/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "block.h" #include "onyx_int.h" #include "vp8/common/variance.h" #include "encodeintra.h" #include "vp8/common/setupintrarecon.h" #include "vp8/common/systemdependent.h" #include "mcomp.h" #include "firstpass.h" #include "vpx_scale/vpxscale.h" #include "encodemb.h" #include "vp8/common/extend.h" #include "vpx_mem/vpx_mem.h" #include "vp8/common/swapyv12buffer.h" #include "rdopt.h" #include "vp8/common/quant_common.h" #include "encodemv.h" //#define OUTPUT_FPF 1 extern void vp8_build_block_offsets(MACROBLOCK *x); extern void vp8_setup_block_ptrs(MACROBLOCK *x); extern void vp8cx_frame_init_quantizer(VP8_COMP *cpi); extern void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv); extern void vp8_alloc_compressor_data(VP8_COMP *cpi); //#define GFQ_ADJUSTMENT (40 + ((15*Q)/10)) //#define GFQ_ADJUSTMENT (80 + ((15*Q)/10)) #define GFQ_ADJUSTMENT vp8_gf_boost_qadjustment[Q] extern int vp8_kf_boost_qadjustment[QINDEX_RANGE]; extern const int vp8_gf_boost_qadjustment[QINDEX_RANGE]; #define IIFACTOR 1.5 #define IIKFACTOR1 1.40 #define IIKFACTOR2 1.5 #define RMAX 14.0 #define GF_RMAX 48.0 #define KF_MB_INTRA_MIN 300 #define GF_MB_INTRA_MIN 200 #define DOUBLE_DIVIDE_CHECK(X) ((X)<0?(X)-.000001:(X)+.000001) #define POW1 (double)cpi->oxcf.two_pass_vbrbias/100.0 #define POW2 (double)cpi->oxcf.two_pass_vbrbias/100.0 #define NEW_BOOST 1 static int vscale_lookup[7] = {0, 1, 1, 2, 2, 3, 3}; static int hscale_lookup[7] = {0, 0, 1, 1, 2, 2, 3}; static const int cq_level[QINDEX_RANGE] = { 0,0,1,1,2,3,3,4,4,5,6,6,7,8,8,9, 9,10,11,11,12,13,13,14,15,15,16,17,17,18,19,20, 20,21,22,22,23,24,24,25,26,27,27,28,29,30,30,31, 32,33,33,34,35,36,36,37,38,39,39,40,41,42,42,43, 44,45,46,46,47,48,49,50,50,51,52,53,54,55,55,56, 57,58,59,60,60,61,62,63,64,65,66,67,67,68,69,70, 71,72,73,74,75,75,76,77,78,79,80,81,82,83,84,85, 86,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100 }; static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame); // Resets the first pass file to the given position using a relative seek from the current position static void reset_fpf_position(VP8_COMP *cpi, FIRSTPASS_STATS *Position) { cpi->twopass.stats_in = Position; } static int lookup_next_frame_stats(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *next_frame = *cpi->twopass.stats_in; return 1; } // Read frame stats at an offset from the current position static int read_frame_stats( VP8_COMP *cpi, FIRSTPASS_STATS *frame_stats, int offset ) { FIRSTPASS_STATS * fps_ptr = cpi->twopass.stats_in; // Check legality of offset if ( offset >= 0 ) { if ( &fps_ptr[offset] >= cpi->twopass.stats_in_end ) return EOF; } else if ( offset < 0 ) { if ( &fps_ptr[offset] < cpi->twopass.stats_in_start ) return EOF; } *frame_stats = fps_ptr[offset]; return 1; } static int input_stats(VP8_COMP *cpi, FIRSTPASS_STATS *fps) { if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) return EOF; *fps = *cpi->twopass.stats_in; cpi->twopass.stats_in = (void*)((char *)cpi->twopass.stats_in + sizeof(FIRSTPASS_STATS)); return 1; } static void output_stats(const VP8_COMP *cpi, struct vpx_codec_pkt_list *pktlist, FIRSTPASS_STATS *stats) { struct vpx_codec_cx_pkt pkt; pkt.kind = VPX_CODEC_STATS_PKT; pkt.data.twopass_stats.buf = stats; pkt.data.twopass_stats.sz = sizeof(FIRSTPASS_STATS); vpx_codec_pkt_list_add(pktlist, &pkt); // TEMP debug code #if OUTPUT_FPF { FILE *fpfile; fpfile = fopen("firstpass.stt", "a"); fprintf(fpfile, "%12.0f %12.0f %12.0f %12.4f %12.4f %12.4f %12.4f" " %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f %12.4f" " %12.0f %12.0f %12.4f\n", stats->frame, stats->intra_error, stats->coded_error, stats->ssim_weighted_pred_err, stats->pcnt_inter, stats->pcnt_motion, stats->pcnt_second_ref, stats->pcnt_neutral, stats->MVr, stats->mvr_abs, stats->MVc, stats->mvc_abs, stats->MVrv, stats->MVcv, stats->mv_in_out_count, stats->new_mv_count, stats->count, stats->duration); fclose(fpfile); } #endif } static void zero_stats(FIRSTPASS_STATS *section) { section->frame = 0.0; section->intra_error = 0.0; section->coded_error = 0.0; section->ssim_weighted_pred_err = 0.0; section->pcnt_inter = 0.0; section->pcnt_motion = 0.0; section->pcnt_second_ref = 0.0; section->pcnt_neutral = 0.0; section->MVr = 0.0; section->mvr_abs = 0.0; section->MVc = 0.0; section->mvc_abs = 0.0; section->MVrv = 0.0; section->MVcv = 0.0; section->mv_in_out_count = 0.0; section->new_mv_count = 0.0; section->count = 0.0; section->duration = 1.0; } static void accumulate_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame += frame->frame; section->intra_error += frame->intra_error; section->coded_error += frame->coded_error; section->ssim_weighted_pred_err += frame->ssim_weighted_pred_err; section->pcnt_inter += frame->pcnt_inter; section->pcnt_motion += frame->pcnt_motion; section->pcnt_second_ref += frame->pcnt_second_ref; section->pcnt_neutral += frame->pcnt_neutral; section->MVr += frame->MVr; section->mvr_abs += frame->mvr_abs; section->MVc += frame->MVc; section->mvc_abs += frame->mvc_abs; section->MVrv += frame->MVrv; section->MVcv += frame->MVcv; section->mv_in_out_count += frame->mv_in_out_count; section->new_mv_count += frame->new_mv_count; section->count += frame->count; section->duration += frame->duration; } static void subtract_stats(FIRSTPASS_STATS *section, FIRSTPASS_STATS *frame) { section->frame -= frame->frame; section->intra_error -= frame->intra_error; section->coded_error -= frame->coded_error; section->ssim_weighted_pred_err -= frame->ssim_weighted_pred_err; section->pcnt_inter -= frame->pcnt_inter; section->pcnt_motion -= frame->pcnt_motion; section->pcnt_second_ref -= frame->pcnt_second_ref; section->pcnt_neutral -= frame->pcnt_neutral; section->MVr -= frame->MVr; section->mvr_abs -= frame->mvr_abs; section->MVc -= frame->MVc; section->mvc_abs -= frame->mvc_abs; section->MVrv -= frame->MVrv; section->MVcv -= frame->MVcv; section->mv_in_out_count -= frame->mv_in_out_count; section->new_mv_count -= frame->new_mv_count; section->count -= frame->count; section->duration -= frame->duration; } static void avg_stats(FIRSTPASS_STATS *section) { if (section->count < 1.0) return; section->intra_error /= section->count; section->coded_error /= section->count; section->ssim_weighted_pred_err /= section->count; section->pcnt_inter /= section->count; section->pcnt_second_ref /= section->count; section->pcnt_neutral /= section->count; section->pcnt_motion /= section->count; section->MVr /= section->count; section->mvr_abs /= section->count; section->MVc /= section->count; section->mvc_abs /= section->count; section->MVrv /= section->count; section->MVcv /= section->count; section->mv_in_out_count /= section->count; section->duration /= section->count; } // Calculate a modified Error used in distributing bits between easier and harder frames static double calculate_modified_err(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { double av_err = ( cpi->twopass.total_stats.ssim_weighted_pred_err / cpi->twopass.total_stats.count ); double this_err = this_frame->ssim_weighted_pred_err; double modified_err; if (this_err > av_err) modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW1); else modified_err = av_err * pow((this_err / DOUBLE_DIVIDE_CHECK(av_err)), POW2); return modified_err; } static const double weight_table[256] = { 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.020000, 0.031250, 0.062500, 0.093750, 0.125000, 0.156250, 0.187500, 0.218750, 0.250000, 0.281250, 0.312500, 0.343750, 0.375000, 0.406250, 0.437500, 0.468750, 0.500000, 0.531250, 0.562500, 0.593750, 0.625000, 0.656250, 0.687500, 0.718750, 0.750000, 0.781250, 0.812500, 0.843750, 0.875000, 0.906250, 0.937500, 0.968750, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000, 1.000000 }; static double simple_weight(YV12_BUFFER_CONFIG *source) { int i, j; unsigned char *src = source->y_buffer; double sum_weights = 0.0; // Loop throught the Y plane raw examining levels and creating a weight for the image i = source->y_height; do { j = source->y_width; do { sum_weights += weight_table[ *src]; src++; }while(--j); src -= source->y_width; src += source->y_stride; }while(--i); sum_weights /= (source->y_height * source->y_width); return sum_weights; } // This function returns the current per frame maximum bitrate target static int frame_max_bits(VP8_COMP *cpi) { // Max allocation for a single frame based on the max section guidelines passed in and how many bits are left int max_bits; // For CBR we need to also consider buffer fullness. // If we are running below the optimal level then we need to gradually tighten up on max_bits. if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { double buffer_fullness_ratio = (double)cpi->buffer_level / DOUBLE_DIVIDE_CHECK((double)cpi->oxcf.optimal_buffer_level); // For CBR base this on the target average bits per frame plus the maximum sedction rate passed in by the user max_bits = (int)(cpi->av_per_frame_bandwidth * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); // If our buffer is below the optimum level if (buffer_fullness_ratio < 1.0) { // The lower of max_bits / 4 or cpi->av_per_frame_bandwidth / 4. int min_max_bits = ((cpi->av_per_frame_bandwidth >> 2) < (max_bits >> 2)) ? cpi->av_per_frame_bandwidth >> 2 : max_bits >> 2; max_bits = (int)(max_bits * buffer_fullness_ratio); if (max_bits < min_max_bits) max_bits = min_max_bits; // Lowest value we will set ... which should allow the buffer to refil. } } // VBR else { // For VBR base this on the bits and frames left plus the two_pass_vbrmax_section rate passed in by the user max_bits = (int)(((double)cpi->twopass.bits_left / (cpi->twopass.total_stats.count - (double)cpi->common.current_video_frame)) * ((double)cpi->oxcf.two_pass_vbrmax_section / 100.0)); } // Trap case where we are out of bits if (max_bits < 0) max_bits = 0; return max_bits; } void vp8_init_first_pass(VP8_COMP *cpi) { zero_stats(&cpi->twopass.total_stats); } void vp8_end_first_pass(VP8_COMP *cpi) { output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.total_stats); } static void zz_motion_search( VP8_COMP *cpi, MACROBLOCK * x, YV12_BUFFER_CONFIG * raw_buffer, int * raw_motion_err, YV12_BUFFER_CONFIG * recon_buffer, int * best_motion_err, int recon_yoffset) { MACROBLOCKD * const xd = & x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; unsigned char *src_ptr = (*(b->base_src) + b->src); int src_stride = b->src_stride; unsigned char *raw_ptr; int raw_stride = raw_buffer->y_stride; unsigned char *ref_ptr; int ref_stride = x->e_mbd.pre.y_stride; // Set up pointers for this macro block raw buffer raw_ptr = (unsigned char *)(raw_buffer->y_buffer + recon_yoffset + d->offset); vp8_mse16x16 ( src_ptr, src_stride, raw_ptr, raw_stride, (unsigned int *)(raw_motion_err)); // Set up pointers for this macro block recon buffer xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; ref_ptr = (unsigned char *)(xd->pre.y_buffer + d->offset ); vp8_mse16x16 ( src_ptr, src_stride, ref_ptr, ref_stride, (unsigned int *)(best_motion_err)); } static void first_pass_motion_search(VP8_COMP *cpi, MACROBLOCK *x, int_mv *ref_mv, MV *best_mv, YV12_BUFFER_CONFIG *recon_buffer, int *best_motion_err, int recon_yoffset ) { MACROBLOCKD *const xd = & x->e_mbd; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; int num00; int_mv tmp_mv; int_mv ref_mv_full; int tmp_err; int step_param = 3; //3; // Dont search over full range for first pass int further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; //3; int n; vp8_variance_fn_ptr_t v_fn_ptr = cpi->fn_ptr[BLOCK_16X16]; int new_mv_mode_penalty = 256; // override the default variance function to use MSE v_fn_ptr.vf = vp8_mse16x16; // Set up pointers for this macro block recon buffer xd->pre.y_buffer = recon_buffer->y_buffer + recon_yoffset; // Initial step/diamond search centred on best mv tmp_mv.as_int = 0; ref_mv_full.as_mv.col = ref_mv->as_mv.col>>3; ref_mv_full.as_mv.row = ref_mv->as_mv.row>>3; tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param, x->sadperbit16, &num00, &v_fn_ptr, x->mvcost, ref_mv); if ( tmp_err < INT_MAX-new_mv_mode_penalty ) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } // Further step/diamond searches as necessary n = num00; num00 = 0; while (n < further_steps) { n++; if (num00) num00--; else { tmp_err = cpi->diamond_search_sad(x, b, d, &ref_mv_full, &tmp_mv, step_param + n, x->sadperbit16, &num00, &v_fn_ptr, x->mvcost, ref_mv); if ( tmp_err < INT_MAX-new_mv_mode_penalty ) tmp_err += new_mv_mode_penalty; if (tmp_err < *best_motion_err) { *best_motion_err = tmp_err; best_mv->row = tmp_mv.as_mv.row; best_mv->col = tmp_mv.as_mv.col; } } } } void vp8_first_pass(VP8_COMP *cpi) { int mb_row, mb_col; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; int recon_yoffset, recon_uvoffset; YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; int recon_y_stride = lst_yv12->y_stride; int recon_uv_stride = lst_yv12->uv_stride; int64_t intra_error = 0; int64_t coded_error = 0; int sum_mvr = 0, sum_mvc = 0; int sum_mvr_abs = 0, sum_mvc_abs = 0; int sum_mvrs = 0, sum_mvcs = 0; int mvcount = 0; int intercount = 0; int second_ref_count = 0; int intrapenalty = 256; int neutral_count = 0; int new_mv_count = 0; int sum_in_vectors = 0; uint32_t lastmv_as_int = 0; int_mv zero_ref_mv; zero_ref_mv.as_int = 0; vp8_clear_system_state(); //__asm emms; x->src = * cpi->Source; xd->pre = *lst_yv12; xd->dst = *new_yv12; x->partition_info = x->pi; xd->mode_info_context = cm->mi; vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); // set up frame new frame for intra coded blocks vp8_setup_intra_recon(new_yv12); vp8cx_frame_init_quantizer(cpi); // Initialise the MV cost table to the defaults //if( cm->current_video_frame == 0) //if ( 0 ) { int flag[2] = {1, 1}; vp8_initialize_rd_consts(cpi, vp8_dc_quant(cm->base_qindex, cm->y1dc_delta_q)); vpx_memcpy(cm->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); } // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { int_mv best_ref_mv; best_ref_mv.as_int = 0; // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { int this_error; int gf_motion_error = INT_MAX; int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->dst.u_buffer = new_yv12->u_buffer + recon_uvoffset; xd->dst.v_buffer = new_yv12->v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); //Copy current mb to a buffer vp8_copy_mem16x16(x->src.y_buffer, x->src.y_stride, x->thismb, 16); // do intra 16x16 prediction this_error = vp8_encode_intra(cpi, x, use_dc_pred); // "intrapenalty" below deals with situations where the intra and inter error scores are very low (eg a plain black frame) // We do not have special cases in first pass for 0,0 and nearest etc so all inter modes carry an overhead cost estimate fot the mv. // When the error score is very low this causes us to pick all or lots of INTRA modes and throw lots of key frames. // This penalty adds a cost matching that of a 0,0 mv to the intra case. this_error += intrapenalty; // Cumulative intra error total intra_error += (int64_t)this_error; // Set up limit values for motion vectors to prevent them extending outside the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); // Other than for the first frame do a motion search if (cm->current_video_frame > 0) { BLOCKD *d = &x->e_mbd.block[0]; MV tmp_mv = {0, 0}; int tmp_err; int motion_error = INT_MAX; int raw_motion_error = INT_MAX; // Simple 0,0 motion with no mv overhead zz_motion_search( cpi, x, cpi->last_frame_unscaled_source, &raw_motion_error, lst_yv12, &motion_error, recon_yoffset ); d->bmi.mv.as_mv.row = 0; d->bmi.mv.as_mv.col = 0; if (raw_motion_error < cpi->oxcf.encode_breakout) goto skip_motion_search; // Test last reference frame using the previous best mv as the // starting point (best reference) for the search first_pass_motion_search(cpi, x, &best_ref_mv, &d->bmi.mv.as_mv, lst_yv12, &motion_error, recon_yoffset); // If the current best reference mv is not centred on 0,0 then do a 0,0 based search as well if (best_ref_mv.as_int) { tmp_err = INT_MAX; first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, lst_yv12, &tmp_err, recon_yoffset); if ( tmp_err < motion_error ) { motion_error = tmp_err; d->bmi.mv.as_mv.row = tmp_mv.row; d->bmi.mv.as_mv.col = tmp_mv.col; } } // Experimental search in a second reference frame ((0,0) based only) if (cm->current_video_frame > 1) { first_pass_motion_search(cpi, x, &zero_ref_mv, &tmp_mv, gld_yv12, &gf_motion_error, recon_yoffset); if ((gf_motion_error < motion_error) && (gf_motion_error < this_error)) { second_ref_count++; //motion_error = gf_motion_error; //d->bmi.mv.as_mv.row = tmp_mv.row; //d->bmi.mv.as_mv.col = tmp_mv.col; } /*else { xd->pre.y_buffer = cm->last_frame.y_buffer + recon_yoffset; xd->pre.u_buffer = cm->last_frame.u_buffer + recon_uvoffset; xd->pre.v_buffer = cm->last_frame.v_buffer + recon_uvoffset; }*/ // Reset to last frame as reference buffer xd->pre.y_buffer = lst_yv12->y_buffer + recon_yoffset; xd->pre.u_buffer = lst_yv12->u_buffer + recon_uvoffset; xd->pre.v_buffer = lst_yv12->v_buffer + recon_uvoffset; } skip_motion_search: /* Intra assumed best */ best_ref_mv.as_int = 0; if (motion_error <= this_error) { // Keep a count of cases where the inter and intra were // very close and very low. This helps with scene cut // detection for example in cropped clips with black bars // at the sides or top and bottom. if( (((this_error-intrapenalty) * 9) <= (motion_error*10)) && (this_error < (2*intrapenalty)) ) { neutral_count++; } d->bmi.mv.as_mv.row <<= 3; d->bmi.mv.as_mv.col <<= 3; this_error = motion_error; vp8_set_mbmode_and_mvs(x, NEWMV, &d->bmi.mv); vp8_encode_inter16x16y(x); sum_mvr += d->bmi.mv.as_mv.row; sum_mvr_abs += abs(d->bmi.mv.as_mv.row); sum_mvc += d->bmi.mv.as_mv.col; sum_mvc_abs += abs(d->bmi.mv.as_mv.col); sum_mvrs += d->bmi.mv.as_mv.row * d->bmi.mv.as_mv.row; sum_mvcs += d->bmi.mv.as_mv.col * d->bmi.mv.as_mv.col; intercount++; best_ref_mv.as_int = d->bmi.mv.as_int; // Was the vector non-zero if (d->bmi.mv.as_int) { mvcount++; // Was it different from the last non zero vector if ( d->bmi.mv.as_int != lastmv_as_int ) new_mv_count++; lastmv_as_int = d->bmi.mv.as_int; // Does the Row vector point inwards or outwards if (mb_row < cm->mb_rows / 2) { if (d->bmi.mv.as_mv.row > 0) sum_in_vectors--; else if (d->bmi.mv.as_mv.row < 0) sum_in_vectors++; } else if (mb_row > cm->mb_rows / 2) { if (d->bmi.mv.as_mv.row > 0) sum_in_vectors++; else if (d->bmi.mv.as_mv.row < 0) sum_in_vectors--; } // Does the Row vector point inwards or outwards if (mb_col < cm->mb_cols / 2) { if (d->bmi.mv.as_mv.col > 0) sum_in_vectors--; else if (d->bmi.mv.as_mv.col < 0) sum_in_vectors++; } else if (mb_col > cm->mb_cols / 2) { if (d->bmi.mv.as_mv.col > 0) sum_in_vectors++; else if (d->bmi.mv.as_mv.col < 0) sum_in_vectors--; } } } } coded_error += (int64_t)this_error; // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; } // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; //extend the recon for intra prediction vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); vp8_clear_system_state(); //__asm emms; } vp8_clear_system_state(); //__asm emms; { double weight = 0.0; FIRSTPASS_STATS fps; fps.frame = cm->current_video_frame ; fps.intra_error = intra_error >> 8; fps.coded_error = coded_error >> 8; weight = simple_weight(cpi->Source); if (weight < 0.1) weight = 0.1; fps.ssim_weighted_pred_err = fps.coded_error * weight; fps.pcnt_inter = 0.0; fps.pcnt_motion = 0.0; fps.MVr = 0.0; fps.mvr_abs = 0.0; fps.MVc = 0.0; fps.mvc_abs = 0.0; fps.MVrv = 0.0; fps.MVcv = 0.0; fps.mv_in_out_count = 0.0; fps.new_mv_count = 0.0; fps.count = 1.0; fps.pcnt_inter = 1.0 * (double)intercount / cm->MBs; fps.pcnt_second_ref = 1.0 * (double)second_ref_count / cm->MBs; fps.pcnt_neutral = 1.0 * (double)neutral_count / cm->MBs; if (mvcount > 0) { fps.MVr = (double)sum_mvr / (double)mvcount; fps.mvr_abs = (double)sum_mvr_abs / (double)mvcount; fps.MVc = (double)sum_mvc / (double)mvcount; fps.mvc_abs = (double)sum_mvc_abs / (double)mvcount; fps.MVrv = ((double)sum_mvrs - (fps.MVr * fps.MVr / (double)mvcount)) / (double)mvcount; fps.MVcv = ((double)sum_mvcs - (fps.MVc * fps.MVc / (double)mvcount)) / (double)mvcount; fps.mv_in_out_count = (double)sum_in_vectors / (double)(mvcount * 2); fps.new_mv_count = new_mv_count; fps.pcnt_motion = 1.0 * (double)mvcount / cpi->common.MBs; } // TODO: handle the case when duration is set to 0, or something less // than the full time between subsequent cpi->source_time_stamp s . fps.duration = cpi->source->ts_end - cpi->source->ts_start; // don't want to do output stats with a stack variable! memcpy(&cpi->twopass.this_frame_stats, &fps, sizeof(FIRSTPASS_STATS)); output_stats(cpi, cpi->output_pkt_list, &cpi->twopass.this_frame_stats); accumulate_stats(&cpi->twopass.total_stats, &fps); } // Copy the previous Last Frame into the GF buffer if specific conditions for doing so are met if ((cm->current_video_frame > 0) && (cpi->twopass.this_frame_stats.pcnt_inter > 0.20) && ((cpi->twopass.this_frame_stats.intra_error / cpi->twopass.this_frame_stats.coded_error) > 2.0)) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); } // swap frame pointers so last frame refers to the frame we just compressed vp8_swap_yv12_buffer(lst_yv12, new_yv12); vp8_yv12_extend_frame_borders(lst_yv12); // Special case for the first frame. Copy into the GF buffer as a second reference. if (cm->current_video_frame == 0) { vp8_yv12_copy_frame(lst_yv12, gld_yv12); } // use this to see what the first pass reconstruction looks like if (0) { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); if (cm->current_video_frame == 0) recon_file = fopen(filename, "wb"); else recon_file = fopen(filename, "ab"); if(fwrite(lst_yv12->buffer_alloc, lst_yv12->frame_size, 1, recon_file)); fclose(recon_file); } cm->current_video_frame++; } extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; // Estimate