/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "vp8/common/pragmas.h" #include "tokenize.h" #include "treewriter.h" #include "onyx_int.h" #include "modecosts.h" #include "encodeintra.h" #include "vp8/common/entropymode.h" #include "vp8/common/reconinter.h" #include "vp8/common/reconintra.h" #include "vp8/common/reconintra4x4.h" #include "vp8/common/findnearmv.h" #include "vp8/common/quant_common.h" #include "encodemb.h" #include "quantize.h" #include "vp8/common/idct.h" #include "vp8/common/g_common.h" #include "variance.h" #include "mcomp.h" #include "rdopt.h" #include "ratectrl.h" #include "vpx_mem/vpx_mem.h" #include "dct.h" #include "vp8/common/systemdependent.h" #include "vp8/common/seg_common.h" #include "vp8/common/pred_common.h" #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #else #define IF_RTCD(x) NULL #endif extern void vp8cx_mb_init_quantizer(VP8_COMP *cpi, MACROBLOCK *x); extern void vp8_update_zbin_extra(VP8_COMP *cpi, MACROBLOCK *x); #if CONFIG_HYBRIDTRANSFORM extern void vp8_ht_quantize_b(BLOCK *b, BLOCKD *d); #endif #define XMVCOST (x->e_mbd.allow_high_precision_mv?x->mvcost_hp:x->mvcost) #define MAXF(a,b) (((a) > (b)) ? (a) : (b)) #define INVALID_MV 0x80008000 #if CONFIG_SWITCHABLE_INTERP /* Factor to weigh the rate for switchable interp filters */ #define SWITCHABLE_INTERP_RATE_FACTOR 1 #endif static const int auto_speed_thresh[17] = { 1000, 200, 150, 130, 150, 125, 120, 115, 115, 115, 115, 115, 115, 115, 115, 115, 105 }; #if CONFIG_PRED_FILTER const MODE_DEFINITION vp8_mode_order[MAX_MODES] = { {ZEROMV, LAST_FRAME, 0, 0}, {ZEROMV, LAST_FRAME, 0, 1}, {DC_PRED, INTRA_FRAME, 0, 0}, {NEARESTMV, LAST_FRAME, 0, 0}, {NEARESTMV, LAST_FRAME, 0, 1}, {NEARMV, LAST_FRAME, 0, 0}, {NEARMV, LAST_FRAME, 0, 1}, {ZEROMV, GOLDEN_FRAME, 0, 0}, {ZEROMV, GOLDEN_FRAME, 0, 1}, {NEARESTMV, GOLDEN_FRAME, 0, 0}, {NEARESTMV, GOLDEN_FRAME, 0, 1}, {ZEROMV, ALTREF_FRAME, 0, 0}, {ZEROMV, ALTREF_FRAME, 0, 1}, {NEARESTMV, ALTREF_FRAME, 0, 0}, {NEARESTMV, ALTREF_FRAME, 0, 1}, {NEARMV, GOLDEN_FRAME, 0, 0}, {NEARMV, GOLDEN_FRAME, 0, 1}, {NEARMV, ALTREF_FRAME, 0, 0}, {NEARMV, ALTREF_FRAME, 0, 1}, {V_PRED, INTRA_FRAME, 0, 0}, {H_PRED, INTRA_FRAME, 0, 0}, {D45_PRED, INTRA_FRAME, 0, 0}, {D135_PRED, INTRA_FRAME, 0, 0}, {D117_PRED, INTRA_FRAME, 0, 0}, {D153_PRED, INTRA_FRAME, 0, 0}, {D27_PRED, INTRA_FRAME, 0, 0}, {D63_PRED, INTRA_FRAME, 0, 0}, {TM_PRED, INTRA_FRAME, 0, 0}, {NEWMV, LAST_FRAME, 0, 0}, {NEWMV, LAST_FRAME, 0, 1}, {NEWMV, GOLDEN_FRAME, 0, 0}, {NEWMV, GOLDEN_FRAME, 0, 1}, {NEWMV, ALTREF_FRAME, 0, 0}, {NEWMV, ALTREF_FRAME, 0, 1}, {SPLITMV, LAST_FRAME, 0, 0}, {SPLITMV, GOLDEN_FRAME, 0, 0}, {SPLITMV, ALTREF_FRAME, 0, 0}, {B_PRED, INTRA_FRAME, 0, 0}, {I8X8_PRED, INTRA_FRAME, 0, 0}, /* compound prediction modes */ {ZEROMV, LAST_FRAME, GOLDEN_FRAME, 0}, {NEARESTMV, LAST_FRAME, GOLDEN_FRAME, 0}, {NEARMV, LAST_FRAME, GOLDEN_FRAME, 0}, {ZEROMV, ALTREF_FRAME, LAST_FRAME, 0}, {NEARESTMV, ALTREF_FRAME, LAST_FRAME, 0}, {NEARMV, ALTREF_FRAME, LAST_FRAME, 0}, {ZEROMV, GOLDEN_FRAME, ALTREF_FRAME, 0}, {NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME, 0}, {NEARMV, GOLDEN_FRAME, ALTREF_FRAME, 0}, {NEWMV, LAST_FRAME, GOLDEN_FRAME, 0}, {NEWMV, ALTREF_FRAME, LAST_FRAME, 0}, {NEWMV, GOLDEN_FRAME, ALTREF_FRAME, 0}, {SPLITMV, LAST_FRAME, GOLDEN_FRAME, 0}, {SPLITMV, ALTREF_FRAME, LAST_FRAME, 0}, {SPLITMV, GOLDEN_FRAME, ALTREF_FRAME, 0} }; #else const MODE_DEFINITION vp8_mode_order[MAX_MODES] = { {ZEROMV, LAST_FRAME, 0}, {DC_PRED, INTRA_FRAME, 0}, {NEARESTMV, LAST_FRAME, 0}, {NEARMV, LAST_FRAME, 0}, {ZEROMV, GOLDEN_FRAME, 0}, {NEARESTMV, GOLDEN_FRAME, 0}, {ZEROMV, ALTREF_FRAME, 0}, {NEARESTMV, ALTREF_FRAME, 0}, {NEARMV, GOLDEN_FRAME, 0}, {NEARMV, ALTREF_FRAME, 0}, {V_PRED, INTRA_FRAME, 0}, {H_PRED, INTRA_FRAME, 0}, {D45_PRED, INTRA_FRAME, 0}, {D135_PRED, INTRA_FRAME, 0}, {D117_PRED, INTRA_FRAME, 0}, {D153_PRED, INTRA_FRAME, 0}, {D27_PRED, INTRA_FRAME, 0}, {D63_PRED, INTRA_FRAME, 0}, {TM_PRED, INTRA_FRAME, 0}, {NEWMV, LAST_FRAME, 0}, {NEWMV, GOLDEN_FRAME, 0}, {NEWMV, ALTREF_FRAME, 0}, {SPLITMV, LAST_FRAME, 0}, {SPLITMV, GOLDEN_FRAME, 0}, {SPLITMV, ALTREF_FRAME, 0}, {B_PRED, INTRA_FRAME, 0}, {I8X8_PRED, INTRA_FRAME, 0}, /* compound prediction modes */ {ZEROMV, LAST_FRAME, GOLDEN_FRAME}, {NEARESTMV, LAST_FRAME, GOLDEN_FRAME}, {NEARMV, LAST_FRAME, GOLDEN_FRAME}, {ZEROMV, ALTREF_FRAME, LAST_FRAME}, {NEARESTMV, ALTREF_FRAME, LAST_FRAME}, {NEARMV, ALTREF_FRAME, LAST_FRAME}, {ZEROMV, GOLDEN_FRAME, ALTREF_FRAME}, {NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME}, {NEARMV, GOLDEN_FRAME, ALTREF_FRAME}, {NEWMV, LAST_FRAME, GOLDEN_FRAME}, {NEWMV, ALTREF_FRAME, LAST_FRAME }, {NEWMV, GOLDEN_FRAME, ALTREF_FRAME}, {SPLITMV, LAST_FRAME, GOLDEN_FRAME}, {SPLITMV, ALTREF_FRAME, LAST_FRAME }, {SPLITMV, GOLDEN_FRAME, ALTREF_FRAME} }; #endif static void fill_token_costs( unsigned int (*c)[COEF_BANDS] [PREV_COEF_CONTEXTS] [MAX_ENTROPY_TOKENS], const vp8_prob(*p)[COEF_BANDS] [PREV_COEF_CONTEXTS] [ENTROPY_NODES], int block_type_counts) { int i, j, k; for (i = 0; i < block_type_counts; i++) for (j = 0; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) { if (k == 0 && ((j > 0 && i > 0) || (j > 1 && i == 0))) vp8_cost_tokens_skip((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree); else vp8_cost_tokens((int *)(c [i][j][k]), p [i][j][k], vp8_coef_tree); } } static int rd_iifactor [ 32 ] = { 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; // 3* dc_qlookup[Q]*dc_qlookup[Q]; /* values are now correlated to quantizer */ static int sad_per_bit16lut[QINDEX_RANGE]; static int sad_per_bit4lut[QINDEX_RANGE]; void vp8_init_me_luts() { int i; // Initialize the sad lut tables using a formulaic calculation for now // This is to make it easier to resolve the impact of experimental changes // to the quantizer tables. for (i = 0; i < QINDEX_RANGE; i++) { sad_per_bit16lut[i] = (int)((0.0418 * vp8_convert_qindex_to_q(i)) + 2.4107); sad_per_bit4lut[i] = (int)((0.063 * vp8_convert_qindex_to_q(i)) + 2.742); } } int compute_rd_mult(int qindex) { int q; q = vp8_dc_quant(qindex, 0); return (11 * q * q) >> 6; } void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex) { cpi->mb.sadperbit16 = sad_per_bit16lut[QIndex]; cpi->mb.sadperbit4 = sad_per_bit4lut[QIndex]; } void vp8_initialize_rd_consts(VP8_COMP *cpi, int QIndex) { int q, i; vp8_clear_system_state(); // __asm emms; // Further tests required to see if optimum is different // for key frames, golden frames and arf frames. // if (cpi->common.refresh_golden_frame || // cpi->common.refresh_alt_ref_frame) QIndex = (QIndex < 0) ? 0 : ((QIndex > MAXQ) ? MAXQ : QIndex); cpi->RDMULT = compute_rd_mult(QIndex); // Extend rate multiplier along side quantizer zbin increases if (cpi->zbin_over_quant > 0) { double oq_factor; // Experimental code using the same basic equation as used for Q above // The units of cpi->zbin_over_quant are 1/128 of Q bin size oq_factor = 1.0 + ((double)0.0015625 * cpi->zbin_over_quant); cpi->RDMULT = (int)((double)cpi->RDMULT * oq_factor * oq_factor); } if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { if (cpi->twopass.next_iiratio > 31) cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; else cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4; } if (cpi->RDMULT < 7) cpi->RDMULT = 7; cpi->mb.errorperbit = (cpi->RDMULT / 110); cpi->mb.errorperbit += (cpi->mb.errorperbit == 0); vp8_set_speed_features(cpi); q = (int)pow(vp8_dc_quant(QIndex, 0) >> 2, 1.25); q = q << 2; cpi->RDMULT = cpi->RDMULT << 4; if (q < 8) q = 8; if (cpi->RDMULT > 1000) { cpi->RDDIV = 1; cpi->RDMULT /= 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < INT_MAX) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q / 100; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } else { cpi->RDDIV = 100; for (i = 0; i < MAX_MODES; i++) { if (cpi->sf.thresh_mult[i] < (INT_MAX / q)) { cpi->rd_threshes[i] = cpi->sf.thresh_mult[i] * q; } else { cpi->rd_threshes[i] = INT_MAX; } cpi->rd_baseline_thresh[i] = cpi->rd_threshes[i]; } } fill_token_costs( cpi->mb.token_costs[TX_4X4], (const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs, BLOCK_TYPES); fill_token_costs( cpi->mb.token_costs[TX_8X8], (const vp8_prob( *)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs_8x8, BLOCK_TYPES_8X8); #if CONFIG_TX16X16 fill_token_costs( cpi->mb.token_costs[TX_16X16], (const vp8_prob(*)[8][PREV_COEF_CONTEXTS][11]) cpi->common.fc.coef_probs_16x16, BLOCK_TYPES_16X16); #endif /*rough estimate for costing*/ cpi->common.kf_ymode_probs_index = cpi->common.base_qindex >> 4; vp8_init_mode_costs(cpi); } void vp8_auto_select_speed(VP8_COMP *cpi) { int milliseconds_for_compress = (int)(1000000 / cpi->oxcf.frame_rate); milliseconds_for_compress = milliseconds_for_compress * (16 - cpi->oxcf.cpu_used) / 16; #if 0 if (0) { FILE *f; f = fopen("speed.stt", "a"); fprintf(f, " %8ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->Speed, milliseconds_for_compress, cpi->avg_pick_mode_time); fclose(f); } #endif /* // this is done during parameter valid check if( cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16; if( cpi->oxcf.cpu_used < -16) cpi->oxcf.cpu_used = -16; */ if (cpi->avg_pick_mode_time < milliseconds_for_compress && (cpi->avg_encode_time - cpi->avg_pick_mode_time) < milliseconds_for_compress) { if (cpi->avg_pick_mode_time == 0) { cpi->Speed = 4; } else { if (milliseconds_for_compress * 100 < cpi->avg_encode_time * 95) { cpi->Speed += 2; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; if (cpi->Speed > 16) { cpi->Speed = 16; } } if (milliseconds_for_compress * 100 > cpi->avg_encode_time * auto_speed_thresh[cpi->Speed]) { cpi->Speed -= 1; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; // In real-time mode, cpi->speed is in [4, 16]. if (cpi->Speed < 4) { // if ( cpi->Speed < 0 ) cpi->Speed = 4; // cpi->Speed = 0; } } } } else { cpi->Speed += 4; if (cpi->Speed > 16) cpi->Speed = 16; cpi->avg_pick_mode_time = 0; cpi->avg_encode_time = 0; } } int vp8_block_error_c(short *coeff, short *dqcoeff, int block_size) { int i, error = 0; for (i = 0; i < block_size; i++) { int this_diff = coeff[i] - dqcoeff[i]; error += this_diff * this_diff; } return error; } int vp8_mbblock_error_c(MACROBLOCK *mb, int dc) { BLOCK *be; BLOCKD *bd; int i, j; int berror, error = 0; for (i = 0; i < 16; i++) { be = &mb->block[i]; bd = &mb->e_mbd.block[i]; berror = 0; for (j = dc; j < 16; j++) { int this_diff = be->coeff[j] - bd->dqcoeff[j]; berror += this_diff * this_diff; } error += berror; } return error; } int vp8_mbuverror_c(MACROBLOCK *mb) { BLOCK *be; BLOCKD *bd; int i, error = 0; for (i = 16; i < 24; i++) { be = &mb->block[i]; bd = &mb->e_mbd.block[i]; error += vp8_block_error_c(be->coeff, bd->dqcoeff, 16); } return error; } int VP8_UVSSE(MACROBLOCK *x, const vp8_variance_rtcd_vtable_t *rtcd) { unsigned char *uptr, *vptr; unsigned char *upred_ptr = (*(x->block[16].base_src) + x->block[16].src); unsigned char *vpred_ptr = (*(x->block[20].base_src) + x->block[20].src); int uv_stride = x->block[16].src_stride; unsigned int sse1 = 0; unsigned int sse2 = 0; int mv_row = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.row; int mv_col = x->e_mbd.mode_info_context->mbmi.mv[0].as_mv.col; int offset; int pre_stride = x->e_mbd.block[16].pre_stride; if (mv_row < 0) mv_row -= 1; else mv_row += 1; if (mv_col < 0) mv_col -= 1; else mv_col += 1; mv_row /= 2; mv_col /= 2; offset = (mv_row >> 3) * pre_stride + (mv_col >> 3); uptr = x->e_mbd.pre.u_buffer + offset; vptr = x->e_mbd.pre.v_buffer + offset; if ((mv_row | mv_col) & 7) { VARIANCE_INVOKE(rtcd, subpixvar8x8)(uptr, pre_stride, (mv_col & 7) << 1, (mv_row & 7) << 1, upred_ptr, uv_stride, &sse2); VARIANCE_INVOKE(rtcd, subpixvar8x8)(vptr, pre_stride, (mv_col & 7) << 1, (mv_row & 7) << 1, vpred_ptr, uv_stride, &sse1); sse2 += sse1; } else { VARIANCE_INVOKE(rtcd, var8x8)(uptr, pre_stride, upred_ptr, uv_stride, &sse2); VARIANCE_INVOKE(rtcd, var8x8)(vptr, pre_stride, vpred_ptr, uv_stride, &sse1); sse2 += sse1; } return sse2; } static int cost_coeffs_2x2(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l) { int c = !type; /* start at coef 0, unless Y with Y2 */ int eob = b->eob; int pt; /* surrounding block/prev coef predictor */ int cost = 0; short *qcoeff_ptr = b->qcoeff; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); assert(eob <= 4); for (; c < eob; c++) { int v = qcoeff_ptr[vp8_default_zig_zag1d[c]]; int t = vp8_dct_value_tokens_ptr[v].Token; cost += mb->token_costs[TX_8X8][type][vp8_coef_bands[c]][pt][t]; cost += vp8_dct_value_cost_ptr[v]; pt = vp8_prev_token_class[t]; } if (c < 4) cost += mb->token_costs[TX_8X8][type][vp8_coef_bands[c]] [pt] [DCT_EOB_TOKEN]; pt = (c != !type); // is eob first coefficient; *a = *l = pt; return cost; } static int cost_coeffs(MACROBLOCK *mb, BLOCKD *b, int type, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int tx_type) { const int eob = b->eob; int c = !type; /* start at coef 0, unless Y with Y2 */ int cost = 0, default_eob, seg_eob; int pt; /* surrounding block/prev coef predictor */ int const *scan, *band; short *qcoeff_ptr = b->qcoeff; MB_MODE_INFO * mbmi = &mb->e_mbd.mode_info_context->mbmi; int segment_id = mbmi->segment_id; switch (tx_type) { case TX_4X4: scan = vp8_default_zig_zag1d; band = vp8_coef_bands; default_eob = 16; #if CONFIG_HYBRIDTRANSFORM { int active_ht = (mb->q_index < ACTIVE_HT) && (mbmi->mode_rdopt == B_PRED); if((type == PLANE_TYPE_Y_WITH_DC) && active_ht) { switch (b->bmi.as_mode.tx_type) { case ADST_DCT: scan = vp8_row_scan; break; case DCT_ADST: scan = vp8_col_scan; break; default: scan = vp8_default_zig_zag1d; break; } } else scan = vp8_default_zig_zag1d; } #endif break; case TX_8X8: scan = vp8_default_zig_zag1d_8x8; band = vp8_coef_bands_8x8; default_eob = 64; break; #if CONFIG_TX16X16 case TX_16X16: scan = vp8_default_zig_zag1d_16x16; band = vp8_coef_bands_16x16; default_eob = 256; break; #endif default: break; } if (segfeature_active(&mb->e_mbd, segment_id, SEG_LVL_EOB)) seg_eob = get_segdata(&mb->e_mbd, segment_id, SEG_LVL_EOB); else seg_eob = default_eob; VP8_COMBINEENTROPYCONTEXTS(pt, *a, *l); for (; c < eob; c++) { int v = qcoeff_ptr[scan[c]]; int t = vp8_dct_value_tokens_ptr[v].Token; cost += mb->token_costs[tx_type][type][band[c]][pt][t]; cost += vp8_dct_value_cost_ptr[v]; pt = vp8_prev_token_class[t]; } if (c < seg_eob) cost += mb->token_costs[tx_type][type][band[c]] [pt][DCT_EOB_TOKEN]; pt = (c != !type); // is eob first coefficient; *a = *l = pt; return cost; } static int vp8_rdcost_mby(MACROBLOCK *mb) { int cost = 0; int b; MACROBLOCKD *xd = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 0; b < 16; b++) cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_NO_DC, ta + vp8_block2above[b], tl + vp8_block2left[b], TX_4X4); cost += cost_coeffs(mb, xd->block + 24, PLANE_TYPE_Y2, ta + vp8_block2above[24], tl + vp8_block2left[24], TX_4X4); return cost; } static void macro_block_yrd(MACROBLOCK *mb, int *Rate, int *Distortion, const VP8_ENCODER_RTCD *rtcd) { int b; MACROBLOCKD *const xd = &mb->e_mbd; BLOCK *const mb_y2 = mb->block + 24; BLOCKD *const x_y2 = xd->block + 24; short *Y2DCPtr = mb_y2->src_diff; BLOCK *beptr; int d; ENCODEMB_INVOKE(&rtcd->encodemb, submby)( mb->src_diff, *(mb->block[0].base_src), xd->predictor, mb->block[0].src_stride); // Fdct and building the 2nd order block for (beptr = mb->block; beptr < mb->block + 16; beptr += 2) { mb->vp8_short_fdct8x4(beptr->src_diff, beptr->coeff, 32); *Y2DCPtr++ = beptr->coeff[0]; *Y2DCPtr++ = beptr->coeff[16]; } // 2nd order fdct mb->short_walsh4x4(mb_y2->src_diff, mb_y2->coeff, 8); // Quantization for (b = 0; b < 16; b++) { mb->quantize_b(&mb->block[b], &xd->block[b]); } // DC predication and Quantization of 2nd Order block mb->quantize_b(mb_y2, x_y2); // Distortion d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 1); d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(mb_y2->coeff, x_y2->dqcoeff, 16); *Distortion = (d >> 2); // rate *Rate = vp8_rdcost_mby(mb); } static int vp8_rdcost_mby_8x8(MACROBLOCK *mb) { int cost = 0; int b; MACROBLOCKD *xd = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta; ENTROPY_CONTEXT *tl; vpx_memcpy(&t_above,xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 0; b < 16; b += 4) cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_NO_DC, ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b], TX_8X8); cost += cost_coeffs_2x2(mb, xd->block + 24, PLANE_TYPE_Y2, ta + vp8_block2above[24], tl + vp8_block2left[24]); return cost; } static void macro_block_yrd_8x8(MACROBLOCK *mb, int *Rate, int *Distortion, const VP8_ENCODER_RTCD *rtcd) { MACROBLOCKD *const xd = &mb->e_mbd; BLOCK *const mb_y2 = mb->block + 24; BLOCKD *const x_y2 = xd->block + 24; int d; ENCODEMB_INVOKE(&rtcd->encodemb, submby)( mb->src_diff, *(mb->block[0].base_src), xd->predictor, mb->block[0].src_stride); vp8_transform_mby_8x8(mb); vp8_quantize_mby_8x8(mb); /* remove 1st order dc to properly combine 1st/2nd order distortion */ mb->coeff[0] = 0; mb->coeff[64] = 0; mb->coeff[128] = 0; mb->coeff[192] = 0; xd->dqcoeff[0] = 0; xd->dqcoeff[64] = 0; xd->dqcoeff[128] = 0; xd->dqcoeff[192] = 0; d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 0); d += ENCODEMB_INVOKE(&rtcd->encodemb, berr)(mb_y2->coeff, x_y2->dqcoeff, 16); *Distortion = (d >> 2); // rate *Rate = vp8_rdcost_mby_8x8(mb); } #if CONFIG_TX16X16 static int vp8_rdcost_mby_16x16(MACROBLOCK *mb) { int cost; MACROBLOCKD *xd = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; cost = cost_coeffs(mb, xd->block, PLANE_TYPE_Y_WITH_DC, ta, tl, TX_16X16); return cost; } static void macro_block_yrd_16x16(MACROBLOCK *mb, int *Rate, int *Distortion, const VP8_ENCODER_RTCD *rtcd) { int d; ENCODEMB_INVOKE(&rtcd->encodemb, submby)( mb->src_diff, *(mb->block[0].base_src), mb->e_mbd.predictor, mb->block[0].src_stride); vp8_transform_mby_16x16(mb); vp8_quantize_mby_16x16(mb); d = ENCODEMB_INVOKE(&rtcd->encodemb, mberr)(mb, 0); *Distortion = (d >> 2); // rate *Rate = vp8_rdcost_mby_16x16(mb); } #endif static void copy_predictor(unsigned char *dst, const unsigned char *predictor) { const unsigned int *p = (const unsigned int *)predictor; unsigned int *d = (unsigned int *)dst; d[0] = p[0]; d[4] = p[4]; d[8] = p[8]; d[12] = p[12]; } static void copy_predictor_8x8(unsigned char *dst, const unsigned char *predictor) { const unsigned int *p = (const unsigned int *)predictor; unsigned int *d = (unsigned int *)dst; d[0] = p[0]; d[1] = p[1]; d[4] = p[4]; d[5] = p[5]; d[8] = p[8]; d[9] = p[9]; d[12] = p[12]; d[13] = p[13]; d[16] = p[16]; d[17] = p[17]; d[20] = p[20]; d[21] = p[21]; d[24] = p[24]; d[25] = p[25]; d[28] = p[28]; d[29] = p[29]; } static int64_t rd_pick_intra4x4block(VP8_COMP *cpi, MACROBLOCK *x, BLOCK *be, BLOCKD *b, B_PREDICTION_MODE *best_mode, #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE *best_second_mode, int allow_comp, #endif int *bmode_costs, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int *bestdistortion) { B_PREDICTION_MODE mode; #if CONFIG_HYBRIDTRANSFORM int QIndex = x->q_index; int active_ht = (QIndex < ACTIVE_HT); TX_TYPE best_tx_type; #endif #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE mode2; #endif int64_t best_rd = INT64_MAX; int rate = 0; int distortion; ENTROPY_CONTEXT ta = *a, tempa = *a; ENTROPY_CONTEXT tl = *l, templ = *l; /* * The predictor buffer is a 2d buffer with a stride of 16. Create * a temp buffer that meets the stride requirements, but we are only * interested in the left 4x4 block * */ DECLARE_ALIGNED_ARRAY(16, unsigned char, best_predictor, 16 * 4); DECLARE_ALIGNED_ARRAY(16, short, best_dqcoeff, 16); for (mode = B_DC_PRED; mode <= B_HU_PRED; mode++) { #if CONFIG_COMP_INTRA_PRED for (mode2 = (allow_comp ? 0 : (B_DC_PRED - 1)); mode2 != (allow_comp ? (mode + 1) : 0); mode2++) { #endif int64_t this_rd; int ratey; // TODO Temporarily ignore modes that need the above-right data. SB // encoding means this data is not available for the bottom right MB // Do we need to do this for mode2 also? if (mode == B_LD_PRED || mode == B_VL_PRED) continue; rate = bmode_costs[mode]; #if CONFIG_COMP_INTRA_PRED if (mode2 == (B_PREDICTION_MODE)(B_DC_PRED - 1)) { #endif RECON_INVOKE(&cpi->rtcd.common->recon, intra4x4_predict) (b, mode, b->predictor); #if CONFIG_COMP_INTRA_PRED } else { RECON_INVOKE(&cpi->rtcd.common->recon, comp_intra4x4_predict) (b, mode, mode2, b->predictor); rate += bmode_costs[mode2]; } #endif ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), subb)(be, b, 16); #if CONFIG_HYBRIDTRANSFORM if (active_ht) { b->bmi.as_mode.test = mode; txfm_map(b, mode); vp8_fht_c(be->src_diff, be->coeff, 32, b->bmi.as_mode.tx_type, 4); vp8_ht_quantize_b(be, b); } else { x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32); x->quantize_b(be, b); } #else x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32); x->quantize_b(be, b); #endif tempa = ta; templ = tl; ratey = cost_coeffs(x, b, PLANE_TYPE_Y_WITH_DC, &tempa, &templ, TX_4X4); rate += ratey; distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr)( be->coeff, b->dqcoeff, 16) >> 2; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; #if CONFIG_HYBRIDTRANSFORM best_tx_type = b->bmi.as_mode.tx_type ; #endif #if CONFIG_COMP_INTRA_PRED *best_second_mode = mode2; #endif *a = tempa; *l = templ; copy_predictor(best_predictor, b->predictor); vpx_memcpy(best_dqcoeff, b->dqcoeff, 32); } #if CONFIG_COMP_INTRA_PRED } #endif } b->bmi.as_mode.first = (B_PREDICTION_MODE)(*best_mode); #if CONFIG_COMP_INTRA_PRED b->bmi.as_mode.second = (B_PREDICTION_MODE)(*best_second_mode); #endif #if CONFIG_HYBRIDTRANSFORM b->bmi.as_mode.tx_type = best_tx_type; // inverse transform if (active_ht) vp8_ihtllm_c(best_dqcoeff, b->diff, 32, b->bmi.as_mode.tx_type, 4); else IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff, b->diff, 32); #else IDCT_INVOKE(IF_RTCD(&cpi->rtcd.common->idct), idct16)(best_dqcoeff, b->diff, 32); #endif RECON_INVOKE(IF_RTCD(&cpi->rtcd.common->recon), recon)(best_predictor, b->diff, *(b->base_dst) + b->dst, b->dst_stride); return best_rd; } static int64_t rd_pick_intra4x4mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion, int64_t best_rd, #if CONFIG_COMP_INTRA_PRED int allow_comp, #endif int update_contexts) { int i; MACROBLOCKD *const xd = &mb->e_mbd; int cost = mb->mbmode_cost [xd->frame_type] [B_PRED]; int distortion = 0; int tot_rate_y = 0; int64_t total_rd = 0; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; int *bmode_costs; if (update_contexts) { ta = (ENTROPY_CONTEXT *)xd->above_context; tl = (ENTROPY_CONTEXT *)xd->left_context; } else { vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; } // TODO(agrange) // vp8_intra_prediction_down_copy(xd); bmode_costs = mb->inter_bmode_costs; for (i = 0; i < 16; i++) { MODE_INFO *const mic = xd->mode_info_context; const int mis = xd->mode_info_stride; B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_second_mode); #endif int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d); if (xd->frame_type == KEY_FRAME) { const B_PREDICTION_MODE A = above_block_mode(mic, i, mis); const B_PREDICTION_MODE L = left_block_mode(mic, i); bmode_costs = mb->bmode_costs[A][L]; } total_rd += rd_pick_intra4x4block( cpi, mb, mb->block + i, xd->block + i, &best_mode, #if CONFIG_COMP_INTRA_PRED & best_second_mode, allow_comp, #endif bmode_costs, ta + vp8_block2above[i], tl + vp8_block2left[i], &r, &ry, &d); cost += r; distortion += d; tot_rate_y += ry; mic->bmi[i].as_mode.first = best_mode; #if CONFIG_COMP_INTRA_PRED mic->bmi[i].as_mode.second = best_second_mode; #endif if (total_rd >= best_rd) break; } if (total_rd >= best_rd) return INT64_MAX; #if CONFIG_COMP_INTRA_PRED cost += vp8_cost_bit(128, allow_comp); #endif *Rate = cost; *rate_y += tot_rate_y; *Distortion = distortion; return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); } static int64_t rd_pick_intra16x16mby_mode(VP8_COMP *cpi, MACROBLOCK *x, int *Rate, int *rate_y, int *Distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); #if CONFIG_COMP_INTRA_PRED MB_PREDICTION_MODE mode2; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode2_selected); #endif MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int rate, ratey; int distortion; int64_t best_rd = INT64_MAX; int64_t this_rd; // Y Search for 16x16 intra prediction mode for (mode = DC_PRED; mode <= TM_PRED; mode++) { mbmi->mode = mode; #if CONFIG_COMP_INTRA_PRED for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) { mbmi->second_mode = mode2; if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) { #endif RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby) (&x->e_mbd); #if CONFIG_COMP_INTRA_PRED } else { continue; // i.e. disable for now