, &resize_up_thresh, &resize_down_thresh, &end_usage, &target_bitrate, &min_quantizer, &max_quantizer, &undershoot_pct, &overshoot_pct, &buf_sz, &buf_initial_sz, &buf_optimal_sz, NULL }; static const arg_def_t bias_pct = ARG_DEF(NULL, "bias-pct", 1, "CBR/VBR bias (0=CBR, 100=VBR)"); static const arg_def_t minsection_pct = ARG_DEF(NULL, "minsection-pct", 1, "GOP min bitrate (% of target)"); static const arg_def_t maxsection_pct = ARG_DEF(NULL, "maxsection-pct", 1, "GOP max bitrate (% of target)"); static const arg_def_t *rc_twopass_args[] = { &bias_pct, &minsection_pct, &maxsection_pct, NULL }; static const arg_def_t kf_min_dist = ARG_DEF(NULL, "kf-min-dist", 1, "Minimum keyframe interval (frames)"); static const arg_def_t kf_max_dist = ARG_DEF(NULL, "kf-max-dist", 1, "Maximum keyframe interval (frames)"); static const arg_def_t kf_disabled = ARG_DEF(NULL, "disable-kf", 0, "Disable keyframe placement"); static const arg_def_t *kf_args[] = { &kf_min_dist, &kf_max_dist, &kf_disabled, NULL }; #if CONFIG_VP8_ENCODER static const arg_def_t noise_sens = ARG_DEF(NULL, "noise-sensitivity", 1, "Noise sensitivity (frames to blur)"); static const arg_def_t sharpness = ARG_DEF(NULL, "sharpness", 1, "Filter sharpness (0-7)"); static const arg_def_t static_thresh = ARG_DEF(NULL, "static-thresh", 1, "Motion detection threshold"); #endif #if CONFIG_VP8_ENCODER static const arg_def_t cpu_used = ARG_DEF(NULL, "cpu-used", 1, "CPU Used (-16..16)"); #endif #if CONFIG_VP8_ENCODER static const arg_def_t token_parts = ARG_DEF(NULL, "token-parts", 1, "Number of token partitions to use, log2"); static const arg_def_t auto_altref = ARG_DEF(NULL, "auto-alt-ref", 1, "Enable automatic alt reference frames"); static const arg_def_t arnr_maxframes = ARG_DEF(NULL, "arnr-maxframes", 1, "AltRef Max Frames"); static const arg_def_t arnr_strength = ARG_DEF(NULL, "arnr-strength", 1, "AltRef Strength"); static const arg_def_t arnr_type = ARG_DEF(NULL, "arnr-type", 1, "AltRef Type"); static const struct arg_enum_list tuning_enum[] = { {"psnr", VP8_TUNE_PSNR}, {"ssim", VP8_TUNE_SSIM}, {NULL, 0} }; static const arg_def_t tune_ssim = ARG_DEF_ENUM(NULL, "tune", 1, "Material to favor", tuning_enum); static const arg_def_t cq_level = ARG_DEF(NULL, "cq-level", 1, "Constrained Quality Level"); static const arg_def_t max_intra_rate_pct = ARG_DEF(NULL, "max-intra-rate", 1, "Max I-frame bitrate (pct)"); static const arg_def_t *vp8_args[] = { &cpu_used, &auto_altref, &noise_sens, &sharpness, &static_thresh, &token_parts, &arnr_maxframes, &arnr_strength, &arnr_type, &tune_ssim, &cq_level, &max_intra_rate_pct, NULL }; static const int vp8_arg_ctrl_map[] = { VP8E_SET_CPUUSED, VP8E_SET_ENABLEAUTOALTREF, VP8E_SET_NOISE_SENSITIVITY, VP8E_SET_SHARPNESS, VP8E_SET_STATIC_THRESHOLD, VP8E_SET_TOKEN_PARTITIONS, VP8E_SET_ARNR_MAXFRAMES, VP8E_SET_ARNR_STRENGTH , VP8E_SET_ARNR_TYPE, VP8E_SET_TUNING, VP8E_SET_CQ_LEVEL, VP8E_SET_MAX_INTRA_BITRATE_PCT, 0 }; #endif