a cost per mb attributable to overheads such as the coding of // modes and motion vectors. // Currently simplistic in its assumptions for testing. // double bitcost( double prob ) { return -(log( prob ) / log( 2.0 )); } static int64_t estimate_modemvcost(VP8_COMP *cpi, FIRSTPASS_STATS * fpstats) { int mv_cost; int mode_cost; double av_pct_inter = fpstats->pcnt_inter / fpstats->count; double av_pct_motion = fpstats->pcnt_motion / fpstats->count; double av_intra = (1.0 - av_pct_inter); double zz_cost; double motion_cost; double intra_cost; zz_cost = bitcost(av_pct_inter - av_pct_motion); motion_cost = bitcost(av_pct_motion); intra_cost = bitcost(av_intra); // Estimate of extra bits per mv overhead for mbs // << 9 is the normalization to the (bits * 512) used in vp8_bits_per_mb mv_cost = ((int)(fpstats->new_mv_count / fpstats->count) * 8) << 9; // Crude estimate of overhead cost from modes // << 9 is the normalization to (bits * 512) used in vp8_bits_per_mb mode_cost = (int)( ( ((av_pct_inter - av_pct_motion) * zz_cost) + (av_pct_motion * motion_cost) + (av_intra * intra_cost) ) * cpi->common.MBs ) << 9; return mv_cost + mode_cost; } static double calc_correction_factor( double err_per_mb, double err_devisor, double pt_low, double pt_high, int Q ) { double power_term; double error_term = err_per_mb / err_devisor; double correction_factor; // Adjustment based on Q to power term. power_term = pt_low + (Q * 0.01); power_term = (power_term > pt_high) ? pt_high : power_term; // Adjustments to error term // TBD // Calculate correction factor correction_factor = pow(error_term, power_term); // Clip range correction_factor = (correction_factor < 0.05) ? 0.05 : (correction_factor > 5.0) ? 5.0 : correction_factor; return correction_factor; } static int estimate_max_q(VP8_COMP *cpi, FIRSTPASS_STATS * fpstats, int section_target_bandwitdh, int overhead_bits ) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; int overhead_bits_per_mb; if (section_target_bandwitdh <= 0) return cpi->twopass.maxq_max_limit; // Highest value allowed target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Calculate a corrective factor based on a rolling ratio of bits spent // vs target bits if ((cpi->rolling_target_bits > 0) && (cpi->active_worst_quality < cpi->worst_quality)) { double rolling_ratio; rolling_ratio = (double)cpi->rolling_actual_bits / (double)cpi->rolling_target_bits; if (rolling_ratio < 0.95) cpi->twopass.est_max_qcorrection_factor -= 0.005; else if (rolling_ratio > 1.05) cpi->twopass.est_max_qcorrection_factor += 0.005; cpi->twopass.est_max_qcorrection_factor = (cpi->twopass.est_max_qcorrection_factor < 0.1) ? 0.1 : (cpi->twopass.est_max_qcorrection_factor > 10.0) ? 10.0 : cpi->twopass.est_max_qcorrection_factor; } // Corrections for higher compression speed settings // (reduced compression expected) if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // Estimate of overhead bits per mb // Correction to overhead bits for min allowed Q. overhead_bits_per_mb = overhead_bits / num_mbs; overhead_bits_per_mb *= pow( 0.98, (double)cpi->twopass.maxq_min_limit ); // Try and pick a max Q that will be high enough to encode the // content at the given rate. for (Q = cpi->twopass.maxq_min_limit; Q < cpi->twopass.maxq_max_limit; Q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); bits_per_mb_at_this_q = vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; bits_per_mb_at_this_q = (int)(.5 + err_correction_factor * speed_correction * cpi->twopass.est_max_qcorrection_factor * cpi->twopass.section_max_qfactor * (double)bits_per_mb_at_this_q); // Mode and motion overhead // As Q rises in real encode loop rd code will force overhead down // We make a crude adjustment for this here as *.98 per Q step. overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Restriction on active max q for constrained quality mode. if ( (cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY) && (Q < cpi->cq_target_quality) ) { Q = cpi->cq_target_quality; } // Adjust maxq_min_limit and maxq_max_limit limits based on // averaga q observed in clip for non kf/gf.arf frames // Give average a chance to settle though. if ( (cpi->ni_frames > ((unsigned int)cpi->twopass.total_stats.count >> 8)) && (cpi->ni_frames > 150) ) { cpi->twopass.maxq_max_limit = ((cpi->ni_av_qi + 32) < cpi->worst_quality) ? (cpi->ni_av_qi + 32) : cpi->worst_quality; cpi->twopass.maxq_min_limit = ((cpi->ni_av_qi - 32) > cpi->best_quality) ? (cpi->ni_av_qi - 32) : cpi->best_quality; } return Q; } // For cq mode estimate a cq level that matches the observed // complexity and data rate. static int estimate_cq( VP8_COMP *cpi, FIRSTPASS_STATS * fpstats, int section_target_bandwitdh, int overhead_bits ) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double section_err = (fpstats->coded_error / fpstats->count); double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; double clip_iiratio; double clip_iifactor; int overhead_bits_per_mb; if (0) { FILE *f = fopen("epmp.stt", "a"); fprintf(f, "%10.2f\n", err_per_mb ); fclose(f); } target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Estimate of overhead bits per mb overhead_bits_per_mb = overhead_bits / num_mbs; // Corrections for higher compression speed settings // (reduced compression expected) if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // II ratio correction factor for clip as a whole clip_iiratio = cpi->twopass.total_stats.intra_error / DOUBLE_DIVIDE_CHECK(cpi->twopass.total_stats.coded_error); clip_iifactor = 1.0 - ((clip_iiratio - 10.0) * 0.025); if (clip_iifactor < 0.80) clip_iifactor = 0.80; // Try and pick a Q that can encode the content at the given rate. for (Q = 0; Q < MAXQ; Q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(err_per_mb, 100.0, 0.40, 0.90, Q); bits_per_mb_at_this_q = vp8_bits_per_mb[INTER_FRAME][Q] + overhead_bits_per_mb; bits_per_mb_at_this_q = (int)( .5 + err_correction_factor * speed_correction * clip_iifactor * (double)bits_per_mb_at_this_q); // Mode and motion overhead // As Q rises in real encode loop rd code will force overhead down // We make a crude adjustment for this here as *.98 per Q step. overhead_bits_per_mb = (int)((double)overhead_bits_per_mb * 0.98); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // Clip value to range "best allowed to (worst allowed - 1)" Q = cq_level[Q]; if ( Q >= cpi->worst_quality ) Q = cpi->worst_quality - 1; if ( Q < cpi->best_quality ) Q = cpi->best_quality; return Q; } static int estimate_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb; double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; target_norm_bits_per_mb = (section_target_bandwitdh < (1 << 20)) ? (512 * section_target_bandwitdh) / num_mbs : 512 * (section_target_bandwitdh / num_mbs); // Corrections for higher compression speed settings (reduced compression expected) if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // Try and pick a Q that can encode the content at the given rate. for (Q = 0; Q < MAXQ; Q++) { int bits_per_mb_at_this_q; // Error per MB based correction factor err_correction_factor = calc_correction_factor(err_per_mb, 150.0, 0.40, 0.90, Q); bits_per_mb_at_this_q = (int)( .5 + ( err_correction_factor * speed_correction * cpi->twopass.est_max_qcorrection_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q] / 1.0 ) ); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } return Q; } // Estimate a worst case Q for a KF group static int estimate_kf_group_q(VP8_COMP *cpi, double section_err, int section_target_bandwitdh, double group_iiratio) { int Q; int num_mbs = cpi->common.MBs; int target_norm_bits_per_mb = (512 * section_target_bandwitdh) / num_mbs; int bits_per_mb_at_this_q; double err_per_mb = section_err / num_mbs; double err_correction_factor; double speed_correction = 1.0; double current_spend_ratio = 1.0; double pow_highq = (POW1 < 0.6) ? POW1 + 0.3 : 0.90; double pow_lowq = (POW1 < 0.7) ? POW1 + 0.1 : 0.80; double iiratio_correction_factor = 1.0; double combined_correction_factor; // Trap special case where the target is <= 0 if (target_norm_bits_per_mb <= 0) return MAXQ * 2; // Calculate a corrective factor based on a rolling ratio of bits spent vs target bits // This is clamped to the range 0.1 to 10.0 if (cpi->long_rolling_target_bits <= 0) current_spend_ratio = 10.0; else { current_spend_ratio = (double)cpi->long_rolling_actual_bits / (double)cpi->long_rolling_target_bits; current_spend_ratio = (current_spend_ratio > 10.0) ? 10.0 : (current_spend_ratio < 0.1) ? 0.1 : current_spend_ratio; } // Calculate a correction factor based on the quality of prediction in the sequence as indicated by intra_inter error score ratio (IIRatio) // The idea here is to favour subsampling in the hardest sections vs the easyest. iiratio_correction_factor = 1.0 - ((group_iiratio - 6.0) * 0.1); if (iiratio_correction_factor < 0.5) iiratio_correction_factor = 0.5; // Corrections for higher compression speed settings (reduced compression expected) if ((cpi->compressor_speed == 3) || (cpi->compressor_speed == 1)) { if (cpi->oxcf.cpu_used <= 5) speed_correction = 1.04 + (cpi->oxcf.cpu_used * 0.04); else speed_correction = 1.25; } // Combine the various factors calculated above combined_correction_factor = speed_correction * iiratio_correction_factor * current_spend_ratio; // Try and pick a Q that should be high enough to encode the content at the given rate. for (Q = 0; Q < MAXQ; Q++) { // Error per MB based correction factor err_correction_factor = calc_correction_factor(err_per_mb, 150.0, pow_lowq, pow_highq, Q); bits_per_mb_at_this_q = (int)(.5 + ( err_correction_factor * combined_correction_factor * (double)vp8_bits_per_mb[INTER_FRAME][Q]) ); if (bits_per_mb_at_this_q <= target_norm_bits_per_mb) break; } // If we could not hit the target even at Max Q then estimate what Q would have bee required while ((bits_per_mb_at_this_q > target_norm_bits_per_mb) && (Q < (MAXQ * 2))) { bits_per_mb_at_this_q = (int)(0.96 * bits_per_mb_at_this_q); Q++; } if (0) { FILE *f = fopen("estkf_q.stt", "a"); fprintf(f, "%8d %8d %8d %8.2f %8.3f %8.2f %8.3f %8.3f %8.3f %8d\n", cpi->common.current_video_frame, bits_per_mb_at_this_q, target_norm_bits_per_mb, err_per_mb, err_correction_factor, current_spend_ratio, group_iiratio, iiratio_correction_factor, (double)cpi->buffer_level / (double)cpi->oxcf.optimal_buffer_level, Q); fclose(f); } return Q; } extern void vp8_new_frame_rate(VP8_COMP *cpi, double framerate); void vp8_init_second_pass(VP8_COMP *cpi) { FIRSTPASS_STATS this_frame; FIRSTPASS_STATS *start_pos; double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); zero_stats(&cpi->twopass.total_stats); zero_stats(&cpi->twopass.total_left_stats); if (!cpi->twopass.stats_in_end) return; cpi->twopass.total_stats = *cpi->twopass.stats_in_end; cpi->twopass.total_left_stats = cpi->twopass.total_stats; // each frame can have a different duration, as the frame rate in the source // isn't guaranteed to be constant. The frame rate prior to the first frame // encoded in the second pass is a guess. However the sum duration is not. // Its calculated based on the actual durations of all frames from the first // pass. vp8_new_frame_rate(cpi, 10000000.0 * cpi->twopass.total_stats.count / cpi->twopass.total_stats.duration); cpi->output_frame_rate = cpi->frame_rate; cpi->twopass.bits_left = (int64_t)(cpi->twopass.total_stats.duration * cpi->oxcf.target_bandwidth / 10000000.0) ; cpi->twopass.bits_left -= (int64_t)(cpi->twopass.total_stats.duration * two_pass_min_rate / 10000000.0); // Calculate a minimum intra value to be used in determining the IIratio // scores used in the second pass. We have this minimum to make sure // that clips that are static but "low complexity" in the intra domain // are still boosted appropriately for KF/GF/ARF cpi->twopass.kf_intra_err_min = KF_MB_INTRA_MIN * cpi->common.MBs; cpi->twopass.gf_intra_err_min = GF_MB_INTRA_MIN * cpi->common.MBs; // Scan the first pass file and calculate an average Intra / Inter error score ratio for the sequence { double sum_iiratio = 0.0; double IIRatio; start_pos = cpi->twopass.stats_in; // Note starting "file" position while (input_stats(cpi, &this_frame) != EOF) { IIRatio = this_frame.intra_error / DOUBLE_DIVIDE_CHECK(this_frame.coded_error); IIRatio = (IIRatio < 1.0) ? 