RECON_INVOKE(&cpi->common.rtcd.recon, build_comp_intra_predictors_mby) (&x->e_mbd); } #endif #if CONFIG_TX16X16 macro_block_yrd_16x16(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd)); #else macro_block_yrd_8x8(x, &ratey, &distortion, IF_RTCD(&cpi->rtcd)); #endif // FIXME add compoundmode cost // FIXME add rate for mode2 rate = ratey + x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode]; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { mode_selected = mode; #if CONFIG_COMP_INTRA_PRED mode2_selected = mode2; #endif best_rd = this_rd; *Rate = rate; *rate_y = ratey; *Distortion = distortion; } #if CONFIG_COMP_INTRA_PRED } #endif } mbmi->mode = mode_selected; #if CONFIG_COMP_INTRA_PRED mbmi->second_mode = mode2_selected; #endif return best_rd; } static int64_t rd_pick_intra8x8block(VP8_COMP *cpi, MACROBLOCK *x, int ib, B_PREDICTION_MODE *best_mode, #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE *best_second_mode, #endif int *mode_costs, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int *bestdistortion) { MB_PREDICTION_MODE mode; #if CONFIG_COMP_INTRA_PRED MB_PREDICTION_MODE mode2; #endif MACROBLOCKD *xd = &x->e_mbd; int64_t best_rd = INT64_MAX; int distortion, rate = 0; BLOCK *be = x->block + ib; BLOCKD *b = xd->block + ib; ENTROPY_CONTEXT ta0, ta1, besta0 = 0, besta1 = 0; ENTROPY_CONTEXT tl0, tl1, bestl0 = 0, bestl1 = 0; /* * The predictor buffer is a 2d buffer with a stride of 16. Create * a temp buffer that meets the stride requirements, but we are only * interested in the left 8x8 block * */ DECLARE_ALIGNED_ARRAY(16, unsigned char, best_predictor, 16 * 8); DECLARE_ALIGNED_ARRAY(16, short, best_dqcoeff, 16 * 4); #if CONFIG_HYBRIDTRANSFORM8X8 // perform transformation of dimension 8x8 // note the input and output index mapping int idx = (ib & 0x02) ? (ib + 2) : ib; #endif for (mode = DC_PRED; mode <= TM_PRED; mode++) { #if CONFIG_COMP_INTRA_PRED for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) { #endif int64_t this_rd; int rate_t; // FIXME rate for compound mode and second intrapred mode rate = mode_costs[mode]; #if CONFIG_COMP_INTRA_PRED if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) { #endif RECON_INVOKE(&cpi->rtcd.common->recon, intra8x8_predict) (b, mode, b->predictor); #if CONFIG_COMP_INTRA_PRED } else { continue; // i.e. disable for now RECON_INVOKE(&cpi->rtcd.common->recon, comp_intra8x8_predict) (b, mode, mode2, b->predictor); } #endif vp8_subtract_4b_c(be, b, 16); #if CONFIG_HYBRIDTRANSFORM8X8 txfm_map(b, pred_mode_conv(mode)); vp8_fht_c(be->src_diff, (x->block + idx)->coeff, 32, b->bmi.as_mode.tx_type, 8); x->quantize_b_8x8(x->block + idx, xd->block + idx); // compute quantization mse of 8x8 block distortion = vp8_block_error_c((x->block + idx)->coeff, (xd->block + idx)->dqcoeff, 64)>>2; ta0 = *(a + vp8_block2above_8x8[idx]); tl0 = *(l + vp8_block2left_8x8 [idx]); rate_t = cost_coeffs(x, xd->block + idx, PLANE_TYPE_Y_WITH_DC, &ta0, &tl0, TX_8X8); rate += rate_t; ta1 = ta0; tl1 = tl0; #else x->vp8_short_fdct8x4(be->src_diff, be->coeff, 32); x->vp8_short_fdct8x4(be->src_diff + 64, be->coeff + 64, 32); x->quantize_b_pair(x->block + ib, x->block + ib + 1, xd->block + ib, xd->block + ib + 1); x->quantize_b_pair(x->block + ib + 4, x->block + ib + 5, xd->block + ib + 4, xd->block + ib + 5); distortion = ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr) ((x->block + ib)->coeff, (xd->block + ib)->dqcoeff, 16) >> 2; distortion += ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr) ((x->block + ib + 1)->coeff, (xd->block + ib + 1)->dqcoeff, 16) >> 2; distortion += ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr) ((x->block + ib + 4)->coeff, (xd->block + ib + 4)->dqcoeff, 16) >> 2; distortion += ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), berr) ((x->block + ib + 5)->coeff, (xd->block + ib + 5)->dqcoeff, 16) >> 2; ta0 = *(a + vp8_block2above[ib]); ta1 = *(a + vp8_block2above[ib + 1]); tl0 = *(l + vp8_block2above[ib]); tl1 = *(l + vp8_block2above[ib + 4]); rate_t = cost_coeffs(x, xd->block + ib, PLANE_TYPE_Y_WITH_DC, &ta0, &tl0, TX_4X4); rate_t += cost_coeffs(x, xd->block + ib + 1, PLANE_TYPE_Y_WITH_DC, &ta1, &tl0, TX_4X4); rate_t += cost_coeffs(x, xd->block + ib + 4, PLANE_TYPE_Y_WITH_DC, &ta0, &tl1, TX_4X4); rate_t += cost_coeffs(x, xd->block + ib + 5, PLANE_TYPE_Y_WITH_DC, &ta1, &tl1, TX_4X4); rate += rate_t; #endif this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = rate_t; *bestdistortion = distortion; besta0 = ta0; besta1 = ta1; bestl0 = tl0; bestl1 = tl1; best_rd = this_rd; *best_mode = mode; #if CONFIG_COMP_INTRA_PRED *best_second_mode = mode2; #endif copy_predictor_8x8(best_predictor, b->predictor); vpx_memcpy(best_dqcoeff, b->dqcoeff, 64); vpx_memcpy(best_dqcoeff + 32, b->dqcoeff + 64, 64); #if CONFIG_COMP_INTRA_PRED } #endif } } b->bmi.as_mode.first = (*best_mode); #if CONFIG_COMP_INTRA_PRED b->bmi.as_mode.second = (*best_second_mode); #endif vp8_encode_intra8x8(IF_RTCD(&cpi->rtcd), x, ib); #if CONFIG_HYBRIDTRANSFORM8X8 *(a + vp8_block2above_8x8[idx]) = besta0; *(a + vp8_block2above_8x8[idx] + 1) = besta1; *(l + vp8_block2left_8x8 [idx]) = bestl0; *(l + vp8_block2left_8x8 [idx] + 1) = bestl1; #else *(a + vp8_block2above[ib]) = besta0; *(a + vp8_block2above[ib + 1]) = besta1; *(l + vp8_block2above[ib]) = bestl0; *(l + vp8_block2above[ib + 4]) = bestl1; #endif return best_rd; } const int vp8_i8x8_block[4] = {0, 2, 8, 10}; int64_t rd_pick_intra8x8mby_modes(VP8_COMP *cpi, MACROBLOCK *mb, int *Rate, int *rate_y, int *Distortion, int64_t best_rd) { MACROBLOCKD *const xd = &mb->e_mbd; int i, ib; int cost = mb->mbmode_cost [xd->frame_type] [I8X8_PRED]; int distortion = 0; int tot_rate_y = 0; long long total_rd = 0; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; int *i8x8mode_costs; vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; i8x8mode_costs = mb->i8x8_mode_costs; for (i = 0; i < 4; i++) { MODE_INFO *const mic = xd->mode_info_context; B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_mode); #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE UNINITIALIZED_IS_SAFE(best_second_mode); #endif int UNINITIALIZED_IS_SAFE(r), UNINITIALIZED_IS_SAFE(ry), UNINITIALIZED_IS_SAFE(d); ib = vp8_i8x8_block[i]; total_rd += rd_pick_intra8x8block( cpi, mb, ib, &best_mode, #if CONFIG_COMP_INTRA_PRED & best_second_mode, #endif i8x8mode_costs, ta, tl, &r, &ry, &d); cost += r; distortion += d; tot_rate_y += ry; mic->bmi[ib].as_mode.first = best_mode; #if CONFIG_COMP_INTRA_PRED mic->bmi[ib].as_mode.second = best_second_mode; #endif } *Rate = cost; *rate_y += tot_rate_y; *Distortion = distortion; return RDCOST(mb->rdmult, mb->rddiv, cost, distortion); } static int rd_cost_mbuv(MACROBLOCK *mb) { int b; int cost = 0; MACROBLOCKD *xd = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b++) cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV, ta + vp8_block2above[b], tl + vp8_block2left[b], TX_4X4); return cost; } static int64_t rd_inter16x16_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel) { ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv(x); vp8_quantize_mbuv(x); *rate = rd_cost_mbuv(x); *distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); } static int rd_cost_mbuv_8x8(MACROBLOCK *mb) { int b; int cost = 0; MACROBLOCKD *xd = &mb->e_mbd; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; vpx_memcpy(&t_above, xd->above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, xd->left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; for (b = 16; b < 24; b += 4) cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_UV, ta + vp8_block2above_8x8[b], tl + vp8_block2left_8x8[b], TX_8X8); return cost; } static int64_t rd_inter16x16_uv_8x8(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel) { ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv_8x8(x); vp8_quantize_mbuv_8x8(x); *rate = rd_cost_mbuv_8x8(x); *distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); } static int64_t rd_inter4x4_uv(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *distortion, int fullpixel) { vp8_build_inter4x4_predictors_mbuv(&x->e_mbd); ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv(x); vp8_quantize_mbuv(x); *rate = rd_cost_mbuv(x); *distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; return RDCOST(x->rdmult, x->rddiv, *rate, *distortion); } static void rd_pick_intra_mbuv_mode(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); #if CONFIG_COMP_INTRA_PRED MB_PREDICTION_MODE mode2; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode2_selected); #endif MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int64_t best_rd = INT64_MAX; int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r); int rate_to; for (mode = DC_PRED; mode <= TM_PRED; mode++) { #if CONFIG_COMP_INTRA_PRED for (mode2 = DC_PRED - 1; mode2 != TM_PRED + 1; mode2++) { #endif int rate; int distortion; int64_t this_rd; mbmi->uv_mode = mode; #if CONFIG_COMP_INTRA_PRED mbmi->second_uv_mode = mode2; if (mode2 == (MB_PREDICTION_MODE)(DC_PRED - 1)) { #endif RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mbuv) (&x->e_mbd); #if CONFIG_COMP_INTRA_PRED } else { continue; RECON_INVOKE(&cpi->rtcd.common->recon, build_comp_intra_predictors_mbuv) (&x->e_mbd); } #endif ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv(x); vp8_quantize_mbuv(x); rate_to = rd_cost_mbuv(x); rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode]; distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { best_rd = this_rd; d = distortion; r = rate; *rate_tokenonly = rate_to; mode_selected = mode; #if CONFIG_COMP_INTRA_PRED mode2_selected = mode2; } #endif } } *rate = r; *distortion = d; mbmi->uv_mode = mode_selected; #if CONFIG_COMP_INTRA_PRED mbmi->second_uv_mode = mode2_selected; #endif } static void rd_pick_intra_mbuv_mode_8x8(VP8_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int *distortion) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE UNINITIALIZED_IS_SAFE(mode_selected); MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int64_t best_rd = INT64_MAX; int UNINITIALIZED_IS_SAFE(d), UNINITIALIZED_IS_SAFE(r); int rate_to; for (mode = DC_PRED; mode <= TM_PRED; mode++) { int rate; int distortion; int64_t this_rd; mbmi->uv_mode = mode; RECON_INVOKE(&cpi->rtcd.common->recon, build_intra_predictors_mbuv) (&x->e_mbd); ENCODEMB_INVOKE(IF_RTCD(&cpi->rtcd.encodemb), submbuv)(x->src_diff, x->src.u_buffer, x->src.v_buffer, x->e_mbd.predictor, x->src.uv_stride); vp8_transform_mbuv_8x8(x); vp8_quantize_mbuv_8x8(x); rate_to = rd_cost_mbuv_8x8(x); rate = rate_to + x->intra_uv_mode_cost[x->e_mbd.frame_type][mbmi->uv_mode]; distortion = ENCODEMB_INVOKE(&cpi->rtcd.encodemb, mbuverr)(x) / 4; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { best_rd = this_rd; d = distortion; r = rate; *rate_tokenonly = rate_to; mode_selected = mode; } } *rate = r; *distortion = d; mbmi->uv_mode = mode_selected; } int vp8_cost_mv_ref(VP8_COMP *cpi, MB_PREDICTION_MODE m, const int near_mv_ref_ct[4]) { MACROBLOCKD *xd = &cpi->mb.e_mbd; int segment_id = xd->mode_info_context->mbmi.segment_id; // If the mode coding is done entirely at the segment level // we should not account for it at the per mb level in rd code. // Note that if the segment level coding is expanded from single mode // to multiple mode masks as per reference frame coding we will need // to do something different here. if (!segfeature_active(xd, segment_id, SEG_LVL_MODE)) { VP8_COMMON *pc = &cpi->common; vp8_prob p [VP8_MVREFS - 1]; assert(NEARESTMV <= m && m <= SPLITMV); vp8_mv_ref_probs(pc, p, near_mv_ref_ct); return vp8_cost_token(vp8_mv_ref_tree, p, vp8_mv_ref_encoding_array - NEARESTMV + m); } else return 0; } void vp8_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) { x->e_mbd.mode_info_context->mbmi.mode = mb; x->e_mbd.mode_info_context->mbmi.mv[0].as_int = mv->as_int; } static int labels2mode(MACROBLOCK *x, int const *labelings, int which_label, B_PREDICTION_MODE this_mode, int_mv *this_mv, int_mv *this_second_mv, int_mv seg_mvs[MAX_REF_FRAMES - 1], int_mv *best_ref_mv, int_mv *second_best_ref_mv, int *mvcost[2]) { MACROBLOCKD *const xd = & x->e_mbd; MODE_INFO *const mic = xd->mode_info_context; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; const int mis = xd->mode_info_stride; int i, cost = 0, thismvcost = 0; /* We have to be careful retrieving previously-encoded motion vectors. Ones