/* * Copyright (c) 2014 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/encoder/vp9_encoder.h" #include "vp9/encoder/vp9_svc_layercontext.h" #include "vp9/encoder/vp9_extend.h" void vp9_init_layer_context(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; int layer; int layer_end; svc->spatial_layer_id = 0; svc->temporal_layer_id = 0; if (svc->number_temporal_layers > 1) { layer_end = svc->number_temporal_layers; } else { layer_end = svc->number_spatial_layers; } for (layer = 0; layer < layer_end; ++layer) { LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; int i; lc->current_video_frame_in_layer = 0; lrc->avg_frame_qindex[INTER_FRAME] = oxcf->worst_allowed_q; lrc->ni_av_qi = oxcf->worst_allowed_q; lrc->total_actual_bits = 0; lrc->total_target_vs_actual = 0; lrc->ni_tot_qi = 0; lrc->tot_q = 0.0; lrc->avg_q = 0.0; lrc->ni_frames = 0; lrc->decimation_count = 0; lrc->decimation_factor = 0; for (i = 0; i < RATE_FACTOR_LEVELS; ++i) { lrc->rate_correction_factors[i] = 1.0; } if (svc->number_temporal_layers > 1) { lc->target_bandwidth = oxcf->ts_target_bitrate[layer]; lrc->last_q[INTER_FRAME] = oxcf->worst_allowed_q; } else { lc->target_bandwidth = oxcf->ss_target_bitrate[layer]; lrc->last_q[KEY_FRAME] = oxcf->best_allowed_q; lrc->last_q[INTER_FRAME] = oxcf->best_allowed_q; } lrc->buffer_level = vp9_rescale((int)(oxcf->starting_buffer_level_ms), lc->target_bandwidth, 1000); lrc->bits_off_target = lrc->buffer_level; } } // Update the layer context from a change_config() call. void vp9_update_layer_context_change_config(VP9_COMP *const cpi, const int target_bandwidth) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; const RATE_CONTROL *const rc = &cpi->rc; int layer; int layer_end; float bitrate_alloc = 1.0; if (svc->number_temporal_layers > 1) { layer_end = svc->number_temporal_layers; } else { layer_end = svc->number_spatial_layers; } for (layer = 0; layer < layer_end; ++layer) { LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; if (svc->number_temporal_layers > 1) { lc->target_bandwidth = oxcf->ts_target_bitrate[layer]; } else { lc->target_bandwidth = oxcf->ss_target_bitrate[layer]; } bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; // Update buffer-related quantities. lrc->starting_buffer_level = (int64_t)(rc->starting_buffer_level * bitrate_alloc); lrc->optimal_buffer_level = (int64_t)(rc->optimal_buffer_level * bitrate_alloc); lrc->maximum_buffer_size = (int64_t)(rc->maximum_buffer_size * bitrate_alloc); lrc->bits_off_target = MIN(lrc->bits_off_target, lrc->maximum_buffer_size); lrc->buffer_level = MIN(lrc->buffer_level, lrc->maximum_buffer_size); // Update framerate-related quantities. if (svc->number_temporal_layers > 1) { lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer]; } else { lc->framerate = oxcf->framerate; } lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; // Update qp-related quantities. lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } } static LAYER_CONTEXT *get_layer_context(SVC *svc) { return svc->number_temporal_layers > 1 ? &svc->layer_context[svc->temporal_layer_id] : &svc->layer_context[svc->spatial_layer_id]; } void vp9_update_temporal_layer_framerate(VP9_COMP *const cpi) { SVC *const svc = &cpi->svc; const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(svc); RATE_CONTROL *const lrc = &lc->rc; const int layer = svc->temporal_layer_id; lc->framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer]; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; // Update the average layer frame size (non-cumulative per-frame-bw). if (layer == 0) { lc->avg_frame_size = lrc->avg_frame_bandwidth; } else { const double prev_layer_framerate = oxcf->framerate / oxcf->ts_rate_decimator[layer - 1]; const int prev_layer_target_bandwidth = oxcf->ts_target_bitrate[layer - 1]; lc->avg_frame_size = (int)((lc->target_bandwidth - prev_layer_target_bandwidth) / (lc->framerate - prev_layer_framerate)); } } void vp9_update_spatial_layer_framerate(VP9_COMP *const cpi, double framerate) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc); RATE_CONTROL *const lrc = &lc->rc; lc->framerate = framerate; lrc->avg_frame_bandwidth = (int)(lc->target_bandwidth / lc->framerate); lrc->min_frame_bandwidth = (int)(lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmin_section / 100); lrc->max_frame_bandwidth = (int)(((int64_t)lrc->avg_frame_bandwidth * oxcf->two_pass_vbrmax_section) / 