/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include extern "C" { #include "./vpx_config.h" #if CONFIG_VP8_ENCODER #include "./vp8_rtcd.h" //#include "vp8/common/blockd.h" #endif #if CONFIG_VP9_ENCODER #include "./vp9_rtcd.h" #endif #include "vpx_mem/vpx_mem.h" } #include "test/acm_random.h" #include "test/register_state_check.h" #include "test/util.h" #include "third_party/googletest/src/include/gtest/gtest.h" typedef unsigned int (*sad_m_by_n_fn_t)(const unsigned char *source_ptr, int source_stride, const unsigned char *reference_ptr, int reference_stride, unsigned int max_sad); typedef std::tr1::tuple sad_m_by_n_test_param_t; typedef void (*sad_n_by_n_by_4_fn_t)(const uint8_t *src_ptr, int src_stride, const unsigned char * const ref_ptr[], int ref_stride, unsigned int *sad_array); typedef std::tr1::tuple sad_n_by_n_by_4_test_param_t; using libvpx_test::ACMRandom; namespace { class SADTestBase : public ::testing::Test { public: SADTestBase(int width, int height) : width_(width), height_(height) {} static void SetUpTestCase() { source_data_ = reinterpret_cast( vpx_memalign(kDataAlignment, kDataBlockSize)); reference_data_ = reinterpret_cast( vpx_memalign(kDataAlignment, kDataBufferSize)); } static void TearDownTestCase() { vpx_free(source_data_); source_data_ = NULL; vpx_free(reference_data_); reference_data_ = NULL; } protected: // Handle blocks up to 4 blocks 64x64 with stride up to 128 static const int kDataAlignment = 16; static const int kDataBlockSize = 64 * 128; static const int kDataBufferSize = 4 * kDataBlockSize; virtual void SetUp() { source_stride_ = (width_ + 31) & ~31; reference_stride_ = width_ * 2; rnd_.Reset(ACMRandom::DeterministicSeed()); } virtual uint8_t* GetReference(int block_idx) { return reference_data_ + block_idx * kDataBlockSize; } // Sum of Absolute Differences. Given two blocks, calculate the absolute // difference between two pixels in the same relative location; accumulate. unsigned int ReferenceSAD(unsigned int max_sad, int block_idx = 0) { unsigned int sad = 0; const uint8_t* const reference = GetReference(block_idx); for (int h = 0; h < height_; ++h) { for (int w = 0; w < width_; ++w) { sad += abs(source_data_[h * source_stride_ + w] - reference[h * reference_stride_ + w]); } if (sad > max_sad) { break; } } return sad; } void FillConstant(uint8_t *data, int stride, uint8_t fill_constant) { for (int h = 0; h < height_; ++h) { for (int w = 0; w < width_; ++w) { data[h * stride + w] = fill_constant; } } } void FillRandom(uint8_t *data, int stride) { for (int h = 0; h < height_; ++h) { for (int w = 0; w < width_; ++w) { data[h * stride + w] = rnd_.Rand8(); } } } int width_, height_; static uint8_t* source_data_; int source_stride_; static uint8_t* reference_data_; int reference_stride_; ACMRandom rnd_; }; class SADTest : public SADTestBase, public ::testing::WithParamInterface { public: SADTest() : SADTestBase(GET_PARAM(0), GET_PARAM(1)) {} protected: unsigned int SAD(unsigned int max_sad, int block_idx = 0) { unsigned int ret; const uint8_t* const reference = GetReference(block_idx); REGISTER_STATE_CHECK(ret = GET_PARAM(2)(source_data_, source_stride_, reference, reference_stride_, max_sad)); return