from this macroblock have to be pulled from the BLOCKD array as they have not yet made it to the bmi array in our MB_MODE_INFO. */ for (i = 0; i < 16; ++i) { BLOCKD *const d = xd->block + i; const int row = i >> 2, col = i & 3; B_PREDICTION_MODE m; if (labelings[i] != which_label) continue; if (col && labelings[i] == labelings[i - 1]) m = LEFT4X4; else if (row && labelings[i] == labelings[i - 4]) m = ABOVE4X4; else { // the only time we should do costing for new motion vector or mode // is when we are on a new label (jbb May 08, 2007) switch (m = this_mode) { case NEW4X4 : if (mbmi->second_ref_frame) { this_mv->as_int = seg_mvs[mbmi->ref_frame - 1].as_int; this_second_mv->as_int = seg_mvs[mbmi->second_ref_frame - 1].as_int; } thismvcost = vp8_mv_bit_cost(this_mv, best_ref_mv, mvcost, 102, xd->allow_high_precision_mv); if (mbmi->second_ref_frame) { thismvcost += vp8_mv_bit_cost(this_second_mv, second_best_ref_mv, mvcost, 102, xd->allow_high_precision_mv); } break; case LEFT4X4: this_mv->as_int = col ? d[-1].bmi.as_mv.first.as_int : left_block_mv(mic, i); if (mbmi->second_ref_frame) this_second_mv->as_int = col ? d[-1].bmi.as_mv.second.as_int : left_block_second_mv(mic, i); break; case ABOVE4X4: this_mv->as_int = row ? d[-4].bmi.as_mv.first.as_int : above_block_mv(mic, i, mis); if (mbmi->second_ref_frame) this_second_mv->as_int = row ? d[-4].bmi.as_mv.second.as_int : above_block_second_mv(mic, i, mis); break; case ZERO4X4: this_mv->as_int = 0; if (mbmi->second_ref_frame) this_second_mv->as_int = 0; break; default: break; } if (m == ABOVE4X4) { // replace above with left if same int_mv left_mv, left_second_mv; left_mv.as_int = col ? d[-1].bmi.as_mv.first.as_int : left_block_mv(mic, i); if (mbmi->second_ref_frame) left_second_mv.as_int = col ? d[-1].bmi.as_mv.second.as_int : left_block_second_mv(mic, i); if (left_mv.as_int == this_mv->as_int && (!mbmi->second_ref_frame || left_second_mv.as_int == this_second_mv->as_int)) m = LEFT4X4; } cost = x->inter_bmode_costs[ m]; } d->bmi.as_mv.first.as_int = this_mv->as_int; if (mbmi->second_ref_frame) d->bmi.as_mv.second.as_int = this_second_mv->as_int; x->partition_info->bmi[i].mode = m; x->partition_info->bmi[i].mv.as_int = this_mv->as_int; if (mbmi->second_ref_frame) x->partition_info->bmi[i].second_mv.as_int = this_second_mv->as_int; } cost += thismvcost; return cost; } static int rdcost_mbsegment_y(MACROBLOCK *mb, const int *labels, int which_label, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl) { int b, cost = 0; MACROBLOCKD *xd = &mb->e_mbd; for (b = 0; b < 16; b++) if (labels[ b] == which_label) cost += cost_coeffs(mb, xd->block + b, PLANE_TYPE_Y_WITH_DC, ta + vp8_block2above[b], tl + vp8_block2left[b], TX_4X4); return cost; } static unsigned int vp8_encode_inter_mb_segment(MACROBLOCK *x, int const *labels, int which_label, const VP8_ENCODER_RTCD *rtcd) { int i; unsigned int distortion = 0; for (i = 0; i < 16; i++) { if (labels[i] == which_label) { BLOCKD *bd = &x->e_mbd.block[i]; BLOCK *be = &x->block[i]; int thisdistortion; vp8_build_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict); if (x->e_mbd.mode_info_context->mbmi.second_ref_frame) vp8_build_2nd_inter_predictors_b(bd, 16, x->e_mbd.subpixel_predict_avg); ENCODEMB_INVOKE(&rtcd->encodemb, subb)(be, bd, 16); x->vp8_short_fdct4x4(be->src_diff, be->coeff, 32); // set to 0 no way to account for 2nd order DC so discount // be->coeff[0] = 0; x->quantize_b(be, bd); thisdistortion = ENCODEMB_INVOKE(&rtcd->encodemb, berr)( be->coeff, bd->dqcoeff, 16) / 4; distortion += thisdistortion; } } return distortion; } static const unsigned int segmentation_to_sseshift[4] = {3, 3, 2, 0}; typedef struct { int_mv *ref_mv, *second_ref_mv; int_mv mvp; int64_t segment_rd; int segment_num; int r; int d; int segment_yrate; B_PREDICTION_MODE modes[16]; int_mv mvs[16], second_mvs[16]; unsigned char eobs[16]; int mvthresh; int *mdcounts; int_mv sv_mvp[4]; // save 4 mvp from 8x8 int sv_istep[2]; // save 2 initial step_param for 16x8/8x16 } BEST_SEG_INFO; static __inline int mv_check_bounds(MACROBLOCK *x, int_mv *mv) { int r = 0; r |= (mv->as_mv.row >> 3) < x->mv_row_min; r |= (mv->as_mv.row >> 3) > x->mv_row_max; r |= (mv->as_mv.col >> 3) < x->mv_col_min; r |= (mv->as_mv.col >> 3) > x->mv_col_max; return r; } static void rd_check_segment(VP8_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi, unsigned int segmentation, int_mv seg_mvs[16 /* n_blocks */][MAX_REF_FRAMES - 1]) { int i; int const *labels; int br = 0, bd = 0; B_PREDICTION_MODE this_mode; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int label_count; int64_t this_segment_rd = 0; int label_mv_thresh; int rate = 0; int sbr = 0, sbd = 0; int segmentyrate = 0; vp8_variance_fn_ptr_t *v_fn_ptr; ENTROPY_CONTEXT_PLANES t_above, t_left; ENTROPY_CONTEXT *ta, *tl; ENTROPY_CONTEXT_PLANES t_above_b, t_left_b; ENTROPY_CONTEXT *ta_b, *tl_b; vpx_memcpy(&t_above, x->e_mbd.above_context, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left, x->e_mbd.left_context, sizeof(ENTROPY_CONTEXT_PLANES)); ta = (ENTROPY_CONTEXT *)&t_above; tl = (ENTROPY_CONTEXT *)&t_left; ta_b = (ENTROPY_CONTEXT *)&t_above_b; tl_b = (ENTROPY_CONTEXT *)&t_left_b; v_fn_ptr = &cpi->fn_ptr[segmentation]; labels = vp8_mbsplits[segmentation]; label_count = vp8_mbsplit_count[segmentation]; // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * bsi->mvthresh / label_count; // Segmentation method overheads rate = vp8_cost_token(vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + segmentation); rate += vp8_cost_mv_ref(cpi, SPLITMV, bsi->mdcounts); this_segment_rd += RDCOST(x->rdmult, x->rddiv, rate, 0); br += rate; for (i = 0; i < label_count; i++) { int_mv mode_mv[B_MODE_COUNT], second_mode_mv[B_MODE_COUNT]; int64_t best_label_rd = INT64_MAX; B_PREDICTION_MODE mode_selected = ZERO4X4; int bestlabelyrate = 0; // search for the best motion vector on this segment for (this_mode = LEFT4X4; this_mode <= NEW4X4; this_mode ++) { int64_t this_rd; int distortion; int labelyrate; ENTROPY_CONTEXT_PLANES t_above_s, t_left_s; ENTROPY_CONTEXT *ta_s; ENTROPY_CONTEXT *tl_s; vpx_memcpy(&t_above_s, &t_above, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(&t_left_s, &t_left, sizeof(ENTROPY_CONTEXT_PLANES)); ta_s = (ENTROPY_CONTEXT *)&t_above_s; tl_s = (ENTROPY_CONTEXT *)&t_left_s; // motion search for newmv (single predictor case only) if (!mbmi->second_ref_frame && this_mode == NEW4X4) { int sseshift, n; int step_param = 0; int further_steps; int thissme, bestsme = INT_MAX; BLOCK *c; BLOCKD *e; // Is the best so far sufficiently good that we cant justify doing and new motion search. if (best_label_rd < label_mv_thresh) break; if (cpi->compressor_speed) { if (segmentation == BLOCK_8X16 || segmentation == BLOCK_16X8) { bsi->mvp.as_int = bsi->sv_mvp[i].as_int; if (i == 1 && segmentation == BLOCK_16X8) bsi->mvp.as_int = bsi->sv_mvp[2].as_int; step_param = bsi->sv_istep[i]; } // use previous block's result as next block's MV predictor. if (segmentation == BLOCK_4X4 && i > 0) { bsi->mvp.as_int = x->e_mbd.block[i - 1].bmi.as_mv.first.as_int; if (i == 4 || i == 8 || i == 12) bsi->mvp.as_int = x->e_mbd.block[i - 4].bmi.as_mv.first.as_int; step_param = 2; } } further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; { int sadpb = x->sadperbit4; int_mv mvp_full; mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3; mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3; // find first label n = vp8_mbsplit_offset[segmentation][i]; c = &x->block[n]; e = &x->e_mbd.block[n]; bestsme = vp8_full_pixel_diamond(cpi, x, c, e, &mvp_full, step_param, sadpb, further_steps, 0, v_fn_ptr, bsi->ref_mv, &mode_mv[NEW4X4]); sseshift = segmentation_to_sseshift[segmentation]; // Should we do a full search (best quality only) if ((cpi->compressor_speed == 0) && (bestsme >> sseshift) > 4000) { /* Check if mvp_full is within the range. */ vp8_clamp_mv(&mvp_full, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max); thissme = cpi->full_search_sad(x, c, e, &mvp_full, sadpb, 16, v_fn_ptr, XMVCOST, bsi->ref_mv); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEW4X4].as_int = e->bmi.as_mv.first.as_int; } else { // The full search result is actually worse so re-instate the previous best vector e->bmi.as_mv.first.as_int = mode_mv[NEW4X4].as_int; } } } if (bestsme < INT_MAX) { int distortion; unsigned int sse; cpi->find_fractional_mv_step(x, c, e, &mode_mv[NEW4X4], bsi->ref_mv, x->errorperbit, v_fn_ptr, XMVCOST, &distortion, &sse); // safe motion search result for use in compound prediction seg_mvs[i][mbmi->ref_frame - 1].as_int = mode_mv[NEW4X4].as_int; } } /* NEW4X4 */ else if (mbmi->second_ref_frame && this_mode == NEW4X4) { // motion search not completed? Then skip newmv for this block with comppred if (seg_mvs[i][mbmi->second_ref_frame - 1].as_int == INVALID_MV || seg_mvs[i][mbmi->ref_frame - 1].as_int == INVALID_MV) { continue; } } rate = labels2mode(x, labels, i, this_mode, &mode_mv[this_mode], &second_mode_mv[this_mode], seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, XMVCOST); // Trap vectors that reach beyond the UMV borders if (((mode_mv[this_mode].as_mv.row >> 3) < x->mv_row_min) || ((mode_mv[this_mode].as_mv.row >> 3) > x->mv_row_max) || ((mode_mv[this_mode].as_mv.col >> 3) < x->mv_col_min) || ((mode_mv[this_mode].as_mv.col >> 3) > x->mv_col_max)) { continue; } if (mbmi->second_ref_frame && mv_check_bounds(x, &second_mode_mv[this_mode])) continue; distortion = vp8_encode_inter_mb_segment( x, labels, i, IF_RTCD(&cpi->rtcd)); labelyrate = rdcost_mbsegment_y(x, labels, i, ta_s, tl_s); rate += labelyrate; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_label_rd) { sbr = rate; sbd = distortion; bestlabelyrate = labelyrate; mode_selected = this_mode; best_label_rd = this_rd; vpx_memcpy(ta_b, ta_s, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(tl_b, tl_s, sizeof(ENTROPY_CONTEXT_PLANES)); } } /*for each 4x4 mode*/ vpx_memcpy(ta, ta_b, sizeof(ENTROPY_CONTEXT_PLANES)); vpx_memcpy(tl, tl_b, sizeof(ENTROPY_CONTEXT_PLANES)); labels2mode(x, labels, i, mode_selected, &mode_mv[mode_selected], &second_mode_mv[mode_selected], seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, XMVCOST); br += sbr; bd += sbd; segmentyrate += bestlabelyrate; this_segment_rd += best_label_rd; if (this_segment_rd >= bsi->segment_rd) { break; } } /* for each label */ if (this_segment_rd < bsi->segment_rd) { bsi->r = br; bsi->d = bd; bsi->segment_yrate = segmentyrate; bsi->segment_rd = this_segment_rd; bsi->segment_num = segmentation; // store everything needed to come back to this!! for (i = 0; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; bsi->mvs[i].as_mv = x->partition_info->bmi[i].mv.as_mv; if (mbmi->second_ref_frame) bsi->second_mvs[i].as_mv = x->partition_info->bmi[i].second_mv.as_mv; bsi->modes[i] = x->partition_info->bmi[i].mode; bsi->eobs[i] = bd->eob; } } } static __inline void vp8_cal_step_param(int sr, int *sp) { int step = 0; if (sr > MAX_FIRST_STEP) sr = MAX_FIRST_STEP; else if (sr < 1) sr = 1; while (sr >>= 1) step++; *sp = MAX_MVSEARCH_STEPS - 1 - step; } static int vp8_rd_pick_best_mbsegmentation(VP8_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, int_mv *second_best_ref_mv, int64_t best_rd, int *mdcounts, int *returntotrate, int *returnyrate, int *returndistortion, int mvthresh, int_mv seg_mvs[BLOCK_MAX_SEGMENTS - 1][16 /* n_blocks */][MAX_REF_FRAMES - 1]) { int i; BEST_SEG_INFO bsi; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; vpx_memset(&bsi, 0, sizeof(bsi)); bsi.segment_rd = best_rd; bsi.ref_mv = best_ref_mv; bsi.second_ref_mv = second_best_ref_mv; bsi.mvp.as_int = best_ref_mv->as_int; bsi.mvthresh = mvthresh; bsi.mdcounts = mdcounts; for (i = 0; i < 16; i++) bsi.modes[i] = ZERO4X4; if (cpi->compressor_speed == 0) { /* for now, we will keep the original segmentation order when in best quality mode */ rd_check_segment(cpi, x, &bsi, BLOCK_16X8, seg_mvs[BLOCK_16X8]); rd_check_segment(cpi, x, &bsi, BLOCK_8X16, seg_mvs[BLOCK_8X16]); rd_check_segment(cpi, x, &bsi, BLOCK_8X8, seg_mvs[BLOCK_8X8]); rd_check_segment(cpi, x, &bsi, BLOCK_4X4, seg_mvs[BLOCK_4X4]); } else { int sr; rd_check_segment(cpi, x, &bsi, BLOCK_8X8, seg_mvs[BLOCK_8X8]); if (bsi.segment_rd < best_rd) { int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; vp8_clamp_mv_min_max(x, best_ref_mv); /* Get 8x8 result */ bsi.sv_mvp[0].as_int = bsi.mvs[0].as_int; bsi.sv_mvp[1].as_int = bsi.mvs[2].as_int; bsi.sv_mvp[2].as_int = bsi.mvs[8].as_int; bsi.sv_mvp[3].as_int = bsi.mvs[10].as_int; /* Use 8x8 result as 16x8/8x16's predictor MV. Adjust search range according to the closeness of 2 MV. */ /* block 8X16 */ { sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[2].as_mv.row)) >> 3, (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[2].as_mv.col)) >> 3); vp8_cal_step_param(sr, &bsi.sv_istep[0]); sr = MAXF((abs(bsi.sv_mvp[1].