/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_treecoder.h" // Returns a context number for the given MB prediction signal unsigned char vp9_get_pred_context_switchable_interp(const MACROBLOCKD *xd) { const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. // left const int left_mv_pred = is_inter_mode(left_mbmi->mode); const int left_interp = left_in_image && left_mv_pred ? left_mbmi->interp_filter : SWITCHABLE_FILTERS; // above const int above_mv_pred = is_inter_mode(above_mbmi->mode); const int above_interp = above_in_image && above_mv_pred ? above_mbmi->interp_filter : SWITCHABLE_FILTERS; if (left_interp == above_interp) return left_interp; else if (left_interp == SWITCHABLE_FILTERS && above_interp != SWITCHABLE_FILTERS) return above_interp; else if (left_interp != SWITCHABLE_FILTERS && above_interp == SWITCHABLE_FILTERS) return left_interp; else return SWITCHABLE_FILTERS; } // Returns a context number for the given MB prediction signal unsigned char vp9_get_pred_context_intra_inter(const MACROBLOCKD *xd) { const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; const int left_intra = !is_inter_block(left_mbmi); const int above_intra = !is_inter_block(above_mbmi); // The mode info data structure has a one element border above and to the // left of the entries corresponding to real macroblocks. // The prediction flags in these dummy entries are initialized to 0. // 0 - inter/inter, inter/--, --/inter, --/-- // 1 - intra/inter, inter/intra // 2 - intra/--, --/intra // 3 - intra/intra if (above_in_image && left_in_image) // both edges available return left_intra && above_intra ? 3 : left_intra || above_intra; else if (above_in_image || left_in_image) // one edge available return 2 * (above_in_image ? above_intra : left_intra); else return 0; } // Returns a context number for the given MB prediction signal unsigned char vp9_get_pred_context_comp_inter_inter(const VP9_COMMON *cm, const MACROBLOCKD *xd) { int pred_context; const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (above_in_image && left_in_image) { // both edges available if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) // neither edge uses comp pred (0/1) pred_context = (above_mbmi->ref_frame[0] == cm->comp_fixed_ref) ^ (left_mbmi->ref_frame[0] == cm->comp_fixed_ref); else if (!has_second_ref(above_mbmi)) // one of two edges uses comp pred (2/3) pred_context = 2 + (above_mbmi->ref_frame[0] == cm->comp_fixed_ref || !is_inter_block(above_mbmi)); else if (!has_second_ref(left_mbmi)) // one of two edges uses comp pred (2/3) pred_context = 2 + (left_mbmi->ref_frame[0] == cm->comp_fixed_ref || !is_inter_block(left_mbmi)); else // both edges use comp pred (4) pred_context = 4; } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!has_second_ref(edge_mbmi)) // edge does not use comp pred (0/1) pred_context = edge_mbmi->ref_frame[0] == cm->comp_fixed_ref; else // edge uses comp pred (3) pred_context = 3; } else { // no edges available (1) pred_context = 1; } assert(pred_context >= 0 && pred_context < COMP_INTER_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal unsigned char vp9_get_pred_context_comp_ref_p(const VP9_COMMON *cm, const MACROBLOCKD *xd) { int pred_context; const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-cm->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; const int left_intra = !is_inter_block(left_mbmi); const int above_intra = !is_inter_block(above_mbmi); // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int var_ref_idx = !fix_ref_idx; if (above_in_image && left_in_image) { // both edges available if (above_intra && left_intra) { // intra/intra (2) pred_context = 2; } else if (above_intra || left_intra) { // intra/inter const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) // single pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); else // comp pred (1/3) pred_context = 1 + 2 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); } else { // inter/inter const int l_sg = !has_second_ref(left_mbmi); const int a_sg = !has_second_ref(above_mbmi); MV_REFERENCE_FRAME vrfa = a_sg ? above_mbmi->ref_frame[0] : above_mbmi->ref_frame[var_ref_idx]; MV_REFERENCE_FRAME