1.0 : (IIRatio > 20.0) ? 20.0 : IIRatio; sum_iiratio += IIRatio; } cpi->twopass.avg_iiratio = sum_iiratio / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.total_stats.count); // Reset file position reset_fpf_position(cpi, start_pos); } // Scan the first pass file and calculate a modified total error based upon the bias/power function // used to allocate bits { start_pos = cpi->twopass.stats_in; // Note starting "file" position cpi->twopass.modified_error_total = 0.0; cpi->twopass.modified_error_used = 0.0; while (input_stats(cpi, &this_frame) != EOF) { cpi->twopass.modified_error_total += calculate_modified_err(cpi, &this_frame); } cpi->twopass.modified_error_left = cpi->twopass.modified_error_total; reset_fpf_position(cpi, start_pos); // Reset file position } } void vp8_end_second_pass(VP8_COMP *cpi) { } // This function gives and estimate of how badly we believe // the prediction quality is decaying from frame to frame. static double get_prediction_decay_rate(VP8_COMP *cpi, FIRSTPASS_STATS *next_frame) { double prediction_decay_rate; double motion_decay; double motion_pct = next_frame->pcnt_motion; // Initial basis is the % mbs inter coded prediction_decay_rate = next_frame->pcnt_inter; // High % motion -> somewhat higher decay rate motion_decay = (1.0 - (motion_pct / 20.0)); if (motion_decay < prediction_decay_rate) prediction_decay_rate = motion_decay; // Adjustment to decay rate based on speed of motion { double this_mv_rabs; double this_mv_cabs; double distance_factor; this_mv_rabs = fabs(next_frame->mvr_abs * motion_pct); this_mv_cabs = fabs(next_frame->mvc_abs * motion_pct); distance_factor = sqrt((this_mv_rabs * this_mv_rabs) + (this_mv_cabs * this_mv_cabs)) / 250.0; distance_factor = ((distance_factor > 1.0) ? 0.0 : (1.0 - distance_factor)); if (distance_factor < prediction_decay_rate) prediction_decay_rate = distance_factor; } return prediction_decay_rate; } // Function to test for a condition where a complex transition is followed // by a static section. For example in slide shows where there is a fade // between slides. This is to help with more optimal kf and gf positioning. static int detect_transition_to_still( VP8_COMP *cpi, int frame_interval, int still_interval, double loop_decay_rate, double decay_accumulator ) { int trans_to_still = 0; // Break clause to detect very still sections after motion // For example a static image after a fade or other transition // instead of a clean scene cut. if ( (frame_interval > MIN_GF_INTERVAL) && (loop_decay_rate >= 0.999) && (decay_accumulator < 0.9) ) { int j; FIRSTPASS_STATS * position = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_next_frame; double decay_rate; // Look ahead a few frames to see if static condition // persists... for ( j = 0; j < still_interval; j++ ) { if (EOF == input_stats(cpi, &tmp_next_frame)) break; decay_rate = get_prediction_decay_rate(cpi, &tmp_next_frame); if ( decay_rate < 0.999 ) break; } // Reset file position reset_fpf_position(cpi, position); // Only if it does do we signal a transition to still if ( j == still_interval ) trans_to_still = 1; } return trans_to_still; } // This function detects a flash through the high relative pcnt_second_ref // score in the frame following a flash frame. The offset passed in should // reflect this static int detect_flash( VP8_COMP *cpi, int offset ) { FIRSTPASS_STATS next_frame; int flash_detected = 0; // Read the frame data. // The return is 0 (no flash detected) if not a valid frame if ( read_frame_stats(cpi, &next_frame, offset) != EOF ) { // What we are looking for here is a situation where there is a // brief break in prediction (such as a flash) but subsequent frames // are reasonably well predicted by an earlier (pre flash) frame. // The recovery after a flash is indicated by a high pcnt_second_ref // comapred to pcnt_inter. if ( (next_frame.pcnt_second_ref > next_frame.pcnt_inter) && (next_frame.pcnt_second_ref >= 0.5 ) ) { flash_detected = 1; /*if (1) { FILE *f = fopen("flash.stt", "a"); fprintf(f, "%8.0f %6.2f %6.2f\n", next_frame.frame, next_frame.pcnt_inter, next_frame.pcnt_second_ref); fclose(f); }*/ } } return flash_detected; } // Update the motion related elements to the GF arf boost calculation static void accumulate_frame_motion_stats( VP8_COMP *cpi, FIRSTPASS_STATS * this_frame, double * this_frame_mv_in_out, double * mv_in_out_accumulator, double * abs_mv_in_out_accumulator, double * mv_ratio_accumulator ) { //double this_frame_mv_in_out; double this_frame_mvr_ratio; double this_frame_mvc_ratio; double motion_pct; // Accumulate motion stats. motion_pct = this_frame->pcnt_motion; // Accumulate Motion In/Out of frame stats *this_frame_mv_in_out = this_frame->mv_in_out_count * motion_pct; *mv_in_out_accumulator += this_frame->mv_in_out_count * motion_pct; *abs_mv_in_out_accumulator += fabs(this_frame->mv_in_out_count * motion_pct); // Accumulate a measure of how uniform (or conversely how random) // the motion field is. (A ratio of absmv / mv) if (motion_pct > 0.05) { this_frame_mvr_ratio = fabs(this_frame->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVr)); this_frame_mvc_ratio = fabs(this_frame->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(this_frame->MVc)); *mv_ratio_accumulator += (this_frame_mvr_ratio < this_frame->mvr_abs) ? (this_frame_mvr_ratio * motion_pct) : this_frame->mvr_abs * motion_pct; *mv_ratio_accumulator += (this_frame_mvc_ratio < this_frame->mvc_abs) ? (this_frame_mvc_ratio * motion_pct) : this_frame->mvc_abs * motion_pct; } } // Calculate a baseline boost number for the current frame. static double calc_frame_boost( VP8_COMP *cpi, FIRSTPASS_STATS * this_frame, double this_frame_mv_in_out ) { double frame_boost; // Underlying boost factor is based on inter intra error ratio if (this_frame->intra_error > cpi->twopass.gf_intra_err_min) frame_boost = (IIFACTOR * this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); else frame_boost = (IIFACTOR * cpi->twopass.gf_intra_err_min / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)); // Increase boost for frames where new data coming into frame // (eg zoom out). Slightly reduce boost if there is a net balance // of motion out of the frame (zoom in). // The range for this_frame_mv_in_out is -1.0 to +1.0 if (this_frame_mv_in_out > 0.0) frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); // In extreme case boost is halved else frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); // Clip to maximum if (frame_boost > GF_RMAX) frame_boost = GF_RMAX; return frame_boost; } #if NEW_BOOST static int calc_arf_boost( VP8_COMP *cpi, int offset, int f_frames, int b_frames, int *f_boost, int *b_boost ) { FIRSTPASS_STATS this_frame; int i; double boost_score = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double r; int flash_detected = 0; // Search forward from the proposed arf/next gf position for ( i = 0; i < f_frames; i++ ) { if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats( cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); // Calculate the baseline boost number for this frame r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i+offset)) || detect_flash(cpi, (i+offset+1)); // Cumulative effect of prediction quality decay if ( !flash_detected ) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * r); // Break out conditions. if ( (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) ) ) { break; } } *f_boost = (int)(boost_score * 100.0) >> 4; // Reset for backward looking loop boost_score = 0.0; mv_ratio_accumulator = 0.0; decay_accumulator = 1.0; this_frame_mv_in_out = 0.0; mv_in_out_accumulator = 0.0; abs_mv_in_out_accumulator = 0.0; // Search forward from the proposed arf/next gf position for ( i = -1; i >= -b_frames; i-- ) { if ( read_frame_stats(cpi, &this_frame, (i+offset)) == EOF ) break; // Update the motion related elements to the boost calculation accumulate_frame_motion_stats( cpi, &this_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); // Calculate the baseline boost number for this frame r = calc_frame_boost( cpi, &this_frame, this_frame_mv_in_out ); // We want to discount the the flash frame itself and the recovery // frame that follows as both will have poor scores. flash_detected = detect_flash(cpi, (i+offset)) || detect_flash(cpi, (i+offset+1)); // Cumulative effect of prediction quality decay if ( !flash_detected ) { decay_accumulator = decay_accumulator * get_prediction_decay_rate(cpi, &this_frame); decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * r); // Break out conditions. if ( (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) ) ) { break; } } *b_boost = (int)(boost_score * 100.0) >> 4; return (*f_boost + *b_boost); } #endif // Analyse and define a gf/arf group . static void define_gf_group(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_pos; int i; double r; double boost_score = 0.0; double old_boost_score = 0.0; double gf_group_err = 0.0; double gf_first_frame_err = 0.0; double mod_frame_err = 0.0; double mv_ratio_accumulator = 0.0; double decay_accumulator = 1.0; double loop_decay_rate = 1.00; // Starting decay rate double this_frame_mv_in_out = 0.0; double mv_in_out_accumulator = 0.0; double abs_mv_in_out_accumulator = 0.0; double mod_err_per_mb_accumulator = 0.0; int max_bits = frame_max_bits(cpi); // Max for a single frame unsigned int allow_alt_ref = cpi->oxcf.play_alternate && cpi->oxcf.lag_in_frames; int alt_boost = 0; int f_boost = 0; int b_boost = 0; int flash_detected; cpi->twopass.gf_group_bits = 0; cpi->twopass.gf_decay_rate = 0; vp8_clear_system_state(); //__asm