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, (abs(bsi.sv_mvp[1].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3); vp8_cal_step_param(sr, &bsi.sv_istep[1]); rd_check_segment(cpi, x, &bsi, BLOCK_8X16, seg_mvs[BLOCK_8X16]); } /* block 16X8 */ { sr = MAXF((abs(bsi.sv_mvp[0].as_mv.row - bsi.sv_mvp[1].as_mv.row)) >> 3, (abs(bsi.sv_mvp[0].as_mv.col - bsi.sv_mvp[1].as_mv.col)) >> 3); vp8_cal_step_param(sr, &bsi.sv_istep[0]); sr = MAXF((abs(bsi.sv_mvp[2].as_mv.row - bsi.sv_mvp[3].as_mv.row)) >> 3, (abs(bsi.sv_mvp[2].as_mv.col - bsi.sv_mvp[3].as_mv.col)) >> 3); vp8_cal_step_param(sr, &bsi.sv_istep[1]); rd_check_segment(cpi, x, &bsi, BLOCK_16X8, seg_mvs[BLOCK_16X8]); } /* If 8x8 is better than 16x8/8x16, then do 4x4 search */ /* Not skip 4x4 if speed=0 (good quality) */ if (cpi->sf.no_skip_block4x4_search || bsi.segment_num == BLOCK_8X8) { /* || (sv_segment_rd8x8-bsi.segment_rd) < sv_segment_rd8x8>>5) */ bsi.mvp.as_int = bsi.sv_mvp[0].as_int; rd_check_segment(cpi, x, &bsi, BLOCK_4X4, seg_mvs[BLOCK_4X4]); } /* restore UMV window */ x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; } } /* set it to the best */ for (i = 0; i < 16; i++) { BLOCKD *bd = &x->e_mbd.block[i]; bd->bmi.as_mv.first.as_int = bsi.mvs[i].as_int; if (mbmi->second_ref_frame) bd->bmi.as_mv.second.as_int = bsi.second_mvs[i].as_int; bd->eob = bsi.eobs[i]; } *returntotrate = bsi.r; *returndistortion = bsi.d; *returnyrate = bsi.segment_yrate; /* save partitions */ mbmi->partitioning = bsi.segment_num; x->partition_info->count = vp8_mbsplit_count[bsi.segment_num]; for (i = 0; i < x->partition_info->count; i++) { int j; j = vp8_mbsplit_offset[bsi.segment_num][i]; x->partition_info->bmi[i].mode = bsi.modes[j]; x->partition_info->bmi[i].mv.as_mv = bsi.mvs[j].as_mv; if (mbmi->second_ref_frame) x->partition_info->bmi[i].second_mv.as_mv = bsi.second_mvs[j].as_mv; } /* * used to set mbmi->mv.as_int */ x->partition_info->bmi[15].mv.as_int = bsi.mvs[15].as_int; if (mbmi->second_ref_frame) x->partition_info->bmi[15].second_mv.as_int = bsi.second_mvs[15].as_int; return bsi.segment_rd; } /* Order arr in increasing order, original position stored in idx */ static void insertsortmv(int arr[], int len) { int i, j, k; for (i = 1; i <= len - 1; i++) { for (j = 0; j < i; j++) { if (arr[j] > arr[i]) { int temp; temp = arr[i]; for (k = i; k > j; k--) arr[k] = arr[k - 1]; arr[j] = temp; } } } } static void insertsortsad(int arr[], int idx[], int len) { int i, j, k; for (i = 1; i <= len - 1; i++) { for (j = 0; j < i; j++) { if (arr[j] > arr[i]) { int temp, tempi; temp = arr[i]; tempi = idx[i]; for (k = i; k > j; k--) { arr[k] = arr[k - 1]; idx[k] = idx[k - 1]; } arr[j] = temp; idx[j] = tempi; } } } } // The improved MV prediction void vp8_mv_pred(VP8_COMP *cpi, MACROBLOCKD *xd, const MODE_INFO *here, int_mv *mvp, int refframe, int *ref_frame_sign_bias, int *sr, int near_sadidx[]) { const MODE_INFO *above = here - xd->mode_info_stride; const MODE_INFO *left = here - 1; const MODE_INFO *aboveleft = above - 1; int_mv near_mvs[8]; int near_ref[8]; int_mv mv; int vcnt = 0; int find = 0; int mb_offset; int mvx[8]; int mvy[8]; int i; mv.as_int = 0; if (here->mbmi.ref_frame != INTRA_FRAME) { near_mvs[0].as_int = near_mvs[1].as_int = near_mvs[2].as_int = near_mvs[3].as_int = near_mvs[4].as_int = near_mvs[5].as_int = near_mvs[6].as_int = near_mvs[7].as_int = 0; near_ref[0] = near_ref[1] = near_ref[2] = near_ref[3] = near_ref[4] = near_ref[5] = near_ref[6] = near_ref[7] = 0; // read in 3 nearby block's MVs from current frame as prediction candidates. if (above->mbmi.ref_frame != INTRA_FRAME) { near_mvs[vcnt].as_int = above->mbmi.mv[0].as_int; mv_bias(ref_frame_sign_bias[above->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = above->mbmi.ref_frame; } vcnt++; if (left->mbmi.ref_frame != INTRA_FRAME) { near_mvs[vcnt].as_int = left->mbmi.mv[0].as_int; mv_bias(ref_frame_sign_bias[left->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = left->mbmi.ref_frame; } vcnt++; if (aboveleft->mbmi.ref_frame != INTRA_FRAME) { near_mvs[vcnt].as_int = aboveleft->mbmi.mv[0].as_int; mv_bias(ref_frame_sign_bias[aboveleft->mbmi.ref_frame], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = aboveleft->mbmi.ref_frame; } vcnt++; // read in 5 nearby block's MVs from last frame. if (cpi->common.last_frame_type != KEY_FRAME) { mb_offset = (-xd->mb_to_top_edge / 128 + 1) * (xd->mode_info_stride + 1) + (-xd->mb_to_left_edge / 128 + 1); // current in last frame if (cpi->lf_ref_frame[mb_offset] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset].as_int; mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset]; } vcnt++; // above in last frame if (cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - xd->mode_info_stride - 1].as_int; mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - xd->mode_info_stride - 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - xd->mode_info_stride - 1]; } vcnt++; // left in last frame if (cpi->lf_ref_frame[mb_offset - 1] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset - 1].as_int; mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset - 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset - 1]; } vcnt++; // right in last frame if (cpi->lf_ref_frame[mb_offset + 1] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + 1].as_int; mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + 1]; } vcnt++; // below in last frame if (cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1] != INTRA_FRAME) { near_mvs[vcnt].as_int = cpi->lfmv[mb_offset + xd->mode_info_stride + 1].as_int; mv_bias(cpi->lf_ref_frame_sign_bias[mb_offset + xd->mode_info_stride + 1], refframe, &near_mvs[vcnt], ref_frame_sign_bias); near_ref[vcnt] = cpi->lf_ref_frame[mb_offset + xd->mode_info_stride + 1]; } vcnt++; } for (i = 0; i < vcnt; i++) { if (near_ref[near_sadidx[i]] != INTRA_FRAME) { if (here->mbmi.ref_frame == near_ref[near_sadidx[i]]) { mv.as_int = near_mvs[near_sadidx[i]].as_int; find = 1; if (i < 3) *sr = 3; else *sr = 2; break; } } } if (!find) { for (i = 0; i < vcnt; i++) { mvx[i] = near_mvs[i].as_mv.row; mvy[i] = near_mvs[i].as_mv.col; } insertsortmv(mvx, vcnt); insertsortmv(mvy, vcnt); mv.as_mv.row = mvx[vcnt / 2]; mv.as_mv.col = mvy[vcnt / 2]; find = 1; // sr is set to 0 to allow calling function to decide the search range. *sr = 0; } } /* Set up return values */ mvp->as_int = mv.as_int; vp8_clamp_mv2(mvp, xd); } void vp8_cal_sad(VP8_COMP *cpi, MACROBLOCKD *xd, MACROBLOCK *x, int recon_yoffset, int near_sadidx[]) { int near_sad[8] = {0}; // 0-cf above, 1-cf left, 2-cf aboveleft, 3-lf current, 4-lf above, 5-lf left, 6-lf right, 7-lf below BLOCK *b = &x->block[0]; unsigned char *src_y_ptr = *(b->base_src); // calculate sad for current frame 3 nearby MBs. if (xd->mb_to_top_edge == 0 && xd->mb_to_left_edge == 0) { near_sad[0] = near_sad[1] = near_sad[2] = INT_MAX; } else if (xd->mb_to_top_edge == 0) { // only has left MB for sad calculation. near_sad[0] = near_sad[2] = INT_MAX; near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride, 0x7fffffff); } else if (xd->mb_to_left_edge == 0) { // only has left MB for sad calculation. near_sad[1] = near_sad[2] = INT_MAX; near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, xd->dst.y_stride, 0x7fffffff); } else { near_sad[0] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16, xd->dst.y_stride, 0x7fffffff); near_sad[1] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - 16, xd->dst.y_stride, 0x7fffffff); near_sad[2] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, xd->dst.y_buffer - xd->dst.y_stride * 16 - 16, xd->dst.y_stride, 0x7fffffff); } if (cpi->common.last_frame_type != KEY_FRAME) { // calculate sad for last frame 5 nearby MBs. unsigned char *pre_y_buffer = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_buffer + recon_yoffset; int pre_y_stride = cpi->common.yv12_fb[cpi->common.lst_fb_idx].y_stride; if (xd->mb_to_top_edge == 0) near_sad[4] = INT_MAX; if (xd->mb_to_left_edge == 0) near_sad[5] = INT_MAX; if (xd->mb_to_right_edge == 0) near_sad[6] = INT_MAX; if (xd->mb_to_bottom_edge == 0) near_sad[7] = INT_MAX; if (near_sad[4] != INT_MAX) near_sad[4] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer - pre_y_stride * 16, pre_y_stride, 0x7fffffff); if (near_sad[5] != INT_MAX) near_sad[5] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer - 16, pre_y_stride, 0x7fffffff); near_sad[3] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer, pre_y_stride, 0x7fffffff); if (near_sad[6] != INT_MAX) near_sad[6] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer + 16, pre_y_stride, 0x7fffffff); if (near_sad[7] != INT_MAX) near_sad[7] = cpi->fn_ptr[BLOCK_16X16].sdf(src_y_ptr, b->src_stride, pre_y_buffer + pre_y_stride * 16, pre_y_stride, 0x7fffffff); } if (cpi->common.last_frame_type != KEY_FRAME) { insertsortsad(near_sad, near_sadidx, 8); } else { insertsortsad(near_sad, near_sadidx, 3); } } void rd_update_mvcount(VP8_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, int_mv *second_best_ref_mv) { MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; if (mbmi->mode == SPLITMV) { int i; for (i = 0; i < x->partition_info->count; i++) { if (x->partition_info->bmi[i].mode == NEW4X4) { if (x->e_mbd.allow_high_precision_mv) { cpi->MVcount_hp[0][mv_max_hp + (x->partition_info->bmi[i].mv.as_mv.row - best_ref_mv->as_mv.row)]++; cpi->MVcount_hp[1][mv_max_hp + (x->partition_info->bmi[i].mv.as_mv.col - best_ref_mv->as_mv.col)]++; if (mbmi->second_ref_frame) { cpi->MVcount_hp[0][mv_max_hp + (x->partition_info->bmi[i].second_mv.as_mv.row - second_best_ref_mv->as_mv.row)]++; cpi->MVcount_hp[1][mv_max_hp + (x->partition_info->bmi[i].second_mv.as_mv.col - second_best_ref_mv->as_mv.col)]++; } } else { cpi->MVcount[0][mv_max + ((x->partition_info->bmi[i].mv.as_mv.row - best_ref_mv->as_mv.row) >> 1)]++; cpi->MVcount[1][mv_max + ((x->partition_info->bmi[i].mv.as_mv.col - best_ref_mv->as_mv.col) >> 1)]++; if (mbmi->second_ref_frame) { cpi->MVcount[0][mv_max + ((x->partition_info->bmi[i].second_mv.as_mv.row - second_best_ref_mv->as_mv.row) >> 1)]++; cpi->MVcount[1][mv_max + ((x->partition_info->bmi[i].second_mv.as_mv.col - second_best_ref_mv->as_mv.col) >> 1)]++; } } } } } else if (mbmi->mode == NEWMV) { if (x->e_mbd.allow_high_precision_mv) { cpi->MVcount_hp[0][mv_max_hp + (mbmi->mv[0].as_mv.row - best_ref_mv->as_mv.row)]++; cpi->MVcount_hp[1][mv_max_hp + (mbmi->mv[0].as_mv.col - best_ref_mv->as_mv.col)]++; if (mbmi->second_ref_frame) { cpi->MVcount_hp[0][mv_max_hp + (mbmi->mv[1].as_mv.row - second_best_ref_mv->as_mv.row)]++; cpi->MVcount_hp[1][mv_max_hp + (mbmi->mv[1].as_mv.col - second_best_ref_mv->as_mv.col)]++; } } else { cpi->MVcount[0][mv_max + ((mbmi->mv[0].as_mv.row - best_ref_mv->as_mv.row) >> 1)]++; cpi->MVcount[1][mv_max + ((mbmi->mv[0].as_mv.col - best_ref_mv->as_mv.col) >> 1)]++; if (mbmi->second_ref_frame) { cpi->MVcount[0][mv_max + ((mbmi->mv[1].as_mv.row - second_best_ref_mv->as_mv.row) >> 1)]++; cpi->MVcount[1][mv_max + ((mbmi->mv[1].as_mv.col - second_best_ref_mv->as_mv.col) >> 1)]++; } } } } static void set_i8x8_block_modes(MACROBLOCK *x, int modes[2][4]) { int i; MACROBLOCKD *xd = &x->e_mbd; for (i = 0; i < 4; i++) { int ib = vp8_i8x8_block[i]; xd->mode_info_context->bmi[ib + 0].as_mode.first = modes[0][i]; xd->mode_info_context->bmi[ib + 1].as_mode.first = modes[0][i]; xd->mode_info_context->bmi[ib + 4].as_mode.first = modes[0][i]; xd->mode_info_context->bmi[ib + 5].as_mode.first = modes[0][i]; #if CONFIG_COMP_INTRA_PRED xd->mode_info_context->bmi[ib + 0].as_mode.second = modes[1][i]; xd->mode_info_context->bmi[ib + 1].as_mode.second = modes[1][i]; xd->mode_info_context->bmi[ib + 4].as_mode.second = modes[1][i]; xd->mode_info_context->bmi[ib + 5].as_mode.second = modes[1][i]; #endif // printf("%d,%d,%d,%d %d,%d,%d,%d\n", // modes[0][0], modes[0][1], modes[0][2], modes[0][3], // modes[1][0], modes[1][1], modes[1][2], modes[1][3]); } for (i = 0; i < 16; i++) { xd->block[i].bmi = xd->mode_info_context->bmi[i]; } } extern void calc_ref_probs(int *count, vp8_prob *probs); static void estimate_curframe_refprobs(VP8_COMP *cpi, vp8_prob mod_refprobs[3], int pred_ref) { int norm_cnt[MAX_REF_FRAMES]; const int *const rfct = cpi->count_mb_ref_frame_usage; int intra_count = rfct[INTRA_FRAME]; int last_count = rfct[LAST_FRAME]; int gf_count = rfct[GOLDEN_FRAME]; int arf_count = rfct[ALTREF_FRAME]; // Work out modified reference frame probabilities to use where prediction // of the reference frame fails if (pred_ref == INTRA_FRAME) { norm_cnt[0] = 0; norm_cnt[1] = last_count; norm_cnt[2] = gf_count; norm_cnt[3] = arf_count; calc_ref_probs(norm_cnt, mod_refprobs); mod_refprobs[0] = 0; // This branch implicit } else if (pred_ref == LAST_FRAME) { norm_cnt[0] = intra_count; norm_cnt[1] = 0; norm_cnt[2] = gf_count; norm_cnt[3] = arf_count; calc_ref_probs(norm_cnt, mod_refprobs); mod_refprobs[1] = 0; // This branch implicit } else if (pred_ref == GOLDEN_FRAME) { norm_cnt[0] = intra_count; norm_cnt[1] = last_count; norm_cnt[2] = 0; norm_cnt[3] = arf_count; calc_ref_probs(norm_cnt, mod_refprobs); mod_refprobs[2] = 0; // This branch implicit } else { norm_cnt[0] = intra_count; norm_cnt[1] = last_count; norm_cnt[2] = gf_count; norm_cnt[3] = 0; calc_ref_probs(norm_cnt, mod_refprobs); mod_refprobs[2] = 0; // This branch implicit } } static __inline unsigned weighted_cost(vp8_prob *tab0, vp8_prob *tab1, int idx, int val, int weight) { unsigned cost0 = tab0[idx] ? vp8_cost_bit(tab0[idx], val) : 0; unsigned cost1 = tab1[idx] ? vp8_cost_bit(tab1[idx], val) : 0; // weight is 16-bit fixed point, so this basically calculates: // 0.5 + weight * cost1 + (1.0 - weight) * cost0 return (0x8000 + weight * cost1 + (0x10000 - weight) * cost0) >> 16; } static void vp8_estimate_ref_frame_costs(VP8_COMP *cpi, int segment_id, unsigned int *ref_costs) { VP8_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &cpi->mb.e_mbd; vp8_prob *mod_refprobs; unsigned int cost; int pred_ref; int pred_flag; int pred_ctx; int i; int tot_count; vp8_prob pred_prob, new_pred_prob; int seg_ref_active; int seg_ref_count = 0; seg_ref_active = segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { seg_ref_count = check_segref(xd, segment_id, INTRA_FRAME) + check_segref(xd, segment_id, LAST_FRAME) + check_segref(xd, segment_id, GOLDEN_FRAME) + check_segref(xd, segment_id, ALTREF_FRAME); } // Get the predicted reference for this mb pred_ref = get_pred_ref(cm, xd); // Get the context probability for the prediction flag (based on last frame) pred_prob = get_pred_prob(cm, xd, PRED_REF); // Predict probability for current frame based on stats so far pred_ctx = get_pred_context(cm, xd, PRED_REF); tot_count = cpi->ref_pred_count[pred_ctx][0] + cpi->ref_pred_count[pred_ctx][1]; if (tot_count) { new_pred_prob = (cpi->ref_pred_count[pred_ctx][0] * 255 + (tot_count >> 1)) / tot_count; new_pred_prob += !new_pred_prob; } else new_pred_prob = 128; // Get the set of probabilities to use if prediction fails mod_refprobs = cm->mod_refprobs[pred_ref]; // For each possible selected reference frame work out a cost. for (i = 0; i < MAX_REF_FRAMES; i++) { if (seg_ref_active && seg_ref_count == 1) { cost = 0; } else { pred_flag = (i == pred_ref); // Get the prediction for the current mb cost = weighted_cost(&pred_prob, &new_pred_prob, 0, pred_flag, cpi->seg0_progress); if (cost > 1024) cost = 768; // i.e. account for 4 bits max. // for incorrectly predicted cases if (! pred_flag) { vp8_prob curframe_mod_refprobs[3]; if (cpi->seg0_progress) { estimate_curframe_refprobs(cpi, curframe_mod_refprobs, pred_ref); } else { vpx_memset(curframe_mod_refprobs, 0, sizeof(curframe_mod_refprobs)); } cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 0, (i != INTRA_FRAME), cpi->seg0_progress); if (i != INTRA_FRAME) { cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 1, (i != LAST_FRAME), cpi->seg0_progress); if (i != LAST_FRAME) { cost += weighted_cost(mod_refprobs, curframe_mod_refprobs, 2, (i != GOLDEN_FRAME), cpi->seg0_progress); } } } } ref_costs[i] = cost; } } static void store_coding_context(MACROBLOCK *x, int mb_index, int mode_index, PARTITION_INFO *partition, int_mv *ref_mv, int_mv *second_ref_mv) { MACROBLOCKD *xd = &x->e_mbd; // Take a snapshot of the coding context so it can be // restored if we decide to encode this way x->mb_context[mb_index].best_mode_index = mode_index; vpx_memcpy(&x->mb_context[mb_index].mic, xd->mode_info_context, sizeof(MODE_INFO)); vpx_memcpy(&x->mb_context[mb_index].partition_info, partition, sizeof(PARTITION_INFO)); x->mb_context[mb_index].best_ref_mv.as_int = ref_mv->as_int; x->mb_context[mb_index].second_best_ref_mv.as_int = second_ref_mv->as_int; // x->mb_context[mb_index].rddiv = x->rddiv; // x->mb_context[mb_index].rdmult = x->rdmult; } static void inter_mode_cost(VP8_COMP *cpi, MACROBLOCK *x, int this_mode, int *rate2, int *distortion2, int *rate_y, int *distortion, int* rate_uv, int *distortion_uv) { // Y cost and distortion #if CONFIG_TX16X16 if (this_mode == ZEROMV || this_mode == NEARESTMV || this_mode == NEARMV || this_mode == NEWMV) macro_block_yrd_16x16(x, rate_y, distortion, IF_RTCD(&cpi->rtcd)); else { #endif if (cpi->common.txfm_mode == ALLOW_8X8) macro_block_yrd_8x8(x, rate_y, distortion, IF_RTCD(&cpi->rtcd)); else macro_block_yrd(x, rate_y, distortion, IF_RTCD(&cpi->rtcd)); #if CONFIG_TX16X16 } #endif *rate2 += *rate_y; *distortion2 += *distortion; // UV cost and distortion if (cpi->common.txfm_mode == ALLOW_8X8 #if CONFIG_TX16X16 || this_mode == ZEROMV || this_mode == NEARESTMV || this_mode == NEARMV || this_mode == NEWMV #endif ) rd_inter16x16_uv_8x8(cpi, x, rate_uv, distortion_uv, cpi->common.full_pixel); else rd_inter16x16_uv(cpi, x, rate_uv, distortion_uv, cpi->common.full_pixel); *rate2 += *rate_uv; *distortion2 += *distortion_uv; } #define MIN(x,y) (((x)<(y))?(x):(y)) #define MAX(x,y) (((x)>(y))?(x):(y)) void setup_buffer_inter(VP8_COMP *cpi, MACROBLOCK *x, int idx, int frame_type, int recon_yoffset, int recon_uvoffset, int_mv frame_nearest_mv[4], int_mv frame_near_mv[4], int_mv frame_best_ref_mv[4], #if CONFIG_NEWBESTREFMV int_mv ref_mv[MAX_REF_FRAMES], #endif int frame_mdcounts[4][4], unsigned char *y_buffer[4], unsigned char *u_buffer[4], unsigned char *v_buffer[4]) { YV12_BUFFER_CONFIG *yv12 = &cpi->common.yv12_fb[idx]; vp8_find_near_mvs(&x->e_mbd, x->e_mbd.mode_info_context, x->e_mbd.prev_mode_info_context, &frame_nearest_mv[frame_type], &frame_near_mv[frame_type], &frame_best_ref_mv[frame_type], frame_mdcounts[frame_type], frame_type, cpi->common.ref_frame_sign_bias); y_buffer[frame_type] = yv12->y_buffer + recon_yoffset; u_buffer[frame_type] = yv12->u_buffer + recon_uvoffset; v_buffer[frame_type] = yv12->v_buffer + recon_uvoffset; #if CONFIG_NEWBESTREFMV vp8_find_best_ref_mvs(&x->e_mbd, y_buffer[frame_type], yv12->y_stride, &frame_best_ref_mv[frame_type]); ref_mv[frame_type].as_int = frame_best_ref_mv[frame_type].as_int; #endif } void vp8_rd_pick_inter_mode(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset, int *returnrate, int *returndistortion, int64_t *returnintra) { VP8_COMMON *cm = &cpi->common; BLOCK *b = &x->block[0]; BLOCKD *d = &x->e_mbd.block[0]; MACROBLOCKD *xd = &x->e_mbd; union b_mode_info best_bmodes[16]; MB_MODE_INFO best_mbmode; PARTITION_INFO best_partition; int_mv best_ref_mv, second_best_ref_mv; MB_PREDICTION_MODE this_mode; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int i, best_mode_index = 0; int mode8x8[2][4]; unsigned char segment_id = mbmi->segment_id; int mode_index; int mdcounts[4]; int rate, distortion; int rate2, distortion2; int64_t best_pred_diff[NB_PREDICTION_TYPES]; int64_t best_pred_rd[NB_PREDICTION_TYPES]; int64_t best_rd = INT64_MAX, best_intra_rd = INT64_MAX; #if CONFIG_PRED_FILTER int64_t best_overall_rd = INT64_MAX; #endif int uv_intra_rate, uv_intra_distortion, uv_intra_rate_tokenonly; int uv_intra_skippable = 0; int uv_intra_rate_8x8 = 0, uv_intra_distortion_8x8 = 0, uv_intra_rate_tokenonly_8x8 = 0; int uv_intra_skippable_8x8 = 0; int rate_y, UNINITIALIZED_IS_SAFE(rate_uv); int distortion_uv; int64_t best_yrd = INT64_MAX; #if CONFIG_PRED_FILTER int best_filter_state; #endif #if CONFIG_NEWBESTREFMV int_mv ref_mv[MAX_REF_FRAMES] = {0}; #endif #if CONFIG_SWITCHABLE_INTERP int switchable_filter_index = 0; #endif MB_PREDICTION_MODE uv_intra_mode; MB_PREDICTION_MODE uv_intra_mode_8x8 = 0; int_mv mvp; int near_sadidx[8] = {0, 1, 2, 3, 4, 5, 6, 7}; int saddone = 0; int sr = 0; // search range got from mv_pred(). It uses step_param levels. (0-7) int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; int_mv frame_best_ref_mv[4]; int frame_mdcounts[4][4]; unsigned char *y_buffer[4], *u_buffer[4], *v_buffer[4]; unsigned int ref_costs[MAX_REF_FRAMES]; int_mv seg_mvs[BLOCK_MAX_SEGMENTS - 1][16 /* n_blocks */][MAX_REF_FRAMES - 1]; vpx_memset(&frame_mv, 0, sizeof(frame_mv)); vpx_memset(&best_mbmode, 0, sizeof(best_mbmode)); vpx_memset(&best_bmodes, 0, sizeof(best_bmodes)); vpx_memset(&x->mb_context[xd->mb_index], 0, sizeof(PICK_MODE_CONTEXT)); for (i = 0; i < MAX_REF_FRAMES; i++) frame_mv[NEWMV][i].as_int = INVALID_MV; for (i = 0; i < NB_PREDICTION_TYPES; ++i) best_pred_rd[i] = INT64_MAX; for (i = 0; i < BLOCK_MAX_SEGMENTS - 1; i++) { int j, k; for (j = 0; j < 16; j++) for (k = 0; k < MAX_REF_FRAMES - 1; k++) seg_mvs[i][j][k].as_int = INVALID_MV; } if (cpi->ref_frame_flags & VP8_LAST_FLAG) { setup_buffer_inter(cpi, x, cpi->common.lst_fb_idx, LAST_FRAME, recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV], frame_mv[NEARMV], frame_best_ref_mv, #if CONFIG_NEWBESTREFMV ref_mv, #endif frame_mdcounts, y_buffer, u_buffer, v_buffer); } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { setup_buffer_inter(cpi, x, cpi->common.gld_fb_idx, GOLDEN_FRAME, recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV], frame_mv[NEARMV], frame_best_ref_mv, #if CONFIG_NEWBESTREFMV ref_mv, #endif frame_mdcounts, y_buffer, u_buffer, v_buffer); } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { setup_buffer_inter(cpi, x, cpi->common.alt_fb_idx, ALTREF_FRAME, recon_yoffset, recon_uvoffset, frame_mv[NEARESTMV], frame_mv[NEARMV], frame_best_ref_mv, #if CONFIG_NEWBESTREFMV ref_mv, #endif frame_mdcounts, y_buffer, u_buffer, v_buffer); } *returnintra = INT64_MAX; x->skip = 0; mbmi->ref_frame = INTRA_FRAME; /* Initialize zbin mode boost for uv costing */ cpi->zbin_mode_boost = 0; vp8_update_zbin_extra(cpi, x); rd_pick_intra_mbuv_mode(cpi, x, &uv_intra_rate, &uv_intra_rate_tokenonly, &uv_intra_distortion); uv_intra_mode = mbmi->uv_mode; uv_intra_skippable = mbuv_is_skippable(&x->e_mbd); /* rough estimate for now */ if (cpi->common.txfm_mode == ALLOW_8X8) { rd_pick_intra_mbuv_mode_8x8(cpi, x, &uv_intra_rate_8x8, &uv_intra_rate_tokenonly_8x8, &uv_intra_distortion_8x8); uv_intra_mode_8x8 = mbmi->uv_mode; uv_intra_skippable_8x8 = mbuv_is_skippable_8x8(&x->e_mbd); } // Get estimates of reference frame costs for each reference frame // that depend on the current prediction etc. vp8_estimate_ref_frame_costs(cpi, segment_id, ref_costs); #if CONFIG_SWITCHABLE_INTERP for (mode_index = 0; mode_index < MAX_MODES; mode_index += (!switchable_filter_index)) { #else for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { #endif int64_t this_rd = INT64_MAX; int is_comp_pred; int disable_skip = 0; int other_cost = 0; int compmode_cost = 0; int mode_excluded = 0; // These variables hold are rolling total cost and distortion for this mode rate2 = 0; distortion2 = 0; rate_y = 0; rate_uv = 0; this_mode = vp8_mode_order[mode_index].mode; mbmi->mode = this_mode; mbmi->uv_mode = DC_PRED; mbmi->ref_frame = vp8_mode_order[mode_index].ref_frame; mbmi->second_ref_frame = vp8_mode_order[mode_index].second_ref_frame; is_comp_pred = x->e_mbd.mode_info_context->mbmi.second_ref_frame != 0; #if CONFIG_NEWBESTREFMV mbmi->ref_mv = ref_mv[mbmi->ref_frame]; mbmi->second_ref_mv = ref_mv[mbmi->second_ref_frame]; #endif #if CONFIG_PRED_FILTER mbmi->pred_filter_enabled = 0; #endif #if CONFIG_SWITCHABLE_INTERP if (cpi->common.mcomp_filter_type == SWITCHABLE && this_mode >= NEARESTMV && this_mode <= SPLITMV) { mbmi->interp_filter = vp8_switchable_interp[switchable_filter_index++]; if (switchable_filter_index == VP8_SWITCHABLE_FILTERS) switchable_filter_index = 0; //printf("Searching %d (%d)\n", this_mode, switchable_filter_index); } else { mbmi->interp_filter = cpi->common.mcomp_filter_type; } vp8_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); #endif // Test best rd so far against threshold for trying this mode. if (best_rd <= cpi->rd_threshes[mode_index]) continue; // current coding mode under rate-distortion optimization test loop #if CONFIG_HYBRIDTRANSFORM mbmi->mode_rdopt = this_mode; #endif #if CONFIG_COMP_INTRA_PRED mbmi->second_mode = (MB_PREDICTION_MODE)(DC_PRED - 1); mbmi->second_uv_mode = (MB_PREDICTION_MODE)(DC_PRED - 1); #endif // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) && !check_segref(xd, segment_id, mbmi->ref_frame)) { continue; } // If the segment mode feature is enabled.... // then do nothing if the current mode is not allowed.. else if (segfeature_active(xd, segment_id, SEG_LVL_MODE) && (this_mode != get_segdata(xd, segment_id, SEG_LVL_MODE))) { continue; } // Disable this drop out case if either the mode or ref frame // segment level feature is enabled for this segment. This is to // prevent the possibility that the we end up unable to pick any mode. else if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) && !segfeature_active(xd, segment_id, SEG_LVL_MODE)) { // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { if (this_mode != ZEROMV || mbmi->ref_frame != ALTREF_FRAME) { continue; } } } /* everything but intra */ if (mbmi->ref_frame) { int ref = mbmi->ref_frame; x->e_mbd.pre.y_buffer = y_buffer[ref]; x->e_mbd.pre.u_buffer = u_buffer[ref]; x->e_mbd.pre.v_buffer = v_buffer[ref]; best_ref_mv = frame_best_ref_mv[ref]; vpx_memcpy(mdcounts, frame_mdcounts[ref], sizeof(mdcounts)); } if (mbmi->second_ref_frame) { int ref = mbmi->second_ref_frame; x->e_mbd.second_pre.y_buffer = y_buffer[ref]; x->e_mbd.second_pre.u_buffer = u_buffer[ref]; x->e_mbd.second_pre.v_buffer = v_buffer[ref]; second_best_ref_mv = frame_best_ref_mv[ref]; } // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to suppress noise if (cpi->zbin_mode_boost_enabled) { if (vp8_mode_order[mode_index].ref_frame == INTRA_FRAME) cpi->zbin_mode_boost = 0; else { if (vp8_mode_order[mode_index].mode == ZEROMV) { if (vp8_mode_order[mode_index].ref_frame != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (vp8_mode_order[mode_index].mode == SPLITMV) cpi->zbin_mode_boost = 0; else cpi->zbin_mode_boost = MV_ZBIN_BOOST; } vp8_update_zbin_extra(cpi, x); } // Intra if (!mbmi->ref_frame) { switch (this_mode) { default: case DC_PRED: case V_PRED: case H_PRED: case TM_PRED: case D45_PRED: case D135_PRED: case D117_PRED: case D153_PRED: case D27_PRED: case D63_PRED: mbmi->ref_frame = INTRA_FRAME; // FIXME compound intra prediction RECON_INVOKE(&cpi->common.rtcd.recon, build_intra_predictors_mby) (&x->e_mbd); #if CONFIG_TX16X16 // FIXME: breaks lossless since 4x4 isn't allowed macro_block_yrd_16x16(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd)); rate2 += rate_y; distortion2 += distortion; rate2 += x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode]; rate2 += uv_intra_rate_8x8; rate_uv = uv_intra_rate_tokenonly_8x8; distortion2 += uv_intra_distortion_8x8; distortion_uv = uv_intra_distortion_8x8; break; #else if (cpi->common.txfm_mode == ALLOW_8X8) macro_block_yrd_8x8(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd)); else macro_block_yrd(x, &rate_y, &distortion, IF_RTCD(&cpi->rtcd)); rate2 += rate_y; distortion2 += distortion; rate2 += x->mbmode_cost[x->e_mbd.frame_type][mbmi->mode]; if (cpi->common.txfm_mode == ALLOW_8X8) { rate2 += uv_intra_rate_8x8; rate_uv = uv_intra_rate_tokenonly_8x8; distortion2 += uv_intra_distortion_8x8; distortion_uv = uv_intra_distortion_8x8; } else { rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; distortion_uv = uv_intra_distortion; } break; #endif case B_PRED: { int64_t tmp_rd; // Note the rate value returned here includes the cost of coding // the BPRED mode : x->mbmode_cost[x->e_mbd.frame_type][BPRED]; tmp_rd = rd_pick_intra4x4mby_modes(cpi, x, &rate, &rate_y, &distortion, best_yrd, #if CONFIG_COMP_INTRA_PRED 0, #endif 0); rate2 += rate; distortion2 += distortion; if (tmp_rd < best_yrd) { rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; distortion_uv = uv_intra_distortion; } else { this_rd = INT64_MAX; disable_skip = 1; } } break; case I8X8_PRED: { int64_t tmp_rd; tmp_rd = rd_pick_intra8x8mby_modes(cpi, x, &rate, &rate_y, &distortion, best_yrd); rate2 += rate; distortion2 += distortion; mode8x8[0][0] = x->e_mbd.mode_info_context->bmi[0].as_mode.first; mode8x8[0][1] = x->e_mbd.mode_info_context->bmi[2].as_mode.first; mode8x8[0][2] = x->e_mbd.mode_info_context->bmi[8].as_mode.first; mode8x8[0][3] = x->e_mbd.mode_info_context->bmi[10].as_mode.first; #if CONFIG_COMP_INTRA_PRED mode8x8[1][0] = x->e_mbd.mode_info_context->bmi[0].as_mode.second; mode8x8[1][1] = x->e_mbd.mode_info_context->bmi[2].as_mode.second; mode8x8[1][2] = x->e_mbd.mode_info_context->bmi[8].as_mode.second; mode8x8[1][3] = x->e_mbd.mode_info_context->bmi[10].as_mode.second; #endif /* TODO: uv rate maybe over-estimated here since there is UV intra mode coded in I8X8_PRED prediction */ if (tmp_rd < best_yrd) { rate2 += uv_intra_rate; rate_uv = uv_intra_rate_tokenonly; distortion2 += uv_intra_distortion; distortion_uv = uv_intra_distortion; } else { this_rd = INT64_MAX; disable_skip = 1; } } break; } } // Split MV. The code is very different from the other inter modes so // special case it. else if (this_mode == SPLITMV) { int64_t tmp_rd, this_rd_thresh; int_mv *second_ref = is_comp_pred ? &second_best_ref_mv : NULL; this_rd_thresh = (mbmi->ref_frame == LAST_FRAME) ? cpi->rd_threshes[THR_NEWMV] : cpi->rd_threshes[THR_NEWA]; this_rd_thresh = (mbmi->ref_frame == GOLDEN_FRAME) ? cpi->rd_threshes[THR_NEWG] : this_rd_thresh; tmp_rd = vp8_rd_pick_best_mbsegmentation(cpi, x, &best_ref_mv, second_ref, best_yrd, mdcounts, &rate, &rate_y, &distortion, this_rd_thresh, seg_mvs); rate2 += rate; distortion2 += distortion; #if CONFIG_SWITCHABLE_INTERP if (cpi->common.mcomp_filter_type == SWITCHABLE) rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs [get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)] [vp8_switchable_interp_map[mbmi->interp_filter]]; #endif // If even the 'Y' rd value of split is higher than best so far // then dont bother looking at UV if (tmp_rd < best_yrd) { rd_inter4x4_uv(cpi, x, &rate_uv, &distortion_uv, cpi->common.full_pixel); rate2 += rate_uv; distortion2 += distortion_uv; } else { this_rd = INT64_MAX; disable_skip = 1; } if (is_comp_pred) mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY; else mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY; compmode_cost = vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP), is_comp_pred); mbmi->mode = this_mode; } else { const int num_refs = is_comp_pred ? 2 : 1; int flag; int refs[2] = {x->e_mbd.mode_info_context->mbmi.ref_frame, x->e_mbd.mode_info_context->mbmi.second_ref_frame}; int_mv cur_mv[2]; switch (this_mode) { case NEWMV: if (is_comp_pred) { if (frame_mv[NEWMV][refs[0]].as_int == INVALID_MV || frame_mv[NEWMV][refs[1]].as_int == INVALID_MV) continue; rate2 += vp8_mv_bit_cost(&frame_mv[NEWMV][refs[0]], &frame_best_ref_mv[refs[0]], XMVCOST, 96, x->e_mbd.allow_high_precision_mv); rate2 += vp8_mv_bit_cost(&frame_mv[NEWMV][refs[1]], &frame_best_ref_mv[refs[1]], XMVCOST, 96, x->e_mbd.allow_high_precision_mv); } else { int bestsme = INT_MAX; int further_steps, step_param = cpi->sf.first_step; int sadpb = x->sadperbit16; int_mv mvp_full, tmp_mv; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; vp8_clamp_mv_min_max(x, &best_ref_mv); if (!saddone) { vp8_cal_sad(cpi, xd, x, recon_yoffset, &near_sadidx[0]); saddone = 1; } vp8_mv_pred(cpi, &x->e_mbd, x->e_mbd.mode_info_context, &mvp, mbmi->ref_frame, cpi->common.ref_frame_sign_bias, &sr, &near_sadidx[0]); mvp_full.as_mv.col = mvp.as_mv.col >> 3; mvp_full.as_mv.row = mvp.as_mv.row >> 3; // adjust search range according to sr from mv prediction step_param = MAX(step_param, sr); // Further step/diamond searches as necessary further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; bestsme = vp8_full_pixel_diamond(cpi, x, b, d, &mvp_full, step_param, sadpb, further_steps, 1, &cpi->fn_ptr[BLOCK_16X16], &best_ref_mv, &tmp_mv); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; /* TODO: use dis in distortion calculation later. */ unsigned int sse; cpi->find_fractional_mv_step(x, b, d, &tmp_mv, &best_ref_mv, x->errorperbit, &cpi->fn_ptr[BLOCK_16X16], XMVCOST, &dis, &sse); } d->bmi.as_mv.first.as_int = tmp_mv.as_int; frame_mv[NEWMV][refs[0]].as_int = d->bmi.as_mv.first.as_int; // Add the new motion vector cost to our rolling cost variable rate2 += vp8_mv_bit_cost(&tmp_mv, &best_ref_mv, XMVCOST, 96, x->e_mbd.allow_high_precision_mv); } break; case NEARESTMV: case NEARMV: flag = 0; // Do not bother proceeding if the vector (from newmv, nearest or // near) is 0,0 as this should then be coded using the zeromv mode. for (i = 0; i < num_refs; ++i) if (frame_mv[this_mode][refs[i]].as_int == 0) flag = 1; if (flag) continue; case ZEROMV: default: break; } flag = 0; for (i = 0; i < num_refs; ++i) { cur_mv[i] = frame_mv[this_mode][refs[i]]; // Clip "next_nearest" so that it does not extend to far out of image vp8_clamp_mv2(&cur_mv[i], xd); if (mv_check_bounds(x, &cur_mv[i])) flag = 1; mv_check_bounds(x, &cur_mv[i]); x->e_mbd.mode_info_context->mbmi.mv[i].as_int = cur_mv[i].as_int; } if (flag) continue; #if CONFIG_PRED_FILTER // Filtered prediction: xd->mode_info_context->mbmi.pred_filter_enabled = vp8_mode_order[mode_index].pred_filter_flag; rate2 += vp8_cost_bit(cpi->common.prob_pred_filter_off, xd->mode_info_context->mbmi.pred_filter_enabled); #endif #if CONFIG_SWITCHABLE_INTERP if (cpi->common.mcomp_filter_type == SWITCHABLE) rate2 += SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs [get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)] [vp8_switchable_interp_map[ x->e_mbd.mode_info_context->mbmi.interp_filter]]; #endif /* We don't include the cost of the second reference here, because there are only * three options: Last/Golden, ARF/Last or Golden/ARF, or in other words if you * present them in that order, the second one is always known if the first is known */ compmode_cost = vp8_cost_bit(get_pred_prob(cm, xd, PRED_COMP), is_comp_pred); rate2 += vp8_cost_mv_ref(cpi, this_mode, mdcounts); vp8_build_1st_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor, 16); if (is_comp_pred) vp8_build_2nd_inter16x16_predictors_mby(&x->e_mbd, x->e_mbd.predictor, 16); if (cpi->active_map_enabled && x->active_ptr[0] == 0) x->skip = 1; else if (x->encode_breakout) { unsigned int sse, var; int threshold = (xd->block[0].dequant[1] * xd->block[0].dequant[1] >> 4); if (threshold < x->encode_breakout) threshold = x->encode_breakout; var = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16) (*(b->base_src), b->src_stride, x->e_mbd.predictor, 16, &sse); if (sse < threshold) { unsigned int q2dc = xd->block[24].dequant[0]; /* If there is no codeable 2nd order dc or a very small uniform pixel change change */ if ((sse - var < q2dc *q2dc >> 4) || (sse / 2 > var && sse - var < 64)) { // Check u and v to make sure skip is ok int sse2 = VP8_UVSSE(x, IF_RTCD(&cpi->rtcd.variance)); if (sse2 * 2 < threshold) { x->skip = 1; distortion2 = sse + sse2; rate2 = 500; /* for best_yrd calculation */ rate_uv = 0; distortion_uv = sse2; disable_skip = 1; this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); break; } } } } vp8_build_1st_inter16x16_predictors_mbuv(&x->e_mbd, &xd->predictor[256], &xd->predictor[320], 8); if (is_comp_pred) vp8_build_2nd_inter16x16_predictors_mbuv(&x->e_mbd, &xd->predictor[256], &xd->predictor[320], 8); inter_mode_cost(cpi, x, this_mode, &rate2, &distortion2, &rate_y, &distortion, &rate_uv, &distortion_uv); if (is_comp_pred) mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY; else mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY; } if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) rate2 += compmode_cost; // Estimate the reference frame signaling cost and add it // to the rolling cost variable. rate2 += ref_costs[mbmi->ref_frame]; if (!disable_skip) { // Test for the condition where skip