/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_tokenize.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_entropy.h" /* Global event counters used for accumulating statistics across several compressions, then generating vp9_context.c = initial stats. */ #ifdef ENTROPY_STATS INT64 context_counters[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; INT64 hybrid_context_counters[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; INT64 context_counters_8x8[BLOCK_TYPES_8X8] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; INT64 hybrid_context_counters_8x8[BLOCK_TYPES_8X8] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; INT64 context_counters_16x16[BLOCK_TYPES_16X16] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; INT64 hybrid_context_counters_16x16[BLOCK_TYPES_16X16] [COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS]; extern unsigned int tree_update_hist[BLOCK_TYPES][COEF_BANDS] [PREV_COEF_CONTEXTS][ENTROPY_NODES][2]; extern unsigned int hybrid_tree_update_hist[BLOCK_TYPES][COEF_BANDS] [PREV_COEF_CONTEXTS][ENTROPY_NODES][2]; extern unsigned int tree_update_hist_8x8[BLOCK_TYPES_8X8][COEF_BANDS] [PREV_COEF_CONTEXTS][ENTROPY_NODES] [2]; extern unsigned int hybrid_tree_update_hist_8x8[BLOCK_TYPES_8X8][COEF_BANDS] [PREV_COEF_CONTEXTS][ENTROPY_NODES] [2]; extern unsigned int tree_update_hist_16x16[BLOCK_TYPES_16X16][COEF_BANDS] [PREV_COEF_CONTEXTS][ENTROPY_NODES] [2]; extern unsigned int hybrid_tree_update_hist_16x16[BLOCK_TYPES_16X16][COEF_BANDS] [PREV_COEF_CONTEXTS][ENTROPY_NODES] [2]; #endif /* ENTROPY_STATS */ static TOKENVALUE dct_value_tokens[DCT_MAX_VALUE * 2]; const TOKENVALUE *vp9_dct_value_tokens_ptr; static int dct_value_cost[DCT_MAX_VALUE * 2]; const int *vp9_dct_value_cost_ptr; static void fill_value_tokens() { TOKENVALUE *const t = dct_value_tokens + DCT_MAX_VALUE; vp9_extra_bit_struct *const e = vp9_extra_bits; int i = -DCT_MAX_VALUE; int sign = 1; do { if (!i) sign = 0; { const int a = sign ? -i : i; int eb = sign; if (a > 4) { int j = 4; while (++j < 11 && e[j].base_val <= a) {} t[i].Token = --j; eb |= (a - e[j].base_val) << 1; } else t[i].Token = a; t[i].Extra = eb; } // initialize the cost for extra bits for all possible coefficient value. { int cost = 0; vp9_extra_bit_struct *p = vp9_extra_bits + t[i].Token; if (p->base_val) { const int extra = t[i].Extra; const int Length = p->Len; if (Length) cost += treed_cost(p->tree, p->prob, extra >> 1, Length); cost += vp9_cost_bit(vp9_prob_half, extra & 1); /* sign */ dct_value_cost[i + DCT_MAX_VALUE] = cost; } } } while (++i < DCT_MAX_VALUE); vp9_dct_value_tokens_ptr = dct_value_tokens + DCT_MAX_VALUE; vp9_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE; } static void tokenize_b(VP9_COMP *cpi, MACROBLOCKD *xd, const BLOCKD * const b, TOKENEXTRA **tp, PLANE_TYPE type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, TX_SIZE tx_size, int dry_run) { int pt; /* near block/prev token context index */ int c = (type == PLANE_TYPE_Y_NO_DC) ? 1 : 0; const int eob = b->eob; /* one beyond last nonzero coeff */ TOKENEXTRA *t = *tp; /* store tokens starting here */ const short *qcoeff_ptr = b->qcoeff; int seg_eob; int segment_id = xd->mode_info_context->mbmi.segment_id; const int *bands, *scan; unsigned int (*counts)[COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS]; vp9_prob (*probs)[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]; const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type(xd, b) : DCT_DCT; VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l); switch (tx_size) { default: case TX_4X4: seg_eob = 16; bands = vp9_coef_bands; scan = vp9_default_zig_zag1d; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts; probs = cpi->common.fc.hybrid_coef_probs; if (tx_type == ADST_DCT) { scan = vp9_row_scan; } else if (tx_type == DCT_ADST) { scan = vp9_col_scan; } } else { counts = cpi->coef_counts; probs = cpi->common.fc.coef_probs; } break; case TX_8X8: if (type == PLANE_TYPE_Y2) { seg_eob = 4; bands = vp9_coef_bands; scan = vp9_default_zig_zag1d; } else { seg_eob = 64; bands = vp9_coef_bands_8x8; scan = vp9_default_zig_zag1d_8x8; } if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_8x8; probs = cpi->common.fc.hybrid_coef_probs_8x8; } else { counts = cpi->coef_counts_8x8; probs = cpi->common.fc.coef_probs_8x8; } break; case TX_16X16: seg_eob = 256; bands = vp9_coef_bands_16x16; scan = vp9_default_zig_zag1d_16x16; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_16x16; probs = cpi->common.fc.hybrid_coef_probs_16x16; } else { counts = cpi->coef_counts_16x16; probs = cpi->common.fc.coef_probs_16x16; } break; } if (vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB)) seg_eob = vp9_get_segdata(xd, segment_id, SEG_LVL_EOB); do { const int band = bands[c]; int token; if (c < eob) { const int rc = scan[c]; const int v = qcoeff_ptr[rc]; assert(-DCT_MAX_VALUE <= v && v < DCT_MAX_VALUE); t->Extra = vp9_dct_value_tokens_ptr[v].Extra; token = vp9_dct_value_tokens_ptr[v].Token; } else { token = DCT_EOB_TOKEN; } t->Token = token; t->context_tree = probs[type][band][pt]; t->skip_eob_node = (pt == 0) && ((band > 0 && type != PLANE_TYPE_Y_NO_DC) || (band > 1 && type == PLANE_TYPE_Y_NO_DC)); assert(vp9_coef_encodings[t->Token].Len - t->skip_eob_node > 0); if (!dry_run) { ++counts[type][band][pt][token]; } pt = vp9_prev_token_class[token]; ++t; } while (c < eob && ++c < seg_eob); *tp = t; *a = *l = (c > !type); /* 0 <-> all coeff data is zero */ } int vp9_mby_is_skippable_4x4(MACROBLOCKD *xd, int has_2nd_order) { int skip = 1; int i = 0; if (has_2nd_order) { for (i = 0; i < 16; i++) skip &= (xd->block[i].eob < 2); skip &= (!xd->block[24].eob); } else { for (i = 0; i < 16; i++) skip &= (!xd->block[i].eob); } return skip; } int vp9_mbuv_is_skippable_4x4(MACROBLOCKD *xd) { int skip = 1; int i; for (i = 16; i < 24; i++) skip &= (!xd->block[i].eob); return skip; } static int mb_is_skippable_4x4(MACROBLOCKD *xd, int has_2nd_order) { return (vp9_mby_is_skippable_4x4(xd, has_2nd_order) & vp9_mbuv_is_skippable_4x4(xd)); } int vp9_mby_is_skippable_8x8(MACROBLOCKD *xd, int has_2nd_order) { int skip = 1; int i = 0; if (has_2nd_order) { for (i = 0; i < 16; i += 4) skip &= (xd->block[i].eob < 2); skip &= (!xd->block[24].eob); } else { for (i = 0; i < 16; i += 4) skip &= (!xd->block[i].eob); } return skip; } int vp9_mbuv_is_skippable_8x8(MACROBLOCKD *xd) { return (!xd->block[16].eob) & (!xd->block[20].eob); } static int mb_is_skippable_8x8(MACROBLOCKD *xd, int has_2nd_order) { return (vp9_mby_is_skippable_8x8(xd, has_2nd_order) & vp9_mbuv_is_skippable_8x8(xd)); } static int mb_is_skippable_8x8_4x4uv(MACROBLOCKD *xd, int has_2nd_order) { return (vp9_mby_is_skippable_8x8(xd, has_2nd_order) & vp9_mbuv_is_skippable_4x4(xd)); } int vp9_mby_is_skippable_16x16(MACROBLOCKD *xd) { int skip = 1; skip &= !xd->block[0].eob; return skip; } static int mb_is_skippable_16x16(MACROBLOCKD *xd) { return (vp9_mby_is_skippable_16x16(xd) & vp9_mbuv_is_skippable_8x8(xd)); } void vp9_tokenize_mb(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { PLANE_TYPE plane_type; int has_2nd_order; int b; int tx_size = xd->mode_info_context->mbmi.txfm_size; int mb_skip_context = vp9_get_pred_context(&cpi->common, xd, PRED_MBSKIP); TOKENEXTRA *t_backup = *t; ENTROPY_CONTEXT * A = (ENTROPY_CONTEXT *) xd->above_context; ENTROPY_CONTEXT * L = (ENTROPY_CONTEXT *) xd->left_context; // If the MB is going to be skipped because of a segment level flag // exclude this from the skip count stats used to calculate the // transmitted skip probability; int skip_inc; int segment_id = xd->mode_info_context->mbmi.segment_id; if (!vp9_segfeature_active(xd, segment_id, SEG_LVL_EOB) || (vp9_get_segdata(xd, segment_id, SEG_LVL_EOB) != 0)) { skip_inc = 1; } else skip_inc = 0; has_2nd_order = get_2nd_order_usage(xd); switch (tx_size) { case TX_16X16: xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_16x16(xd); break; case TX_8X8: if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_8x8_4x4uv(xd, 0); else xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_8x8(xd, has_2nd_order); break; default: xd->mode_info_context->mbmi.mb_skip_coeff = mb_is_skippable_4x4(xd, has_2nd_order); break; } if (xd->mode_info_context->mbmi.mb_skip_coeff) { if (!dry_run) cpi->skip_true_count[mb_skip_context] += skip_inc; if (!cpi->common.mb_no_coeff_skip) { vp9_stuff_mb(cpi, xd, t, dry_run); } else { vp9_fix_contexts(xd); } if (dry_run) *t = t_backup; return; } if (!dry_run) cpi->skip_false_count[mb_skip_context] += skip_inc; if (has_2nd_order) { if (tx_size == TX_8X8) { tokenize_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2, A + vp9_block2above_8x8[24], L + vp9_block2left_8x8[24], TX_8X8, dry_run); } else { tokenize_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2, A + vp9_block2above[24], L + vp9_block2left[24], TX_4X4, dry_run); } plane_type = PLANE_TYPE_Y_NO_DC; } else { xd->above_context->y2 = 1; xd->left_context->y2 = 1; plane_type = PLANE_TYPE_Y_WITH_DC; } if (tx_size == TX_16X16) { tokenize_b(cpi, xd, xd->block, t, PLANE_TYPE_Y_WITH_DC, A, L, TX_16X16, dry_run); A[1] = A[2] = A[3] = A[0]; L[1] = L[2] = L[3] = L[0]; for (b = 16; b < 24; b += 4) { tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above_8x8[b], L + vp9_block2left_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } A[8] = 0; L[8] = 0; } else if (tx_size == TX_8X8) { for (b = 0; b < 16; b += 4) { tokenize_b(cpi, xd, xd->block + b, t, plane_type, A + vp9_block2above_8x8[b], L + vp9_block2left_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) { for (b = 16; b < 24; b++) { tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above[b], L + vp9_block2left[b], TX_4X4, dry_run); } } else { for (b = 16; b < 24; b += 4) { tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above_8x8[b], L + vp9_block2left_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } } } else { for (b = 0; b < 16; b++) { tokenize_b(cpi, xd, xd->block + b, t, plane_type, A + vp9_block2above[b], L + vp9_block2left[b], TX_4X4, dry_run); } for (b = 16; b < 24; b++) { tokenize_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above[b], L + vp9_block2left[b], TX_4X4, dry_run); } } if (dry_run) *t = t_backup; } #ifdef ENTROPY_STATS void init_context_counters(void) { FILE *f = fopen("context.bin", "rb"); if (!f) { vpx_memset(context_counters, 0, sizeof(context_counters)); vpx_memset(context_counters_8x8, 0, sizeof(context_counters_8x8)); vpx_memset(context_counters_16x16, 0, sizeof(context_counters_16x16)); } else { fread(context_counters, sizeof(context_counters), 1, f); fread(context_counters_8x8, sizeof(context_counters_8x8), 1, f); fread(context_counters_16x16, sizeof(context_counters_16x16), 1, f); fclose(f); } f = fopen("treeupdate.bin", "rb"); if (!f) { vpx_memset(tree_update_hist, 0, sizeof(tree_update_hist)); vpx_memset(tree_update_hist_8x8, 0, sizeof(tree_update_hist_8x8)); vpx_memset(tree_update_hist_16x16, 