/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include "./vp9_rtcd.h" #include "./vpx_config.h" #include "vpx_ports/vpx_timer.h" #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_extend.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_tile_common.h" #include "vp9/encoder/vp9_encodeframe.h" #include "vp9/encoder/vp9_encodeintra.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_segmentation.h" #include "vp9/encoder/vp9_tokenize.h" #define DBG_PRNT_SEGMAP 0 static const TX_SIZE tx_mode_to_biggest_tx_size[TX_MODES] = { TX_4X4, // ONLY_4X4 TX_8X8, // ONLY_8X8 TX_16X16, // ONLY_16X16 TX_32X32, // ONLY_32X32 TX_32X32, // TX_MODE_SELECT }; // #define ENC_DEBUG #ifdef ENC_DEBUG int enc_debug = 0; #endif static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE bsize); static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x); /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp9_activity_masking(). */ #define ACTIVITY_AVG_MIN (64) /* Motion vector component magnitude threshold for defining fast motion. */ #define FAST_MOTION_MV_THRESH (24) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const uint8_t VP9_VAR_OFFS[64] = { 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128 }; static unsigned int get_sby_perpixel_variance(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs) { unsigned int var, sse; var = cpi->fn_ptr[bs].vf(x->plane[0].src.buf, x->plane[0].src.stride, VP9_VAR_OFFS, 0, &sse); return (var + (1 << (num_pels_log2_lookup[bs] - 1))) >> num_pels_log2_lookup[bs]; } // Original activity measure from Tim T's code. static unsigned int tt_activity_measure(MACROBLOCK *x) { unsigned int act; unsigned int sse; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ act = vp9_variance16x16(x->plane[0].src.buf, x->plane[0].src.stride, VP9_VAR_OFFS, 0, &sse); act <<= 4; /* If the region is flat, lower the activity some more. */ if (act < 8 << 12) act = act < 5 << 12 ? act : 5 << 12; return act; } // Stub for alternative experimental activity measures. static unsigned int alt_activity_measure(MACROBLOCK *x, int use_dc_pred) { return vp9_encode_intra(x, use_dc_pred); } DECLARE_ALIGNED(16, static const uint8_t, vp9_64x64_zeros[64*64]) = {0}; // Measure the activity of the current macroblock // What we measure here is TBD so abstracted to this function #define ALT_ACT_MEASURE 1 static unsigned int mb_activity_measure(MACROBLOCK *x, int mb_row, int mb_col) { unsigned int mb_activity; if (ALT_ACT_MEASURE) { int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); // Or use and alternative. mb_activity = alt_activity_measure(x, use_dc_pred); } else { // Original activity measure from Tim T's code. mb_activity = tt_activity_measure(x); } if (mb_activity < ACTIVITY_AVG_MIN) mb_activity = ACTIVITY_AVG_MIN; return mb_activity; } // Calculate an "average" mb activity value for the frame #define ACT_MEDIAN 0 static void calc_av_activity(VP9_COMP *cpi, int64_t activity_sum) { #if ACT_MEDIAN // Find median: Simple n^2 algorithm for experimentation { unsigned int median; unsigned int i, j; unsigned int *sortlist; unsigned int tmp; // Create a list to sort to CHECK_MEM_ERROR(&cpi->common, sortlist, vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); // Copy map to sort list vpx_memcpy(sortlist, cpi->mb_activity_map, sizeof(unsigned int) * cpi->common.MBs); // Ripple each value down to its correct position for (i = 1; i < cpi->common.MBs; i ++) { for (j = i; j > 0; j --) { if (sortlist[j] < sortlist[j - 1]) { // Swap values tmp = sortlist[j - 1]; sortlist[j - 1] = sortlist[j]; sortlist[j] = tmp; } else break; } } // Even number MBs so estimate median as mean of two either side. median = (1 + sortlist[cpi->common.MBs >> 1] + sortlist[(cpi->common.MBs >> 1) + 1]) >> 1; cpi->activity_avg = median; vpx_free(sortlist); } #else // Simple mean for now cpi->activity_avg = (unsigned int) (activity_sum / cpi->common.MBs); #endif // ACT_MEDIAN if (cpi->activity_avg < ACTIVITY_AVG_MIN) cpi->activity_avg = ACTIVITY_AVG_MIN; // Experimental code: return fixed value normalized for several clips if (ALT_ACT_MEASURE) cpi->activity_avg = 100000; } #define USE_ACT_INDEX 0 #define OUTPUT_NORM_ACT_STATS 0 #if USE_ACT_INDEX // Calculate an activity index for each mb static void calc_activity_index(VP9_COMP *cpi, MACROBLOCK *x) { VP9_COMMON *const cm = &cpi->common; int mb_row, mb_col; int64_t act; int64_t a; int64_t b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n%12d\n", cpi->activity_avg); #endif // Reset pointers to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; // Calculate normalized mb activity number. for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Read activity from the map act = *(x->mb_activity_ptr); // Calculate a normalized activity number a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (b >= a) *(x->activity_ptr) = (int)((b + (a >> 1)) / a) - 1; else *(x->activity_ptr) = 1 - (int)((a + (b >> 1)) / b); #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_activity_ptr)); #endif // Increment activity map pointers x->mb_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } #endif // USE_ACT_INDEX // Loop through all MBs. Note activity of each, average activity and // calculate a normalized activity for each static void build_activity_map(VP9_COMP *cpi) { MACROBLOCK * const x = &cpi->mb; MACROBLOCKD *xd = &x->e_mbd; VP9_COMMON * const cm = &cpi->common; #if ALT_ACT_MEASURE YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; int recon_yoffset; int recon_y_stride = new_yv12->y_stride; #endif int mb_row, mb_col; unsigned int mb_activity; int64_t activity_sum = 0; x->mb_activity_ptr = cpi->mb_activity_map; // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { #if ALT_ACT_MEASURE // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); #endif // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { #if ALT_ACT_MEASURE xd->plane[0].dst.buf = new_yv12->y_buffer + recon_yoffset; xd->left_available = (mb_col != 0); recon_yoffset += 16; #endif // measure activity mb_activity = mb_activity_measure(x, mb_row, mb_col); // Keep frame sum activity_sum += mb_activity; // Store MB level activity details. *x->mb_activity_ptr = mb_activity; // Increment activity map pointer x->mb_activity_ptr++; // adjust to the next column of source macroblocks x->plane[0].src.buf += 16; } // adjust to the next row of mbs x->plane[0].src.buf += 16 * x->plane[0].src.stride - 16 * cm->mb_cols; } // Calculate an "average" MB activity calc_av_activity(cpi, activity_sum); #if USE_ACT_INDEX // Calculate an activity index number of each mb calc_activity_index(cpi, x); #endif } // Macroblock activity masking void vp9_activity_masking(VP9_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + (2 * cpi->activity_avg); b = (2 * act) + cpi->activity_avg; x->rdmult = (unsigned int) (((int64_t) x->rdmult * b + (a >> 1)) / a); x->errorperbit = x->rdmult * 100 / (110 * x->rddiv); x->errorperbit += (x->errorperbit == 0); #endif // Activity based Zbin adjustment adjust_act_zbin(cpi, x); } static void update_state(VP9_COMP *cpi, PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, int output_enabled) { int i, x_idx, y; VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = &ctx->mic; MB_MODE_INFO * const mbmi = &xd->this_mi->mbmi; MODE_INFO *mi_addr = xd->this_mi; int mb_mode_index = ctx->best_mode_index; const int mis = cm->mode_info_stride; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; assert(mi->mbmi.mode < MB_MODE_COUNT); assert(mb_mode_index < MAX_MODES); assert(mi->mbmi.ref_frame[0] < MAX_REF_FRAMES); assert(mi->mbmi.ref_frame[1] < MAX_REF_FRAMES); assert(mi->mbmi.sb_type == bsize); *mi_addr = *mi; // Restore the coding context of the MB to that that was in place // when the mode was picked for it for (y = 0; y < mi_height; y++) for (x_idx = 0; x_idx < mi_width; x_idx++) if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) xd->mi_8x8[x_idx + y * mis] = mi_addr; // FIXME(rbultje) I'm pretty sure this should go to the end of this block // (i.e. after the output_enabled) if (bsize < BLOCK_32X32) { if (bsize < BLOCK_16X16) ctx->tx_rd_diff[ALLOW_16X16] = ctx->tx_rd_diff[ALLOW_8X8]; ctx->tx_rd_diff[ALLOW_32X32] = ctx->tx_rd_diff[ALLOW_16X16]; } if (is_inter_block(mbmi) && mbmi->sb_type < BLOCK_8X8) { *x->partition_info = ctx->partition_info; mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } x->skip = ctx->skip; vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], ctx->zcoeff_blk, sizeof(ctx->zcoeff_blk)); if (!output_enabled) return; if (!vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { for (i = 0; i < TX_MODES; i++) cpi->rd_tx_select_diff[i] += ctx->tx_rd_diff[i]; } if (cm->frame_type == KEY_FRAME) { // Restore the coding modes to that held in the coding context // if (mb_mode == I4X4_PRED) // for (i = 0; i < 16; i++) // { // xd->block[i].bmi.as_mode = // xd->mode_info_context->bmi[i].as_mode; // assert(xd->mode_info_context->bmi[i].as_mode < MB_MODE_COUNT); // } #if CONFIG_INTERNAL_STATS static const int kf_mode_index[] = { THR_DC /*DC_PRED*/, THR_V_PRED /*V_PRED*/, THR_H_PRED /*H_PRED*/, THR_D45_PRED /*D45_PRED*/, THR_D135_PRED /*D135_PRED*/, THR_D117_PRED /*D117_PRED*/, THR_D153_PRED /*D153_PRED*/, THR_D207_PRED /*D207_PRED*/, THR_D63_PRED /*D63_PRED*/, THR_TM /*TM_PRED*/, THR_B_PRED /*I4X4_PRED*/, }; cpi->mode_chosen_counts[kf_mode_index[mi->mbmi.mode]]++; #endif } else { // Note how often each mode chosen as best cpi->mode_chosen_counts[mb_mode_index]++; if (is_inter_block(mbmi) && (mbmi->sb_type < BLOCK_8X8 || mbmi->mode == NEWMV)) { int_mv best_mv[2]; const MV_REFERENCE_FRAME rf1 = mbmi->ref_frame[0]; const MV_REFERENCE_FRAME rf2 = mbmi->ref_frame[1]; best_mv[0].as_int = ctx->best_ref_mv.as_int; best_mv[1].as_int = ctx->second_best_ref_mv.as_int; if (mbmi->mode == NEWMV) { best_mv[0].as_int = mbmi->ref_mvs[rf1][0].as_int; if (rf2 > 0) best_mv[1].as_int = mbmi->ref_mvs[rf2][0].as_int; } mbmi->best_mv[0].as_int = best_mv[0].as_int; mbmi->best_mv[1].as_int = best_mv[1].as_int; vp9_update_mv_count(cpi, x, best_mv); } if (cm->mcomp_filter_type == SWITCHABLE && is_inter_mode(mbmi->mode)) { const int ctx = vp9_get_pred_context_switchable_interp(xd); ++cm->counts.switchable_interp[ctx][mbmi->interp_filter]; } cpi->rd_comp_pred_diff[SINGLE_PREDICTION_ONLY] += ctx->single_pred_diff; cpi->rd_comp_pred_diff[COMP_PREDICTION_ONLY] += ctx->comp_pred_diff; cpi->rd_comp_pred_diff[HYBRID_PREDICTION] += ctx->hybrid_pred_diff; for (i = 0; i <= SWITCHABLE_FILTERS; i++) cpi->rd_filter_diff[i] += ctx->best_filter_diff[i]; } } void vp9_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, int mb_row, int mb_col) { uint8_t *buffers[4] = {src->y_buffer, src->u_buffer, src->v_buffer, src ->alpha_buffer}; int strides[4] = {src->y_stride, src->uv_stride, src->uv_stride, src ->alpha_stride}; int i; for (i = 0; i < MAX_MB_PLANE; i++) { setup_pred_plane(&x->plane[i].src, buffers[i], strides[i], mb_row, mb_col, NULL, x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y); } } static void set_offsets(VP9_COMP *cpi, int mi_row, int mi_col, BLOCK_SIZE bsize) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; const int dst_fb_idx = cm->new_fb_idx; const int idx_str = xd->mode_info_stride * mi_row + mi_col; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; const int mb_row = mi_row >> 1; const int mb_col = mi_col >> 1; const int idx_map = mb_row * cm->mb_cols + mb_col; const struct segmentation *const seg = &cm->seg; set_skip_context(cm, xd, mi_row, mi_col); set_partition_seg_context(cm, xd, mi_row, mi_col); // Activity map pointer x->mb_activity_ptr = &cpi->mb_activity_map[idx_map]; x->active_ptr = cpi->active_map + idx_map; /* pointers to mode info contexts */ x->partition_info = x->pi + idx_str; xd->mi_8x8 = cm->mi_grid_visible + idx_str; xd->prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str; // Special case: if prev_mi is NULL, the previous mode info context // cannot be used. xd->last_mi = cm->prev_mi ? xd->prev_mi_8x8[0] : NULL; xd->this_mi = xd->mi_8x8[0] = cm->mi + idx_str; mbmi = &xd->this_mi->mbmi; // Set up destination pointers setup_dst_planes(xd, &cm->yv12_fb[dst_fb_idx], mi_row, mi_col); // Set up limit values for MV components // mv beyond the range do not produce new/different prediction block x->mv_row_min = -(((mi_row + mi_height) * MI_SIZE) + VP9_INTERP_EXTEND); x->mv_col_min = -(((mi_col + mi_width) * MI_SIZE) + VP9_INTERP_EXTEND); x->mv_row_max = (cm->mi_rows - mi_row) * MI_SIZE + VP9_INTERP_EXTEND; x->mv_col_max = (cm->mi_cols - mi_col) * MI_SIZE + VP9_INTERP_EXTEND; // Set up distance of MB to edge of frame in 1/8th pel units assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(cm, xd, mi_row, mi_height, mi_col, mi_width); /* set up source buffers */ vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); /* R/D setup */ x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; /* segment ID */ if (seg->enabled) { uint8_t *map = seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; mbmi->segment_id = vp9_get_segment_id(cm, map, bsize, mi_row, mi_col); vp9_mb_init_quantizer(cpi, x); if (seg->enabled && cpi->seg0_cnt > 0 && !vp9_segfeature_active(seg, 0, SEG_LVL_REF_FRAME) && vp9_segfeature_active(seg, 1, SEG_LVL_REF_FRAME)) { cpi->seg0_progress = (cpi->seg0_idx << 16) / cpi->seg0_cnt; } else { const int y = mb_row & ~3; const int x = mb_col & ~3; const int p16 = ((mb_row & 1) << 1) + (mb_col & 1); const int p32 = ((mb_row & 2) << 2) + ((mb_col & 2) << 1); const int tile_progress = cm->cur_tile_mi_col_start * cm->mb_rows >> 1; const int mb_cols = (cm->cur_tile_mi_col_end - cm->cur_tile_mi_col_start) >> 1; cpi->seg0_progress = ((y * mb_cols + x * 4 + p32 + p16 + tile_progress) << 16) / cm->MBs; } x->encode_breakout = cpi->segment_encode_breakout[mbmi->segment_id]; } else { mbmi->segment_id = 0; x->encode_breakout = cpi->oxcf.encode_breakout; } } static void pick_sb_modes(VP9_COMP *cpi, int mi_row, int mi_col, int *totalrate, int64_t *totaldist, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; // Use the lower precision, but faster, 32x32 fdct for mode selection. x->use_lp32x32fdct = 1; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (xd->ab_index != 0) { *totalrate = 0; *totaldist = 0; return; } } set_offsets(cpi, mi_row, mi_col, bsize); xd->this_mi->mbmi.sb_type = bsize; // Set to zero to make sure we do not use the previous encoded frame stats xd->this_mi->mbmi.skip_coeff = 0; x->source_variance = get_sby_perpixel_variance(cpi, x, bsize); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) vp9_activity_masking(cpi, x); // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (cm->frame_type == KEY_FRAME) vp9_rd_pick_intra_mode_sb(cpi, x, totalrate, totaldist, bsize, ctx, best_rd); else vp9_rd_pick_inter_mode_sb(cpi, x, mi_row, mi_col, totalrate, totaldist, bsize, ctx, best_rd); } static void update_stats(VP9_COMP *cpi) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *mi = xd->this_mi; MB_MODE_INFO *const mbmi = &mi->mbmi; if (cm->frame_type != KEY_FRAME) { const int seg_ref_active = vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) cpi->intra_inter_count[vp9_get_pred_context_intra_inter(xd)] [is_inter_block(mbmi)]++; // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (is_inter_block(mbmi) && !seg_ref_active) { if (cm->comp_pred_mode == HYBRID_PREDICTION) cpi->comp_inter_count[vp9_get_pred_context_comp_inter_inter(cm, xd)] [has_second_ref(mbmi)]++; if (has_second_ref(mbmi)) { cpi->comp_ref_count[vp9_get_pred_context_comp_ref_p(cm, xd)] [mbmi->ref_frame[0] == GOLDEN_FRAME]++; } else { cpi->single_ref_count[vp9_get_pred_context_single_ref_p1(xd)][0] [mbmi->ref_frame[0] != LAST_FRAME]++; if (mbmi->ref_frame[0] != LAST_FRAME) cpi->single_ref_count[vp9_get_pred_context_single_ref_p2(xd)][1] [mbmi->ref_frame[0] != GOLDEN_FRAME]++; } } // Count of last ref frame 0,0 usage if (mbmi->mode == ZEROMV && mbmi->ref_frame[0] == LAST_FRAME) cpi->inter_zz_count++; } } // TODO(jingning): the variables used here are little complicated. need further // refactoring on organizing the temporary buffers, when recursive // partition down to 4x4 block size is enabled. static PICK_MODE_CONTEXT *get_block_context(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; switch (bsize) { case BLOCK_64X64: return &x->sb64_context; case BLOCK_64X32: return &x->sb64x32_context[xd->sb_index]; case BLOCK_32X64: return &x->sb32x64_context[xd->sb_index]; case BLOCK_32X32: return &x->sb32_context[xd->sb_index]; case BLOCK_32X16: return &x->sb32x16_context[xd->sb_index][xd->mb_index]; case BLOCK_16X32: return &x->sb16x32_context[xd->sb_index][xd->mb_index]; case BLOCK_16X16: return &x->mb_context[xd->sb_index][xd->mb_index]; case BLOCK_16X8: return &x->sb16x8_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_8X16: return &x->sb8x16_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_8X8: return &x->sb8x8_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_8X4: return &x->sb8x4_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_4X8: return &x->sb4x8_context[xd->sb_index][xd->mb_index][xd->b_index]; case BLOCK_4X4: return &x->ab4x4_context[xd->sb_index][xd->mb_index][xd->b_index]; default: assert(0); return NULL ; } } static BLOCK_SIZE *get_sb_partitioning(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; switch (bsize) { case BLOCK_64X64: return &x->sb64_partitioning; case BLOCK_32X32: return &x->sb_partitioning[xd->sb_index]; case BLOCK_16X16: return &x->mb_partitioning[xd->sb_index][xd->mb_index]; case BLOCK_8X8: return &x->b_partitioning[xd->sb_index][xd->mb_index][xd->b_index]; default: assert(0); return NULL ; } } static void restore_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; for (p = 0; p < MAX_MB_PLANE; p++) { vpx_memcpy( cm->above_context[p] + ((mi_col * 2) >> xd->plane[p].subsampling_x), a + num_4x4_blocks_wide * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); vpx_memcpy( cm->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), l + num_4x4_blocks_high * p, (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } vpx_memcpy(cm->above_seg_context + mi_col, sa, sizeof(PARTITION_CONTEXT) * mi_width); vpx_memcpy(cm->left_seg_context + (mi_row & MI_MASK), sl, sizeof(PARTITION_CONTEXT) * mi_height); } static void save_context(VP9_COMP *cpi, int mi_row, int mi_col, ENTROPY_CONTEXT a[16 * MAX_MB_PLANE], ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], PARTITION_CONTEXT sa[8], PARTITION_CONTEXT sl[8], BLOCK_SIZE bsize) { const VP9_COMMON *const cm = &cpi->common; const MACROBLOCK *const x = &cpi->mb; const MACROBLOCKD *const xd = &x->e_mbd; int p; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int mi_width = num_8x8_blocks_wide_lookup[bsize]; int mi_height = num_8x8_blocks_high_lookup[bsize]; // buffer the above/left context information of the block in search. for (p = 0; p < MAX_MB_PLANE; ++p) { vpx_memcpy( a + num_4x4_blocks_wide * p, cm->above_context[p] + (mi_col * 2 >> xd->plane[p].subsampling_x), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> xd->plane[p].subsampling_x); vpx_memcpy( l + num_4x4_blocks_high * p, cm->left_context[p] + ((mi_row & MI_MASK) * 2 >> xd->plane[p].subsampling_y), (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> xd->plane[p].subsampling_y); } vpx_memcpy(sa, cm->above_seg_context + mi_col, sizeof(PARTITION_CONTEXT) * mi_width); vpx_memcpy(sl, cm->left_seg_context + (mi_row & MI_MASK), sizeof(PARTITION_CONTEXT) * mi_height); } static void encode_b(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize, int sub_index) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; if (sub_index != -1) *get_sb_index(xd, bsize) = sub_index; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (xd->ab_index > 0) return; } set_offsets(cpi, mi_row, mi_col, bsize); update_state(cpi, get_block_context(x, bsize), bsize, output_enabled); encode_superblock(cpi, tp, output_enabled, mi_row, mi_col, bsize); if (output_enabled) { update_stats(cpi); (*tp)->token = EOSB_TOKEN; (*tp)++; } } static void encode_sb(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col, int output_enabled, BLOCK_SIZE bsize) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; BLOCK_SIZE c1 = BLOCK_8X8; const int bsl = b_width_log2(bsize), bs = (1 << bsl) / 4; int pl = 0; PARTITION_TYPE partition; BLOCK_SIZE subsize; int i; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; c1 = BLOCK_4X4; if (bsize >= BLOCK_8X8) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); c1 = *(get_sb_partitioning(x, bsize)); } partition = partition_lookup[bsl][c1]; switch (partition) { case PARTITION_NONE: if (output_enabled && bsize >= BLOCK_8X8) cpi->partition_count[pl][PARTITION_NONE]++; encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, -1); break; case PARTITION_VERT: if (output_enabled) cpi->partition_count[pl][PARTITION_VERT]++; encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0); encode_b(cpi, tp, mi_row, mi_col + bs, output_enabled, c1, 1); break; case PARTITION_HORZ: if (output_enabled) cpi->partition_count[pl][PARTITION_HORZ]++; encode_b(cpi, tp, mi_row, mi_col, output_enabled, c1, 0); encode_b(cpi, tp, mi_row + bs, mi_col, output_enabled, c1, 1); break; case PARTITION_SPLIT: subsize = get_subsize(bsize, PARTITION_SPLIT); if (output_enabled) cpi->partition_count[pl][PARTITION_SPLIT]++; for (i = 0; i < 4; i++) { const int x_idx = i & 1, y_idx = i >> 1; *get_sb_index(xd, subsize) = i; encode_sb(cpi, tp, mi_row + y_idx * bs, mi_col + x_idx * bs, output_enabled, subsize); } break; default: assert(0); break; } if (partition != PARTITION_SPLIT || bsize == BLOCK_8X8) { set_partition_seg_context(cm, xd, mi_row, mi_col); update_partition_context(xd, c1, bsize); } } // Check to see if the given partition size is allowed for a specified number // of 8x8 block rows and columns remaining in the image. // If not then return the largest allowed partition size static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, int cols_left, int *bh, int *bw) { if ((rows_left <= 0) || (cols_left <= 0)) { return MIN(bsize, BLOCK_8X8); } else { for (; bsize > 0; --bsize) { *bh = num_8x8_blocks_high_lookup[bsize]; *bw = num_8x8_blocks_wide_lookup[bsize]; if ((*bh <= rows_left) && (*bw <= cols_left)) { break; } } } return bsize; } // This function attempts to set all mode info entries in a given SB64 // to the same block partition size. // However, at the bottom and right borders of the image the requested size // may not be allowed in which case this code attempts to choose the largest // allowable partition. static void set_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8, int mi_row, int mi_col) { VP9_COMMON *const cm = &cpi->common; BLOCK_SIZE bsize = cpi->sf.always_this_block_size; const int mis = cm->mode_info_stride; int row8x8_remaining = cm->cur_tile_mi_row_end - mi_row; int col8x8_remaining = cm->cur_tile_mi_col_end - mi_col; int block_row, block_col; MODE_INFO * mi_upper_left = cm->mi + mi_row * mis + mi_col; int bh = num_8x8_blocks_high_lookup[bsize]; int bw = num_8x8_blocks_wide_lookup[bsize]; assert((row8x8_remaining > 0) && (col8x8_remaining > 0)); // Apply the requested partition size to the SB64 if it is all "in image" if ((col8x8_remaining >= MI_BLOCK_SIZE) && (row8x8_remaining >= MI_BLOCK_SIZE)) { for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { int index = block_row * mis + block_col; mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = bsize; } } } else { // Else this is a partial SB64. for (block_row = 0; block_row < MI_BLOCK_SIZE; block_row += bh) { for (block_col = 0; block_col < MI_BLOCK_SIZE; block_col += bw) { int index = block_row * mis + block_col; // Find a partition size that fits bsize = find_partition_size(cpi->sf.always_this_block_size, (row8x8_remaining - block_row), (col8x8_remaining - block_col), &bh, &bw); mi_8x8[index] = mi_upper_left + index; mi_8x8[index]->mbmi.sb_type = bsize; } } } } static void copy_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8, MODE_INFO **prev_mi_8x8) { VP9_COMMON *const cm = &cpi->common; const int mis = cm->mode_info_stride; int block_row, block_col; for (block_row = 0; block_row < 8; ++block_row) { for (block_col = 0; block_col < 8; ++block_col) { MODE_INFO * prev_mi = prev_mi_8x8[block_row * mis + block_col]; BLOCK_SIZE sb_type = prev_mi ? prev_mi->mbmi.sb_type : 0; ptrdiff_t offset; if (prev_mi) { offset = prev_mi - cm->prev_mi; mi_8x8[block_row * mis + block_col] = cm->mi + offset; mi_8x8[block_row * mis + block_col]->mbmi.sb_type = sb_type; } } } } static void set_block_size(VP9_COMMON * const cm, MODE_INFO **mi_8x8, BLOCK_SIZE bsize, int mis, int mi_row, int mi_col) { int r, c; const int bs = MAX(num_8x8_blocks_wide_lookup[bsize], num_8x8_blocks_high_lookup[bsize]); const int idx_str = mis * mi_row + mi_col; MODE_INFO **const mi2 = &mi_8x8[idx_str]; mi2[0] = cm->mi + idx_str; mi2[0]->mbmi.sb_type = bsize; for (r = 0; r < bs; r++) for (c = 0; c < bs; c++) if (mi_row + r < cm->mi_rows && mi_col + c < cm->mi_cols) mi2[r * mis + c] = mi2[0]; } typedef struct { int64_t sum_square_error; int64_t sum_error; int count; int variance; } var; typedef struct { var none; var horz[2]; var vert[2]; } partition_variance; #define VT(TYPE, BLOCKSIZE) \ typedef struct { \ partition_variance vt; \ BLOCKSIZE split[4]; } TYPE; VT(v8x8, var) VT(v16x16, v8x8) VT(v32x32, v16x16) VT(v64x64, v32x32) typedef struct { partition_variance *vt; var *split[4]; } vt_node; typedef enum { V16X16, V32X32, V64X64, } TREE_LEVEL; static void tree_to_node(void *data, BLOCK_SIZE bsize, vt_node *node) { int i; switch (bsize) { case BLOCK_64X64: { v64x64 *vt = (v64x64 *) data; node->vt = &vt->vt; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].vt.none; break; } case BLOCK_32X32: { v32x32 *vt = (v32x32 *) data; node->vt = &vt->vt; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].vt.none; break; } case BLOCK_16X16: { v16x16 *vt = (v16x16 *) data; node->vt = &vt->vt; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i].vt.none; break; } case BLOCK_8X8: { v8x8 *vt = (v8x8 *) data; node->vt = &vt->vt; for (i = 0; i < 4; i++) node->split[i] = &vt->split[i]; break; } default: node->vt = 0; for (i = 0; i < 4; i++) node->split[i] = 0; assert(-1); } } // Set variance values given sum square error, sum error, count. static void fill_variance(var *v, int64_t s2, int64_t s, int c) { v->sum_square_error = s2; v->sum_error = s; v->count = c; if (c > 0) v->variance = (int)(256 * (v->sum_square_error - v->sum_error * v->sum_error / v->count) / v->count); else v->variance = 0; } // Combine 2 variance structures by summing the sum_error, sum_square_error, // and counts and then calculating the new variance. void sum_2_variances(var *r, var *a, var*b) { fill_variance(r, a->sum_square_error + b->sum_square_error, a->sum_error + b->sum_error, a->count + b->count); } static void fill_variance_tree(void *data, BLOCK_SIZE bsize) { vt_node node; tree_to_node(data, bsize, &node); sum_2_variances(&node.vt->horz[0], node.split[0], node.split[1]); sum_2_variances(&node.vt->horz[1], node.split[2], node.split[3]); sum_2_variances(&node.vt->vert[0], node.split[0], node.split[2]); sum_2_variances(&node.vt->vert[1], node.split[1], node.split[3]); sum_2_variances(&node.vt->none, &node.vt->vert[0], &node.vt->vert[1]); } #if PERFORM_RANDOM_PARTITIONING static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO *m, BLOCK_SIZE block_size, int mi_row, int mi_col, int mi_size) { VP9_COMMON * const cm = &cpi->common; vt_node vt; const int mis = cm->mode_info_stride; int64_t threshold = 4 * cpi->common.base_qindex * cpi->common.base_qindex; tree_to_node(data, block_size, &vt); // split none is available only if we have more than half a block size // in width and height inside the visible image if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows && (rand() & 3) < 1) { set_block_size(cm, m, block_size, mis, mi_row, mi_col); return 1; } // vertical split is available on all but the bottom border if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold && (rand() & 3) < 1) { set_block_size(cm, m, get_subsize(block_size, PARTITION_VERT), mis, mi_row, mi_col); return 1; } // horizontal split is available on all but the right border if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold && (rand() & 3) < 1) { set_block_size(cm, m, get_subsize(block_size, PARTITION_HORZ), mis, mi_row, mi_col); return 1; } return 0; } #else // !PERFORM_RANDOM_PARTITIONING static int set_vt_partitioning(VP9_COMP *cpi, void *data, MODE_INFO **m, BLOCK_SIZE bsize, int mi_row, int mi_col, int mi_size) { VP9_COMMON * const cm = &cpi->common; vt_node vt; const int mis = cm->mode_info_stride; int64_t threshold = 50 * cpi->common.base_qindex; tree_to_node(data, bsize, &vt); // split none is available only if we have more than half a block size // in width and height inside the visible image if (mi_col + mi_size < cm->mi_cols && mi_row + mi_size < cm->mi_rows && vt.vt->none.variance < threshold) { set_block_size(cm, m, bsize, mis, mi_row, mi_col); return 