block will be activated // because there are no non zero coefficients and make any // necessary adjustment for rate. Ignore if skip is coded at // segment level as the cost wont have been added in. if (cpi->common.mb_no_coeff_skip) { int mb_skippable; int mb_skip_allowed; int has_y2 = (this_mode != SPLITMV && this_mode != B_PRED && this_mode != I8X8_PRED); #if CONFIGURE_TX16X16 if (this_mode <= TM_PRED || this_mode == NEWMV || this_mode == ZEROMV || this_mode == NEARESTMV || this_mode == NEARMV) mb_skippable = mb_is_skippable_16x16(&x->e_mbd); else #endif if ((cpi->common.txfm_mode == ALLOW_8X8) && has_y2) { if (mbmi->ref_frame != INTRA_FRAME) mb_skippable = mb_is_skippable_8x8(&x->e_mbd); else mb_skippable = uv_intra_skippable_8x8 & mby_is_skippable_8x8(&x->e_mbd); } else { if (mbmi->ref_frame != INTRA_FRAME) mb_skippable = mb_is_skippable(&x->e_mbd, has_y2); else mb_skippable = uv_intra_skippable & mby_is_skippable(&x->e_mbd, has_y2); } // Is Mb level skip allowed for this mb. mb_skip_allowed = !segfeature_active(xd, segment_id, SEG_LVL_EOB) || get_segdata(xd, segment_id, SEG_LVL_EOB); if (mb_skippable) { // Back out the coefficient coding costs rate2 -= (rate_y + rate_uv); // for best_yrd calculation rate_uv = 0; if (mb_skip_allowed) { int prob_skip_cost; // Cost the skip mb case vp8_prob skip_prob = get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP); if (skip_prob) { prob_skip_cost = vp8_cost_bit(skip_prob, 1); rate2 += prob_skip_cost; other_cost += prob_skip_cost; } } } // Add in the cost of the no skip flag. else if (mb_skip_allowed) { int prob_skip_cost = vp8_cost_bit( get_pred_prob(cm, &x->e_mbd, PRED_MBSKIP), 0); rate2 += prob_skip_cost; other_cost += prob_skip_cost; } } // Calculate the final RD estimate for this mode. this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); } // Keep record of best intra distortion if ((mbmi->ref_frame == INTRA_FRAME) && (this_rd < best_intra_rd)) { best_intra_rd = this_rd; *returnintra = distortion2; } if (!disable_skip && mbmi->ref_frame == INTRA_FRAME) for (i = 0; i < NB_PREDICTION_TYPES; ++i) best_pred_rd[i] = MIN(best_pred_rd[i], this_rd); #if CONFIG_PRED_FILTER // Keep track of the best mode irrespective of prediction filter state if (this_rd < best_overall_rd) { best_overall_rd = this_rd; best_filter_state = mbmi->pred_filter_enabled; } // Ignore modes where the prediction filter state doesn't // match the state signaled at the frame level if ((cm->pred_filter_mode == 2) || (cm->pred_filter_mode == mbmi->pred_filter_enabled)) { #endif // Did this mode help.. i.e. is it the new best mode if (this_rd < best_rd || x->skip) { if (!mode_excluded) { // Note index of best mode so far best_mode_index = mode_index; if (this_mode <= B_PRED) { if (cpi->common.txfm_mode == ALLOW_8X8 && this_mode != B_PRED && this_mode != I8X8_PRED) mbmi->uv_mode = uv_intra_mode_8x8; else mbmi->uv_mode = uv_intra_mode; /* required for left and above block mv */ mbmi->mv[0].as_int = 0; } other_cost += ref_costs[mbmi->ref_frame]; /* Calculate the final y RD estimate for this mode */ best_yrd = RDCOST(x->rdmult, x->rddiv, (rate2 - rate_uv - other_cost), (distortion2 - distortion_uv)); *returnrate = rate2; *returndistortion = distortion2; best_rd = this_rd; vpx_memcpy(&best_mbmode, mbmi, sizeof(MB_MODE_INFO)); vpx_memcpy(&best_partition, x->partition_info, sizeof(PARTITION_INFO)); if ((this_mode == B_PRED) || (this_mode == I8X8_PRED) || (this_mode == SPLITMV)) for (i = 0; i < 16; i++) { best_bmodes[i] = x->e_mbd.block[i].bmi; } } // Testing this mode gave rise to an improvement in best error score. // Lower threshold a bit for next time cpi->rd_thresh_mult[mode_index] = (cpi->rd_thresh_mult[mode_index] >= (MIN_THRESHMULT + 2)) ? cpi->rd_thresh_mult[mode_index] - 2 : MIN_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } // If the mode did not help improve the best error case then raise the // threshold for testing that mode next time around. else { cpi->rd_thresh_mult[mode_index] += 4; if (cpi->rd_thresh_mult[mode_index] > MAX_THRESHMULT) cpi->rd_thresh_mult[mode_index] = MAX_THRESHMULT; cpi->rd_threshes[mode_index] = (cpi->rd_baseline_thresh[mode_index] >> 7) * cpi->rd_thresh_mult[mode_index]; } /* keep record of best compound/single-only prediction */ if (!disable_skip && mbmi->ref_frame != INTRA_FRAME) { int64_t single_rd, hybrid_rd; int single_rate, hybrid_rate; if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { single_rate = rate2 - compmode_cost; hybrid_rate = rate2; } else { single_rate = rate2; hybrid_rate = rate2 + compmode_cost; } single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); if (mbmi->second_ref_frame == INTRA_FRAME && single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) { best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd; } else if (mbmi->second_ref_frame != INTRA_FRAME && single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) { best_pred_rd[COMP_PREDICTION_ONLY] = single_rd; } if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION]) best_pred_rd[HYBRID_PREDICTION] = hybrid_rd; } #if CONFIG_PRED_FILTER } #endif if (x->skip) break; } #if CONFIG_PRED_FILTER // Update counts for prediction filter usage if (best_filter_state != 0) ++cpi->pred_filter_on_count; else ++cpi->pred_filter_off_count; #endif #if CONFIG_SWITCHABLE_INTERP if (cpi->common.mcomp_filter_type == SWITCHABLE && best_mbmode.mode >= NEARESTMV && best_mbmode.mode <= SPLITMV) { ++cpi->switchable_interp_count [get_pred_context(&cpi->common, xd, PRED_SWITCHABLE_INTERP)] [vp8_switchable_interp_map[best_mbmode.interp_filter]]; } #endif // Reduce the activation RD thresholds for the best choice mode if ((cpi->rd_baseline_thresh[best_mode_index] > 0) && (cpi->rd_baseline_thresh[best_mode_index] < (INT_MAX >> 2))) { int best_adjustment = (cpi->rd_thresh_mult[best_mode_index] >> 2); cpi->rd_thresh_mult[best_mode_index] = (cpi->rd_thresh_mult[best_mode_index] >= (MIN_THRESHMULT + best_adjustment)) ? cpi->rd_thresh_mult[best_mode_index] - best_adjustment : MIN_THRESHMULT; cpi->rd_threshes[best_mode_index] = (cpi->rd_baseline_thresh[best_mode_index] >> 7) * cpi->rd_thresh_mult[best_mode_index]; } // This code force Altref,0,0 and skip for the frame that overlays a // an alrtef unless Altref is filtered. However, this is unsafe if // segment level coding of ref frame or mode is enabled for this // segment. if (!segfeature_active(xd, segment_id, SEG_LVL_REF_FRAME) && !segfeature_active(xd, segment_id, SEG_LVL_MODE) && cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0) && (best_mbmode.mode != ZEROMV || best_mbmode.ref_frame != ALTREF_FRAME)) { mbmi->mode = ZEROMV; mbmi->ref_frame = ALTREF_FRAME; mbmi->mv[0].as_int = 0; mbmi->uv_mode = DC_PRED; mbmi->mb_skip_coeff = (cpi->common.mb_no_coeff_skip) ? 1 : 0; mbmi->partitioning = 0; vpx_memset(best_pred_diff, 0, sizeof(best_pred_diff)); goto end; } // macroblock modes vpx_memcpy(mbmi, &best_mbmode, sizeof(MB_MODE_INFO)); #if CONFIG_NEWBESTREFMV mbmi->ref_mv = ref_mv[best_mbmode.ref_frame]; mbmi->second_ref_mv = ref_mv[best_mbmode.second_ref_frame]; #endif if (best_mbmode.mode == B_PRED) { for (i = 0; i < 16; i++) { xd->mode_info_context->bmi[i].as_mode = best_bmodes[i].as_mode; xd->block[i].bmi.as_mode = xd->mode_info_context->bmi[i].as_mode; } } if (best_mbmode.mode == I8X8_PRED) set_i8x8_block_modes(x, mode8x8); if (best_mbmode.mode == SPLITMV) { for (i = 0; i < 16; i++) xd->mode_info_context->bmi[i].as_mv.first.as_int = best_bmodes[i].as_mv.first.as_int; if (mbmi->second_ref_frame) for (i = 0; i < 16; i++) xd->mode_info_context->bmi[i].as_mv.second.as_int = best_bmodes[i].as_mv.second.as_int; vpx_memcpy(x->partition_info, &best_partition, sizeof(PARTITION_INFO)); mbmi->mv[0].as_int = x->partition_info->bmi[15].mv.as_int; mbmi->mv[1].as_int = x->partition_info->bmi[15].second_mv.as_int; } for (i = 0; i < NB_PREDICTION_TYPES; ++i) { if (best_pred_rd[i] == INT64_MAX) best_pred_diff[i] = INT_MIN; else best_pred_diff[i] = best_rd - best_pred_rd[i]; } end: // TODO Save these to add in only if MB coding mode is selected? for (i = 0; i < NB_PREDICTION_TYPES; ++i) cpi->rd_comp_pred_diff[i] += best_pred_diff[i]; store_coding_context(x, xd->mb_index, best_mode_index, &best_partition, &frame_best_ref_mv[mbmi->ref_frame], &frame_best_ref_mv[mbmi->second_ref_frame]); } int vp8_rd_pick_intra_mode(VP8_COMP *cpi, MACROBLOCK *x) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int64_t error4x4, error16x16; #if CONFIG_COMP_INTRA_PRED int64_t error4x4d; int rate4x4d, dist4x4d; #endif int rate4x4, rate16x16 = 0, rateuv; int dist4x4, dist16x16, distuv; int rate; int rate4x4_tokenonly = 0; int rate16x16_tokenonly = 0; int rateuv_tokenonly = 0; int64_t error8x8; int rate8x8_tokenonly=0; int rate8x8, dist8x8; int mode16x16; int mode8x8[2][4]; mbmi->ref_frame = INTRA_FRAME; rd_pick_intra_mbuv_mode(cpi, x, &rateuv, &rateuv_tokenonly, &distuv); rate = rateuv; // current macroblock under rate-distortion optimization test loop #if CONFIG_HYBRIDTRANSFORM mbmi->mode_rdopt = DC_PRED; #endif error16x16 = rd_pick_intra16x16mby_mode(cpi, x, &rate16x16, &rate16x16_tokenonly, &dist16x16); mode16x16 = mbmi->mode; #if CONFIG_HYBRIDTRANSFORM mbmi->mode_rdopt = I8X8_PRED; #endif error8x8 = rd_pick_intra8x8mby_modes(cpi, x, &rate8x8, &rate8x8_tokenonly, &dist8x8, error16x16); mode8x8[0][0]= xd->mode_info_context->bmi[0].as_mode.first; mode8x8[0][1]= xd->mode_info_context->bmi[2].as_mode.first; mode8x8[0][2]= xd->mode_info_context->bmi[8].as_mode.first; mode8x8[0][3]= xd->mode_info_context->bmi[10].as_mode.first; #if CONFIG_COMP_INTRA_PRED mode8x8[1][0] = xd->mode_info_context->bmi[0].as_mode.second; mode8x8[1][1] = xd->mode_info_context->bmi[2].as_mode.second; mode8x8[1][2] = xd->mode_info_context->bmi[8].as_mode.second; mode8x8[1][3] = xd->mode_info_context->bmi[10].as_mode.second; #endif #if CONFIG_HYBRIDTRANSFORM mbmi->mode_rdopt = B_PRED; #endif error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4, error16x16, #if CONFIG_COMP_INTRA_PRED 0, #endif 0); #if CONFIG_COMP_INTRA_PRED error4x4d = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4d, &rate4x4_tokenonly, &dist4x4d, error16x16, 1, 0); #endif if (error8x8 > error16x16) { if (error4x4 < error16x16) { #if CONFIG_COMP_INTRA_PRED rate += (error4x4d < error4x4) ? rate4x4d : rate4x4; if (error4x4d >= error4x4) // FIXME save original modes etc. error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4, error16x16, 0, cpi->update_context); #else rate += rate4x4; #endif mbmi->mode = B_PRED; } else { mbmi->mode = mode16x16; rate += rate16x16; } } else { if (error4x4 < error8x8) { #if CONFIG_COMP_INTRA_PRED rate += (error4x4d < error4x4) ? rate4x4d : rate4x4; if (error4x4d >= error4x4) // FIXME save original modes etc. error4x4 = rd_pick_intra4x4mby_modes(cpi, x, &rate4x4, &rate4x4_tokenonly, &dist4x4, error16x16, 0, cpi->update_context); #else rate += rate4x4; #endif mbmi->mode = B_PRED; } else { mbmi->mode = I8X8_PRED; set_i8x8_block_modes(x, mode8x8); rate += rate8x8; } } return rate; } int vp8cx_pick_mode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, int recon_yoffset, int recon_uvoffset) { VP8_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO * mbmi = &x->e_mbd.mode_info_context->mbmi; int rate, distortion; int64_t intra_error = 0; unsigned char *segment_id = &mbmi->segment_id; if (xd->segmentation_enabled) x->encode_breakout = cpi->segment_encode_breakout[*segment_id]; else x->encode_breakout = cpi->oxcf.encode_breakout; // if (cpi->sf.RD) // For now this codebase is limited to a single rd encode path { int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled; vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); if (mbmi->ref_frame) { unsigned char pred_context; pred_context = get_pred_context(cm, xd, PRED_COMP); if (mbmi->second_ref_frame == INTRA_FRAME) cpi->single_pred_count[pred_context]++; else cpi->comp_pred_count[pred_context]++; } /* restore cpi->zbin_mode_boost_enabled */ cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled; } // else // The non rd encode path has been deleted from this code base // to simplify development // vp8_pick_inter_mode // Store metrics so they can be added in to totals if this mode is picked x->mb_context[xd->mb_index].distortion = distortion; x->mb_context[xd->mb_index].intra_error = intra_error; return rate; }