static const arg_def_t *no_args[] = { NULL }; static void usage_exit() { int i; fprintf(stderr, "Usage: %s -o dst_filename src_filename \n", exec_name); fprintf(stderr, "\nOptions:\n"); arg_show_usage(stdout, main_args); fprintf(stderr, "\nEncoder Global Options:\n"); arg_show_usage(stdout, global_args); fprintf(stderr, "\nRate Control Options:\n"); arg_show_usage(stdout, rc_args); fprintf(stderr, "\nTwopass Rate Control Options:\n"); arg_show_usage(stdout, rc_twopass_args); fprintf(stderr, "\nKeyframe Placement Options:\n"); arg_show_usage(stdout, kf_args); #if CONFIG_VP8_ENCODER fprintf(stderr, "\nVP8 Specific Options:\n"); arg_show_usage(stdout, vp8_args); #endif fprintf(stderr, "\nStream timebase (--timebase):\n" " The desired precision of timestamps in the output, expressed\n" " in fractional seconds. Default is 1/1000.\n"); fprintf(stderr, "\n" "Included encoders:\n" "\n"); for (i = 0; i < sizeof(codecs) / sizeof(codecs[0]); i++) fprintf(stderr, " %-6s - %s\n", codecs[i].name, vpx_codec_iface_name(codecs[i].iface)); exit(EXIT_FAILURE); } #define HIST_BAR_MAX 40 struct hist_bucket { int low, high, count; }; static int merge_hist_buckets(struct hist_bucket *bucket, int *buckets_, int max_buckets) { int small_bucket = 0, merge_bucket = INT_MAX, big_bucket=0; int buckets = *buckets_; int i; /* Find the extrema for this list of buckets */ big_bucket = small_bucket = 0; for(i=0; i < buckets; i++) { if(bucket[i].count < bucket[small_bucket].count) small_bucket = i; if(bucket[i].count > bucket[big_bucket].count) big_bucket = i; } /* If we have too many buckets, merge the smallest with an adjacent * bucket. */ while(buckets > max_buckets) { int last_bucket = buckets - 1; // merge the small bucket with an adjacent one. if(small_bucket == 0) merge_bucket = 1; else if(small_bucket == last_bucket) merge_bucket = last_bucket - 1; else if(bucket[small_bucket - 1].count < bucket[small_bucket + 1].count) merge_bucket = small_bucket - 1; else merge_bucket = small_bucket + 1; assert(abs(merge_bucket - small_bucket) <= 1); assert(small_bucket < buckets); assert(big_bucket < buckets); assert(merge_bucket < buckets); if(merge_bucket < small_bucket) { bucket[merge_bucket].high = bucket[small_bucket].high; bucket[merge_bucket].count += bucket[small_bucket].count; } else { bucket[small_bucket].high = bucket[merge_bucket].high; bucket[small_bucket].count += bucket[merge_bucket].count; merge_bucket = small_bucket; } assert(bucket[merge_bucket].low != bucket[merge_bucket].high); buckets--; /* Remove the merge_bucket from the list, and find the new small * and big buckets while we're at it */ big_bucket = small_bucket = 0; for(i=0; i < buckets; i++) { if(i > merge_bucket) bucket[i] = bucket[i+1]; if(bucket[i].count < bucket[small_bucket].count) small_bucket = i; if(bucket[i].count > bucket[big_bucket].count) big_bucket = i; } } *buckets_ = buckets; return bucket[big_bucket].count; } static void show_histogram(const