100); vp9_rc_set_gf_max_interval(oxcf, lrc); } void vp9_restore_layer_context(VP9_COMP *const cpi) { LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc); const int old_frame_since_key = cpi->rc.frames_since_key; const int old_frame_to_key = cpi->rc.frames_to_key; cpi->rc = lc->rc; cpi->twopass = lc->twopass; cpi->oxcf.target_bandwidth = lc->target_bandwidth; // Reset the frames_since_key and frames_to_key counters to their values // before the layer restore. Keep these defined for the stream (not layer). if (cpi->svc.number_temporal_layers > 1) { cpi->rc.frames_since_key = old_frame_since_key; cpi->rc.frames_to_key = old_frame_to_key; } } void vp9_save_layer_context(VP9_COMP *const cpi) { const VP9EncoderConfig *const oxcf = &cpi->oxcf; LAYER_CONTEXT *const lc = get_layer_context(&cpi->svc); lc->rc = cpi->rc; lc->twopass = cpi->twopass; lc->target_bandwidth = (int)oxcf->target_bandwidth; } void vp9_init_second_pass_spatial_svc(VP9_COMP *cpi) { SVC *const svc = &cpi->svc; int i; for (i = 0; i < svc->number_spatial_layers; ++i) { TWO_PASS *const twopass = &svc->layer_context[i].twopass; svc->spatial_layer_id = i; vp9_init_second_pass(cpi); twopass->total_stats.spatial_layer_id = i; twopass->total_left_stats.spatial_layer_id = i; } svc->spatial_layer_id = 0; } void vp9_inc_frame_in_layer(SVC *svc) { LAYER_CONTEXT *const lc = (svc->number_temporal_layers > 1) ? &svc->layer_context[svc->temporal_layer_id] : &svc->layer_context[svc->spatial_layer_id]; ++lc->current_video_frame_in_layer; } int vp9_is_upper_layer_key_frame(const VP9_COMP *const cpi) { return cpi->use_svc && cpi->svc.number_temporal_layers == 1 && cpi->svc.spatial_layer_id > 0 && cpi->svc.layer_context[cpi->svc.spatial_layer_id].is_key_frame; } int vp9_svc_lookahead_push(const VP9_COMP *const cpi, struct lookahead_ctx *ctx, YV12_BUFFER_CONFIG *src, int64_t ts_start, int64_t ts_end, unsigned int flags) { struct lookahead_entry *buf; int i, index; if (vp9_lookahead_push(ctx, src, ts_start, ts_end, flags)) return 1; index = ctx->write_idx - 1; if (index < 0) index += ctx->max_sz; buf = ctx->buf + index; if (buf == NULL) return 1; // Store svc parameters for each layer for (i = 0; i < cpi->svc.number_spatial_layers; ++i) buf->svc_params[i] = cpi->svc.layer_context[i].svc_params_received; return 0; } static int copy_svc_params(VP9_COMP *const cpi, struct lookahead_entry *buf) { int layer_id; vpx_svc_parameters_t *layer_param; vpx_enc_frame_flags_t flags; // Find the next layer to be encoded for (layer_id = 0; layer_id < cpi->svc.number_spatial_layers; ++layer_id) { if (buf->svc_params[layer_id].spatial_layer >=0) break; } if (layer_id == cpi->svc.number_spatial_layers) return 1; layer_param = &buf->svc_params[layer_id]; buf->flags = flags = layer_param->flags; cpi->svc.spatial_layer_id = layer_param->spatial_layer; cpi->svc.temporal_layer_id = layer_param->temporal_layer; cpi->lst_fb_idx = layer_param->lst_fb_idx; cpi->gld_fb_idx = layer_param->gld_fb_idx; cpi->alt_fb_idx = layer_param->alt_fb_idx; if (vp9_set_size_literal(cpi, layer_param->width, layer_param->height) != 0) return VPX_CODEC_INVALID_PARAM; cpi->oxcf.worst_allowed_q = vp9_quantizer_to_qindex(layer_param->max_quantizer); cpi->oxcf.best_allowed_q = vp9_quantizer_to_qindex(layer_param->min_quantizer); vp9_change_config(cpi, &cpi->oxcf); vp9_set_high_precision_mv(cpi, 1); // Retrieve the encoding flags for each layer and apply it to encoder. // It includes reference frame flags and update frame flags. vp9_apply_encoding_flags(cpi, flags); return 0; } struct lookahead_entry *vp9_svc_lookahead_peek(VP9_COMP *const cpi, struct lookahead_ctx *ctx, int index, int copy_params) { struct lookahead_entry *buf = vp9_lookahead_peek(ctx, index); if (buf != NULL && copy_params != 0) { if (copy_svc_params(cpi, buf) != 0) return NULL; } return buf; } struct lookahead_entry *vp9_svc_lookahead_pop(VP9_COMP *const cpi, struct lookahead_ctx *ctx, int drain) { struct lookahead_entry *buf = NULL; if (ctx->sz && (drain || ctx->sz == ctx->max_sz - MAX_PRE_FRAMES)) { buf = vp9_svc_lookahead_peek(cpi, ctx, 0, 1); if (buf != NULL) { // Only remove the buffer when pop the highest layer. Simply set the // spatial_layer to -1 for lower layers. buf->svc_params[cpi->svc.spatial_layer_id].spatial_layer = -1; if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { vp9_lookahead_pop(ctx, drain); } } } return buf; }