ret; } void CheckSad(unsigned int max_sad) { unsigned int reference_sad, exp_sad; reference_sad = ReferenceSAD(max_sad); exp_sad = SAD(max_sad); if (reference_sad <= max_sad) { ASSERT_EQ(exp_sad, reference_sad); } else { // Alternative implementations are not required to check max_sad ASSERT_GE(exp_sad, reference_sad); } } }; class SADx4Test : public SADTestBase, public ::testing::WithParamInterface { public: SADx4Test() : SADTestBase(GET_PARAM(0), GET_PARAM(1)) {} protected: void SADs(unsigned int *results) { const uint8_t* refs[] = {GetReference(0), GetReference(1), GetReference(2), GetReference(3)}; REGISTER_STATE_CHECK(GET_PARAM(2)(source_data_, source_stride_, refs, reference_stride_, results)); } void CheckSADs() { unsigned int reference_sad, exp_sad[4]; SADs(exp_sad); for (int block = 0; block < 4; block++) { reference_sad = ReferenceSAD(UINT_MAX, block); EXPECT_EQ(exp_sad[block], reference_sad) << "block " << block; } } }; uint8_t* SADTestBase::source_data_ = NULL; uint8_t* SADTestBase::reference_data_ = NULL; TEST_P(SADTest, MaxRef) { FillConstant(source_data_, source_stride_, 0); FillConstant(reference_data_, reference_stride_, 255); CheckSad(UINT_MAX); } TEST_P(SADx4Test, MaxRef) { FillConstant(source_data_, source_stride_, 0); FillConstant(GetReference(0), reference_stride_, 255); FillConstant(GetReference(1), reference_stride_, 255); FillConstant(GetReference(2), reference_stride_, 255); FillConstant(GetReference(3), reference_stride_, 255); CheckSADs(); } TEST_P(SADTest, MaxSrc) { FillConstant(source_data_, source_stride_, 255); FillConstant(reference_data_, reference_stride_, 0); CheckSad(UINT_MAX); } TEST_P(SADx4Test, MaxSrc) { FillConstant(source_data_, source_stride_, 255); FillConstant(GetReference(0), reference_stride_, 0); FillConstant(GetReference(1), reference_stride_, 0); FillConstant(GetReference(2), reference_stride_, 0); FillConstant(GetReference(3), reference_stride_, 0); CheckSADs(); } TEST_P(SADTest, ShortRef) { int tmp_stride = reference_stride_; reference_stride_ >>= 1; FillRandom(source_data_, source_stride_); FillRandom(reference_data_, reference_stride_); CheckSad(UINT_MAX); reference_stride_ = tmp_stride; } TEST_P(SADx4Test, ShortRef) { int tmp_stride = reference_stride_; reference_stride_ >>= 1; FillRandom(source_data_, source_stride_); FillRandom(GetReference(0), reference_stride_); FillRandom(GetReference(1), reference_stride_); FillRandom(GetReference(2), reference_stride_); FillRandom(GetReference(3), reference_stride_); CheckSADs(); reference_stride_ = tmp_stride; } TEST_P(SADTest, UnalignedRef) { // The reference frame, but not the source frame, may be unaligned for // certain types of searches. int tmp_stride = reference_stride_; reference_stride_ -= 1; FillRandom(source_data_, source_stride_); FillRandom(reference_data_, reference_stride_); CheckSad(UINT_MAX); reference_stride_ = tmp_stride; } TEST_P(SADx4Test, UnalignedRef) { // The reference frame, but not the source frame, may be unaligned for // certain types of searches. int tmp_stride = reference_stride_; reference_stride_ -= 