struct hist_bucket *bucket, int buckets, int total, int scale) { const char *pat1, *pat2; int i; switch((int)(log(bucket[buckets-1].high)/log(10))+1) { case 1: case 2: pat1 = "%4d %2s: "; pat2 = "%4d-%2d: "; break; case 3: pat1 = "%5d %3s: "; pat2 = "%5d-%3d: "; break; case 4: pat1 = "%6d %4s: "; pat2 = "%6d-%4d: "; break; case 5: pat1 = "%7d %5s: "; pat2 = "%7d-%5d: "; break; case 6: pat1 = "%8d %6s: "; pat2 = "%8d-%6d: "; break; case 7: pat1 = "%9d %7s: "; pat2 = "%9d-%7d: "; break; default: pat1 = "%12d %10s: "; pat2 = "%12d-%10d: "; break; } for(i=0; isamples = cfg->rc_buf_sz * 5 / 4 * fps->num / fps->den / 1000; // prevent division by zero if (hist->samples == 0) hist->samples=1; hist->pts = calloc(hist->samples, sizeof(*hist->pts)); hist->sz = calloc(hist->samples, sizeof(*hist->sz)); for(i=0; ibucket[i].low = INT_MAX; hist->bucket[i].high = 0; hist->bucket[i].count = 0; } } static void destroy_rate_histogram(struct rate_hist *hist) { free(hist->pts); free(hist->sz); } static void update_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, const vpx_codec_cx_pkt_t *pkt) { int i, idx; int64_t now, then, sum_sz = 0, avg_bitrate; now = pkt->data.frame.pts * 1000 * (uint64_t)cfg->g_timebase.num / (uint64_t)cfg->g_timebase.den; idx = hist->frames++ % hist->samples; hist->pts[idx] = now; hist->sz[idx] = pkt->data.frame.sz; if(now < cfg->rc_buf_initial_sz) return; then = now; /* Sum the size over the past rc_buf_sz ms */ for(i = hist->frames; i > 0 && hist->frames - i < hist->samples; i--) { int i_idx = (i-1) % hist->samples; then = hist->pts[i_idx]; if(now - then > cfg->rc_buf_sz) break; sum_sz += hist->sz[i_idx]; } if (now == then) return; avg_bitrate = sum_sz * 8 * 1000 / (now - then); idx = avg_bitrate * (RATE_BINS/2) / (cfg->rc_target_bitrate * 1000); if(idx < 0) idx = 0; if(idx > RATE_BINS-1) idx = RATE_BINS-1; if(hist->bucket[idx].low > avg_bitrate) hist->bucket[idx].low = avg_bitrate; if(hist->bucket[idx].high < avg_bitrate) hist->bucket[idx].high = avg_bitrate; hist->bucket[idx].count++; hist->total++; } static void show_rate_histogram(struct rate_hist *hist, const vpx_codec_enc_cfg_t *cfg, int max_buckets) { int i, scale; int buckets = 0; for(i = 0; i < RATE_BINS; i++) { if(hist->bucket[i].low == INT_MAX) continue; hist->bucket[buckets++] = hist->bucket[i]; } fprintf(stderr, "\nRate (over %dms window):\n", cfg->rc_buf_sz); scale = merge_hist_buckets(hist->bucket, &buckets, max_buckets); show_histogram(hist->bucket, buckets, hist->total, scale); } #define NELEMENTS(x) (sizeof(x)/sizeof(x[0])) #define ARG_CTRL_CNT_MAX NELEMENTS(vp8_arg_ctrl_map) int main(int argc, const char **argv_) { vpx_codec_ctx_t encoder; const char *in_fn = NULL, *out_fn = NULL, *stats_fn = NULL; int i; FILE *infile, *outfile; vpx_codec_enc_cfg_t cfg; vpx_codec_err_t res; int pass, one_pass_only = 0; stats_io_t stats; vpx_image_t raw; const struct codec_item *codec = codecs; int frame_avail, got_data; struct arg