0, sizeof(tree_update_hist_16x16)); } else { fread(tree_update_hist, sizeof(tree_update_hist), 1, f); fread(tree_update_hist_8x8, sizeof(tree_update_hist_8x8), 1, f); fread(tree_update_hist_16x16, sizeof(tree_update_hist_16x16), 1, f); fclose(f); } } void print_context_counters() { int type, band, pt, t; FILE *f = fopen("vp9_context.c", "w"); fprintf(f, "#include \"vp9_entropy.h\"\n"); fprintf(f, "\n/* *** GENERATED FILE: DO NOT EDIT *** */\n\n"); fprintf(f, "static const unsigned int\n" "vp9_default_coef_counts[BLOCK_TYPES]\n" " [COEF_BANDS]\n" " [PREV_COEF_CONTEXTS]\n" " [MAX_ENTROPY_TOKENS]={\n"); # define Comma( X) (X? ",":"") type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { fprintf(f, "%s\n {", Comma(pt)); t = 0; do { const INT64 x = context_counters [type] [band] [pt] [t]; const int y = (int) x; assert(x == (INT64) y); /* no overflow handling yet */ fprintf(f, "%s %d", Comma(t), y); } while (++t < MAX_ENTROPY_TOKENS); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < BLOCK_TYPES); fprintf(f, "\n};\n"); fprintf(f, "static const unsigned int\nvp9_default_coef_counts_8x8" "[BLOCK_TYPES_8X8] [COEF_BANDS]" "[PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS] = {"); type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { fprintf(f, "%s\n {", Comma(pt)); t = 0; do { const INT64 x = context_counters_8x8 [type] [band] [pt] [t]; const int y = (int) x; assert(x == (INT64) y); /* no overflow handling yet */ fprintf(f, "%s %d", Comma(t), y); } while (++t < MAX_ENTROPY_TOKENS); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < BLOCK_TYPES_8X8); fprintf(f, "\n};\n"); fprintf(f, "static const unsigned int\nvp9_default_coef_counts_16x16" "[BLOCK_TYPES_16X16] [COEF_BANDS]" "[PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS] = {"); type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { fprintf(f, "%s\n {", Comma(pt)); t = 0; do { const INT64 x = context_counters_16x16 [type] [band] [pt] [t]; const int y = (int) x; assert(x == (INT64) y); /* no overflow handling yet */ fprintf(f, "%s %d", Comma(t), y); } while (++t < MAX_ENTROPY_TOKENS); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < BLOCK_TYPES_16X16); fprintf(f, "\n};\n"); fprintf(f, "static const vp9_prob\n" "vp9_default_coef_probs[BLOCK_TYPES] [COEF_BANDS] \n" "[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {"); type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { unsigned int branch_ct [ENTROPY_NODES] [2]; unsigned int coef_counts[MAX_ENTROPY_TOKENS]; vp9_prob coef_probs[ENTROPY_NODES]; for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) coef_counts[t] = context_counters [type] [band] [pt] [t]; vp9_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp9_coef_encodings, vp9_coef_tree, coef_probs, branch_ct, coef_counts, 256, 1); fprintf(f, "%s\n {", Comma(pt)); t = 0; do { fprintf(f, "%s %d", Comma(t), coef_probs[t]); } while (++t < ENTROPY_NODES); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < BLOCK_TYPES); fprintf(f, "\n};\n"); fprintf(f, "static const vp9_prob\n" "vp9_default_coef_probs_8x8[BLOCK_TYPES_8X8] [COEF_BANDS]\n" "[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {"); type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { unsigned int branch_ct [ENTROPY_NODES] [2]; unsigned int coef_counts[MAX_ENTROPY_TOKENS]; vp9_prob coef_probs[ENTROPY_NODES]; for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) coef_counts[t] = context_counters_8x8[type] [band] [pt] [t]; vp9_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp9_coef_encodings, vp9_coef_tree, coef_probs, branch_ct, coef_counts, 256, 1); fprintf(f, "%s\n {", Comma(pt)); t = 0; do { fprintf(f, "%s %d", Comma(t), coef_probs[t]); } while (++t < ENTROPY_NODES); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < BLOCK_TYPES_8X8); fprintf(f, "\n};\n"); fprintf(f, "static const vp9_prob\n" "vp9_default_coef_probs_16x16[BLOCK_TYPES_16X16] [COEF_BANDS]\n" "[PREV_COEF_CONTEXTS] [ENTROPY_NODES] = {"); type = 0; do { fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { unsigned int branch_ct [ENTROPY_NODES] [2]; unsigned int coef_counts[MAX_ENTROPY_TOKENS]; vp9_prob coef_probs[ENTROPY_NODES]; for (t = 0; t < MAX_ENTROPY_TOKENS; ++t) coef_counts[t] = context_counters_16x16[type] [band] [pt] [t]; vp9_tree_probs_from_distribution( MAX_ENTROPY_TOKENS, vp9_coef_encodings, vp9_coef_tree, coef_probs, branch_ct, coef_counts, 256, 1); fprintf(f, "%s\n {", Comma(pt)); t = 0; do { fprintf(f, "%s %d", Comma(t), coef_probs[t]); } while (++t < ENTROPY_NODES); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++type < BLOCK_TYPES_16X16); fprintf(f, "\n};\n"); fclose(f); f = fopen("context.bin", "wb"); fwrite(context_counters, sizeof(context_counters), 1, f); fwrite(context_counters_8x8, sizeof(context_counters_8x8), 1, f); fwrite(context_counters_16x16, sizeof(context_counters_16x16), 1, f); fclose(f); } #endif void vp9_tokenize_initialize() { fill_value_tokens(); } static __inline void stuff_b(VP9_COMP *cpi, MACROBLOCKD *xd, const BLOCKD * const b, TOKENEXTRA **tp, PLANE_TYPE type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, TX_SIZE tx_size, int dry_run) { const int *bands; unsigned int (*counts)[COEF_BANDS][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS]; vp9_prob (*probs)[COEF_BANDS][PREV_COEF_CONTEXTS][ENTROPY_NODES]; int pt, band; TOKENEXTRA *t = *tp; const TX_TYPE tx_type = (type == PLANE_TYPE_Y_WITH_DC) ? get_tx_type(xd, b) : DCT_DCT; VP9_COMBINEENTROPYCONTEXTS(pt, *a, *l); switch (tx_size) { default: case TX_4X4: bands = vp9_coef_bands; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts; probs = cpi->common.fc.hybrid_coef_probs; } else { counts = cpi->coef_counts; probs = cpi->common.fc.coef_probs; } break; case TX_8X8: bands = vp9_coef_bands_8x8; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_8x8; probs = cpi->common.fc.hybrid_coef_probs_8x8; } else { counts = cpi->coef_counts_8x8; probs = cpi->common.fc.coef_probs_8x8; } break; case TX_16X16: bands = vp9_coef_bands_16x16; if (tx_type != DCT_DCT) { counts = cpi->hybrid_coef_counts_16x16; probs = cpi->common.fc.hybrid_coef_probs_16x16; } else { counts = cpi->coef_counts_16x16; probs = cpi->common.fc.coef_probs_16x16; } break; } band = bands[(type == PLANE_TYPE_Y_NO_DC) ? 1 : 0]; t->Token = DCT_EOB_TOKEN; t->context_tree = probs[type][band][pt]; t->skip_eob_node = 0; ++t; *tp = t; *a = *l = 0; if (!dry_run) { ++counts[type][band][pt][DCT_EOB_TOKEN]; } } static void stuff_mb_8x8(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context; ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context; PLANE_TYPE plane_type; int b; int has_2nd_order = get_2nd_order_usage(xd); if (has_2nd_order) { stuff_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2, A + vp9_block2above_8x8[24], L + vp9_block2left_8x8[24], TX_8X8, dry_run); plane_type = PLANE_TYPE_Y_NO_DC; } else { xd->above_context->y2 = 1; xd->left_context->y2 = 1; plane_type = PLANE_TYPE_Y_WITH_DC; } for (b = 0; b < 16; b += 4) { stuff_b(cpi, xd, xd->block + b, t, plane_type, A + vp9_block2above_8x8[b], L + vp9_block2left_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } for (b = 16; b < 24; b += 4) { stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above_8x8[b], L + vp9_block2left_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } } static void stuff_mb_16x16(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { ENTROPY_CONTEXT * A = (ENTROPY_CONTEXT *)xd->above_context; ENTROPY_CONTEXT * L = (ENTROPY_CONTEXT *)xd->left_context; int b; stuff_b(cpi, xd, xd->block, t, PLANE_TYPE_Y_WITH_DC, A, L, TX_16X16, dry_run); A[1] = A[2] = A[3] = A[0]; L[1] = L[2] = L[3] = L[0]; for (b = 16; b < 24; b += 4) { stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above[b], L + vp9_block2above_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } vpx_memset(&A[8], 0, sizeof(A[8])); vpx_memset(&L[8], 0, sizeof(L[8])); } static void stuff_mb_4x4(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context; ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context; int b; PLANE_TYPE plane_type; int has_2nd_order = (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != I8X8_PRED && xd->mode_info_context->mbmi.mode != SPLITMV); if (has_2nd_order && get_tx_type(xd, &xd->block[0]) != DCT_DCT) has_2nd_order = 0; if (has_2nd_order) { stuff_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2, A + vp9_block2above[24], L + vp9_block2left[24], TX_4X4, dry_run); plane_type = PLANE_TYPE_Y_NO_DC; } else { xd->above_context->y2 = 1; xd->left_context->y2 = 1; plane_type = PLANE_TYPE_Y_WITH_DC; } for (b = 0; b < 16; b++) stuff_b(cpi, xd, xd->block + b, t, plane_type, A + vp9_block2above[b], L + vp9_block2left[b], TX_4X4, dry_run); for (b = 16; b < 24; b++) stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above[b], L + vp9_block2left[b], TX_4X4, dry_run); } static void stuff_mb_8x8_4x4uv(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { ENTROPY_CONTEXT *A = (ENTROPY_CONTEXT *)xd->above_context; ENTROPY_CONTEXT *L = (ENTROPY_CONTEXT *)xd->left_context; PLANE_TYPE plane_type; int b; int has_2nd_order = get_2nd_order_usage(xd); if (has_2nd_order) { stuff_b(cpi, xd, xd->block + 24, t, PLANE_TYPE_Y2, A + vp9_block2above_8x8[24], L + vp9_block2left_8x8[24], TX_8X8, dry_run); plane_type = PLANE_TYPE_Y_NO_DC; } else { plane_type = PLANE_TYPE_Y_WITH_DC; } for (b = 0; b < 16; b += 4) { stuff_b(cpi, xd, xd->block + b, t, plane_type, A + vp9_block2above_8x8[b], L + vp9_block2left_8x8[b], TX_8X8, dry_run); A[vp9_block2above_8x8[b] + 1] = A[vp9_block2above_8x8[b]]; L[vp9_block2left_8x8[b] + 1] = L[vp9_block2left_8x8[b]]; } for (b = 16; b < 24; b++) stuff_b(cpi, xd, xd->block + b, t, PLANE_TYPE_UV, A + vp9_block2above[b], L + vp9_block2left[b], TX_4X4, dry_run); xd->above_context->y2 = 1; xd->left_context->y2 = 1; } void vp9_stuff_mb(VP9_COMP *cpi, MACROBLOCKD *xd, TOKENEXTRA **t, int dry_run) { TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; TOKENEXTRA * const t_backup = *t; if (tx_size == TX_16X16) { stuff_mb_16x16(cpi, xd, t, dry_run); } else if (tx_size == TX_8X8) { if (xd->mode_info_context->mbmi.mode == I8X8_PRED || xd->mode_info_context->mbmi.mode == SPLITMV) { stuff_mb_8x8_4x4uv(cpi, xd, t, dry_run); } else { stuff_mb_8x8(cpi, xd, t, dry_run); } } else { stuff_mb_4x4(cpi, xd, t, dry_run); } if (dry_run) { *t = t_backup; } } void vp9_fix_contexts(MACROBLOCKD *xd) { /* Clear entropy contexts for blocks */ if ((xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != I8X8_PRED && xd->mode_info_context->mbmi.mode != SPLITMV) || xd->mode_info_context->mbmi.txfm_size == TX_16X16 ) { vpx_memset(xd->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES)); } else { vpx_memset(xd->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1); vpx_memset(xd->left_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) - 1); xd->above_context->y2 = 1; xd->left_context->y2 = 1; } }