1; } // vertical split is available on all but the bottom border if (mi_row + mi_size < cm->mi_rows && vt.vt->vert[0].variance < threshold && vt.vt->vert[1].variance < threshold) { set_block_size(cm, m, get_subsize(bsize, PARTITION_VERT), mis, mi_row, mi_col); return 1; } // horizontal split is available on all but the right border if (mi_col + mi_size < cm->mi_cols && vt.vt->horz[0].variance < threshold && vt.vt->horz[1].variance < threshold) { set_block_size(cm, m, get_subsize(bsize, PARTITION_HORZ), mis, mi_row, mi_col); return 1; } return 0; } #endif // PERFORM_RANDOM_PARTITIONING static void choose_partitioning(VP9_COMP *cpi, MODE_INFO **mi_8x8, int mi_row, int mi_col) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK *x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; const int mis = cm->mode_info_stride; // TODO(JBB): More experimentation or testing of this threshold; int64_t threshold = 4; int i, j, k; v64x64 vt; unsigned char * s; int sp; const unsigned char * d; int dp; int pixels_wide = 64, pixels_high = 64; vp9_zero(vt); set_offsets(cpi, mi_row, mi_col, BLOCK_64X64); if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); s = x->plane[0].src.buf; sp = x->plane[0].src.stride; // TODO(JBB): Clearly the higher the quantizer the fewer partitions we want // but this needs more experimentation. threshold = threshold * cpi->common.base_qindex * cpi->common.base_qindex; d = vp9_64x64_zeros; dp = 64; if (cm->frame_type != KEY_FRAME) { int_mv nearest_mv, near_mv; const int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, LAST_FRAME)]; YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx]; YV12_BUFFER_CONFIG *second_ref_fb = NULL; setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col, &xd->scale_factor[0]); setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col, &xd->scale_factor[1]); xd->this_mi->mbmi.ref_frame[0] = LAST_FRAME; xd->this_mi->mbmi.sb_type = BLOCK_64X64; vp9_find_best_ref_mvs(xd, mi_8x8[0]->mbmi.ref_mvs[mi_8x8[0]->mbmi.ref_frame[0]], &nearest_mv, &near_mv); xd->this_mi->mbmi.mv[0] = nearest_mv; vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_64X64); d = xd->plane[0].dst.buf; dp = xd->plane[0].dst.stride; } // Fill in the entire tree of 8x8 variances for splits. for (i = 0; i < 4; i++) { const int x32_idx = ((i & 1) << 5); const int y32_idx = ((i >> 1) << 5); for (j = 0; j < 4; j++) { const int x16_idx = x32_idx + ((j & 1) << 4); const int y16_idx = y32_idx + ((j >> 1) << 4); v16x16 *vst = &vt.split[i].split[j]; for (k = 0; k < 4; k++) { int x_idx = x16_idx + ((k & 1) << 3); int y_idx = y16_idx + ((k >> 1) << 3); unsigned int sse = 0; int sum = 0; if (x_idx < pixels_wide && y_idx < pixels_high) vp9_get_sse_sum_8x8(s + y_idx * sp + x_idx, sp, d + y_idx * dp + x_idx, dp, &sse, &sum); fill_variance(&vst->split[k].vt.none, sse, sum, 64); } } } // Fill the rest of the variance tree by summing the split partition // values. for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { fill_variance_tree(&vt.split[i].split[j], BLOCK_16X16); } fill_variance_tree(&vt.split[i], BLOCK_32X32); } fill_variance_tree(&vt, BLOCK_64X64); // Now go through the entire structure, splitting every block size until // we get to one that's got a variance lower than our threshold, or we // hit 8x8. if (!set_vt_partitioning(cpi, &vt, mi_8x8, BLOCK_64X64, mi_row, mi_col, 4)) { for (i = 0; i < 4; ++i) { const int x32_idx = ((i & 1) << 2); const int y32_idx = ((i >> 1) << 2); if (!set_vt_partitioning(cpi, &vt.split[i], mi_8x8, BLOCK_32X32, (mi_row + y32_idx), (mi_col + x32_idx), 2)) { for (j = 0; j < 4; ++j) { const int x16_idx = ((j & 1) << 1); const int y16_idx = ((j >> 1) << 1); if (!set_vt_partitioning(cpi, &vt.split[i].split[j], mi_8x8, BLOCK_16X16, (mi_row + y32_idx + y16_idx), (mi_col + x32_idx + x16_idx), 1)) { for (k = 0; k < 4; ++k) { const int x8_idx = (k & 1); const int y8_idx = (k >> 1); set_block_size(cm, mi_8x8, BLOCK_8X8, mis, (mi_row + y32_idx + y16_idx + y8_idx), (mi_col + x32_idx + x16_idx + x8_idx)); } } } } } } } static void rd_use_partition(VP9_COMP *cpi, MODE_INFO **mi_8x8, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD *xd = &cpi->mb.e_mbd; const int mis = cm->mode_info_stride; int bsl = b_width_log2(bsize); const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int ms = num_4x4_blocks_wide / 2; int mh = num_4x4_blocks_high / 2; int bss = (1 << bsl) / 4; int i, pl; PARTITION_TYPE partition = PARTITION_NONE; BLOCK_SIZE subsize; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; int last_part_rate = INT_MAX; int64_t last_part_dist = INT_MAX; int split_rate = INT_MAX; int64_t split_dist = INT_MAX; int none_rate = INT_MAX; int64_t none_dist = INT_MAX; int chosen_rate = INT_MAX; int64_t chosen_dist = INT_MAX; BLOCK_SIZE sub_subsize = BLOCK_4X4; int splits_below = 0; BLOCK_SIZE bs_type = mi_8x8[0]->mbmi.sb_type; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; partition = partition_lookup[bsl][bs_type]; subsize = get_subsize(bsize, partition); if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (xd->ab_index != 0) { *rate = 0; *dist = 0; return; } } else { *(get_sb_partitioning(x, bsize)) = subsize; } save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); x->fast_ms = 0; x->subblock_ref = 0; if (cpi->sf.adjust_partitioning_from_last_frame) { // Check if any of the sub blocks are further split. if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { sub_subsize = get_subsize(subsize, PARTITION_SPLIT); splits_below = 1; for (i = 0; i < 4; i++) { int jj = i >> 1, ii = i & 0x01; MODE_INFO * this_mi = mi_8x8[jj * bss * mis + ii * bss]; if (this_mi && this_mi->mbmi.sb_type >= sub_subsize) { splits_below = 0; } } } // If partition is not none try none unless each of the 4 splits are split // even further.. if (partition != PARTITION_NONE && !splits_below && mi_row + (ms >> 1) < cm->mi_rows && mi_col + (ms >> 1) < cm->mi_cols) { *(get_sb_partitioning(x, bsize)) = bsize; pick_sb_modes(cpi, mi_row, mi_col, &none_rate, &none_dist, bsize, get_block_context(x, bsize), INT64_MAX); set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); none_rate += x->partition_cost[pl][PARTITION_NONE]; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); mi_8x8[0]->mbmi.sb_type = bs_type; *(get_sb_partitioning(x, bsize)) = subsize; } } switch (partition) { case PARTITION_NONE: pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist, bsize, get_block_context(x, bsize), INT64_MAX); break; case PARTITION_HORZ: *get_sb_index(xd, subsize) = 0; pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize, get_block_context(x, subsize), INT64_MAX); if (last_part_rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + (mh >> 1) < cm->mi_rows) { int rt = 0; int64_t dt = 0; update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(xd, subsize) = 1; pick_sb_modes(cpi, mi_row + (ms >> 1), mi_col, &rt, &dt, subsize, get_block_context(x, subsize), INT64_MAX); if (rt == INT_MAX || dt == INT_MAX) { last_part_rate = INT_MAX; last_part_dist = INT_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; case PARTITION_VERT: *get_sb_index(xd, subsize) = 0; pick_sb_modes(cpi, mi_row, mi_col, &last_part_rate, &last_part_dist, subsize, get_block_context(x, subsize), INT64_MAX); if (last_part_rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + (ms >> 1) < cm->mi_cols) { int rt = 0; int64_t dt = 0; update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(xd, subsize) = 1; pick_sb_modes(cpi, mi_row, mi_col + (ms >> 1), &rt, &dt, subsize, get_block_context(x, subsize), INT64_MAX); if (rt == INT_MAX || dt == INT_MAX) { last_part_rate = INT_MAX; last_part_dist = INT_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; case PARTITION_SPLIT: // Split partition. last_part_rate = 0; last_part_dist = 0; for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (ms >> 1); int y_idx = (i >> 1) * (ms >> 1); int jj = i >> 1, ii = i & 0x01; int rt; int64_t dt; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; *get_sb_index(xd, subsize) = i; rd_use_partition(cpi, mi_8x8 + jj * bss * mis + ii * bss, tp, mi_row + y_idx, mi_col + x_idx, subsize, &rt, &dt, i != 3); if (rt == INT_MAX || dt == INT_MAX) { last_part_rate = INT_MAX; last_part_dist = INT_MAX; break; } last_part_rate += rt; last_part_dist += dt; } break; default: assert(0); } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); if (last_part_rate < INT_MAX) last_part_rate += x->partition_cost[pl][partition]; if (cpi->sf.adjust_partitioning_from_last_frame && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + ms < cm->mi_rows || mi_row + (ms >> 1) == cm->mi_rows) && (mi_col + ms < cm->mi_cols || mi_col + (ms >> 1) == cm->mi_cols)) { BLOCK_SIZE split_subsize = get_subsize(bsize, PARTITION_SPLIT); split_rate = 0; split_dist = 0; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); // Split partition. for (i = 0; i < 4; i++) { int x_idx = (i & 1) * (num_4x4_blocks_wide >> 2); int y_idx = (i >> 1) * (num_4x4_blocks_wide >> 2); int rt = 0; int64_t dt = 0; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) continue; *get_sb_index(xd, split_subsize) = i; *get_sb_partitioning(x, bsize) = split_subsize; *get_sb_partitioning(x, split_subsize) = split_subsize; save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); pick_sb_modes(cpi, mi_row + y_idx, mi_col + x_idx, &rt, &dt, split_subsize, get_block_context(x, split_subsize), INT64_MAX); restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (rt == INT_MAX || dt == INT_MAX) { split_rate = INT_MAX; split_dist = INT_MAX; break; } if (i != 3) encode_sb(cpi, tp, mi_row + y_idx, mi_col + x_idx, 0, split_subsize); split_rate += rt; split_dist += dt; set_partition_seg_context(cm, xd, mi_row + y_idx, mi_col + x_idx); pl = partition_plane_context(xd, bsize); split_rate += x->partition_cost[pl][PARTITION_NONE]; } set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); if (split_rate < INT_MAX) { split_rate += x->partition_cost[pl][PARTITION_SPLIT]; chosen_rate = split_rate; chosen_dist = split_dist; } } // If last_part is better set the partitioning to that... if (RDCOST(x->rdmult, x->rddiv, last_part_rate, last_part_dist) < RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist)) { mi_8x8[0]->mbmi.sb_type = bsize; if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = subsize; chosen_rate = last_part_rate; chosen_dist = last_part_dist; } // If none was better set the partitioning to that... if (RDCOST(x->rdmult, x->rddiv, chosen_rate, chosen_dist) > RDCOST(x->rdmult, x->rddiv, none_rate, none_dist)) { if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = bsize; chosen_rate = none_rate; chosen_dist = none_dist; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success. if ( bsize == BLOCK_64X64) assert(chosen_rate < INT_MAX && chosen_dist < INT_MAX); if (do_recon) encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize); *rate = chosen_rate; *dist = chosen_dist; } static const BLOCK_SIZE min_partition_size[BLOCK_SIZES] = { BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16 }; static const BLOCK_SIZE max_partition_size[BLOCK_SIZES] = { BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, BLOCK_64X64 }; // Look at all the mode_info entries for blocks that are part of this // partition and find the min and max values for sb_type. // At the moment this is designed to work on a 64x64 SB but could be // adjusted to use a size parameter. // // The min and max are assumed to have been initialized prior to calling this // function so repeat calls can accumulate a min and max of more than one sb64. static void get_sb_partition_size_range(VP9_COMP *cpi, MODE_INFO ** mi_8x8, BLOCK_SIZE * min_block_size, BLOCK_SIZE * max_block_size ) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; int sb_width_in_blocks = MI_BLOCK_SIZE; int sb_height_in_blocks = MI_BLOCK_SIZE; int i, j; int index = 0; // Check the sb_type for each block that belongs to this region. for (i = 0; i < sb_height_in_blocks; ++i) { for (j = 0; j < sb_width_in_blocks; ++j) { MODE_INFO * mi = mi_8x8[index+j]; BLOCK_SIZE sb_type = mi ? mi->mbmi.sb_type : 0; *min_block_size = MIN(*min_block_size, sb_type); *max_block_size = MAX(*max_block_size, sb_type); } index += xd->mode_info_stride; } } // Look at neighboring blocks and set a min and max partition size based on // what they chose. static void rd_auto_partition_range(VP9_COMP *cpi, int row, int col, BLOCK_SIZE *min_block_size, BLOCK_SIZE *max_block_size) { MACROBLOCKD *const xd = &cpi->mb.e_mbd; MODE_INFO ** mi_8x8 = xd->mi_8x8; const int left_in_image = xd->left_available && mi_8x8[-1]; const int above_in_image = xd->up_available && mi_8x8[-xd->mode_info_stride]; MODE_INFO ** above_sb64_mi_8x8; MODE_INFO ** left_sb64_mi_8x8; // Frequency check if (cpi->sf.auto_min_max_partition_count <= 0) { cpi->sf.auto_min_max_partition_count = cpi->sf.auto_min_max_partition_interval; *min_block_size = BLOCK_4X4; *max_block_size = BLOCK_64X64; } else { --cpi->sf.auto_min_max_partition_count; // Set default values if no left or above neighbour if (!left_in_image && !above_in_image) { *min_block_size = BLOCK_4X4; *max_block_size = BLOCK_64X64; } else { VP9_COMMON *const cm = &cpi->common; int row8x8_remaining = cm->cur_tile_mi_row_end - row; int col8x8_remaining = cm->cur_tile_mi_col_end - col; int bh, bw; // Default "min to max" and "max to min" *min_block_size = BLOCK_64X64; *max_block_size = BLOCK_4X4; // Find the min and max partition sizes used in the left SB64 if (left_in_image) { left_sb64_mi_8x8 = &mi_8x8[-MI_BLOCK_SIZE]; get_sb_partition_size_range(cpi, left_sb64_mi_8x8, min_block_size, max_block_size); } // Find the min and max partition sizes used in the above SB64 taking // the values found for left as a starting point. if (above_in_image) { above_sb64_mi_8x8 = &mi_8x8[-xd->mode_info_stride * MI_BLOCK_SIZE]; get_sb_partition_size_range(cpi, above_sb64_mi_8x8, min_block_size, max_block_size); } // Give a bit of leaway either side of the observed min and max *min_block_size = min_partition_size[*min_block_size]; *max_block_size = max_partition_size[*max_block_size]; // Check border cases where max and min from neighbours may not be legal. *max_block_size = find_partition_size(*max_block_size, row8x8_remaining, col8x8_remaining, &bh, &bw); *min_block_size = MIN(*min_block_size, *max_block_size); } } } static void compute_fast_motion_search_level(VP9_COMP *cpi, BLOCK_SIZE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; // Only use 8x8 result for non HD videos. // int use_8x8 = (MIN(cpi->common.width, cpi->common.height) < 720) ? 1 : 0; int use_8x8 = 1; if (cm->frame_type && !cpi->is_src_frame_alt_ref && ((use_8x8 && bsize == BLOCK_16X16) || bsize == BLOCK_32X32 || bsize == BLOCK_64X64)) { int ref0 = 0, ref1 = 0, ref2 = 0, ref3 = 0; PICK_MODE_CONTEXT *block_context = NULL; if (bsize == BLOCK_16X16) { block_context = x->sb8x8_context[xd->sb_index][xd->mb_index]; } else if (bsize == BLOCK_32X32) { block_context = x->mb_context[xd->sb_index]; } else if (bsize == BLOCK_64X64) { block_context = x->sb32_context; } if (block_context) { ref0 = block_context[0].mic.mbmi.ref_frame[0]; ref1 = block_context[1].mic.mbmi.ref_frame[0]; ref2 = block_context[2].mic.mbmi.ref_frame[0]; ref3 = block_context[3].mic.mbmi.ref_frame[0]; } // Currently, only consider 4 inter reference frames. if (ref0 && ref1 && ref2 && ref3) { int d01, d23, d02, d13; // Motion vectors for the four subblocks. int16_t mvr0 = block_context[0].mic.mbmi.mv[0].as_mv.row; int16_t mvc0 = block_context[0].mic.mbmi.mv[0].as_mv.col; int16_t mvr1 = block_context[1].mic.mbmi.mv[0].as_mv.row; int16_t mvc1 = block_context[1].mic.mbmi.mv[0].as_mv.col; int16_t mvr2 = block_context[2].mic.mbmi.mv[0].as_mv.row; int16_t mvc2 = block_context[2].mic.mbmi.mv[0].as_mv.col; int16_t mvr3 = block_context[3].mic.mbmi.mv[0].as_mv.row; int16_t mvc3 = block_context[3].mic.mbmi.mv[0].as_mv.col; // Adjust sign if ref is alt_ref. if (cm->ref_frame_sign_bias[ref0]) { mvr0 *= -1; mvc0 *= -1; } if (cm->ref_frame_sign_bias[ref1]) { mvr1 *= -1; mvc1 *= -1; } if (cm->ref_frame_sign_bias[ref2]) { mvr2 *= -1; mvc2 *= -1; } if (cm->ref_frame_sign_bias[ref3]) { mvr3 *= -1; mvc3 *= -1; } // Calculate mv distances. d01 = MAX(abs(mvr0 - mvr1), abs(mvc0 - mvc1)); d23 = MAX(abs(mvr2 - mvr3), abs(mvc2 - mvc3)); d02 = MAX(abs(mvr0 - mvr2), abs(mvc0 - mvc2)); d13 = MAX(abs(mvr1 - mvr3), abs(mvc1 - mvc3)); if (d01 < FAST_MOTION_MV_THRESH && d23 < FAST_MOTION_MV_THRESH && d02 < FAST_MOTION_MV_THRESH && d13 < FAST_MOTION_MV_THRESH) { // Set fast motion search level. x->fast_ms = 1; if (ref0 == ref1 && ref1 == ref2 && ref2 == ref3 && d01 < 2 && d23 < 2 && d02 < 2 && d13 < 2) { // Set fast motion search level. x->fast_ms = 2; if (!d01 && !d23 && !d02 && !d13) { x->fast_ms = 3; x->subblock_ref = ref0; } } } } } } static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { vpx_memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); } static INLINE void load_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { vpx_memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); } // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are // unlikely to be selected depending on previous rate-distortion optimization // results, for encoding speed-up. static void rd_pick_partition(VP9_COMP *cpi, TOKENEXTRA **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, int64_t best_rd) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; const int ms = num_8x8_blocks_wide_lookup[bsize] / 2; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; TOKENEXTRA *tp_orig = *tp; int i, pl; BLOCK_SIZE subsize; int this_rate, sum_rate = 0, best_rate = INT_MAX; int64_t this_dist, sum_dist = 0, best_dist = INT64_MAX; int64_t sum_rd = 0; int do_split = bsize >= BLOCK_8X8; int do_rect = 1; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + ms >= cm->mi_rows); const int force_vert_split = (mi_col + ms >= cm->mi_cols); int partition_none_allowed = !force_horz_split && !force_vert_split; int partition_horz_allowed = !force_vert_split && bsize >= BLOCK_8X8; int partition_vert_allowed = !force_horz_split && bsize >= BLOCK_8X8; int partition_split_done = 0; (void) *tp_orig; if (bsize < BLOCK_8X8) { // When ab_index = 0 all sub-blocks are handled, so for ab_index != 0 // there is nothing to be done. if (xd->ab_index != 0) { *rate = 0; *dist = 0; return; } } assert(mi_height_log2(bsize) == mi_width_log2(bsize)); // Determine partition types in search according to the speed features. // The threshold set here has to be of square block size. if (cpi->sf.auto_min_max_partition_size) { partition_none_allowed &= (bsize <= cpi->sf.max_partition_size && bsize >= cpi->sf.min_partition_size); partition_horz_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_horz_split); partition_vert_allowed &= ((bsize <= cpi->sf.max_partition_size && bsize > cpi->sf.min_partition_size) || force_vert_split); do_split &= bsize > cpi->sf.min_partition_size; } if (cpi->sf.use_square_partition_only) { partition_horz_allowed &= force_horz_split; partition_vert_allowed &= force_vert_split; } save_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); if (cpi->sf.disable_split_var_thresh && partition_none_allowed) { unsigned int source_variancey; vp9_setup_src_planes(x, cpi->Source, mi_row, mi_col); source_variancey = get_sby_perpixel_variance(cpi, x, bsize); if (source_variancey < cpi->sf.disable_split_var_thresh) { do_split = 0; if (source_variancey < cpi->sf.disable_split_var_thresh / 2) do_rect = 0; } } // PARTITION_NONE if (partition_none_allowed) { pick_sb_modes(cpi, mi_row, mi_col, &this_rate, &this_dist, bsize, get_block_context(x, bsize), best_rd); if (this_rate != INT_MAX) { if (bsize >= BLOCK_8X8) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); this_rate += x->partition_cost[pl][PARTITION_NONE]; } sum_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_dist); if (sum_rd < best_rd) { int64_t stop_thresh = 2048; best_rate = this_rate; best_dist = this_dist; best_rd = sum_rd; if (bsize >= BLOCK_8X8) *(get_sb_partitioning(x, bsize)) = bsize; // Adjust threshold according to partition size. stop_thresh >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); // If obtained distortion is very small, choose current partition // and stop splitting. if (this_dist < stop_thresh) { do_split = 0; do_rect = 0; } } } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // store estimated motion vector if (cpi->sf.adaptive_motion_search) store_pred_mv(x, get_block_context(x, bsize)); // PARTITION_SPLIT sum_rd = 0; // TODO(jingning): use the motion vectors given by the above search as // the starting point of motion search in the following partition type check. if (do_split) { subsize = get_subsize(bsize, PARTITION_SPLIT); for (i = 0; i < 4 && sum_rd < best_rd; ++i) { const int x_idx = (i & 1) * ms; const int y_idx = (i >> 1) * ms; if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) continue; *get_sb_index(xd, subsize) = i; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, get_block_context(x, bsize)); rd_pick_partition(cpi, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rate, &this_dist, i != 3, best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd && i == 4) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); sum_rate += x->partition_cost[pl][PARTITION_SPLIT]; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd) { best_rate = sum_rate; best_dist = sum_dist; best_rd = sum_rd; *(get_sb_partitioning(x, bsize)) = subsize; } else { // skip rectangular partition test when larger block size // gives better rd cost if (cpi->sf.less_rectangular_check) do_rect &= !partition_none_allowed; } } partition_split_done = 1; restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } x->fast_ms = 0; x->subblock_ref = 0; if (partition_split_done && cpi->sf.using_small_partition_info) { compute_fast_motion_search_level(cpi, bsize); } // PARTITION_HORZ if (partition_horz_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_HORZ); *get_sb_index(xd, subsize) = 0; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, get_block_context(x, bsize)); pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize, get_block_context(x, subsize), best_rd); sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd && mi_row + ms < cm->mi_rows) { update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(xd, subsize) = 1; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, get_block_context(x, bsize)); pick_sb_modes(cpi, mi_row + ms, mi_col, &this_rate, &this_dist, subsize, get_block_context(x, subsize), best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); sum_rate += x->partition_cost[pl][PARTITION_HORZ]; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd) { best_rd = sum_rd; best_rate = sum_rate; best_dist = sum_dist; *(get_sb_partitioning(x, bsize)) = subsize; } } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } // PARTITION_VERT if (partition_vert_allowed && do_rect) { subsize = get_subsize(bsize, PARTITION_VERT); *get_sb_index(xd, subsize) = 0; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, get_block_context(x, bsize)); pick_sb_modes(cpi, mi_row, mi_col, &sum_rate, &sum_dist, subsize, get_block_context(x, subsize), best_rd); sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd && mi_col + ms < cm->mi_cols) { update_state(cpi, get_block_context(x, subsize), subsize, 0); encode_superblock(cpi, tp, 0, mi_row, mi_col, subsize); *get_sb_index(xd, subsize) = 1; if (cpi->sf.adaptive_motion_search) load_pred_mv(x, get_block_context(x, bsize)); pick_sb_modes(cpi, mi_row, mi_col + ms, &this_rate, &this_dist, subsize, get_block_context(x, subsize), best_rd - sum_rd); if (this_rate == INT_MAX) { sum_rd = INT64_MAX; } else { sum_rate += this_rate; sum_dist += this_dist; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); } } if (sum_rd < best_rd) { set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, bsize); sum_rate += x->partition_cost[pl][PARTITION_VERT]; sum_rd = RDCOST(x->rdmult, x->rddiv, sum_rate, sum_dist); if (sum_rd < best_rd) { best_rate = sum_rate; best_dist = sum_dist; best_rd = sum_rd; *(get_sb_partitioning(x, bsize)) = subsize; } } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, bsize); } *rate = best_rate; *dist = best_dist; if (best_rate < INT_MAX && best_dist < INT64_MAX && do_recon) encode_sb(cpi, tp, mi_row, mi_col, bsize == BLOCK_64X64, bsize); if (bsize == BLOCK_64X64) { assert(tp_orig < *tp); assert(best_rate < INT_MAX); assert(best_dist < INT_MAX); } else { assert(tp_orig == *tp); } } // Examines 64x64 block and chooses a best reference frame static void rd_pick_reference_frame(VP9_COMP *cpi, int mi_row, int mi_col) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; int bsl = b_width_log2(BLOCK_64X64), bs = 1 << bsl; int ms = bs / 2; ENTROPY_CONTEXT l[16 * MAX_MB_PLANE], a[16 * MAX_MB_PLANE]; PARTITION_CONTEXT sl[8], sa[8]; int pl; int r; int64_t d; save_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64); // Default is non mask (all reference frames allowed. cpi->ref_frame_mask = 0; // Do RD search for 64x64. if ((mi_row + (ms >> 1) < cm->mi_rows) && (mi_col + (ms >> 1) < cm->mi_cols)) { cpi->set_ref_frame_mask = 1; pick_sb_modes(cpi, mi_row, mi_col, &r, &d, BLOCK_64X64, get_block_context(x, BLOCK_64X64), INT64_MAX); set_partition_seg_context(cm, xd, mi_row, mi_col); pl = partition_plane_context(xd, BLOCK_64X64); r += x->partition_cost[pl][PARTITION_NONE]; *(get_sb_partitioning(x, BLOCK_64X64)) = BLOCK_64X64; cpi->set_ref_frame_mask = 0; } restore_context(cpi, mi_row, mi_col, a, l, sa, sl, BLOCK_64X64); } static void encode_sb_row(VP9_COMP *cpi, int mi_row, TOKENEXTRA **tp, int *totalrate) { VP9_COMMON * const cm = &cpi->common; int mi_col; // Initialize the left context for the new SB row vpx_memset(&cm->left_context, 0, sizeof(cm->left_context)); vpx_memset(cm->left_seg_context, 0, sizeof(cm->left_seg_context)); // Code each SB in the row for (mi_col = cm->cur_tile_mi_col_start; mi_col < cm->cur_tile_mi_col_end; mi_col += MI_BLOCK_SIZE) { int dummy_rate; int64_t dummy_dist; vpx_memset(cpi->mb.pred_mv, 0, sizeof(cpi->mb.pred_mv)); if (cpi->sf.reference_masking) rd_pick_reference_frame(cpi, mi_row, mi_col); if (cpi->sf.partition_by_variance || cpi->sf.use_lastframe_partitioning || cpi->sf.use_one_partition_size_always ) { const int idx_str = cm->mode_info_stride * mi_row + mi_col; MODE_INFO **mi_8x8 = cm->mi_grid_visible + idx_str; MODE_INFO **prev_mi_8x8 = cm->prev_mi_grid_visible + idx_str; cpi->mb.source_variance = UINT_MAX; if (cpi->sf.use_one_partition_size_always) { set_offsets(cpi, mi_row, mi_col, BLOCK_64X64); set_partitioning(cpi, mi_8x8, mi_row, mi_col); rd_use_partition(cpi, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } else if (cpi->sf.partition_by_variance) { choose_partitioning(cpi, cm->mi_grid_visible, mi_row, mi_col); rd_use_partition(cpi, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } else { if ((cpi->common.current_video_frame % cpi->sf.last_partitioning_redo_frequency) == 0 || cm->prev_mi == 0 || cpi->common.show_frame == 0 || cpi->common.frame_type == KEY_FRAME || cpi->is_src_frame_alt_ref) { // If required set upper and lower partition size limits if (cpi->sf.auto_min_max_partition_size) { set_offsets(cpi, mi_row, mi_col, BLOCK_64X64); rd_auto_partition_range(cpi, mi_row, mi_col, &cpi->sf.min_partition_size, &cpi->sf.max_partition_size); } rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, INT64_MAX); } else { copy_partitioning(cpi, mi_8x8, prev_mi_8x8); rd_use_partition(cpi, mi_8x8, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1); } } } else { // If required set upper and lower partition size limits if (cpi->sf.auto_min_max_partition_size) { set_offsets(cpi, mi_row, mi_col, BLOCK_64X64); rd_auto_partition_range(cpi, mi_row, mi_col, &cpi->sf.min_partition_size, &cpi->sf.max_partition_size); } rd_pick_partition(cpi, tp, mi_row, mi_col, BLOCK_64X64, &dummy_rate, &dummy_dist, 1, INT64_MAX); } } } static void init_encode_frame_mb_context(VP9_COMP *cpi) { MACROBLOCK *const x = &cpi->mb; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const int aligned_mi_cols = mi_cols_aligned_to_sb(cm->mi_cols); x->act_zbin_adj = 0; cpi->seg0_idx = 0; xd->mode_info_stride = cm->mode_info_stride; // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp9_init_mbmode_probs(cm); // Copy data over into macro block data structures. vp9_setup_src_planes(x, cpi->Source, 0, 0); // TODO(jkoleszar): are these initializations required? setup_pre_planes(xd, 0, &cm->yv12_fb[cm->ref_frame_map[cpi->lst_fb_idx]], 0, 0, NULL); setup_dst_planes(xd, &cm->yv12_fb[cm->new_fb_idx], 0, 0); setup_block_dptrs(&x->e_mbd, cm->subsampling_x, cm->subsampling_y); xd->this_mi->mbmi.mode = DC_PRED; xd->this_mi->mbmi.uv_mode = DC_PRED; vp9_zero(cpi->y_mode_count) vp9_zero(cpi->y_uv_mode_count) vp9_zero(cm->counts.inter_mode) vp9_zero(cpi->partition_count); vp9_zero(cpi->intra_inter_count); vp9_zero(cpi->comp_inter_count); vp9_zero(cpi->single_ref_count); vp9_zero(cpi->comp_ref_count); vp9_zero(cm->counts.tx); vp9_zero(cm->counts.mbskip); // Note: this memset assumes above_context[0], [1] and [2] // are allocated as part of the same buffer. vpx_memset(cm->above_context[0], 0, sizeof(ENTROPY_CONTEXT) * 2 * MAX_MB_PLANE * aligned_mi_cols); vpx_memset(cm->above_seg_context, 0, sizeof(PARTITION_CONTEXT) * aligned_mi_cols); } static void switch_lossless_mode(VP9_COMP *cpi, int lossless) { if (lossless) { // printf("Switching to lossless\n"); cpi->mb.fwd_txm8x4 = vp9_short_walsh8x4; cpi->mb.fwd_txm4x4 = vp9_short_walsh4x4; cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_iwalsh4x4_1_add; cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_iwalsh4x4_add; cpi->mb.optimize = 0; cpi->common.lf.filter_level = 0; cpi->zbin_mode_boost_enabled = 0; cpi->common.tx_mode = ONLY_4X4; } else { // printf("Not lossless\n"); cpi->mb.fwd_txm8x4 = vp9_short_fdct8x4; cpi->mb.fwd_txm4x4 = vp9_short_fdct4x4; cpi->mb.e_mbd.inv_txm4x4_1_add = vp9_short_idct4x4_1_add; cpi->mb.e_mbd.inv_txm4x4_add = vp9_short_idct4x4_add; } } static void switch_tx_mode(VP9_COMP *cpi) { if (cpi->sf.tx_size_search_method == USE_LARGESTALL && cpi->common.tx_mode >= ALLOW_32X32) cpi->common.tx_mode = ALLOW_32X32; } static void encode_frame_internal(VP9_COMP *cpi) { int mi_row; MACROBLOCK * const x = &cpi->mb; VP9_COMMON * const cm = &cpi->common; MACROBLOCKD * const xd = &x->e_mbd; int totalrate; // fprintf(stderr, "encode_frame_internal frame %d (%d) type %d\n", // cpi->common.current_video_frame, cpi->common.show_frame, // cm->frame_type); // debug output #if DBG_PRNT_SEGMAP { FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "\n"); fclose(statsfile); } #endif totalrate = 0; // Reset frame count of inter 0,0 motion vector usage. cpi->inter_zz_count = 0; vp9_zero(cm->counts.switchable_interp); vp9_zero(cpi->txfm_stepdown_count); xd->mi_8x8 = cm->mi_grid_visible; // required for vp9_frame_init_quantizer xd->this_mi = xd->mi_8x8[0] = cm->mi; xd->mic_stream_ptr = cm->mi; xd->last_mi = cm->prev_mi; vp9_zero(cpi->NMVcount); vp9_zero(cpi->coef_counts); vp9_zero(cm->counts.eob_branch); cpi->mb.e_mbd.lossless = cm->base_qindex == 0 && cm->y_dc_delta_q == 0 && cm->uv_dc_delta_q == 0 && cm->uv_ac_delta_q == 0; switch_lossless_mode(cpi, cpi->mb.e_mbd.lossless); vp9_frame_init_quantizer(cpi); vp9_initialize_rd_consts(cpi, cm->base_qindex + cm->y_dc_delta_q); vp9_initialize_me_consts(cpi, cm->base_qindex); switch_tx_mode(cpi); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Initialize encode frame context. init_encode_frame_mb_context(cpi); // Build a frame level activity map build_activity_map(cpi); } // Re-initialize encode frame context. init_encode_frame_mb_context(cpi); vp9_zero(cpi->rd_comp_pred_diff); vp9_zero(cpi->rd_filter_diff); vp9_zero(cpi->rd_tx_select_diff); vp9_zero(cpi->rd_tx_select_threshes); set_prev_mi(cm); { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); { // Take tiles into account and give start/end MB int tile_col, tile_row; TOKENEXTRA *tp = cpi->tok; const int tile_cols = 1 << cm->log2_tile_cols; const int tile_rows = 1 << cm->log2_tile_rows; for (tile_row = 0; tile_row < tile_rows; tile_row++) { vp9_get_tile_row_offsets(cm, tile_row); for (tile_col = 0; tile_col < tile_cols; tile_col++) { TOKENEXTRA *tp_old = tp; // For each row of SBs in the frame vp9_get_tile_col_offsets(cm, tile_col); for (mi_row = cm->cur_tile_mi_row_start; mi_row < cm->cur_tile_mi_row_end; mi_row += 8) encode_sb_row(cpi, mi_row, &tp, &totalrate); cpi->tok_count[tile_row][tile_col] = (unsigned int)(tp - tp_old); assert(tp - cpi->tok <= get_token_alloc(cm->mb_rows, cm->mb_cols)); } } } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_sb_row += vpx_usec_timer_elapsed(&emr_timer); } if (cpi->sf.skip_encode_sb) { int j; unsigned int intra_count = 0, inter_count = 0; for (j = 0; j < INTRA_INTER_CONTEXTS; ++j) { intra_count += cpi->intra_inter_count[j][0]; inter_count += cpi->intra_inter_count[j][1]; } cpi->sf.skip_encode_frame = ((intra_count << 2) < inter_count); cpi->sf.skip_encode_frame &= (cm->frame_type != KEY_FRAME); cpi->sf.skip_encode_frame &= cm->show_frame; } else { cpi->sf.skip_encode_frame = 0; } // 256 rate units to the bit, // projected_frame_size in units of BYTES cpi->projected_frame_size = totalrate >> 8; #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } static int check_dual_ref_flags(VP9_COMP *cpi) { const int ref_flags = cpi->ref_frame_flags; if (vp9_segfeature_active(&cpi->common.seg, 1, SEG_LVL_REF_FRAME)) { return 0; } else { return (!!(ref_flags & VP9_GOLD_FLAG) + !!(ref_flags & VP9_LAST_FLAG) + !!(ref_flags & VP9_ALT_FLAG)) >= 2; } } static int get_skip_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs) { int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) { if (!mi_8x8[y * mis + x]->mbmi.skip_coeff) return 0; } } return 1; } static void set_txfm_flag(MODE_INFO **mi_8x8, int mis, int ymbs, int xmbs, TX_SIZE tx_size) { int x, y; for (y = 0; y < ymbs; y++) { for (x = 0; x < xmbs; x++) mi_8x8[y * mis + x]->mbmi.tx_size = tx_size; } } static void reset_skip_txfm_size_b(VP9_COMP *cpi, MODE_INFO **mi_8x8, int mis, TX_SIZE max_tx_size, int bw, int bh, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON * const cm = &cpi->common; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) { return; } else { MB_MODE_INFO * const mbmi = &mi_8x8[0]->mbmi; if (mbmi->tx_size > max_tx_size) { const int ymbs = MIN(bh, cm->mi_rows - mi_row); const int xmbs = MIN(bw, cm->mi_cols - mi_col); assert(vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) || get_skip_flag(mi_8x8, mis, ymbs, xmbs)); set_txfm_flag(mi_8x8, mis, ymbs, xmbs, max_tx_size); } } } static void reset_skip_txfm_size_sb(VP9_COMP *cpi, MODE_INFO **mi_8x8, TX_SIZE max_tx_size, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON * const cm = &cpi->common; const int mis = cm->mode_info_stride; int bw, bh; const int bs = num_8x8_blocks_wide_lookup[bsize], hbs = bs / 2; if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; bw = num_8x8_blocks_wide_lookup[mi_8x8[0]->mbmi.sb_type]; bh = num_8x8_blocks_high_lookup[mi_8x8[0]->mbmi.sb_type]; if (bw == bs && bh == bs) { reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, bs, mi_row, mi_col, bsize); } else if (bw == bs && bh < bs) { reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, bs, hbs, mi_row, mi_col, bsize); reset_skip_txfm_size_b(cpi, mi_8x8 + hbs * mis, mis, max_tx_size, bs, hbs, mi_row + hbs, mi_col, bsize); } else if (bw < bs && bh == bs) { reset_skip_txfm_size_b(cpi, mi_8x8, mis, max_tx_size, hbs, bs, mi_row, mi_col, bsize); reset_skip_txfm_size_b(cpi, mi_8x8 + hbs, mis, max_tx_size, hbs, bs, mi_row, mi_col + hbs, bsize); } else { const BLOCK_SIZE subsize = subsize_lookup[PARTITION_SPLIT][bsize]; int n; assert(bw < bs && bh < bs); for (n = 0; n < 4; n++) { const int mi_dc = hbs * (n & 1); const int mi_dr = hbs * (n >> 1); reset_skip_txfm_size_sb(cpi, &mi_8x8[mi_dr * mis + mi_dc], max_tx_size, mi_row + mi_dr, mi_col + mi_dc, subsize); } } } static void reset_skip_txfm_size(VP9_COMP *cpi, TX_SIZE txfm_max) { VP9_COMMON * const cm = &cpi->common; int mi_row, mi_col; const int mis = cm->mode_info_stride; // MODE_INFO *mi, *mi_ptr = cm->mi; MODE_INFO **mi_8x8, **mi_ptr = cm->mi_grid_visible; for (mi_row = 0; mi_row < cm->mi_rows; mi_row += 8, mi_ptr += 8 * mis) { mi_8x8 = mi_ptr; for (mi_col = 0; mi_col < cm->mi_cols; mi_col += 8, mi_8x8 += 8) { reset_skip_txfm_size_sb(cpi, mi_8x8, txfm_max, mi_row, mi_col, BLOCK_64X64); } } } static int get_frame_type(VP9_COMP *cpi) { int frame_type; if (cpi->common.frame_type == KEY_FRAME) frame_type = 0; else if (cpi->is_src_frame_alt_ref && cpi->refresh_golden_frame) frame_type = 3; else if (cpi->refresh_golden_frame || cpi->refresh_alt_ref_frame) frame_type = 1; else frame_type = 2; return frame_type; } static void select_tx_mode(VP9_COMP *cpi) { if (cpi->oxcf.lossless) { cpi->common.tx_mode = ONLY_4X4; } else if (cpi->common.current_video_frame == 0) { cpi->common.tx_mode = TX_MODE_SELECT; } else { if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { cpi->common.tx_mode = ALLOW_32X32; } else if (cpi->sf.tx_size_search_method == USE_FULL_RD) { int frame_type = get_frame_type(cpi); cpi->common.tx_mode = cpi->rd_tx_select_threshes[frame_type][ALLOW_32X32] > cpi->rd_tx_select_threshes[frame_type][TX_MODE_SELECT] ? ALLOW_32X32 : TX_MODE_SELECT; } else { unsigned int total = 0; int i; for (i = 0; i < TX_SIZES; ++i) total += cpi->txfm_stepdown_count[i]; if (total) { double fraction = (double)cpi->txfm_stepdown_count[0] / total; cpi->common.tx_mode = fraction > 0.90 ? ALLOW_32X32 : TX_MODE_SELECT; // printf("fraction = %f\n", fraction); } // else keep unchanged } } } void vp9_encode_frame(VP9_COMP *cpi) { VP9_COMMON * const cm = &cpi->common; // In the longer term the encoder should be generalized to match the // decoder such that we allow compound where one of the 3 buffers has a // different sign bias and that buffer is then the fixed ref. However, this // requires further work in the rd loop. For now the only supported encoder // side behavior is where the ALT ref buffer has opposite sign bias to // the other two. if ((cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[GOLDEN_FRAME]) || (cm->ref_frame_sign_bias[ALTREF_FRAME] == cm->ref_frame_sign_bias[LAST_FRAME])) { cm->allow_comp_inter_inter = 0; } else { cm->allow_comp_inter_inter = 1; cm->comp_fixed_ref = ALTREF_FRAME; cm->comp_var_ref[0] = LAST_FRAME; cm->comp_var_ref[1] = GOLDEN_FRAME; } if (cpi->sf.RD) { int i, pred_type; INTERPOLATIONFILTERTYPE filter_type; /* * This code