arg; char **argv, **argi, **argj; int arg_usage = 0, arg_passes = 1, arg_deadline = 0; int arg_ctrls[ARG_CTRL_CNT_MAX][2], arg_ctrl_cnt = 0; int arg_limit = 0; static const arg_def_t **ctrl_args = no_args; static const int *ctrl_args_map = NULL; int verbose = 0, show_psnr = 0; int arg_use_i420 = 1; unsigned long cx_time = 0; unsigned int file_type, fourcc; y4m_input y4m; struct vpx_rational arg_framerate = {30, 1}; int arg_have_framerate = 0; int write_webm = 1; EbmlGlobal ebml = {0}; uint32_t hash = 0; uint64_t psnr_sse_total = 0; uint64_t psnr_samples_total = 0; double psnr_totals[4] = {0, 0, 0, 0}; int psnr_count = 0; stereo_format_t stereo_fmt = STEREO_FORMAT_MONO; int counts[64]={0}; int show_q_hist_buckets=0; int show_rate_hist_buckets=0; struct rate_hist rate_hist={0}; exec_name = argv_[0]; ebml.last_pts_ms = -1; if (argc < 3) usage_exit(); /* First parse the codec and usage values, because we want to apply other * parameters on top of the default configuration provided by the codec. */ argv = argv_dup(argc - 1, argv_ + 1); for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &codecarg, argi)) { int j, k = -1; for (j = 0; j < sizeof(codecs) / sizeof(codecs[0]); j++) if (!strcmp(codecs[j].name, arg.val)) k = j; if (k >= 0) codec = codecs + k; else die("Error: Unrecognized argument (%s) to --codec\n", arg.val); } else if (arg_match(&arg, &passes, argi)) { arg_passes = arg_parse_uint(&arg); if (arg_passes < 1 || arg_passes > 2) die("Error: Invalid number of passes (%d)\n", arg_passes); } else if (arg_match(&arg, &pass_arg, argi)) { one_pass_only = arg_parse_uint(&arg); if (one_pass_only < 1 || one_pass_only > 2) die("Error: Invalid pass selected (%d)\n", one_pass_only); } else if (arg_match(&arg, &fpf_name, argi)) stats_fn = arg.val; else if (arg_match(&arg, &usage, argi)) arg_usage = arg_parse_uint(&arg); else if (arg_match(&arg, &deadline, argi)) arg_deadline = arg_parse_uint(&arg); else if (arg_match(&arg, &best_dl, argi)) arg_deadline = VPX_DL_BEST_QUALITY; else if (arg_match(&arg, &good_dl, argi)) arg_deadline = VPX_DL_GOOD_QUALITY; else if (arg_match(&arg, &rt_dl, argi)) arg_deadline = VPX_DL_REALTIME; else if (arg_match(&arg, &use_yv12, argi)) { arg_use_i420 = 0; } else if (arg_match(&arg, &use_i420, argi)) { arg_use_i420 = 1; } else if (arg_match(&arg, &verbosearg, argi)) verbose = 1; else if (arg_match(&arg, &limit, argi)) arg_limit = arg_parse_uint(&arg); else if (arg_match(&arg, &psnrarg, argi)) show_psnr = 1; else if (arg_match(&arg, &framerate, argi)) { arg_framerate = arg_parse_rational(&arg); arg_have_framerate = 1; } else if (arg_match(&arg, &use_ivf, argi)) write_webm = 0; else if (arg_match(&arg, &outputfile, argi)) out_fn = arg.val; else if (arg_match(&arg, &debugmode, argi)) ebml.debug = 1; else if (arg_match(&arg, &q_hist_n, argi)) show_q_hist_buckets = arg_parse_uint(&arg); else if (arg_match(&arg, &rate_hist_n, argi)) show_rate_hist_buckets = arg_parse_uint(&arg); else