emms; start_pos = cpi->twopass.stats_in; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean // Load stats for the current frame. mod_frame_err = calculate_modified_err(cpi, this_frame); // Note the error of the frame at the start of the group (this will be // the GF frame error if we code a normal gf gf_first_frame_err = mod_frame_err; // Special treatment if the current frame is a key frame (which is also // a gf). If it is then its error score (and hence bit allocation) need // to be subtracted out from the calculation for the GF group if (cpi->common.frame_type == KEY_FRAME) gf_group_err -= gf_first_frame_err; // Scan forward to try and work out how many frames the next gf group // should contain and what level of boost is appropriate for the GF // or ARF that will be coded with the group i = 0; while (((i < cpi->twopass.static_scene_max_gf_interval) || ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL)) && (i < cpi->twopass.frames_to_key)) { i++; // Increment the loop counter // Accumulate error score of frames in this gf group mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; mod_err_per_mb_accumulator += mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->common.MBs); if (EOF == input_stats(cpi, &next_frame)) break; // Test for the case where there is a brief flash but the prediction // quality back to an earlier frame is then restored. flash_detected = detect_flash(cpi, 0); // Update the motion related elements to the boost calculation accumulate_frame_motion_stats( cpi, &next_frame, &this_frame_mv_in_out, &mv_in_out_accumulator, &abs_mv_in_out_accumulator, &mv_ratio_accumulator ); // Calculate a baseline boost number for this frame r = calc_frame_boost( cpi, &next_frame, this_frame_mv_in_out ); // Cumulative effect of prediction quality decay if ( !flash_detected ) { loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; } boost_score += (decay_accumulator * r); // Break clause to detect very still sections after motion // For example a staic image after a fade or other transition. if ( detect_transition_to_still( cpi, i, 5, loop_decay_rate, decay_accumulator ) ) { allow_alt_ref = 0; boost_score = old_boost_score; break; } // Break out conditions. if ( // Break at cpi->max_gf_interval unless almost totally static (i >= cpi->max_gf_interval && (decay_accumulator < 0.995)) || ( // Dont break out with a very short interval (i > MIN_GF_INTERVAL) && // Dont break out very close to a key frame ((cpi->twopass.frames_to_key - i) >= MIN_GF_INTERVAL) && ((boost_score > 20.0) || (next_frame.pcnt_inter < 0.75)) && (!flash_detected) && ((mv_ratio_accumulator > 100.0) || (abs_mv_in_out_accumulator > 3.0) || (mv_in_out_accumulator < -2.0) || ((boost_score - old_boost_score) < 2.0)) ) ) { boost_score = old_boost_score; break; } vpx_memcpy(this_frame, &next_frame, sizeof(*this_frame)); old_boost_score = boost_score; } cpi->twopass.gf_decay_rate = (i > 0) ? (int)(100.0 * (1.0 - decay_accumulator)) / i : 0; // When using CBR apply additional buffer related upper limits if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { double max_boost; // For cbr apply buffer related limits if (cpi->drop_frames_allowed) { int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100); if (cpi->buffer_level > df_buffer_level) max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); else max_boost = 0.0; } else if (cpi->buffer_level > 0) { max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); } else { max_boost = 0.0; } if (boost_score > max_boost) boost_score = max_boost; } // Dont allow conventional gf too near the next kf if ((cpi->twopass.frames_to_key - i) < MIN_GF_INTERVAL) { while (i < cpi->twopass.frames_to_key) { i++; if (EOF == input_stats(cpi, this_frame)) break; if (i < cpi->twopass.frames_to_key) { mod_frame_err = calculate_modified_err(cpi, this_frame); gf_group_err += mod_frame_err; } } } cpi->gfu_boost = (int)(boost_score * 100.0) >> 4; #if NEW_BOOST // Alterrnative boost calculation for alt ref alt_boost = calc_arf_boost( cpi, 0, (i-1), (i-1), &f_boost, &b_boost ); #endif // Should we use the alternate refernce frame if (allow_alt_ref && (i >= MIN_GF_INTERVAL) && // dont use ARF very near next kf (i <= (cpi->twopass.frames_to_key - MIN_GF_INTERVAL)) && #if NEW_BOOST ((next_frame.pcnt_inter > 0.75) || (next_frame.pcnt_second_ref > 0.5)) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (b_boost > 100) && (f_boost > 100) ) #else (next_frame.pcnt_inter > 0.75) && ((mv_in_out_accumulator / (double)i > -0.2) || (mv_in_out_accumulator > -2.0)) && (cpi->gfu_boost > 100) && (cpi->twopass.gf_decay_rate <= (ARF_DECAY_THRESH + (cpi->gfu_boost / 200))) ) #endif { int Boost; int allocation_chunks; int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int tmp_q; int arf_frame_bits = 0; int group_bits; #if NEW_BOOST cpi->gfu_boost = alt_boost; #endif // Estimate the bits to be allocated to the group as a whole if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) { group_bits = (int)((double)cpi->twopass.kf_group_bits * (gf_group_err / (double)cpi->twopass.kf_group_error_left)); } else group_bits = 0; // Boost for arf frame #if NEW_BOOST Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; #else Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); #endif Boost += (i * 50); // Set max and minimum boost and hence minimum allocation if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) Boost = ((cpi->baseline_gf_interval + 1) * 200); else if (Boost < 125) Boost = 125; allocation_chunks = (i * 100) + Boost; // Normalize Altboost and allocations chunck down to prevent overflow while (Boost > 1000) { Boost /= 2; allocation_chunks /= 2; } // Calculate the number of bits to be spent on the arf based on the // boost number arf_frame_bits = (int)((double)Boost * (group_bits / (double)allocation_chunks)); // Estimate if there are enough bits available to make worthwhile use // of an arf. tmp_q = estimate_q(cpi, mod_frame_err, (int)arf_frame_bits); // Only use an arf if it is likely we will be able to code // it at a lower Q than the surrounding frames. if (tmp_q < cpi->worst_quality) { int half_gf_int; int frames_after_arf; int frames_bwd = cpi->oxcf.arnr_max_frames - 1; int frames_fwd = cpi->oxcf.arnr_max_frames - 1; cpi->source_alt_ref_pending = 1; // For alt ref frames the error score for the end frame of the // group (the alt ref frame) should not contribute to the group // total and hence the number of bit allocated to the group. // Rather it forms part of the next group (it is the GF at the // start of the next group) // gf_group_err -= mod_frame_err; // For alt ref frames alt ref frame is technically part of the // GF frame for the next group but we always base the error // calculation and bit allocation on the current group of frames. // Set the interval till the next gf or arf. // For ARFs this is the number of frames to be coded before the // future frame that is coded as an ARF. // The future frame itself is part of the next group cpi->baseline_gf_interval = i; // Define the arnr filter width for this group of frames: // We only filter frames that lie within a distance of half // the GF interval from the ARF frame. We also have to trap // cases where the filter extends beyond the end of clip. // Note: this_frame->frame has been updated in the loop // so it now points at the ARF frame. half_gf_int = cpi->baseline_gf_interval >> 1; frames_after_arf = cpi->twopass.total_stats.count - this_frame->frame - 1; switch (cpi->oxcf.arnr_type) { case 1: // Backward filter frames_fwd = 0; if (frames_bwd > half_gf_int) frames_bwd = half_gf_int; break; case 2: // Forward filter if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; frames_bwd = 0; break; case 3: // Centered filter default: frames_fwd >>= 1; if (frames_fwd > frames_after_arf) frames_fwd = frames_after_arf; if (frames_fwd > half_gf_int) frames_fwd = half_gf_int; frames_bwd = frames_fwd; // For even length filter there is one more frame backward // than forward: e.g. len=6 ==> bbbAff, len=7 ==> bbbAfff. if (frames_bwd < half_gf_int) frames_bwd += (cpi->oxcf.arnr_max_frames+1) & 0x1; break; } cpi->active_arnr_frames = frames_bwd + 1 + frames_fwd; } else { cpi->source_alt_ref_pending = 0; cpi->baseline_gf_interval = i; } } else { cpi->source_alt_ref_pending = 0; cpi->baseline_gf_interval = i; } // Now decide how many bits should be allocated to the GF group as a // proportion of those remaining in the kf group. // The final key frame group in the clip is treated as a special case // where cpi->twopass.kf_group_bits is tied to cpi->twopass.bits_left. // This is also important for short clips where there may only be one // key frame. if (cpi->twopass.frames_to_key >= (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame)) { cpi->twopass.kf_group_bits = (cpi->twopass.bits_left > 0) ? cpi->twopass.bits_left : 0; } // Calculate the bits to be allocated to the group as a whole if ((cpi->twopass.kf_group_bits > 0) && (cpi->twopass.kf_group_error_left > 0)) { cpi->twopass.gf_group_bits = (int)((double)cpi->twopass.kf_group_bits * (gf_group_err / (double)cpi->twopass.kf_group_error_left)); } else cpi->twopass.gf_group_bits = 0; cpi->twopass.gf_group_bits = (cpi->twopass.gf_group_bits < 0) ? 0 : (cpi->twopass.gf_group_bits > cpi->twopass.kf_group_bits) ? cpi->twopass.kf_group_bits : cpi->twopass.gf_group_bits; // Clip cpi->twopass.gf_group_bits based on user supplied data rate // variability limit (cpi->oxcf.two_pass_vbrmax_section) if (cpi->twopass.gf_group_bits > max_bits * cpi->baseline_gf_interval) cpi->twopass.gf_group_bits = max_bits * cpi->baseline_gf_interval; // Reset the file position reset_fpf_position(cpi, start_pos); // Update the record of error used so far (only done once per gf group) cpi->twopass.modified_error_used += gf_group_err; // Assign bits to the arf or gf. for (i = 0; i <= (cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME); i++) { int Boost; int allocation_chunks; int Q = (cpi->oxcf.fixed_q < 0) ? cpi->last_q[INTER_FRAME] : cpi->oxcf.fixed_q; int gf_bits; // For ARF frames if (cpi->source_alt_ref_pending && i == 0) { #if NEW_BOOST Boost = (alt_boost * GFQ_ADJUSTMENT) / 100; #else Boost = (cpi->gfu_boost * 3 * GFQ_ADJUSTMENT) / (2 * 100); #endif Boost += (cpi->baseline_gf_interval * 50); // Set max and minimum boost and hence minimum allocation if (Boost > ((cpi->baseline_gf_interval + 1) * 200)) Boost = ((cpi->baseline_gf_interval + 1) * 200); else if (Boost < 125) Boost = 125; allocation_chunks = ((cpi->baseline_gf_interval + 1) * 100) + Boost; } // Else for standard golden frames else { // boost based on inter / intra ratio of subsequent frames Boost = (cpi->gfu_boost * GFQ_ADJUSTMENT) / 100; // Set max and minimum boost and hence minimum allocation if (Boost > (cpi->baseline_gf_interval * 150)) Boost = (cpi->baseline_gf_interval * 150); else if (Boost < 125) Boost = 125; allocation_chunks = (cpi->baseline_gf_interval * 