vrfl = l_sg ? left_mbmi->ref_frame[0] : left_mbmi->ref_frame[var_ref_idx]; if (vrfa == vrfl && cm->comp_var_ref[1] == vrfa) { pred_context = 0; } else if (l_sg && a_sg) { // single/single if ((vrfa == cm->comp_fixed_ref && vrfl == cm->comp_var_ref[0]) || (vrfl == cm->comp_fixed_ref && vrfa == cm->comp_var_ref[0])) pred_context = 4; else if (vrfa == vrfl) pred_context = 3; else pred_context = 1; } else if (l_sg || a_sg) { // single/comp MV_REFERENCE_FRAME vrfc = l_sg ? vrfa : vrfl; MV_REFERENCE_FRAME rfs = a_sg ? vrfa : vrfl; if (vrfc == cm->comp_var_ref[1] && rfs != cm->comp_var_ref[1]) pred_context = 1; else if (rfs == cm->comp_var_ref[1] && vrfc != cm->comp_var_ref[1]) pred_context = 2; else pred_context = 4; } else if (vrfa == vrfl) { // comp/comp pred_context = 4; } else { pred_context = 2; } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { pred_context = 2; } else { if (has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[var_ref_idx] != cm->comp_var_ref[1]); else pred_context = 3 * (edge_mbmi->ref_frame[0] != cm->comp_var_ref[1]); } } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } unsigned char vp9_get_pred_context_single_ref_p1(const MACROBLOCKD *xd) { int pred_context; const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; const int left_intra = !is_inter_block(left_mbmi); const int above_intra = !is_inter_block(above_mbmi); // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (above_in_image && left_in_image) { // both edges available if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } else { // inter/inter if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) { pred_context = 2 * (above_mbmi->ref_frame[0] == LAST_FRAME) + 2 * (left_mbmi->ref_frame[0] == LAST_FRAME); } else if (has_second_ref(above_mbmi) && has_second_ref(left_mbmi)) { pred_context = 1 + (above_mbmi->ref_frame[0] == LAST_FRAME || above_mbmi->ref_frame[1] == LAST_FRAME || left_mbmi->ref_frame[0] == LAST_FRAME || left_mbmi->ref_frame[1] == LAST_FRAME); } else { const MV_REFERENCE_FRAME rfs = !has_second_ref(above_mbmi) ? above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME crf1 = has_second_ref(above_mbmi) ? above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME crf2 = has_second_ref(above_mbmi) ? above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1]; if (rfs == LAST_FRAME) pred_context = 3 + (crf1 == LAST_FRAME || crf2 == LAST_FRAME); else pred_context = crf1 == LAST_FRAME || crf2 == LAST_FRAME; } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi)) { // intra pred_context = 2; } else { // inter if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == LAST_FRAME); else pred_context = 1 + (edge_mbmi->ref_frame[0] == LAST_FRAME || edge_mbmi->ref_frame[1] == LAST_FRAME); } } else { // no edges available pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } unsigned char vp9_get_pred_context_single_ref_p2(const MACROBLOCKD *xd) { int pred_context; const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; const int left_intra = !is_inter_block(left_mbmi); const int above_intra = !is_inter_block(above_mbmi); // Note: // The mode info data structure has a one element border above and to the // left of the entries correpsonding to real macroblocks. // The prediction flags in these dummy entries are initialised to 0. if (above_in_image && left_in_image) { // both edges available if (above_intra && left_intra) { // intra/intra pred_context = 2; } else if (above_intra || left_intra) { // intra/inter or inter/intra const MB_MODE_INFO *edge_mbmi = above_intra ? left_mbmi : above_mbmi; if (!has_second_ref(edge_mbmi)) { if (edge_mbmi->ref_frame[0] == LAST_FRAME) pred_context = 3; else pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); } else { pred_context = 1 + 2 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || edge_mbmi->ref_frame[1] == GOLDEN_FRAME); } } else { // inter/inter if (!has_second_ref(above_mbmi) && !has_second_ref(left_mbmi)) { if (above_mbmi->ref_frame[0] == LAST_FRAME && left_mbmi->ref_frame[0] == LAST_FRAME) { pred_context = 3; } else if (above_mbmi->ref_frame[0] == LAST_FRAME || left_mbmi->ref_frame[0] == LAST_FRAME) { const MB_MODE_INFO *edge_mbmi = above_mbmi->ref_frame[0] == LAST_FRAME ? left_mbmi : above_mbmi; pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); } else { pred_context = 2 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME) + 2 * (left_mbmi->ref_frame[0] == GOLDEN_FRAME); } } else if (has_second_ref(above_mbmi) && has_second_ref(left_mbmi)) { if (above_mbmi->ref_frame[0] == left_mbmi->ref_frame[0] && above_mbmi->ref_frame[1] == left_mbmi->ref_frame[1]) pred_context = 3 * (above_mbmi->ref_frame[0] == GOLDEN_FRAME || above_mbmi->ref_frame[1] == GOLDEN_FRAME || left_mbmi->ref_frame[0] == GOLDEN_FRAME || left_mbmi->ref_frame[1] == GOLDEN_FRAME); else pred_context = 2; } else { const MV_REFERENCE_FRAME rfs = !has_second_ref(above_mbmi) ? above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME crf1 = has_second_ref(above_mbmi) ? above_mbmi->ref_frame[0] : left_mbmi->ref_frame[0]; const MV_REFERENCE_FRAME crf2 = has_second_ref(above_mbmi) ? above_mbmi->ref_frame[1] : left_mbmi->ref_frame[1]; if (rfs == GOLDEN_FRAME) pred_context = 3 + (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); else if (rfs == ALTREF_FRAME) pred_context = crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME; else pred_context = 1 + 2 * (crf1 == GOLDEN_FRAME || crf2 == GOLDEN_FRAME); } } } else if (above_in_image || left_in_image) { // one edge available const MB_MODE_INFO *edge_mbmi = above_in_image ? above_mbmi : left_mbmi; if (!is_inter_block(edge_mbmi) || (edge_mbmi->ref_frame[0] == LAST_FRAME && !has_second_ref(edge_mbmi))) pred_context = 2; else if (!has_second_ref(edge_mbmi)) pred_context = 4 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME); else pred_context = 3 * (edge_mbmi->ref_frame[0] == GOLDEN_FRAME || edge_mbmi->ref_frame[1] == GOLDEN_FRAME); } else { // no edges available (2) pred_context = 2; } assert(pred_context >= 0 && pred_context < REF_CONTEXTS); return pred_context; } // Returns a context number for the given MB prediction signal // The mode info data structure has a one element border above and to the // left of the entries corresponding to real blocks. // The prediction flags in these dummy entries are initialized to 0. unsigned char vp9_get_pred_context_tx_size(const MACROBLOCKD *xd) { const MODE_INFO *const mi = xd->mode_info_context; const MB_MODE_INFO *const above_mbmi = &mi[-xd->mode_info_stride].mbmi; const MB_MODE_INFO *const left_mbmi = &mi[-1].mbmi; const int left_in_image = xd->left_available && left_mbmi->in_image; const int above_in_image = xd->up_available && above_mbmi->in_image; const int max_tx_size = max_txsize_lookup[mi->mbmi.sb_type]; int above_context = max_tx_size; int left_context = max_tx_size; if (above_in_image) above_context = above_mbmi->skip_coeff ? max_tx_size : above_mbmi->tx_size; if (left_in_image) left_context = left_mbmi->skip_coeff ? max_tx_size : left_mbmi->tx_size; if (!left_in_image) left_context = above_context; if (!above_in_image) above_context = left_context; return above_context + left_context > max_tx_size; } void vp9_set_pred_flag_seg_id(VP9_COMMON *cm, BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t pred_flag) { MODE_INFO *mi = &cm->mi[mi_row * cm->mode_info_stride + mi_col]; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y; for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) mi[y * cm->mode_info_stride + x].mbmi.seg_id_predicted = pred_flag; } void vp9_set_pred_flag_mbskip(VP9_COMMON *cm, BLOCK_SIZE bsize, int mi_row, int mi_col, uint8_t pred_flag) { MODE_INFO *mi = &cm->mi[mi_row * cm->mode_info_stride + mi_col]; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y; for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) mi[y * cm->mode_info_stride + x].mbmi.skip_coeff = pred_flag; } int vp9_get_segment_id(VP9_COMMON *cm, const uint8_t *segment_ids, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y, segment_id = INT_MAX; for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) segment_id = MIN(segment_id, segment_ids[mi_offset + y * cm->mi_cols + x]); assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); return segment_id; }