1; FillRandom(source_data_, source_stride_); FillRandom(GetReference(0), reference_stride_); FillRandom(GetReference(1), reference_stride_); FillRandom(GetReference(2), reference_stride_); FillRandom(GetReference(3), reference_stride_); CheckSADs(); reference_stride_ = tmp_stride; } TEST_P(SADTest, ShortSrc) { int tmp_stride = source_stride_; source_stride_ >>= 1; FillRandom(source_data_, source_stride_); FillRandom(reference_data_, reference_stride_); CheckSad(UINT_MAX); source_stride_ = tmp_stride; } TEST_P(SADx4Test, ShortSrc) { int tmp_stride = source_stride_; source_stride_ >>= 1; FillRandom(source_data_, source_stride_); FillRandom(GetReference(0), reference_stride_); FillRandom(GetReference(1), reference_stride_); FillRandom(GetReference(2), reference_stride_); FillRandom(GetReference(3), reference_stride_); CheckSADs(); source_stride_ = tmp_stride; } TEST_P(SADTest, MaxSAD) { // Verify that, when max_sad is set, the implementation does not return a // value lower than the reference. FillConstant(source_data_, source_stride_, 255); FillConstant(reference_data_, reference_stride_, 0); CheckSad(128); } using std::tr1::make_tuple; #if CONFIG_VP8_ENCODER const sad_m_by_n_fn_t sad_16x16_c = vp8_sad16x16_c; const sad_m_by_n_fn_t sad_8x16_c = vp8_sad8x16_c; const sad_m_by_n_fn_t sad_16x8_c = vp8_sad16x8_c; const sad_m_by_n_fn_t sad_8x8_c = vp8_sad8x8_c; const sad_m_by_n_fn_t sad_4x4_c = vp8_sad4x4_c; #endif #if CONFIG_VP9_ENCODER const sad_m_by_n_fn_t sad_64x64_c_vp9 = vp9_sad64x64_c; const sad_m_by_n_fn_t sad_32x32_c_vp9 = vp9_sad32x32_c; const sad_m_by_n_fn_t sad_16x16_c_vp9 = vp9_sad16x16_c; const sad_m_by_n_fn_t sad_8x16_c_vp9 = vp9_sad8x16_c; const sad_m_by_n_fn_t sad_16x8_c_vp9 = vp9_sad16x8_c; const sad_m_by_n_fn_t sad_8x8_c_vp9 = vp9_sad8x8_c; const sad_m_by_n_fn_t sad_4x4_c_vp9 = vp9_sad4x4_c; #endif const sad_m_by_n_test_param_t c_tests[] = { #if CONFIG_VP8_ENCODER make_tuple(16, 16, sad_16x16_c), make_tuple(8, 16, sad_8x16_c), make_tuple(16, 8, sad_16x8_c), make_tuple(8, 8, sad_8x8_c), make_tuple(4, 4, sad_4x4_c), #endif #if CONFIG_VP9_ENCODER make_tuple(64, 64, sad_64x64_c_vp9), make_tuple(32, 32, sad_32x32_c_vp9), make_tuple(16, 16, sad_16x16_c_vp9), make_tuple(8, 16, sad_8x16_c_vp9), make_tuple(16, 8, sad_16x8_c_vp9), make_tuple(8, 8, sad_8x8_c_vp9), make_tuple(4, 4, sad_4x4_c_vp9), #endif }; INSTANTIATE_TEST_CASE_P(C, SADTest, ::testing::ValuesIn(c_tests)); #if CONFIG_VP9_ENCODER const sad_n_by_n_by_4_fn_t sad_64x64x4d_c = vp9_sad64x64x4d_c; const sad_n_by_n_by_4_fn_t sad_32x32x4d_c = vp9_sad32x32x4d_c; const sad_n_by_n_by_4_fn_t sad_16x16x4d_c = vp9_sad16x16x4d_c; const sad_n_by_n_by_4_fn_t sad_8x8x4d_c = vp9_sad8x8x4d_c; const sad_n_by_n_by_4_fn_t sad_4x4x4d_c = vp9_sad4x4x4d_c; INSTANTIATE_TEST_CASE_P(C, SADx4Test, ::testing::Values( make_tuple(64, 64, sad_64x64x4d_c), make_tuple(32, 32, sad_32x32x4d_c), make_tuple(16, 16, sad_16x16x4d_c), make_tuple(8, 8, sad_8x8x4d_c), make_tuple(4, 4, sad_4x4x4d_c))); #endif // ARM tests #if HAVE_MEDIA const sad_m_by_n_fn_t sad_16x16_armv6 = vp8_sad16x16_armv6; INSTANTIATE_TEST_CASE_P(MEDIA, SADTest, ::testing::Values( make_tuple(16, 16, sad_16x16_armv6))); #endif #if HAVE_NEON const sad_m_by_n_fn_t sad_16x16_neon = vp8_sad16x16_neon; const sad_m_by_n_fn_t