100) + (Boost - 100); } // Normalize Altboost and allocations chunck down to prevent overflow while (Boost > 1000) { Boost /= 2; allocation_chunks /= 2; } // Calculate the number of bits to be spent on the gf or arf based on // the boost number gf_bits = (int)((double)Boost * (cpi->twopass.gf_group_bits / (double)allocation_chunks)); // If the frame that is to be boosted is simpler than the average for // the gf/arf group then use an alternative calculation // based on the error score of the frame itself if (mod_frame_err < gf_group_err / (double)cpi->baseline_gf_interval) { double alt_gf_grp_bits; int alt_gf_bits; alt_gf_grp_bits = (double)cpi->twopass.kf_group_bits * (mod_frame_err * (double)cpi->baseline_gf_interval) / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left); alt_gf_bits = (int)((double)Boost * (alt_gf_grp_bits / (double)allocation_chunks)); if (gf_bits > alt_gf_bits) { gf_bits = alt_gf_bits; } } // Else if it is harder than other frames in the group make sure it at // least receives an allocation in keeping with its relative error // score, otherwise it may be worse off than an "un-boosted" frame else { int alt_gf_bits = (int)((double)cpi->twopass.kf_group_bits * mod_frame_err / DOUBLE_DIVIDE_CHECK((double)cpi->twopass.kf_group_error_left)); if (alt_gf_bits > gf_bits) { gf_bits = alt_gf_bits; } } // Apply an additional limit for CBR if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { if (cpi->twopass.gf_bits > (cpi->buffer_level >> 1)) cpi->twopass.gf_bits = cpi->buffer_level >> 1; } // Dont allow a negative value for gf_bits if (gf_bits < 0) gf_bits = 0; gf_bits += cpi->min_frame_bandwidth; // Add in minimum for a frame if (i == 0) { cpi->twopass.gf_bits = gf_bits; } if (i == 1 || (!cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME))) { cpi->per_frame_bandwidth = gf_bits; // Per frame bit target for this frame } } { // Adjust KF group bits and error remainin cpi->twopass.kf_group_error_left -= gf_group_err; cpi->twopass.kf_group_bits -= cpi->twopass.gf_group_bits; if (cpi->twopass.kf_group_bits < 0) cpi->twopass.kf_group_bits = 0; // Note the error score left in the remaining frames of the group. // For normal GFs we want to remove the error score for the first frame of the group (except in Key frame case where this has already happened) if (!cpi->source_alt_ref_pending && cpi->common.frame_type != KEY_FRAME) cpi->twopass.gf_group_error_left = gf_group_err - gf_first_frame_err; else cpi->twopass.gf_group_error_left = gf_group_err; cpi->twopass.gf_group_bits -= cpi->twopass.gf_bits - cpi->min_frame_bandwidth; if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; // This condition could fail if there are two kfs very close together // despite (MIN_GF_INTERVAL) and would cause a devide by 0 in the // calculation of cpi->twopass.alt_extra_bits. if ( cpi->baseline_gf_interval >= 3 ) { #if NEW_BOOST int boost = (cpi->source_alt_ref_pending) ? b_boost : cpi->gfu_boost; #else int boost = cpi->gfu_boost; #endif if ( boost >= 150 ) { int pct_extra; pct_extra = (boost - 100) / 50; pct_extra = (pct_extra > 20) ? 20 : pct_extra; cpi->twopass.alt_extra_bits = (cpi->twopass.gf_group_bits * pct_extra) / 100; cpi->twopass.gf_group_bits -= cpi->twopass.alt_extra_bits; cpi->twopass.alt_extra_bits /= ((cpi->baseline_gf_interval-1)>>1); } else cpi->twopass.alt_extra_bits = 0; } else cpi->twopass.alt_extra_bits = 0; } // Adjustments based on a measure of complexity of the section if (cpi->common.frame_type != KEY_FRAME) { FIRSTPASS_STATS sectionstats; double Ratio; zero_stats(§ionstats); reset_fpf_position(cpi, start_pos); for (i = 0 ; i < cpi->baseline_gf_interval ; i++) { input_stats(cpi, &next_frame); accumulate_stats(§ionstats, &next_frame); } avg_stats(§ionstats); cpi->twopass.section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); //if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) ) //{ cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); if (cpi->twopass.section_max_qfactor < 0.80) cpi->twopass.section_max_qfactor = 0.80; //} //else // cpi->twopass.section_max_qfactor = 1.0; reset_fpf_position(cpi, start_pos); } } // Allocate bits to a normal frame that is neither a gf an arf or a key frame. static void assign_std_frame_bits(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { int target_frame_size; // gf_group_error_left double modified_err; double err_fraction; // What portion of the remaining GF group error is used by this frame int max_bits = frame_max_bits(cpi); // Max for a single frame // Calculate modified prediction error used in bit allocation modified_err = calculate_modified_err(cpi, this_frame); if (cpi->twopass.gf_group_error_left > 0) err_fraction = modified_err / cpi->twopass.gf_group_error_left; // What portion of the remaining GF group error is used by this frame else err_fraction = 0.0; target_frame_size = (int)((double)cpi->twopass.gf_group_bits * err_fraction); // How many of those bits available for allocation should we give it? // Clip to target size to 0 - max_bits (or cpi->twopass.gf_group_bits) at the top end. if (target_frame_size < 0) target_frame_size = 0; else { if (target_frame_size > max_bits) target_frame_size = max_bits; if (target_frame_size > cpi->twopass.gf_group_bits) target_frame_size = cpi->twopass.gf_group_bits; } cpi->twopass.gf_group_error_left -= modified_err; // Adjust error remaining cpi->twopass.gf_group_bits -= target_frame_size; // Adjust bits remaining if (cpi->twopass.gf_group_bits < 0) cpi->twopass.gf_group_bits = 0; target_frame_size += cpi->min_frame_bandwidth; // Add in the minimum number of bits that is set aside for every frame. // Every other frame gets a few extra bits if ( (cpi->common.frames_since_golden & 0x01) && (cpi->frames_till_gf_update_due > 0) ) { target_frame_size += cpi->twopass.alt_extra_bits; } cpi->per_frame_bandwidth = target_frame_size; // Per frame bit target for this frame } void vp8_second_pass(VP8_COMP *cpi) { int tmp_q; int frames_left = (int)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); FIRSTPASS_STATS this_frame = {0}; FIRSTPASS_STATS this_frame_copy; double this_frame_error; double this_frame_intra_error; double this_frame_coded_error; FIRSTPASS_STATS *start_pos; int overhead_bits; if (!cpi->twopass.stats_in) { return ; } vp8_clear_system_state(); if (EOF == input_stats(cpi, &this_frame)) return; this_frame_error = this_frame.ssim_weighted_pred_err; this_frame_intra_error = this_frame.intra_error; this_frame_coded_error = this_frame.coded_error; start_pos = cpi->twopass.stats_in; // keyframe and section processing ! if (cpi->twopass.frames_to_key == 0) { // Define next KF group and assign bits to it vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); find_next_key_frame(cpi, &this_frame_copy); // Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop // outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups. // This is temporary code till we decide what should really happen in this case. if (cpi->oxcf.error_resilient_mode) { cpi->twopass.gf_group_bits = cpi->twopass.kf_group_bits; cpi->twopass.gf_group_error_left = cpi->twopass.kf_group_error_left; cpi->baseline_gf_interval = cpi->twopass.frames_to_key; cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; cpi->source_alt_ref_pending = 0; } } // Is this a GF / ARF (Note that a KF is always also a GF) if (cpi->frames_till_gf_update_due == 0) { // Define next gf group and assign bits to it vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); define_gf_group(cpi, &this_frame_copy); // If we are going to code an altref frame at the end of the group and the current frame is not a key frame.... // If the previous group used an arf this frame has already benefited from that arf boost and it should not be given extra bits // If the previous group was NOT coded using arf we may want to apply some boost to this GF as well if (cpi->source_alt_ref_pending && (cpi->common.frame_type != KEY_FRAME)) { // Assign a standard frames worth of bits from those allocated to the GF group int bak = cpi->per_frame_bandwidth; vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); cpi->per_frame_bandwidth = bak; } } // Otherwise this is an ordinary frame else { // Special case: Error error_resilient_mode mode does not make much sense for two pass but with its current meaning but this code is designed to stop // outlandish behaviour if someone does set it when using two pass. It effectively disables GF groups. // This is temporary code till we decide what should really happen in this case. if (cpi->oxcf.error_resilient_mode) { cpi->frames_till_gf_update_due = cpi->twopass.frames_to_key; if (cpi->common.frame_type != KEY_FRAME) { // Assign bits from those allocated to the GF group vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); } } else { // Assign bits from those allocated to the GF group vpx_memcpy(&this_frame_copy, &this_frame, sizeof(this_frame)); assign_std_frame_bits(cpi, &this_frame_copy); } } // Keep a globally available copy of this and the next frame's iiratio. cpi->twopass.this_iiratio = this_frame_intra_error / DOUBLE_DIVIDE_CHECK(this_frame_coded_error); { FIRSTPASS_STATS next_frame; if ( lookup_next_frame_stats(cpi, &next_frame) != EOF ) { cpi->twopass.next_iiratio = next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error); } } // Set nominal per second bandwidth for this frame cpi->target_bandwidth = cpi->per_frame_bandwidth * cpi->output_frame_rate; if (cpi->target_bandwidth < 0) cpi->target_bandwidth = 0; // Account for mv, mode and other overheads. overhead_bits = estimate_modemvcost( cpi, &cpi->twopass.total_left_stats ); // Special case code for first frame. if (cpi->common.current_video_frame == 0) { cpi->twopass.est_max_qcorrection_factor = 1.0; // Set a cq_level in constrained quality mode. if ( cpi->oxcf.end_usage == USAGE_CONSTRAINED_QUALITY ) { int est_cq; est_cq = estimate_cq( cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits ); cpi->cq_target_quality = cpi->oxcf.cq_level; if ( est_cq > cpi->cq_target_quality ) cpi->cq_target_quality = est_cq; } // guess at maxq needed in 2nd pass cpi->twopass.maxq_max_limit = cpi->worst_quality; cpi->twopass.maxq_min_limit = cpi->best_quality; tmp_q = estimate_max_q( cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits ); // Limit the maxq value returned subsequently. // This increases the risk of overspend or underspend if the initial // estimate for the clip is bad, but helps prevent excessive // variation in Q, especially near the end of a clip // where for example a small overspend may cause Q to crash cpi->twopass.maxq_max_limit = ((tmp_q + 32) < cpi->worst_quality) ? (tmp_q + 32) : cpi->worst_quality; cpi->twopass.maxq_min_limit = ((tmp_q - 32) > cpi->best_quality) ? (tmp_q - 32) : cpi->best_quality; cpi->active_worst_quality = tmp_q; cpi->ni_av_qi = tmp_q; } // The last few frames of a clip almost always have to few or too many // bits and for the sake of over exact