/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_header.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_entropy.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/decoder/vp9_detokenize.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/common/vp9_alloccommon.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_quant_common.h" #include "vpx_scale/vpx_scale.h" #include "vp9/common/vp9_setupintrarecon.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_modecont.h" #include "vpx_mem/vpx_mem.h" #include "vp9/decoder/vp9_dboolhuff.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9_rtcd.h" // #define DEC_DEBUG #ifdef DEC_DEBUG int dec_debug = 0; #endif static int read_le16(const uint8_t *p) { return (p[1] << 8) | p[0]; } static int read_le32(const uint8_t *p) { return (p[3] << 24) | (p[2] << 16) | (p[1] << 8) | p[0]; } // len == 0 is not allowed static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) { return start + len > start && start + len <= end; } static void setup_txfm_mode(VP9_COMMON *pc, int lossless, vp9_reader *r) { if (lossless) { pc->txfm_mode = ONLY_4X4; } else { pc->txfm_mode = vp9_read_literal(r, 2); if (pc->txfm_mode == ALLOW_32X32) pc->txfm_mode += vp9_read_bit(r); if (pc->txfm_mode == TX_MODE_SELECT) { pc->prob_tx[0] = vp9_read_prob(r); pc->prob_tx[1] = vp9_read_prob(r); pc->prob_tx[2] = vp9_read_prob(r); } } } static int get_unsigned_bits(unsigned int num_values) { int cat = 0; if (num_values <= 1) return 0; num_values--; while (num_values > 0) { cat++; num_values >>= 1; } return cat; } static int inv_recenter_nonneg(int v, int m) { if (v > 2 * m) return v; return v % 2 ? m - (v + 1) / 2 : m + v / 2; } static int decode_uniform(vp9_reader *r, int n) { int v; const int l = get_unsigned_bits(n); const int m = (1 << l) - n; if (!l) return 0; v = vp9_read_literal(r, l - 1); return v < m ? v : (v << 1) - m + vp9_read_bit(r); } static int decode_term_subexp(vp9_reader *r, int k, int num_syms) { int i = 0, mk = 0, word; while (1) { const int b = i ? k + i - 1 : k; const int a = 1 << b; if (num_syms <= mk + 3 * a) { word = decode_uniform(r, num_syms - mk) + mk; break; } else { if (vp9_read_bit(r)) { i++; mk += a; } else { word = vp9_read_literal(r, b) + mk; break; } } } return word; } static int decode_unsigned_max(vp9_reader *r, int max) { int data = 0, bit = 0, lmax = max; while (lmax) { data |= vp9_read_bit(r) << bit++; lmax >>= 1; } return data > max ? max : data; } static int merge_index(int v, int n, int modulus) { int max1 = (n - 1 - modulus / 2) / modulus + 1; if (v < max1) { v = v * modulus + modulus / 2; } else { int w; v -= max1; w = v; v += (v + modulus - modulus / 2) / modulus; while (v % modulus == modulus / 2 || w != v - (v + modulus - modulus / 2) / modulus) v++; } return v; } static int inv_remap_prob(int v, int m) { const int n = 256; v = merge_index(v, n - 1, MODULUS_PARAM); if ((m << 1) <= n) { return inv_recenter_nonneg(v + 1, m); } else { return n - 1 - inv_recenter_nonneg(v + 1, n - 1 - m); } } static vp9_prob read_prob_diff_update(vp9_reader *r, int oldp) { int delp = decode_term_subexp(r, SUBEXP_PARAM, 255); return (vp9_prob)inv_remap_prob(delp, oldp); } void vp9_init_dequantizer(VP9_COMMON *pc) { int q; for (q = 0; q < QINDEX_RANGE; q++) { // DC value pc->y_dequant[q][0] = vp9_dc_quant(q, pc->y_dc_delta_q); pc->uv_dequant[q][0] = vp9_dc_quant(q, pc->uv_dc_delta_q); // AC values pc->y_dequant[q][1] = vp9_ac_quant(q, 0); pc->uv_dequant[q][1] = vp9_ac_quant(q, pc->uv_ac_delta_q); } } static void mb_init_dequantizer(VP9_COMMON *pc, MACROBLOCKD *xd) { int i; const int segment_id = xd->mode_info_context->mbmi.segment_id; xd->q_index = vp9_get_qindex(xd, segment_id, pc->base_qindex); xd->plane[0].dequant = pc->y_dequant[xd->q_index]; for (i = 1; i < MAX_MB_PLANE; i++) xd->plane[i].dequant = pc->uv_dequant[xd->q_index]; } #if !CONFIG_SB8X8 static void decode_8x8(MACROBLOCKD *xd) { const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; // luma // if the first one is DCT_DCT assume all the rest are as well TX_TYPE tx_type = get_tx_type_8x8(xd, 0); int i; assert(mode == I8X8_PRED); for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int idx = (ib & 0x02) ? (ib + 2) : ib; int16_t *q = BLOCK_OFFSET(xd->plane[0].qcoeff, idx, 16); uint8_t* const dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 0, ib, xd->plane[0].dst.buf, xd->plane[0].dst.stride); int stride = xd->plane[0].dst.stride; if (mode == I8X8_PRED) { int i8x8mode = xd->mode_info_context->bmi[ib].as_mode.first; vp9_intra8x8_predict(xd, ib, i8x8mode, dst, stride); } tx_type = get_tx_type_8x8(xd, ib); vp9_iht_add_8x8_c(tx_type, q, dst, stride, xd->plane[0].eobs[idx]); } // chroma for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; int i8x8mode = xd->mode_info_context->bmi[ib].as_mode.first; uint8_t* dst; dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 1, i, xd->plane[1].dst.buf, xd->plane[1].dst.stride); vp9_intra_uv4x4_predict(xd, 16 + i, i8x8mode, dst, xd->plane[1].dst.stride); xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16), dst, xd->plane[1].dst.stride, xd->plane[1].eobs[i]); dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 2, i, xd->plane[2].dst.buf, xd->plane[1].dst.stride); vp9_intra_uv4x4_predict(xd, 20 + i, i8x8mode, dst, xd->plane[1].dst.stride); xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16), dst, xd->plane[1].dst.stride, xd->plane[2].eobs[i]); } } #endif static INLINE void dequant_add_y(MACROBLOCKD *xd, TX_TYPE tx_type, int idx, BLOCK_SIZE_TYPE bsize) { struct macroblockd_plane *const y = &xd->plane[0]; uint8_t* const dst = raster_block_offset_uint8(xd, bsize, 0, idx, xd->plane[0].dst.buf, xd->plane[0].dst.stride); if (tx_type != DCT_DCT) { vp9_iht_add_c(tx_type, BLOCK_OFFSET(y->qcoeff, idx, 16), dst, xd->plane[0].dst.stride, y->eobs[idx]); } else { xd->itxm_add(BLOCK_OFFSET(y->qcoeff, idx, 16), dst, xd->plane[0].dst.stride, y->eobs[idx]); } } #if !CONFIG_SB8X8 static void decode_4x4(VP9D_COMP *pbi, MACROBLOCKD *xd, vp9_reader *r) { TX_TYPE tx_type; int i = 0; const MB_PREDICTION_MODE mode = xd->mode_info_context->mbmi.mode; assert(mode == I8X8_PRED); for (i = 0; i < 4; i++) { int ib = vp9_i8x8_block[i]; const int iblock[4] = {0, 1, 4, 5}; int j; uint8_t* dst; int i8x8mode = xd->mode_info_context->bmi[ib].as_mode.first; dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 0, ib, xd->plane[0].dst.buf, xd->plane[0].dst.stride); vp9_intra8x8_predict(xd, ib, i8x8mode, dst, xd->plane[0].dst.stride); for (j = 0; j < 4; j++) { tx_type = get_tx_type_4x4(xd, ib + iblock[j]); dequant_add_y(xd, tx_type, ib + iblock[j], BLOCK_SIZE_MB16X16); } dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 1, i, xd->plane[1].dst.buf, xd->plane[1].dst.stride); vp9_intra_uv4x4_predict(xd, 16 + i, i8x8mode, dst, xd->plane[1].dst.stride); xd->itxm_add(BLOCK_OFFSET(xd->plane[1].qcoeff, i, 16), dst, xd->plane[1].dst.stride, xd->plane[1].eobs[i]); dst = raster_block_offset_uint8(xd, BLOCK_SIZE_MB16X16, 2, i, xd->plane[2].dst.buf, xd->plane[2].dst.stride); vp9_intra_uv4x4_predict(xd, 20 + i, i8x8mode, dst, xd->plane[1].dst.stride); xd->itxm_add(BLOCK_OFFSET(xd->plane[2].qcoeff, i, 16), dst, xd->plane[1].dst.stride, xd->plane[2].eobs[i]); } } #endif static void decode_block(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { MACROBLOCKD* const xd = arg; int16_t* const qcoeff = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16); const int stride = xd->plane[plane].dst.stride; const int raster_block = txfrm_block_to_raster_block(xd, bsize, plane, block, ss_txfrm_size); uint8_t* const dst = raster_block_offset_uint8(xd, bsize, plane, raster_block, xd->plane[plane].dst.buf, stride); TX_TYPE tx_type; switch (ss_txfrm_size / 2) { case TX_4X4: tx_type = plane == 0 ? get_tx_type_4x4(xd, raster_block) : DCT_DCT; if (tx_type == DCT_DCT) xd->itxm_add(qcoeff, dst, stride, xd->plane[plane].eobs[block]); else vp9_iht_add_c(tx_type, qcoeff, dst, stride, xd->plane[plane].eobs[block]); break; case TX_8X8: tx_type = plane == 0 ? get_tx_type_8x8(xd, raster_block) : DCT_DCT; vp9_iht_add_8x8_c(tx_type, qcoeff, dst, stride, xd->plane[plane].eobs[block]); break; case TX_16X16: tx_type = plane == 0 ? get_tx_type_16x16(xd, raster_block) : DCT_DCT; vp9_iht_add_16x16_c(tx_type, qcoeff, dst, stride, xd->plane[plane].eobs[block]); break; case TX_32X32: vp9_idct_add_32x32(qcoeff, dst, stride, xd->plane[plane].eobs[block]); break; } } static void decode_atom_intra(VP9D_COMP *pbi, MACROBLOCKD *xd, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { int i = 0; int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); int bc = 1 << (bwl + bhl); int tx_type; for (i = 0; i < bc; i++) { int b_mode = xd->mode_info_context->bmi[i].as_mode.first; uint8_t* dst; dst = raster_block_offset_uint8(xd, bsize, 0, i, xd->plane[0].dst.buf, xd->plane[0].dst.stride); #if CONFIG_NEWBINTRAMODES xd->mode_info_context->bmi[i].as_mode.context = vp9_find_bpred_context(xd, i, dst, xd->plane[0].dst.stride); if (!xd->mode_info_context->mbmi.mb_skip_coeff) vp9_decode_coefs_4x4(pbi, xd, r, PLANE_TYPE_Y_WITH_DC, i); #endif vp9_intra4x4_predict(xd, i, bsize, b_mode, dst, xd->plane[0].dst.stride); // TODO(jingning): refactor to use foreach_transformed_block_in_plane_ tx_type = get_tx_type_4x4(xd, i); dequant_add_y(xd, tx_type, i, bsize); } #if CONFIG_NEWBINTRAMODES if (!xd->mode_info_context->mbmi.mb_skip_coeff) vp9_decode_mb_tokens_4x4_uv(pbi, xd, r); #endif foreach_transformed_block_uv(xd, bsize, decode_block, xd); } static void decode_atom(VP9D_COMP *pbi, MACROBLOCKD *xd, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, mbmi->interp_filter, &pbi->common); // prediction