argj++; } /* Ensure that --passes and --pass are consistent. If --pass is set and --passes=2, * ensure --fpf was set. */ if (one_pass_only) { /* DWIM: Assume the user meant passes=2 if pass=2 is specified */ if (one_pass_only > arg_passes) { fprintf(stderr, "Warning: Assuming --pass=%d implies --passes=%d\n", one_pass_only, one_pass_only); arg_passes = one_pass_only; } if (arg_passes == 2 && !stats_fn) die("Must specify --fpf when --pass=%d and --passes=2\n", one_pass_only); } /* Populate encoder configuration */ res = vpx_codec_enc_config_default(codec->iface, &cfg, arg_usage); if (res) { fprintf(stderr, "Failed to get config: %s\n", vpx_codec_err_to_string(res)); return EXIT_FAILURE; } /* Change the default timebase to a high enough value so that the encoder * will always create strictly increasing timestamps. */ cfg.g_timebase.den = 1000; /* Never use the library's default resolution, require it be parsed * from the file or set on the command line. */ cfg.g_w = 0; cfg.g_h = 0; /* Now parse the remainder of the parameters. */ for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (0); else if (arg_match(&arg, &threads, argi)) cfg.g_threads = arg_parse_uint(&arg); else if (arg_match(&arg, &profile, argi)) cfg.g_profile = arg_parse_uint(&arg); else if (arg_match(&arg, &width, argi)) cfg.g_w = arg_parse_uint(&arg); else if (arg_match(&arg, &height, argi)) cfg.g_h = arg_parse_uint(&arg); else if (arg_match(&arg, &stereo_mode, argi)) stereo_fmt = arg_parse_enum_or_int(&arg); else if (arg_match(&arg, &timebase, argi)) cfg.g_timebase = arg_parse_rational(&arg); else if (arg_match(&arg, &error_resilient, argi)) cfg.g_error_resilient = arg_parse_uint(&arg); else if (arg_match(&arg, &lag_in_frames, argi)) cfg.g_lag_in_frames = arg_parse_uint(&arg); else if (arg_match(&arg, &dropframe_thresh, argi)) cfg.rc_dropframe_thresh = arg_parse_uint(&arg); else if (arg_match(&arg, &resize_allowed, argi)) cfg.rc_resize_allowed = arg_parse_uint(&arg); else if (arg_match(&arg, &resize_up_thresh, argi)) cfg.rc_resize_up_thresh = arg_parse_uint(&arg); else if (arg_match(&arg, &resize_down_thresh, argi)) cfg.rc_resize_down_thresh = arg_parse_uint(&arg); else if (arg_match(&arg, &end_usage, argi)) cfg.rc_end_usage = arg_parse_enum_or_int(&arg); else if (arg_match(&arg, &target_bitrate, argi)) cfg.rc_target_bitrate = arg_parse_uint(&arg); else if (arg_match(&arg, &min_quantizer, argi)) cfg.rc_min_quantizer = arg_parse_uint(&arg); else if (arg_match(&arg, &max_quantizer, argi)) cfg.rc_max_quantizer = arg_parse_uint(&arg); else if (arg_match(&arg, &undershoot_pct, argi)) cfg.rc_undershoot_pct = arg_parse_uint(&arg); else if (arg_match(&arg, &overshoot_pct, argi)) cfg.rc_overshoot_pct = arg_parse_uint(&arg); else if (arg_match(&arg, &buf_sz, argi)) cfg.rc_buf_sz = arg_parse_uint(&arg); else if (arg_match(&arg, &buf_initial_sz, argi)) cfg.rc_buf_initial_sz = arg_parse_uint(&arg); else if (arg_match(&arg, &buf_optimal_sz, argi)) cfg.rc_buf_optimal_sz = arg_parse_uint(&arg); else if (arg_match(&arg, &bias_pct, argi)) { cfg.rc_2pass_vbr_bias_pct = arg_parse_uint(&arg); if (arg_passes < 2) fprintf(stderr, "Warning: option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &minsection_pct, argi)) { cfg.rc_2pass_vbr_minsection_pct = arg_parse_uint(&arg); if (arg_passes < 2) fprintf(stderr, "Warning: option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &maxsection_pct, argi)) { cfg.rc_2pass_vbr_maxsection_pct = arg_parse_uint(&arg); if (arg_passes < 2) fprintf(stderr, "Warning: option %s ignored in one-pass mode.\n", arg.name); } else if (arg_match(&arg, &kf_min_dist, argi)) cfg.kf_min_dist = arg_parse_uint(&arg); else if (arg_match(&arg, &kf_max_dist, argi)) cfg.kf_max_dist = arg_parse_uint(&arg); else if (arg_match(&arg, &kf_disabled, argi)) cfg.kf_mode = VPX_KF_DISABLED; else argj++; } /* Handle codec specific options */ #if CONFIG_VP8_ENCODER if (codec->iface == &vpx_codec_vp8_cx_algo) { ctrl_args = vp8_args; ctrl_args_map = vp8_arg_ctrl_map; } #endif for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { int match = 0; arg.argv_step = 1; for (i = 0; ctrl_args[i]; i++) { if (arg_match(&arg, ctrl_args[i], argi)) { int j; match = 1; /* Point either to the next free element or the first * instance of this control. */ for(j=0; j= 0) { file_type = FILE_TYPE_Y4M; cfg.g_w = y4m.pic_w; cfg.g_h = y4m.pic_h; /* Use the frame rate from the file only if none was specified * on the command-line. */ if (!arg_have_framerate) { arg_framerate.num = y4m.fps_n; arg_framerate.den = y4m.fps_d; } arg_use_i420 = 0; } else { fprintf(stderr, "Unsupported Y4M stream.\n"); return EXIT_FAILURE; } } else if (detect.buf_read == 4 && file_is_ivf(infile, &fourcc, &cfg.g_w, &cfg.g_h, &detect)) { file_type = FILE_TYPE_IVF; switch (fourcc) { case 0x32315659: arg_use_i420 = 0; break; case 0x30323449: arg_use_i420 = 1; break; default: fprintf(stderr, "Unsupported fourcc (%08x) in IVF\n", fourcc); return EXIT_FAILURE; } } else { file_type = FILE_TYPE_RAW; } if(!cfg.g_w || !cfg.g_h) { fprintf(stderr, "Specify stream dimensions with --width (-w) " " and --height (-h).\n"); return EXIT_FAILURE; } #define SHOW(field) fprintf(stderr, " %-28s = %d\n", #field, cfg.field) if (verbose && pass == 0) { fprintf(stderr, "Codec: %s\n", vpx_codec_iface_name(codec->iface)); fprintf(stderr, "Source file: %s Format: %s\n", in_fn, arg_use_i420 ? "I420" : "YV12"); fprintf(stderr, "Destination file: %s\n", out_fn); fprintf(stderr, "Encoder parameters:\n"); SHOW(g_usage); SHOW(g_threads); SHOW(g_profile); SHOW(g_w); SHOW(g_h); SHOW(g_timebase.num); SHOW(g_timebase.den); SHOW(g_error_resilient); SHOW(g_pass); SHOW(g_lag_in_frames); SHOW(rc_dropframe_thresh); SHOW(rc_resize_allowed); SHOW(rc_resize_up_thresh); SHOW(rc_resize_down_thresh); SHOW(rc_end_usage); SHOW(rc_target_bitrate); SHOW(rc_min_quantizer); SHOW(rc_max_quantizer); SHOW(rc_undershoot_pct); SHOW(rc_overshoot_pct); SHOW(rc_buf_sz); SHOW(rc_buf_initial_sz); SHOW(rc_buf_optimal_sz); SHOW(rc_2pass_vbr_bias_pct); SHOW(rc_2pass_vbr_minsection_pct); SHOW(rc_2pass_vbr_maxsection_pct); SHOW(kf_mode); SHOW(kf_min_dist); SHOW(kf_max_dist); } if(pass == (one_pass_only ? one_pass_only - 1 : 0)) { if (file_type == FILE_TYPE_Y4M) /*The Y4M reader does its own allocation. Just initialize this here to avoid problems if we never read any frames.