rate control we dont want to make // radical adjustments to the allowed quantizer range just to use up a // few surplus bits or get beneath the target rate. else if ( (cpi->common.current_video_frame < (((unsigned int)cpi->twopass.total_stats.count * 255)>>8)) && ((cpi->common.current_video_frame + cpi->baseline_gf_interval) < (unsigned int)cpi->twopass.total_stats.count) ) { if (frames_left < 1) frames_left = 1; tmp_q = estimate_max_q( cpi, &cpi->twopass.total_left_stats, (int)(cpi->twopass.bits_left / frames_left), overhead_bits ); // Move active_worst_quality but in a damped way if (tmp_q > cpi->active_worst_quality) cpi->active_worst_quality ++; else if (tmp_q < cpi->active_worst_quality) cpi->active_worst_quality --; cpi->active_worst_quality = ((cpi->active_worst_quality * 3) + tmp_q + 2) / 4; } cpi->twopass.frames_to_key --; // Update the total stats remaining sturcture subtract_stats(&cpi->twopass.total_left_stats, &this_frame ); } static int test_candidate_kf(VP8_COMP *cpi, FIRSTPASS_STATS *last_frame, FIRSTPASS_STATS *this_frame, FIRSTPASS_STATS *next_frame) { int is_viable_kf = 0; // Does the frame satisfy the primary criteria of a key frame // If so, then examine how well it predicts subsequent frames if ((this_frame->pcnt_second_ref < 0.10) && (next_frame->pcnt_second_ref < 0.10) && ((this_frame->pcnt_inter < 0.05) || ( ((this_frame->pcnt_inter - this_frame->pcnt_neutral) < .25) && ((this_frame->intra_error / DOUBLE_DIVIDE_CHECK(this_frame->coded_error)) < 2.5) && ((fabs(last_frame->coded_error - this_frame->coded_error) / DOUBLE_DIVIDE_CHECK(this_frame->coded_error) > .40) || (fabs(last_frame->intra_error - this_frame->intra_error) / DOUBLE_DIVIDE_CHECK(this_frame->intra_error) > .40) || ((next_frame->intra_error / DOUBLE_DIVIDE_CHECK(next_frame->coded_error)) > 3.5) ) ) ) ) { int i; FIRSTPASS_STATS *start_pos; FIRSTPASS_STATS local_next_frame; double boost_score = 0.0; double old_boost_score = 0.0; double decay_accumulator = 1.0; double next_iiratio; vpx_memcpy(&local_next_frame, next_frame, sizeof(*next_frame)); // Note the starting file position so we can reset to it start_pos = cpi->twopass.stats_in; // Examine how well the key frame predicts subsequent frames for (i = 0 ; i < 16; i++) { next_iiratio = (IIKFACTOR1 * local_next_frame.intra_error / DOUBLE_DIVIDE_CHECK(local_next_frame.coded_error)) ; if (next_iiratio > RMAX) next_iiratio = RMAX; // Cumulative effect of decay in prediction quality if (local_next_frame.pcnt_inter > 0.85) decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; else decay_accumulator = decay_accumulator * ((0.85 + local_next_frame.pcnt_inter) / 2.0); //decay_accumulator = decay_accumulator * local_next_frame.pcnt_inter; // Keep a running total boost_score += (decay_accumulator * next_iiratio); // Test various breakout clauses if ((local_next_frame.pcnt_inter < 0.05) || (next_iiratio < 1.5) || (((local_next_frame.pcnt_inter - local_next_frame.pcnt_neutral) < 0.20) && (next_iiratio < 3.0)) || ((boost_score - old_boost_score) < 0.5) || (local_next_frame.intra_error < 200) ) { break; } old_boost_score = boost_score; // Get the next frame details if (EOF == input_stats(cpi, &local_next_frame)) break; } // If there is tolerable prediction for at least the next 3 frames then break out else discard this pottential key frame and move on if (boost_score > 5.0 && (i > 3)) is_viable_kf = 1; else { // Reset the file position reset_fpf_position(cpi, start_pos); is_viable_kf = 0; } } return is_viable_kf; } static void find_next_key_frame(VP8_COMP *cpi, FIRSTPASS_STATS *this_frame) { int i,j; FIRSTPASS_STATS last_frame; FIRSTPASS_STATS first_frame; FIRSTPASS_STATS next_frame; FIRSTPASS_STATS *start_position; double decay_accumulator = 1.0; double boost_score = 0; double old_boost_score = 0.0; double loop_decay_rate; double kf_mod_err = 0.0; double kf_group_err = 0.0; double kf_group_intra_err = 0.0; double kf_group_coded_err = 0.0; double recent_loop_decay[8] = {1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0}; vpx_memset(&next_frame, 0, sizeof(next_frame)); // assure clean vp8_clear_system_state(); //__asm emms; start_position = cpi->twopass.stats_in; cpi->common.frame_type = KEY_FRAME; // is this a forced key frame by interval cpi->this_key_frame_forced = cpi->next_key_frame_forced; // Clear the alt ref active flag as this can never be active on a key frame cpi->source_alt_ref_active = 0; // Kf is always a gf so clear frames till next gf counter cpi->frames_till_gf_update_due = 0; cpi->twopass.frames_to_key = 1; // Take a copy of the initial frame details vpx_memcpy(&first_frame, this_frame, sizeof(*this_frame)); cpi->twopass.kf_group_bits = 0; // Total bits avaialable to kf group cpi->twopass.kf_group_error_left = 0; // Group modified error score. kf_mod_err = calculate_modified_err(cpi, this_frame); // find the next keyframe i = 0; while (cpi->twopass.stats_in < cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; // load a the next frame's stats vpx_memcpy(&last_frame, this_frame, sizeof(*this_frame)); input_stats(cpi, this_frame); // Provided that we are not at the end of the file... if (cpi->oxcf.auto_key && lookup_next_frame_stats(cpi, &next_frame) != EOF) { // Normal scene cut check if ( ( i >= MIN_GF_INTERVAL ) && test_candidate_kf(cpi, &last_frame, this_frame, &next_frame) ) { break; } // How fast is prediction quality decaying loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); // We want to know something about the recent past... rather than // as used elsewhere where we are concened with decay in prediction // quality since the last GF or KF. recent_loop_decay[i%8] = loop_decay_rate; decay_accumulator = 1.0; for (j = 0; j < 8; j++) { decay_accumulator = decay_accumulator * recent_loop_decay[j]; } // Special check for transition or high motion followed by a // to a static scene. if ( detect_transition_to_still( cpi, i, (cpi->key_frame_frequency-i), loop_decay_rate, decay_accumulator ) ) { break; } // Step on to the next frame cpi->twopass.frames_to_key ++; // If we don't have a real key frame within the next two // forcekeyframeevery intervals then break out of the loop. if (cpi->twopass.frames_to_key >= 2 *(int)cpi->key_frame_frequency) break; } else cpi->twopass.frames_to_key ++; i++; } // If there is a max kf interval set by the user we must obey it. // We already breakout of the loop above at 2x max. // This code centers the extra kf if the actual natural // interval is between 1x and 2x if (cpi->oxcf.auto_key && cpi->twopass.frames_to_key > (int)cpi->key_frame_frequency ) { FIRSTPASS_STATS *current_pos = cpi->twopass.stats_in; FIRSTPASS_STATS tmp_frame; cpi->twopass.frames_to_key /= 2; // Copy first frame details vpx_memcpy(&tmp_frame, &first_frame, sizeof(first_frame)); // Reset to the start of the group reset_fpf_position(cpi, start_position); kf_group_err = 0; kf_group_intra_err = 0; kf_group_coded_err = 0; // Rescan to get the correct error data for the forced kf group for( i = 0; i < cpi->twopass.frames_to_key; i++ ) { // Accumulate kf group errors kf_group_err += calculate_modified_err(cpi, &tmp_frame); kf_group_intra_err += tmp_frame.intra_error; kf_group_coded_err += tmp_frame.coded_error; // Load a the next frame's stats input_stats(cpi, &tmp_frame); } // Reset to the start of the group reset_fpf_position(cpi, current_pos); cpi->next_key_frame_forced = 1; } else cpi->next_key_frame_forced = 0; // Special case for the last frame of the file if (cpi->twopass.stats_in >= cpi->twopass.stats_in_end) { // Accumulate kf group error kf_group_err += calculate_modified_err(cpi, this_frame); // These figures keep intra and coded error counts for all frames including key frames in the group. // The effect of the key frame itself can be subtracted out using the first_frame data collected above kf_group_intra_err += this_frame->intra_error; kf_group_coded_err += this_frame->coded_error; } // Calculate the number of bits that should be assigned to the kf group. if ((cpi->twopass.bits_left > 0) && (cpi->twopass.modified_error_left > 0.0)) { // Max for a single normal frame (not key frame) int max_bits = frame_max_bits(cpi); // Maximum bits for the kf group int64_t max_grp_bits; // Default allocation based on bits left and relative // complexity of the section cpi->twopass.kf_group_bits = (int64_t)( cpi->twopass.bits_left * ( kf_group_err / cpi->twopass.modified_error_left )); // Clip based on maximum per frame rate defined by the user. max_grp_bits = (int64_t)max_bits * (int64_t)cpi->twopass.frames_to_key; if (cpi->twopass.kf_group_bits > max_grp_bits) cpi->twopass.kf_group_bits = max_grp_bits; // Additional special case for CBR if buffer is getting full. if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { int opt_buffer_lvl = cpi->oxcf.optimal_buffer_level; int buffer_lvl = cpi->buffer_level; // If the buffer is near or above the optimal and this kf group is // not being allocated much then increase the allocation a bit. if (buffer_lvl >= opt_buffer_lvl) { int high_water_mark = (opt_buffer_lvl + cpi->oxcf.maximum_buffer_size) >> 1; int64_t av_group_bits; // Av bits per frame * number of frames av_group_bits = (int64_t)cpi->av_per_frame_bandwidth * (int64_t)cpi->twopass.frames_to_key; // We are at or above the maximum. if (cpi->buffer_level >= high_water_mark) { int64_t min_group_bits; min_group_bits = av_group_bits + (int64_t)(buffer_lvl - high_water_mark); if (cpi->twopass.kf_group_bits < min_group_bits) cpi->twopass.kf_group_bits = min_group_bits; } // We are above optimal but below the maximum else if (cpi->twopass.kf_group_bits < av_group_bits) { int64_t bits_below_av = av_group_bits - cpi->twopass.kf_group_bits; cpi->twopass.kf_group_bits += (int64_t)((double)bits_below_av * (double)(buffer_lvl - opt_buffer_lvl) / (double)(high_water_mark - opt_buffer_lvl)); } } } } else cpi->twopass.kf_group_bits = 0; // Reset the first pass file position reset_fpf_position(cpi, start_position); // determine how big to make this keyframe based on how well the subsequent frames use inter blocks decay_accumulator = 1.0; boost_score = 0.0; loop_decay_rate = 1.00; // Starting decay rate for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) { double r; if (EOF == input_stats(cpi, &next_frame)) break; if (next_frame.intra_error > cpi->twopass.kf_intra_err_min) r = (IIKFACTOR2 * next_frame.intra_error / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); else r = (IIKFACTOR2 * cpi->twopass.kf_intra_err_min / DOUBLE_DIVIDE_CHECK(next_frame.coded_error)); if (r > RMAX) r = RMAX; // How fast is prediction quality decaying loop_decay_rate = get_prediction_decay_rate(cpi, &next_frame); decay_accumulator = decay_accumulator * loop_decay_rate; decay_accumulator = decay_accumulator < 0.1 ? 