if (mbmi->ref_frame == INTRA_FRAME) vp9_build_intra_predictors_sbuv_s(xd, bsize); else vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); if (mbmi->mb_skip_coeff) { vp9_reset_sb_tokens_context(xd, bsize); } else { // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(&pbi->common, xd); if (!vp9_reader_has_error(r)) { #if CONFIG_NEWBINTRAMODES if (mbmi->mode != I4X4_PRED) #endif vp9_decode_tokens(pbi, xd, r, bsize); } } if (mbmi->ref_frame == INTRA_FRAME) decode_atom_intra(pbi, xd, r, bsize); else foreach_transformed_block(xd, bsize, decode_block, xd); } static void decode_sb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { const int bwl = mi_width_log2(bsize), bhl = mi_height_log2(bsize); const int bw = 1 << bwl, bh = 1 << bhl; int n, eobtotal; VP9_COMMON *const pc = &pbi->common; MODE_INFO *const mi = xd->mode_info_context; MB_MODE_INFO *const mbmi = &mi->mbmi; const int mis = pc->mode_info_stride; assert(mbmi->sb_type == bsize); if (pbi->common.frame_type != KEY_FRAME) vp9_setup_interp_filters(xd, mbmi->interp_filter, pc); // generate prediction if (mbmi->ref_frame == INTRA_FRAME) { vp9_build_intra_predictors_sby_s(xd, bsize); vp9_build_intra_predictors_sbuv_s(xd, bsize); } else { vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); } if (mbmi->mb_skip_coeff) { vp9_reset_sb_tokens_context(xd, bsize); } else { // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(pc, xd); // dequantization and idct eobtotal = vp9_decode_tokens(pbi, xd, r, bsize); if (eobtotal == 0) { // skip loopfilter for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; if (mi_col + x_idx < pc->mi_cols && mi_row + y_idx < pc->mi_rows) mi[y_idx * mis + x_idx].mbmi.mb_skip_coeff = 1; } } else { foreach_transformed_block(xd, bsize, decode_block, xd); } } } #if !CONFIG_SB8X8 // TODO(jingning): This only performs I8X8_PRED decoding process, which will be // automatically covered by decode_sb, when SB8X8 is on. static void decode_mb(VP9D_COMP *pbi, MACROBLOCKD *xd, int mi_row, int mi_col, vp9_reader *r) { MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; const int tx_size = mbmi->txfm_size; assert(mbmi->sb_type == BLOCK_SIZE_MB16X16); if (mbmi->mb_skip_coeff) { vp9_reset_sb_tokens_context(xd, BLOCK_SIZE_MB16X16); } else { // re-initialize macroblock dequantizer before detokenization if (xd->segmentation_enabled) mb_init_dequantizer(&pbi->common, xd); if (!vp9_reader_has_error(r)) vp9_decode_tokens(pbi, xd, r, BLOCK_SIZE_MB16X16); } if (tx_size == TX_8X8) decode_8x8(xd); else decode_4x4(pbi, xd, r); } #endif static int get_delta_q(vp9_reader *r, int *dq) { const int old_value = *dq; if (vp9_read_bit(r)) { // Update bit const int value = vp9_read_literal(r, 4); *dq = vp9_read_and_apply_sign(r, value); } // Trigger a quantizer update if the delta-q value has changed return old_value != *dq; } static void set_offsets(VP9D_COMP *pbi, BLOCK_SIZE_TYPE bsize, int mi_row, int mi_col) { const int bh = 1 << mi_height_log2(bsize); const int bw = 1 << mi_width_log2(bsize); VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int i; const int mi_idx = mi_row * cm->mode_info_stride + mi_col; const YV12_BUFFER_CONFIG *dst_fb = &cm->yv12_fb[cm->new_fb_idx]; const int recon_yoffset = (MI_SIZE * mi_row) * dst_fb->y_stride + (MI_SIZE * mi_col); const int recon_uvoffset = (MI_UV_SIZE * mi_row) * dst_fb->uv_stride + (MI_UV_SIZE * mi_col); xd->mode_info_context = cm->mi + mi_idx; xd->mode_info_context->mbmi.sb_type = bsize; xd->prev_mode_info_context = cm->prev_mi + mi_idx; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].above_context = cm->above_context[i] + (mi_col * 4 >> (xd->plane[i].subsampling_x + CONFIG_SB8X8)); xd->plane[i].left_context = cm->left_context[i] + (((mi_row * 4 >> CONFIG_SB8X8) & 15) >> xd->plane[i].subsampling_y); } xd->above_seg_context = cm->above_seg_context + (mi_col >> CONFIG_SB8X8); xd->left_seg_context = cm->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3); // Distance of Mb to the various image edges. These are specified to 8th pel // as they are always compared to values that are in 1/8th pel units set_mi_row_col(cm, xd, mi_row, bh, mi_col, bw); xd->plane[0].dst.buf = dst_fb->y_buffer + recon_yoffset; xd->plane[1].dst.buf = dst_fb->u_buffer + recon_uvoffset; xd->plane[2].dst.buf = dst_fb->v_buffer + recon_uvoffset; } static void set_refs(VP9D_COMP *pbi, int mi_row, int mi_col) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; if (mbmi->ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int fb_idx = cm->active_ref_idx[mbmi->ref_frame - 1]; const YV12_BUFFER_CONFIG *cfg = &cm->yv12_fb[fb_idx]; xd->scale_factor[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; xd->scale_factor_uv[0] = cm->active_ref_scale[mbmi->ref_frame - 1]; setup_pre_planes(xd, cfg, NULL, mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); xd->corrupted |= cfg->corrupted; if (mbmi->second_ref_frame > INTRA_FRAME) { // Select the appropriate reference frame for this MB const int second_fb_idx = cm->active_ref_idx[mbmi->second_ref_frame - 1]; const YV12_BUFFER_CONFIG *second_cfg = &cm->yv12_fb[second_fb_idx]; xd->scale_factor[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1]; xd->scale_factor_uv[1] = cm->active_ref_scale[mbmi->second_ref_frame - 1]; setup_pre_planes(xd, NULL, second_cfg, mi_row, mi_col, xd->scale_factor, xd->scale_factor_uv); xd->corrupted |= second_cfg->corrupted; } } } static void decode_modes_b(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r, BLOCK_SIZE_TYPE bsize) { MACROBLOCKD *const xd = &pbi->mb; set_offsets(pbi, bsize, mi_row, mi_col); vp9_decode_mb_mode_mv(pbi, xd, mi_row, mi_col, r); set_refs(pbi, mi_row, mi_col); #if CONFIG_SB8X8 if (bsize == BLOCK_SIZE_SB8X8 && (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == I4X4_PRED)) decode_atom(pbi, xd, mi_row, mi_col, r, bsize); else decode_sb(pbi, xd, mi_row, mi_col, r, bsize); #else // TODO(jingning): merge decode_sb_ and decode_mb_ if (bsize > BLOCK_SIZE_MB16X16) { decode_sb(pbi, xd, mi_row, mi_col, r, bsize); } else { // TODO(jingning): In transition of separating functionalities of decode_mb // into decode_sb and decode_atom. Will remove decode_mb and clean this up // when SB8X8 is on. if (xd->mode_info_context->mbmi.mode == I4X4_PRED || (xd->mode_info_context->mbmi.mode == SPLITMV && xd->mode_info_context->mbmi.partitioning == PARTITIONING_4X4)) decode_atom(pbi, xd, mi_row, mi_col, r, bsize); else if (xd->mode_info_context->mbmi.mode != I8X8_PRED) decode_sb(pbi, xd, mi_row, mi_col, r, bsize); else // TODO(jingning): decode_mb still carries deocding process of I8X8_PRED. // This will be covered by decode_sb when SB8X8 is on. decode_mb(pbi, xd, mi_row, mi_col, r); } #endif xd->corrupted |= vp9_reader_has_error(r); } static void decode_modes_sb(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader* r, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int bsl = mi_width_log2(bsize), bs = (1 << bsl) / 2; int n; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE_TYPE subsize; if (mi_row >= pc->mi_rows || mi_col >= pc->mi_cols) return; #if CONFIG_SB8X8 if (bsize > BLOCK_SIZE_SB8X8) { #else if (bsize > BLOCK_SIZE_MB16X16) { #endif int pl; // read the partition information xd->left_seg_context = pc->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3); xd->above_seg_context = pc->above_seg_context + (mi_col >> CONFIG_SB8X8); pl = partition_plane_context(xd, bsize); partition = treed_read(r, vp9_partition_tree, pc->fc.partition_prob[pl]); pc->fc.partition_counts[pl][partition]++; } subsize = get_subsize(bsize, partition); switch (partition) { case PARTITION_NONE: decode_modes_b(pbi, mi_row, mi_col, r, subsize); break; case PARTITION_HORZ: decode_modes_b(pbi, mi_row, mi_col, r, subsize); if ((mi_row + bs) < pc->mi_rows) decode_modes_b(pbi, mi_row + bs, mi_col, r, subsize); break; case PARTITION_VERT: decode_modes_b(pbi, mi_row, mi_col, r, subsize); if ((mi_col + bs) < pc->mi_cols) decode_modes_b(pbi, mi_row, mi_col + bs, r, subsize); break; case PARTITION_SPLIT: for (n = 0; n < 4; n++) { int j = n >> 1, i = n & 0x01; if (subsize == BLOCK_SIZE_SB32X32) xd->sb_index = n; #if CONFIG_SB8X8 else if (subsize == BLOCK_SIZE_MB16X16) xd->mb_index = n; else xd->b_index = n; #else else xd->mb_index = n; #endif decode_modes_sb(pbi, mi_row + j * bs, mi_col + i * bs, r, subsize); } break; default: assert(0); } // update partition context #if CONFIG_SB8X8 if ((partition == PARTITION_SPLIT) && (bsize > BLOCK_SIZE_MB16X16)) #else if ((partition == PARTITION_SPLIT) && (bsize > BLOCK_SIZE_SB32X32)) #endif return; xd->left_seg_context = pc->left_seg_context + ((mi_row >> CONFIG_SB8X8) & 3); xd->above_seg_context = pc->above_seg_context + (mi_col >> CONFIG_SB8X8); update_partition_context(xd, subsize, bsize); } static void setup_token_decoder(VP9D_COMP *pbi, const uint8_t *data, vp9_reader *r) { VP9_COMMON *pc = &pbi->common; const uint8_t *data_end = pbi->source + pbi->source_sz; const size_t partition_size = data_end - data; // Validate the calculated partition length. If the buffer // described by the partition can't be fully read, then restrict // it to the portion that can be (for EC mode) or throw an error. if (!read_is_valid(data, partition_size, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", 1); if (vp9_reader_init(r, data, partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", 1); } static void init_frame(VP9D_COMP *pbi) { VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (pc->frame_type == KEY_FRAME) { vp9_setup_past_independence(pc, xd); // All buffers are implicitly updated on key