*/ memset(&raw, 0, sizeof(raw)); else vpx_img_alloc(&raw, arg_use_i420 ? VPX_IMG_FMT_I420 : VPX_IMG_FMT_YV12, cfg.g_w, cfg.g_h, 1); init_rate_histogram(&rate_hist, &cfg, &arg_framerate); } outfile = strcmp(out_fn, "-") ? fopen(out_fn, "wb") : set_binary_mode(stdout); if (!outfile) { fprintf(stderr, "Failed to open output file\n"); return EXIT_FAILURE; } if(write_webm && fseek(outfile, 0, SEEK_CUR)) { fprintf(stderr, "WebM output to pipes not supported.\n"); return EXIT_FAILURE; } if (stats_fn) { if (!stats_open_file(&stats, stats_fn, pass)) { fprintf(stderr, "Failed to open statistics store\n"); return EXIT_FAILURE; } } else { if (!stats_open_mem(&stats, pass)) { fprintf(stderr, "Failed to open statistics store\n"); return EXIT_FAILURE; } } cfg.g_pass = arg_passes == 2 ? pass ? VPX_RC_LAST_PASS : VPX_RC_FIRST_PASS : VPX_RC_ONE_PASS; #if VPX_ENCODER_ABI_VERSION > (1 + VPX_CODEC_ABI_VERSION) if (pass) { cfg.rc_twopass_stats_in = stats_get(&stats); } #endif if(write_webm) { ebml.stream = outfile; write_webm_file_header(&ebml, &cfg, &arg_framerate, stereo_fmt); } else write_ivf_file_header(outfile, &cfg, codec->fourcc, 0); /* Construct Encoder Context */ vpx_codec_enc_init(&encoder, codec->iface, &cfg, show_psnr ? VPX_CODEC_USE_PSNR : 0); ctx_exit_on_error(&encoder, "Failed to initialize encoder"); /* Note that we bypass the vpx_codec_control wrapper macro because * we're being clever to store the control IDs in an array. Real * applications will want to make use of the enumerations directly */ for (i = 0; i < arg_ctrl_cnt; i++) { if (vpx_codec_control_(&encoder, arg_ctrls[i][0], arg_ctrls[i][1])) fprintf(stderr, "Error: Tried to set control %d = %d\n", arg_ctrls[i][0], arg_ctrls[i][1]); ctx_exit_on_error(&encoder, "Failed to control codec"); } frame_avail = 1; got_data = 0; while (frame_avail || got_data) { vpx_codec_iter_t iter = NULL; const vpx_codec_cx_pkt_t *pkt; struct vpx_usec_timer timer; int64_t frame_start, next_frame_start; if (!arg_limit || frames_in < arg_limit) { frame_avail = read_frame(infile, &raw, file_type, &y4m, &detect); if (frame_avail) frames_in++; fprintf(stderr, "\rPass %d/%d frame %4d/%-4d %7"PRId64"B \033[K", pass + 1, arg_passes, frames_in, frames_out, nbytes); } else frame_avail = 0; vpx_usec_timer_start(&timer); frame_start = (cfg.g_timebase.den * (int64_t)(frames_in - 1) * arg_framerate.den) / cfg.g_timebase.num / arg_framerate.num; next_frame_start = (cfg.g_timebase.den * (int64_t)(frames_in) * arg_framerate.den) / cfg.g_timebase.num / arg_framerate.num; vpx_codec_encode(&encoder, frame_avail ? &raw : NULL, frame_start, next_frame_start - frame_start, 0, arg_deadline); vpx_usec_timer_mark(&timer); cx_time += vpx_usec_timer_elapsed(&timer); ctx_exit_on_error(&encoder, "Failed to encode frame"); if(cfg.g_pass != VPX_RC_FIRST_PASS) { int q; vpx_codec_control(&encoder, VP8E_GET_LAST_QUANTIZER_64, &q); ctx_exit_on_error(&encoder, "Failed to read quantizer"); counts[q]++; } got_data = 0; while ((pkt = vpx_codec_get_cx_data(&encoder, &iter))) { got_data = 1; switch (pkt->kind) { case VPX_CODEC_CX_FRAME_PKT: frames_out++; fprintf(stderr, " %6luF", (unsigned long)pkt->data.frame.sz); update_rate_histogram(&rate_hist, &cfg, pkt); if(write_webm) { /* Update the hash */ if(!ebml.debug) hash = murmur(pkt->data.frame.buf, pkt->data.frame.sz, hash); write_webm_block(&ebml, &cfg, pkt); } else { write_ivf_frame_header(outfile, pkt); if(fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, outfile)); } nbytes += pkt->data.raw.sz; break; case VPX_CODEC_STATS_PKT: frames_out++; fprintf(stderr, " %6luS", (unsigned long)pkt->data.twopass_stats.sz); stats_write(&stats, pkt->data.twopass_stats.buf, pkt->data.twopass_stats.sz); nbytes += pkt->data.raw.sz; break; case VPX_CODEC_PSNR_PKT: if (show_psnr) { int i; psnr_sse_total += pkt->data.psnr.sse[0]; psnr_samples_total += pkt->data.psnr.samples[0]; for (i = 0; i < 4; i++) { fprintf(stderr, "%.3lf ", pkt->data.psnr.psnr[i]); psnr_totals[i] += pkt->data.psnr.psnr[i]; } psnr_count++; } break; default: break; } } fflush(stdout); } fprintf(stderr, "\rPass %d/%d frame %4d/%-4d %7"PRId64"B %7lub/f %7"PRId64"b/s" " %7lu %s (%.2f fps)\033[K", pass + 1, arg_passes, frames_in, frames_out, nbytes, frames_in ? (unsigned long)(nbytes * 8 / frames_in) : 0, frames_in ? nbytes * 8 *(int64_t)arg_framerate.num / arg_framerate.den / frames_in : 0, cx_time > 9999999 ? cx_time / 1000 : cx_time, cx_time > 9999999 ? "ms" : "us", cx_time > 0 ? (float)frames_in * 1000000.0 / (float)cx_time : 0); if ( (show_psnr) && (psnr_count>0) ) { int i; double ovpsnr = vp8_mse2psnr(psnr_samples_total, 255.0, psnr_sse_total); fprintf(stderr, "\nPSNR (Overall/Avg/Y/U/V)"); fprintf(stderr, " %.3lf", ovpsnr); for (i = 0; i < 4; i++) { fprintf(stderr, " %.3lf", psnr_totals[i]/psnr_count); } } vpx_codec_destroy(&encoder); fclose(infile); if (file_type == FILE_TYPE_Y4M) y4m_input_close(&y4m); if(write_webm) { write_webm_file_footer(&ebml, hash); free(ebml.cue_list); ebml.cue_list = NULL; } else { if (!fseek(outfile, 0, SEEK_SET)) write_ivf_file_header(outfile, &cfg, codec->fourcc, frames_out); } fclose(outfile); stats_close(&stats, arg_passes-1); fprintf(stderr, "\n"); if (one_pass_only) break; } if (show_q_hist_buckets) show_q_histogram(counts, show_q_hist_buckets); if (show_rate_hist_buckets) show_rate_histogram(&rate_hist, &cfg, show_rate_hist_buckets); destroy_rate_histogram(&rate_hist); vpx_img_free(&raw); free(argv); return EXIT_SUCCESS; }