0.1 : decay_accumulator; boost_score += (decay_accumulator * r); if ((i > MIN_GF_INTERVAL) && ((boost_score - old_boost_score) < 1.0)) { break; } old_boost_score = boost_score; } if (1) { FIRSTPASS_STATS sectionstats; double Ratio; zero_stats(§ionstats); reset_fpf_position(cpi, start_position); for (i = 0 ; i < cpi->twopass.frames_to_key ; i++) { input_stats(cpi, &next_frame); accumulate_stats(§ionstats, &next_frame); } avg_stats(§ionstats); cpi->twopass.section_intra_rating = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); Ratio = sectionstats.intra_error / DOUBLE_DIVIDE_CHECK(sectionstats.coded_error); // if( (Ratio > 11) ) //&& (sectionstats.pcnt_second_ref < .20) ) //{ cpi->twopass.section_max_qfactor = 1.0 - ((Ratio - 10.0) * 0.025); if (cpi->twopass.section_max_qfactor < 0.80) cpi->twopass.section_max_qfactor = 0.80; //} //else // cpi->twopass.section_max_qfactor = 1.0; } // When using CBR apply additional buffer fullness related upper limits if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { double max_boost; if (cpi->drop_frames_allowed) { int df_buffer_level = cpi->oxcf.drop_frames_water_mark * (cpi->oxcf.optimal_buffer_level / 100); if (cpi->buffer_level > df_buffer_level) max_boost = ((double)((cpi->buffer_level - df_buffer_level) * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); else max_boost = 0.0; } else if (cpi->buffer_level > 0) { max_boost = ((double)(cpi->buffer_level * 2 / 3) * 16.0) / DOUBLE_DIVIDE_CHECK((double)cpi->av_per_frame_bandwidth); } else { max_boost = 0.0; } if (boost_score > max_boost) boost_score = max_boost; } // Reset the first pass file position reset_fpf_position(cpi, start_position); // Work out how many bits to allocate for the key frame itself if (1) { int kf_boost = boost_score; int allocation_chunks; int Counter = cpi->twopass.frames_to_key; int alt_kf_bits; YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; // Min boost based on kf interval #if 0 while ((kf_boost < 48) && (Counter > 0)) { Counter -= 2; kf_boost ++; } #endif if (kf_boost < 48) { kf_boost += ((Counter + 1) >> 1); if (kf_boost > 48) kf_boost = 48; } // bigger frame sizes need larger kf boosts, smaller frames smaller boosts... if ((lst_yv12->y_width * lst_yv12->y_height) > (320 * 240)) kf_boost += 2 * (lst_yv12->y_width * lst_yv12->y_height) / (320 * 240); else if ((lst_yv12->y_width * lst_yv12->y_height) < (320 * 240)) kf_boost -= 4 * (320 * 240) / (lst_yv12->y_width * lst_yv12->y_height); kf_boost = (int)((double)kf_boost * 100.0) >> 4; // Scale 16 to 100 // Adjustment to boost based on recent average q //kf_boost = kf_boost * vp8_kf_boost_qadjustment[cpi->ni_av_qi] / 100; if (kf_boost < 250) // Min KF boost kf_boost = 250; // We do three calculations for kf size. // The first is based on the error score for the whole kf group. // The second (optionaly) on the key frames own error if this is // smaller than the average for the group. // The final one insures that the frame receives at least the // allocation it would have received based on its own error score vs // the error score remaining // Special case if the sequence appears almost totaly static // as measured by the decay accumulator. In this case we want to // spend almost all of the bits on the key frame. // cpi->twopass.frames_to_key-1 because key frame itself is taken // care of by kf_boost. if ( decay_accumulator >= 0.99 ) { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 10) + kf_boost; } else { allocation_chunks = ((cpi->twopass.frames_to_key - 1) * 100) + kf_boost; } // Normalize Altboost and allocations chunck down to prevent overflow while (kf_boost > 1000) { kf_boost /= 2; allocation_chunks /= 2; } cpi->twopass.kf_group_bits = (cpi->twopass.kf_group_bits < 0) ? 0 : cpi->twopass.kf_group_bits; // Calculate the number of bits to be spent on the key frame cpi->twopass.kf_bits = (int)((double)kf_boost * ((double)cpi->twopass.kf_group_bits / (double)allocation_chunks)); // Apply an additional limit for CBR if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { if (cpi->twopass.kf_bits > ((3 * cpi->buffer_level) >> 2)) cpi->twopass.kf_bits = (3 * cpi->buffer_level) >> 2; } // If the key frame is actually easier than the average for the // kf group (which does sometimes happen... eg a blank intro frame) // Then use an alternate calculation based on the kf error score // which should give a smaller key frame. if (kf_mod_err < kf_group_err / cpi->twopass.frames_to_key) { double alt_kf_grp_bits = ((double)cpi->twopass.bits_left * (kf_mod_err * (double)cpi->twopass.frames_to_key) / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left)); alt_kf_bits = (int)((double)kf_boost * (alt_kf_grp_bits / (double)allocation_chunks)); if (cpi->twopass.kf_bits > alt_kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } // Else if it is much harder than other frames in the group make sure // it at least receives an allocation in keeping with its relative // error score else { alt_kf_bits = (int)((double)cpi->twopass.bits_left * (kf_mod_err / DOUBLE_DIVIDE_CHECK(cpi->twopass.modified_error_left))); if (alt_kf_bits > cpi->twopass.kf_bits) { cpi->twopass.kf_bits = alt_kf_bits; } } cpi->twopass.kf_group_bits -= cpi->twopass.kf_bits; cpi->twopass.kf_bits += cpi->min_frame_bandwidth; // Add in the minimum frame allowance cpi->per_frame_bandwidth = cpi->twopass.kf_bits; // Peer frame bit target for this frame cpi->target_bandwidth = cpi->twopass.kf_bits * cpi->output_frame_rate; // Convert to a per second bitrate } // Note the total error score of the kf group minus the key frame itself cpi->twopass.kf_group_error_left = (int)(kf_group_err - kf_mod_err); // Adjust the count of total modified error left. // The count of bits left is adjusted elsewhere based on real coded frame sizes cpi->twopass.modified_error_left -= kf_group_err; if (cpi->oxcf.allow_spatial_resampling) { int resample_trigger = 0; int last_kf_resampled = 0; int kf_q; int scale_val = 0; int hr, hs, vr, vs; int new_width = cpi->oxcf.Width; int new_height = cpi->oxcf.Height; int projected_buffer_level = cpi->buffer_level; int tmp_q; double projected_bits_perframe; double group_iiratio = (kf_group_intra_err - first_frame.intra_error) / (kf_group_coded_err - first_frame.coded_error); double err_per_frame = kf_group_err / cpi->twopass.frames_to_key; double bits_per_frame; double av_bits_per_frame; double effective_size_ratio; if ((cpi->common.Width != cpi->oxcf.Width) || (cpi->common.Height != cpi->oxcf.Height)) last_kf_resampled = 1; // Set back to unscaled by defaults cpi->common.horiz_scale = NORMAL; cpi->common.vert_scale = NORMAL; // Calculate Average bits per frame. //av_bits_per_frame = cpi->twopass.bits_left/(double)(cpi->twopass.total_stats.count - cpi->common.current_video_frame); av_bits_per_frame = cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->frame_rate); //if ( av_bits_per_frame < 0.0 ) // av_bits_per_frame = 0.0 // CBR... Use the clip average as the target for deciding resample if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { bits_per_frame = av_bits_per_frame; } // In VBR we want to avoid downsampling in easy section unless we are under extreme pressure // So use the larger of target bitrate for this sectoion or average bitrate for sequence else { bits_per_frame = cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key; // This accounts for how hard the section is... if (bits_per_frame < av_bits_per_frame) // Dont turn to resampling in easy sections just because they have been assigned a small number of bits bits_per_frame = av_bits_per_frame; } // bits_per_frame should comply with our minimum if (bits_per_frame < (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100)) bits_per_frame = (cpi->oxcf.target_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); // Work out if spatial resampling is necessary kf_q = estimate_kf_group_q(cpi, err_per_frame, bits_per_frame, group_iiratio); // If we project a required Q higher than the maximum allowed Q then make a guess at the actual size of frames in this section projected_bits_perframe = bits_per_frame; tmp_q = kf_q; while (tmp_q > cpi->worst_quality) { projected_bits_perframe *= 1.04; tmp_q--; } // Guess at buffer level at the end of the section projected_buffer_level = cpi->buffer_level - (int)((projected_bits_perframe - av_bits_per_frame) * cpi->twopass.frames_to_key); if (0) { FILE *f = fopen("Subsamle.stt", "a"); fprintf(f, " %8d %8d %8d %8d %12.0f %8d %8d %8d\n", cpi->common.current_video_frame, kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); fclose(f); } // The trigger for spatial resampling depends on the various parameters such as whether we are streaming (CBR) or VBR. if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { // Trigger resample if we are projected to fall below down sample level or // resampled last time and are projected to remain below the up sample level if ((projected_buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) || (last_kf_resampled && (projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)))) //( ((cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100))) && // ((projected_buffer_level < (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100))) )) resample_trigger = 1; else resample_trigger = 0; } else { int64_t clip_bits = (int64_t)(cpi->twopass.total_stats.count * cpi->oxcf.target_bandwidth / DOUBLE_DIVIDE_CHECK((double)cpi->frame_rate)); int64_t over_spend = cpi->oxcf.starting_buffer_level - cpi->buffer_level; if ((last_kf_resampled && (kf_q > cpi->worst_quality)) || // If triggered last time the threshold for triggering again is reduced ((kf_q > cpi->worst_quality) && // Projected Q higher than allowed and ... (over_spend > clip_bits / 20))) // ... Overspend > 5% of total bits resample_trigger = 1; else resample_trigger = 0; } if (resample_trigger) { while ((kf_q >= cpi->worst_quality) && (scale_val < 6)) { scale_val ++; cpi->common.vert_scale = vscale_lookup[scale_val]; cpi->common.horiz_scale = hscale_lookup[scale_val]; Scale2Ratio(cpi->common.horiz_scale, &hr, &hs); Scale2Ratio(cpi->common.vert_scale, &vr, &vs); new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; // Reducing the area to 1/4 does not reduce the complexity (err_per_frame) to 1/4... // effective_sizeratio attempts to provide a crude correction for this effective_size_ratio = (double)(new_width * new_height) / (double)(cpi->oxcf.Width * cpi->oxcf.Height); effective_size_ratio = (1.0 + (3.0 * effective_size_ratio)) / 4.0; // Now try again and see what Q we get with the smaller image size kf_q = estimate_kf_group_q(cpi, err_per_frame * effective_size_ratio, bits_per_frame, group_iiratio); if (0) { FILE *f = fopen("Subsamle.stt", "a"); fprintf(f, "******** %8d %8d %8d %12.0f %8d %8d %8d\n", kf_q, cpi->common.horiz_scale, cpi->common.vert_scale, kf_group_err / cpi->twopass.frames_to_key, (int)(cpi->twopass.kf_group_bits / cpi->twopass.frames_to_key), new_height, new_width); fclose(f); } } } if ((cpi->common.Width != new_width) || (cpi->common.Height != new_height)) { cpi->common.Width = new_width; cpi->common.Height = new_height; vp8_alloc_compressor_data(cpi); } } }