frames. pbi->refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1; } else if (pc->error_resilient_mode) { vp9_setup_past_independence(pc, xd); } xd->mode_info_context = pc->mi; xd->prev_mode_info_context = pc->prev_mi; xd->frame_type = pc->frame_type; xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; } #if CONFIG_CODE_ZEROGROUP static void read_zpc_probs_common(VP9_COMMON *cm, vp9_reader* bc, TX_SIZE tx_size) { int r, b, p, n; vp9_zpc_probs *zpc_probs; vp9_prob upd = ZPC_UPDATE_PROB; if (!get_zpc_used(tx_size)) return; if (!vp9_read_bit(bc)) return; if (tx_size == TX_32X32) { zpc_probs = &cm->fc.zpc_probs_32x32; } else if (tx_size == TX_16X16) { zpc_probs = &cm->fc.zpc_probs_16x16; } else if (tx_size == TX_8X8) { zpc_probs = &cm->fc.zpc_probs_8x8; } else { zpc_probs = &cm->fc.zpc_probs_4x4; } for (r = 0; r < REF_TYPES; ++r) { for (b = 0; b < ZPC_BANDS; ++b) { for (p = 0; p < ZPC_PTOKS; ++p) { for (n = 0; n < ZPC_NODES; ++n) { vp9_prob *q = &(*zpc_probs)[r][b][p][n]; #if USE_ZPC_EXTRA == 0 if (n == 1) continue; #endif if (vp9_read(bc, upd)) { *q = read_prob_diff_update(bc, *q); } } } } } } static void read_zpc_probs(VP9_COMMON *cm, vp9_reader* bc) { read_zpc_probs_common(cm, bc, TX_4X4); if (cm->txfm_mode > ONLY_4X4) read_zpc_probs_common(cm, bc, TX_8X8); if (cm->txfm_mode > ALLOW_8X8) read_zpc_probs_common(cm, bc, TX_16X16); if (cm->txfm_mode > ALLOW_16X16) read_zpc_probs_common(cm, bc, TX_32X32); } #endif // CONFIG_CODE_ZEROGROUP static void read_coef_probs_common(vp9_coeff_probs *coef_probs, TX_SIZE tx_size, vp9_reader *r) { #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE const int entropy_nodes_update = UNCONSTRAINED_UPDATE_NODES; #else const int entropy_nodes_update = ENTROPY_NODES; #endif int i, j, k, l, m; if (vp9_read_bit(r)) { for (i = 0; i < BLOCK_TYPES; i++) { for (j = 0; j < REF_TYPES; j++) { for (k = 0; k < COEF_BANDS; k++) { for (l = 0; l < PREV_COEF_CONTEXTS; l++) { const int mstart = 0; if (l >= 3 && k == 0) continue; for (m = mstart; m < entropy_nodes_update; m++) { vp9_prob *const p = coef_probs[i][j][k][l] + m; if (vp9_read(r, vp9_coef_update_prob[m])) { *p = read_prob_diff_update(r, *p); #if CONFIG_MODELCOEFPROB && MODEL_BASED_UPDATE if (m == UNCONSTRAINED_NODES - 1) vp9_get_model_distribution(*p, coef_probs[i][j][k][l], i, j); #endif } } } } } } } } static void read_coef_probs(VP9D_COMP *pbi, vp9_reader *r) { const TXFM_MODE mode = pbi->common.txfm_mode; FRAME_CONTEXT *const fc = &pbi->common.fc; read_coef_probs_common(fc->coef_probs_4x4, TX_4X4, r); if (mode > ONLY_4X4) read_coef_probs_common(fc->coef_probs_8x8, TX_8X8, r); if (mode > ALLOW_8X8) read_coef_probs_common(fc->coef_probs_16x16, TX_16X16, r); if (mode > ALLOW_16X16) read_coef_probs_common(fc->coef_probs_32x32, TX_32X32, r); } static void setup_segmentation(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) { int i, j; xd->update_mb_segmentation_map = 0; xd->update_mb_segmentation_data = 0; #if CONFIG_IMPLICIT_SEGMENTATION xd->allow_implicit_segment_update = 0; #endif xd->segmentation_enabled = vp9_read_bit(r); if (!xd->segmentation_enabled) return; // Segmentation map update xd->update_mb_segmentation_map = vp9_read_bit(r); #if CONFIG_IMPLICIT_SEGMENTATION xd->allow_implicit_segment_update = vp9_read_bit(r); #endif if (xd->update_mb_segmentation_map) { for (i = 0; i < MB_SEG_TREE_PROBS; i++) xd->mb_segment_tree_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : MAX_PROB; pc->temporal_update = vp9_read_bit(r); if (pc->temporal_update) { for (i = 0; i < PREDICTION_PROBS; i++) pc->segment_pred_probs[i] = vp9_read_bit(r) ? vp9_read_prob(r) : MAX_PROB; } else { for (i = 0; i < PREDICTION_PROBS; i++) pc->segment_pred_probs[i] = MAX_PROB; } } // Segmentation data update xd->update_mb_segmentation_data = vp9_read_bit(r); if (xd->update_mb_segmentation_data) { xd->mb_segment_abs_delta = vp9_read_bit(r); vp9_clearall_segfeatures(xd); for (i = 0; i < MAX_MB_SEGMENTS; i++) { for (j = 0; j < SEG_LVL_MAX; j++) { int data = 0; const int feature_enabled = vp9_read_bit(r); if (feature_enabled) { vp9_enable_segfeature(xd, i, j); data = decode_unsigned_max(r, vp9_seg_feature_data_max(j)); if (vp9_is_segfeature_signed(j)) data = vp9_read_and_apply_sign(r, data); } vp9_set_segdata(xd, i, j, data); } } } } static void setup_pred_probs(VP9_COMMON *pc, vp9_reader *r) { // Read common prediction model status flag probability updates for the // reference frame if (pc->frame_type == KEY_FRAME) { // Set the prediction probabilities to defaults pc->ref_pred_probs[0] = DEFAULT_PRED_PROB_0; pc->ref_pred_probs[1] = DEFAULT_PRED_PROB_1; pc->ref_pred_probs[2] = DEFAULT_PRED_PROB_2; } else { int i; for (i = 0; i < PREDICTION_PROBS; ++i) if (vp9_read_bit(r)) pc->ref_pred_probs[i] = vp9_read_prob(r); } } static void setup_loopfilter(VP9_COMMON *pc, MACROBLOCKD *xd, vp9_reader *r) { pc->filter_type = (LOOPFILTER_TYPE) vp9_read_bit(r); pc->filter_level = vp9_read_literal(r, 6); pc->sharpness_level = vp9_read_literal(r, 3); #if CONFIG_LOOP_DERING if (vp9_read_bit(r)) pc->dering_enabled = 1 + vp9_read_literal(r, 4); else pc->dering_enabled = 0; #endif // Read in loop filter deltas applied at the MB level based on mode or ref // frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = vp9_read_bit(r); if (xd->mode_ref_lf_delta_enabled) { xd->mode_ref_lf_delta_update = vp9_read_bit(r); if (xd->mode_ref_lf_delta_update) { int i; for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp9_read_bit(r)) { const int value = vp9_read_literal(r, 6); xd->ref_lf_deltas[i] = vp9_read_and_apply_sign(r, value); } } for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp9_read_bit(r)) { const int value = vp9_read_literal(r, 6); xd->mode_lf_deltas[i] = vp9_read_and_apply_sign(r, value); } } } } } static void setup_quantization(VP9D_COMP *pbi, vp9_reader *r) { // Read the default quantizers VP9_COMMON *const pc = &pbi->common; pc->base_qindex = vp9_read_literal(r, QINDEX_BITS); if (get_delta_q(r, &pc->y_dc_delta_q) | get_delta_q(r, &pc->uv_dc_delta_q) | get_delta_q(r, &pc->uv_ac_delta_q)) vp9_init_dequantizer(pc); mb_init_dequantizer(pc, &pbi->mb); // MB level dequantizer setup } static INTERPOLATIONFILTERTYPE read_mcomp_filter_type(vp9_reader *r) { return vp9_read_bit(r) ? SWITCHABLE : vp9_read_literal(r, 2); } static const uint8_t *read_frame_size(VP9_COMMON *const pc, const uint8_t *data, const uint8_t *data_end, int *width, int *height) { if (data + 4 < data_end) { const int w = read_le16(data); const int h = read_le16(data + 2); if (w <= 0) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); if (h <= 0) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); *width = w; *height = h; data += 4; } else { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Failed to read frame size"); } return data; } static const uint8_t *setup_frame_size(VP9D_COMP *pbi, int scaling_active, const uint8_t *data, const uint8_t *data_end) { // If error concealment is enabled we should only parse the new size // if we have enough data. Otherwise we will end up with the wrong size. VP9_COMMON *const pc = &pbi->common; int display_width = pc->display_width; int display_height = pc->display_height; int width = pc->width; int height = pc->height; if (scaling_active) data = read_frame_size(pc, data, data_end, &display_width, &display_height); data = read_frame_size(pc, data, data_end, &width, &height); if (pc->width != width || pc->height != height) { if (!pbi->initial_width || !pbi->initial_height) { if (vp9_alloc_frame_buffers(pc, width, height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); pbi->initial_width = width; pbi->initial_height = height; } else { if (width > pbi->initial_width) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame width too large"); if (height > pbi->initial_height) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Frame height too large"); } pc->width = width; pc->height = height; pc->display_width = scaling_active ? display_width : width; pc->display_height = scaling_active ? display_height : height; vp9_update_frame_size(pc); } return data; } static void update_frame_context(FRAME_CONTEXT *fc) { vp9_copy(fc->pre_coef_probs_4x4, fc->coef_probs_4x4); vp9_copy(fc->pre_coef_probs_8x8, fc->coef_probs_8x8); vp9_copy(fc->pre_coef_probs_16x16, fc->coef_probs_16x16); vp9_copy(fc->pre_coef_probs_32x32, fc->coef_probs_32x32); vp9_copy(fc->pre_ymode_prob, fc->ymode_prob); vp9_copy(fc->pre_sb_ymode_prob, fc->sb_ymode_prob); vp9_copy(fc->pre_uv_mode_prob, fc->uv_mode_prob); vp9_copy(fc->pre_bmode_prob, fc->bmode_prob); #if !CONFIG_SB8X8 vp9_copy(fc->pre_i8x8_mode_prob, fc->i8x8_mode_prob); #endif vp9_copy(fc->pre_sub_mv_ref_prob, fc->sub_mv_ref_prob); #if !CONFIG_SB8X8 vp9_copy(fc->pre_mbsplit_prob, fc->mbsplit_prob); #endif vp9_copy(fc->pre_partition_prob, fc->partition_prob); fc->pre_nmvc = fc->nmvc; vp9_zero(fc->coef_counts_4x4); vp9_zero(fc->coef_counts_8x8); vp9_zero(fc->coef_counts_16x16); vp9_zero(fc->coef_counts_32x32); vp9_zero(fc->eob_branch_counts); vp9_zero(fc->ymode_counts); vp9_zero(fc->sb_ymode_counts); vp9_zero(fc->uv_mode_counts); vp9_zero(fc->bmode_counts); #if !CONFIG_SB8X8 vp9_zero(fc->i8x8_mode_counts); #endif vp9_zero(fc->sub_mv_ref_counts); #if !CONFIG_SB8X8 vp9_zero(fc->mbsplit_counts); #endif vp9_zero(fc->NMVcount); vp9_zero(fc->mv_ref_ct); vp9_zero(fc->partition_counts); #if CONFIG_COMP_INTERINTRA_PRED fc->pre_interintra_prob = fc->interintra_prob; vp9_zero(fc->interintra_counts); #endif #if CONFIG_CODE_ZEROGROUP vp9_copy(fc->pre_zpc_probs_4x4, fc->zpc_probs_4x4); vp9_copy(fc->pre_zpc_probs_8x8, fc->zpc_probs_8x8); vp9_copy(fc->pre_zpc_probs_16x16, fc->zpc_probs_16x16); vp9_copy(fc->pre_zpc_probs_32x32, fc->zpc_probs_32x32); vp9_zero(fc->zpc_counts_4x4); vp9_zero(fc->zpc_counts_8x8); vp9_zero(fc->zpc_counts_16x16); vp9_zero(fc->zpc_counts_32x32); #endif } static void decode_tile(VP9D_COMP *pbi, vp9_reader *r) { VP9_COMMON *const pc = &pbi->common; int mi_row, mi_col; for (mi_row = pc->cur_tile_mi_row_start; mi_row < pc->cur_tile_mi_row_end; mi_row += (4 << CONFIG_SB8X8)) { // For a SB there are 2 left contexts, each pertaining to a MB row within vpx_memset(&pc->left_context, 0, sizeof(pc->left_context)); vpx_memset(pc->left_seg_context, 0, sizeof(pc->left_seg_context)); for (mi_col = pc->cur_tile_mi_col_start; mi_col < pc->cur_tile_mi_col_end; mi_col += (4 << CONFIG_SB8X8)) { decode_modes_sb(pbi, mi_row, mi_col, r, BLOCK_SIZE_SB64X64); } } } static void decode_tiles(VP9D_COMP *pbi, const uint8_t *data, int first_partition_size, vp9_reader *header_bc, vp9_reader *residual_bc) { VP9_COMMON *const pc = &pbi->common; const uint8_t *data_ptr = data + first_partition_size; int tile_row, tile_col, delta_log2_tiles; vp9_get_tile_n_bits(pc, &pc->log2_tile_columns, &delta_log2_tiles); while (delta_log2_tiles--) { if (vp9_read_bit(header_bc)) { pc->log2_tile_columns++; } else { break; } } pc->log2_tile_rows = vp9_read_bit(header_bc); if (pc->log2_tile_rows) pc->log2_tile_rows += vp9_read_bit(header_bc); pc->tile_columns = 1 << pc->log2_tile_columns; pc->tile_rows = 1 << pc->log2_tile_rows; // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(pc->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 4 * MAX_MB_PLANE * mb_cols_aligned_to_sb(pc)); vpx_memset(pc->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * mb_cols_aligned_to_sb(pc)); if (pbi->oxcf.inv_tile_order) { const int n_cols = pc->tile_columns; const uint8_t *data_ptr2[4][1 << 6]; vp9_reader bc_bak = {0}; // pre-initialize the offsets, we're going to read in inverse order data_ptr2[0][0] = data_ptr; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { if (tile_row) { const int size = read_le32(data_ptr2[tile_row - 1][n_cols - 1]); data_ptr2[tile_row - 1][n_cols - 1] += 4; data_ptr2[tile_row][0] = data_ptr2[tile_row - 1][n_cols - 1] + size; } for (tile_col = 1; tile_col < n_cols; tile_col++) { const int size = read_le32(data_ptr2[tile_row][tile_col - 1]); data_ptr2[tile_row][tile_col - 1] += 4; data_ptr2[tile_row][tile_col] = data_ptr2[tile_row][tile_col - 1] + size; } } for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = n_cols - 1; tile_col >= 0; tile_col--) { vp9_get_tile_col_offsets(pc, tile_col); setup_token_decoder(pbi, data_ptr2[tile_row][tile_col], residual_bc); decode_tile(pbi, residual_bc); if (tile_row == pc->tile_rows - 1 && tile_col == n_cols - 1) bc_bak = *residual_bc; } } *residual_bc = bc_bak; } else { int has_more; for (tile_row = 0; tile_row < pc->tile_rows; tile_row++) { vp9_get_tile_row_offsets(pc, tile_row); for (tile_col = 0; tile_col < pc->tile_columns; tile_col++) { vp9_get_tile_col_offsets(pc, tile_col); has_more = tile_col < pc->tile_columns - 1 || tile_row < pc->tile_rows - 1; setup_token_decoder(pbi, data_ptr + (has_more ? 4 : 0), residual_bc); decode_tile(pbi, residual_bc); if (has_more) { const int size = read_le32(data_ptr); data_ptr += 4 + size; } } } } } int vp9_decode_frame(VP9D_COMP *pbi, const uint8_t **p_data_end) { vp9_reader header_bc, residual_bc; VP9_COMMON *const pc = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const uint8_t *data = pbi->source; const uint8_t *data_end = data + pbi->source_sz; size_t first_partition_size = 0; YV12_BUFFER_CONFIG *new_fb = &pc->yv12_fb[pc->new_fb_idx]; int i; xd->corrupted = 0; // start with no corruption of current frame new_fb->corrupted = 0; if (data_end - data < 3) { vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet"); } else { int scaling_active; pc->last_frame_type = pc->frame_type; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; scaling_active = (data[0] >> 5) & 1; first_partition_size = read_le16(data + 1); if (!read_is_valid(data, first_partition_size, data_end)) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); data += 3; vp9_setup_version(pc); if (pc->frame_type == KEY_FRAME) { // When error concealment is enabled we should only check the sync // code if we have enough bits available if (data + 3 < data_end) { if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); } data += 3; } data = setup_frame_size(pbi, scaling_active, data, data_end); } if ((!pbi->decoded_key_frame && pc->frame_type != KEY_FRAME) || pc->width == 0 || pc->height == 0) { return -1; } init_frame(pbi); // Reset the frame pointers to the current frame size vp8_yv12_realloc_frame_buffer(new_fb, pc->width, pc->height, VP9BORDERINPIXELS); if (vp9_reader_init(&header_bc, data, first_partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); pc->clr_type = (YUV_TYPE)vp9_read_bit(&header_bc); pc->clamp_type = (CLAMP_TYPE)vp9_read_bit(&header_bc); pc->error_resilient_mode = vp9_read_bit(&header_bc); xd->lossless = vp9_read_bit(&header_bc); if (xd->lossless) { xd->inv_txm4x4_1 = vp9_short_iwalsh4x4_1; xd->inv_txm4x4 = vp9_short_iwalsh4x4; xd->itxm_add = vp9_idct_add_lossless_c; xd->itxm_add_y_block = vp9_idct_add_y_block_lossless_c; xd->itxm_add_uv_block = vp9_idct_add_uv_block_lossless_c; } else { xd->inv_txm4x4_1 = vp9_short_idct4x4_1; xd->inv_txm4x4 = vp9_short_idct4x4; xd->itxm_add = vp9_idct_add; xd->itxm_add_y_block = vp9_idct_add_y_block; xd->itxm_add_uv_block = vp9_idct_add_uv_block; } setup_loopfilter(pc, xd, &header_bc); setup_quantization(pbi, &header_bc); // Determine if the golden frame or ARF buffer should be updated and how. // For all non key frames the GF and ARF refresh flags and sign bias // flags must be set explicitly. if (pc->frame_type == KEY_FRAME) { for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) pc->active_ref_idx[i] = pc->new_fb_idx; } else { // Should the GF or ARF be updated from the current frame pbi->refresh_frame_flags = vp9_read_literal(&header_bc, NUM_REF_FRAMES); // Select active reference frames and calculate scaling factors for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { const int ref = vp9_read_literal(&header_bc, NUM_REF_FRAMES_LG2); const int mapped_ref = pc->ref_frame_map[ref]; YV12_BUFFER_CONFIG *const fb = &pc->yv12_fb[mapped_ref]; struct scale_factors *const sf = &pc->active_ref_scale[i]; pc->active_ref_idx[i] = mapped_ref; if (mapped_ref >= NUM_YV12_BUFFERS) memset(sf, 0, sizeof(*sf)); else vp9_setup_scale_factors_for_frame(sf, fb, pc->width, pc->height); } // Read the sign bias for each reference frame buffer. for (i = 0; i < ALLOWED_REFS_PER_FRAME; ++i) { pc->ref_frame_sign_bias[i + 1] = vp9_read_bit(&header_bc); } xd->allow_high_precision_mv = vp9_read_bit(&header_bc); pc->mcomp_filter_type = read_mcomp_filter_type(&header_bc); #if CONFIG_COMP_INTERINTRA_PRED pc->use_interintra = vp9_read_bit(&header_bc); #endif // To enable choice of different interpolation filters vp9_setup_interp_filters(xd, pc->mcomp_filter_type, pc); } if (!pc->error_resilient_mode) { pc->refresh_frame_context = vp9_read_bit(&header_bc); pc->frame_parallel_decoding_mode = vp9_read_bit(&header_bc); } else { pc->refresh_frame_context = 0; pc->frame_parallel_decoding_mode = 1; } pc->frame_context_idx = vp9_read_literal(&header_bc, NUM_FRAME_CONTEXTS_LG2); pc->fc = pc->frame_contexts[pc->frame_context_idx]; setup_segmentation(pc, xd, &header_bc); setup_pred_probs(pc, &header_bc); setup_txfm_mode(pc, xd->lossless, &header_bc); // Read inter mode probability context updates if (pc->frame_type != KEY_FRAME) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < 4; ++j) if (vp9_read(&header_bc, 252)) pc->fc.vp9_mode_contexts[i][j] = vp9_read_prob(&header_bc); } #if CONFIG_MODELCOEFPROB if (pc->frame_type == KEY_FRAME) vp9_default_coef_probs(pc); #endif update_frame_context(&pc->fc); read_coef_probs(pbi, &header_bc); #if CONFIG_CODE_ZEROGROUP read_zpc_probs(pc, &header_bc); #endif // Initialize xd pointers. Any reference should do for xd->pre, so use 0. setup_pre_planes(xd, &pc->yv12_fb[pc->active_ref_idx[0]], NULL, 0, 0, NULL, NULL); setup_dst_planes(xd, new_fb, 0, 0); // Create the segmentation map structure and set to 0 if (!pc->last_frame_seg_map) CHECK_MEM_ERROR(pc->last_frame_seg_map, vpx_calloc((pc->mi_rows * pc->mi_cols), 1)); // set up frame new frame for intra coded blocks vp9_setup_intra_recon(new_fb); vp9_setup_block_dptrs(xd); // clear out the coeff buffer for (i = 0; i < MAX_MB_PLANE; ++i) vp9_zero(xd->plane[i].qcoeff); vp9_decode_mode_mvs_init(pbi, &header_bc); decode_tiles(pbi, data, first_partition_size, &header_bc, &residual_bc); pc->last_width = pc->width; pc->last_height = pc->height; new_fb->corrupted = vp9_reader_has_error(&header_bc) | xd->corrupted; if (!pbi->decoded_key_frame) { if (pc->frame_type == KEY_FRAME && !new_fb->corrupted) pbi->decoded_key_frame = 1; else vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "A stream must start with a complete key frame"); } // Adaptation if (!pc->error_resilient_mode && !pc->frame_parallel_decoding_mode) { vp9_adapt_coef_probs(pc); #if CONFIG_CODE_ZEROGROUP vp9_adapt_zpc_probs(pc); #endif if (pc->frame_type != KEY_FRAME) { vp9_adapt_mode_probs(pc); vp9_adapt_nmv_probs(pc, xd->allow_high_precision_mv); vp9_adapt_mode_context(pc); } } #if CONFIG_IMPLICIT_SEGMENTATION // If signalled at the frame level apply implicit updates to the segment map. if (!pc->error_resilient_mode && xd->allow_implicit_segment_update) { vp9_implicit_segment_map_update(pc); } #endif if (pc->refresh_frame_context) pc->frame_contexts[pc->frame_context_idx] = pc->fc; *p_data_end = vp9_reader_find_end(&residual_bc); return 0; }