does a single RD pass over the whole frame assuming * either compound, single or hybrid prediction as per whatever has * worked best for that type of frame in the past. * It also predicts whether another coding mode would have worked * better that this coding mode. If that is the case, it remembers * that for subsequent frames. * It does the same analysis for transform size selection also. */ int frame_type = get_frame_type(cpi); /* prediction (compound, single or hybrid) mode selection */ if (frame_type == 3 || !cm->allow_comp_inter_inter) pred_type = SINGLE_PREDICTION_ONLY; else if (cpi->rd_prediction_type_threshes[frame_type][1] > cpi->rd_prediction_type_threshes[frame_type][0] && cpi->rd_prediction_type_threshes[frame_type][1] > cpi->rd_prediction_type_threshes[frame_type][2] && check_dual_ref_flags(cpi) && cpi->static_mb_pct == 100) pred_type = COMP_PREDICTION_ONLY; else if (cpi->rd_prediction_type_threshes[frame_type][0] > cpi->rd_prediction_type_threshes[frame_type][2]) pred_type = SINGLE_PREDICTION_ONLY; else pred_type = HYBRID_PREDICTION; /* filter type selection */ // FIXME(rbultje) for some odd reason, we often select smooth_filter // as default filter for ARF overlay frames. This is a REALLY BAD // IDEA so we explicitly disable it here. if (frame_type != 3 && cpi->rd_filter_threshes[frame_type][1] > cpi->rd_filter_threshes[frame_type][0] && cpi->rd_filter_threshes[frame_type][1] > cpi->rd_filter_threshes[frame_type][2] && cpi->rd_filter_threshes[frame_type][1] > cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) { filter_type = EIGHTTAP_SMOOTH; } else if (cpi->rd_filter_threshes[frame_type][2] > cpi->rd_filter_threshes[frame_type][0] && cpi->rd_filter_threshes[frame_type][2] > cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) { filter_type = EIGHTTAP_SHARP; } else if (cpi->rd_filter_threshes[frame_type][0] > cpi->rd_filter_threshes[frame_type][SWITCHABLE_FILTERS]) { filter_type = EIGHTTAP; } else { filter_type = SWITCHABLE; } cpi->mb.e_mbd.lossless = 0; if (cpi->oxcf.lossless) { cpi->mb.e_mbd.lossless = 1; } /* transform size selection (4x4, 8x8, 16x16 or select-per-mb) */ select_tx_mode(cpi); cpi->common.comp_pred_mode = pred_type; cpi->common.mcomp_filter_type = filter_type; encode_frame_internal(cpi); for (i = 0; i < NB_PREDICTION_TYPES; ++i) { const int diff = (int) (cpi->rd_comp_pred_diff[i] / cpi->common.MBs); cpi->rd_prediction_type_threshes[frame_type][i] += diff; cpi->rd_prediction_type_threshes[frame_type][i] >>= 1; } for (i = 0; i <= SWITCHABLE_FILTERS; i++) { const int64_t diff = cpi->rd_filter_diff[i] / cpi->common.MBs; cpi->rd_filter_threshes[frame_type][i] = (cpi->rd_filter_threshes[frame_type][i] + diff) / 2; } for (i = 0; i < TX_MODES; ++i) { int64_t pd = cpi->rd_tx_select_diff[i]; int diff; if (i == TX_MODE_SELECT) pd -= RDCOST(cpi->mb.rdmult, cpi->mb.rddiv, 2048 * (TX_SIZES - 1), 0); diff = (int) (pd / cpi->common.MBs); cpi->rd_tx_select_threshes[frame_type][i] += diff; cpi->rd_tx_select_threshes[frame_type][i] /= 2; } if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { int single_count_zero = 0; int comp_count_zero = 0; for (i = 0; i < COMP_INTER_CONTEXTS; i++) { single_count_zero += cpi->comp_inter_count[i][0]; comp_count_zero += cpi->comp_inter_count[i][1]; } if (comp_count_zero == 0) { cpi->common.comp_pred_mode = SINGLE_PREDICTION_ONLY; vp9_zero(cpi->comp_inter_count); } else if (single_count_zero == 0) { cpi->common.comp_pred_mode = COMP_PREDICTION_ONLY; vp9_zero(cpi->comp_inter_count); } } if (cpi->common.tx_mode == TX_MODE_SELECT) { int count4x4 = 0; int count8x8_lp = 0, count8x8_8x8p = 0; int count16x16_16x16p = 0, count16x16_lp = 0; int count32x32 = 0; for (i = 0; i < TX_SIZE_CONTEXTS; ++i) { count4x4 += cm->counts.tx.p32x32[i][TX_4X4]; count4x4 += cm->counts.tx.p16x16[i][TX_4X4]; count4x4 += cm->counts.tx.p8x8[i][TX_4X4]; count8x8_lp += cm->counts.tx.p32x32[i][TX_8X8]; count8x8_lp += cm->counts.tx.p16x16[i][TX_8X8]; count8x8_8x8p += cm->counts.tx.p8x8[i][TX_8X8]; count16x16_16x16p += cm->counts.tx.p16x16[i][TX_16X16]; count16x16_lp += cm->counts.tx.p32x32[i][TX_16X16]; count32x32 += cm->counts.tx.p32x32[i][TX_32X32]; } if (count4x4 == 0 && count16x16_lp == 0 && count16x16_16x16p == 0 && count32x32 == 0) { cpi->common.tx_mode = ALLOW_8X8; reset_skip_txfm_size(cpi, TX_8X8); } else if (count8x8_8x8p == 0 && count16x16_16x16p == 0 && count8x8_lp == 0 && count16x16_lp == 0 && count32x32 == 0) { cpi->common.tx_mode = ONLY_4X4; reset_skip_txfm_size(cpi, TX_4X4); } else if (count8x8_lp == 0 && count16x16_lp == 0 && count4x4 == 0) { cpi->common.tx_mode = ALLOW_32X32; } else if (count32x32 == 0 && count8x8_lp == 0 && count4x4 == 0) { cpi->common.tx_mode = ALLOW_16X16; reset_skip_txfm_size(cpi, TX_16X16); } } } else { encode_frame_internal(cpi); } } static void sum_intra_stats(VP9_COMP *cpi, const MODE_INFO *mi) { const MB_PREDICTION_MODE y_mode = mi->mbmi.mode; const MB_PREDICTION_MODE uv_mode = mi->mbmi.uv_mode; const BLOCK_SIZE bsize = mi->mbmi.sb_type; ++cpi->y_uv_mode_count[y_mode][uv_mode]; if (bsize < BLOCK_8X8) { int idx, idy; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; for (idy = 0; idy < 2; idy += num_4x4_blocks_high) for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) ++cpi->y_mode_count[0][mi->bmi[idy * 2 + idx].as_mode]; } else { ++cpi->y_mode_count[size_group_lookup[bsize]][y_mode]; } } // Experimental stub function to create a per MB zbin adjustment based on // some previously calculated measure of MB activity. static void adjust_act_zbin(VP9_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->act_zbin_adj = *(x->mb_activity_ptr); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + 4 * cpi->activity_avg; b = 4 * act + cpi->activity_avg; if (act > cpi->activity_avg) x->act_zbin_adj = (int) (((int64_t) b + (a >> 1)) / a) - 1; else x->act_zbin_adj = 1 - (int) (((int64_t) a + (b >> 1)) / b); #endif } static void encode_superblock(VP9_COMP *cpi, TOKENEXTRA **t, int output_enabled, int mi_row, int mi_col, BLOCK_SIZE bsize) { VP9_COMMON * const cm = &cpi->common; MACROBLOCK * const x = &cpi->mb; MACROBLOCKD * const xd = &x->e_mbd; MODE_INFO **mi_8x8 = xd->mi_8x8; MODE_INFO *mi = mi_8x8[0]; MB_MODE_INFO *mbmi = &mi->mbmi; unsigned int segment_id = mbmi->segment_id; const int mis = cm->mode_info_stride; const int mi_width = num_8x8_blocks_wide_lookup[bsize]; const int mi_height = num_8x8_blocks_high_lookup[bsize]; x->use_lp32x32fdct = cpi->sf.use_lp32x32fdct; x->skip_encode = (!output_enabled && cpi->sf.skip_encode_frame && xd->q_index < QIDX_SKIP_THRESH); if (x->skip_encode) return; if (cm->frame_type == KEY_FRAME) { if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { adjust_act_zbin(cpi, x); vp9_update_zbin_extra(cpi, x); } } else { vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); if (cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Adjust the zbin based on this MB rate. adjust_act_zbin(cpi, x); } // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to suppress noise cpi->zbin_mode_boost = 0; if (cpi->zbin_mode_boost_enabled) { if (is_inter_block(mbmi)) { if (mbmi->mode == ZEROMV) { if (mbmi->ref_frame[0] != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (mbmi->sb_type < BLOCK_8X8) { cpi->zbin_mode_boost = SPLIT_MV_ZBIN_BOOST; } else { cpi->zbin_mode_boost = MV_ZBIN_BOOST; } } else { cpi->zbin_mode_boost = INTRA_ZBIN_BOOST; } } vp9_update_zbin_extra(cpi, x); } if (!is_inter_block(mbmi)) { vp9_encode_intra_block_y(x, MAX(bsize, BLOCK_8X8)); vp9_encode_intra_block_uv(x, MAX(bsize, BLOCK_8X8)); if (output_enabled) sum_intra_stats(cpi, mi); } else { int idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[0])]; YV12_BUFFER_CONFIG *ref_fb = &cm->yv12_fb[idx]; YV12_BUFFER_CONFIG *second_ref_fb = NULL; if (mbmi->ref_frame[1] > 0) { idx = cm->ref_frame_map[get_ref_frame_idx(cpi, mbmi->ref_frame[1])]; second_ref_fb = &cm->yv12_fb[idx]; } assert(cm->frame_type != KEY_FRAME); setup_pre_planes(xd, 0, ref_fb, mi_row, mi_col, &xd->scale_factor[0]); setup_pre_planes(xd, 1, second_ref_fb, mi_row, mi_col, &xd->scale_factor[1]); vp9_build_inter_predictors_sb(xd, mi_row, mi_col, MAX(bsize, BLOCK_8X8)); } if (!is_inter_block(mbmi)) { vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8)); } else if (!x->skip) { vp9_encode_sb(x, MAX(bsize, BLOCK_8X8)); vp9_tokenize_sb(cpi, t, !output_enabled, MAX(bsize, BLOCK_8X8)); } else { int mb_skip_context = xd->left_available ? mi_8x8[-1]->mbmi.skip_coeff : 0; mb_skip_context += mi_8x8[-mis] ? mi_8x8[-mis]->mbmi.skip_coeff : 0; mbmi->skip_coeff = 1; if (output_enabled) cm->counts.mbskip[mb_skip_context][1]++; reset_skip_context(xd, MAX(bsize, BLOCK_8X8)); } if (output_enabled) { if (cm->tx_mode == TX_MODE_SELECT && mbmi->sb_type >= BLOCK_8X8 && !(is_inter_block(mbmi) && (mbmi->skip_coeff || vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)))) { const uint8_t context = vp9_get_pred_context_tx_size(xd); update_tx_counts(bsize, context, mbmi->tx_size, &cm->counts.tx); } else { int x, y; TX_SIZE sz = tx_mode_to_biggest_tx_size[cm->tx_mode]; assert(sizeof(tx_mode_to_biggest_tx_size) / sizeof(tx_mode_to_biggest_tx_size[0]) == TX_MODES); // The new intra coding scheme requires no change of transform size if (is_inter_block(&mi->mbmi)) { if (sz == TX_32X32 && bsize < BLOCK_32X32) sz = TX_16X16; if (sz == TX_16X16 && bsize < BLOCK_16X16) sz = TX_8X8; if (sz == TX_8X8 && bsize < BLOCK_8X8) sz = TX_4X4; } else if (bsize >= BLOCK_8X8) { sz = mbmi->tx_size; } else { sz = TX_4X4; } for (y = 0; y < mi_height; y++) for (x = 0; x < mi_width; x++) if (mi_col + x < cm->mi_cols && mi_row + y < cm->mi_rows) mi_8x8[mis * y + x]->mbmi.tx_size = sz; } } }