sad_8x16_neon = vp8_sad8x16_neon; const sad_m_by_n_fn_t sad_16x8_neon = vp8_sad16x8_neon; const sad_m_by_n_fn_t sad_8x8_neon = vp8_sad8x8_neon; const sad_m_by_n_fn_t sad_4x4_neon = vp8_sad4x4_neon; INSTANTIATE_TEST_CASE_P(NEON, SADTest, ::testing::Values( make_tuple(16, 16, sad_16x16_neon), make_tuple(8, 16, sad_8x16_neon), make_tuple(16, 8, sad_16x8_neon), make_tuple(8, 8, sad_8x8_neon), make_tuple(4, 4, sad_4x4_neon))); #endif // X86 tests #if HAVE_MMX #if CONFIG_VP8_ENCODER const sad_m_by_n_fn_t sad_16x16_mmx = vp8_sad16x16_mmx; const sad_m_by_n_fn_t sad_8x16_mmx = vp8_sad8x16_mmx; const sad_m_by_n_fn_t sad_16x8_mmx = vp8_sad16x8_mmx; const sad_m_by_n_fn_t sad_8x8_mmx = vp8_sad8x8_mmx; const sad_m_by_n_fn_t sad_4x4_mmx = vp8_sad4x4_mmx; #endif #if CONFIG_VP9_ENCODER const sad_m_by_n_fn_t sad_16x16_mmx_vp9 = vp9_sad16x16_mmx; const sad_m_by_n_fn_t sad_8x16_mmx_vp9 = vp9_sad8x16_mmx; const sad_m_by_n_fn_t sad_16x8_mmx_vp9 = vp9_sad16x8_mmx; const sad_m_by_n_fn_t sad_8x8_mmx_vp9 = vp9_sad8x8_mmx; const sad_m_by_n_fn_t sad_4x4_mmx_vp9 = vp9_sad4x4_mmx; #endif const sad_m_by_n_test_param_t mmx_tests[] = { #if CONFIG_VP8_ENCODER make_tuple(16, 16, sad_16x16_mmx), make_tuple(8, 16, sad_8x16_mmx), make_tuple(16, 8, sad_16x8_mmx), make_tuple(8, 8, sad_8x8_mmx), make_tuple(4, 4, sad_4x4_mmx), #endif #if CONFIG_VP9_ENCODER make_tuple(16, 16, sad_16x16_mmx_vp9), make_tuple(8, 16, sad_8x16_mmx_vp9), make_tuple(16, 8, sad_16x8_mmx_vp9), make_tuple(8, 8, sad_8x8_mmx_vp9), make_tuple(4, 4, sad_4x4_mmx_vp9), #endif }; INSTANTIATE_TEST_CASE_P(MMX, SADTest, ::testing::ValuesIn(mmx_tests)); #endif #if HAVE_SSE #if CONFIG_VP9_ENCODER const sad_m_by_n_fn_t sad_4x4_sse_vp9 = vp9_sad4x4_sse; INSTANTIATE_TEST_CASE_P(SSE, SADTest, ::testing::Values( make_tuple(4, 4, sad_4x4_sse_vp9))); const sad_n_by_n_by_4_fn_t sad_4x4x4d_sse = vp9_sad4x4x4d_sse; INSTANTIATE_TEST_CASE_P(SSE, SADx4Test, ::testing::Values( make_tuple(4, 4, sad_4x4x4d_sse))); #endif #endif #if HAVE_SSE2 #if CONFIG_VP8_ENCODER const sad_m_by_n_fn_t sad_16x16_wmt = vp8_sad16x16_wmt; const sad_m_by_n_fn_t sad_8x16_wmt = vp8_sad8x16_wmt; const sad_m_by_n_fn_t sad_16x8_wmt = vp8_sad16x8_wmt; const sad_m_by_n_fn_t sad_8x8_wmt = vp8_sad8x8_wmt; const sad_m_by_n_fn_t sad_4x4_wmt = vp8_sad4x4_wmt; #endif #if CONFIG_VP9_ENCODER const sad_m_by_n_fn_t sad_64x64_sse2_vp9 = vp9_sad64x64_sse2; const sad_m_by_n_fn_t sad_32x32_sse2_vp9 = vp9_sad32x32_sse2; const sad_m_by_n_fn_t sad_16x16_sse2_vp9 = vp9_sad16x16_sse2; const sad_m_by_n_fn_t sad_8x16_sse2_vp9 = vp9_sad8x16_sse2; const sad_m_by_n_fn_t sad_16x8_sse2_vp9 = vp9_sad16x8_sse2; const sad_m_by_n_fn_t sad_8x8_sse2_vp9 = vp9_sad8x8_sse2; #endif const sad_m_by_n_test_param_t sse2_tests[] = { #if CONFIG_VP8_ENCODER make_tuple(16, 16, sad_16x16_wmt), make_tuple(8, 16, sad_8x16_wmt), make_tuple(16, 8, sad_16x8_wmt), make_tuple(8, 8, sad_8x8_wmt), make_tuple(4, 4, sad_4x4_wmt), #endif #if CONFIG_VP9_ENCODER make_tuple(64, 64, sad_64x64_sse2_vp9), make_tuple(32, 32, sad_32x32_sse2_vp9), make_tuple(16, 16, sad_16x16_sse2_vp9), make_tuple(8, 16, sad_8x16_sse2_vp9), make_tuple(16, 8, sad_16x8_sse2_vp9), make_tuple(8, 8, sad_8x8_sse2_vp9), #endif }; INSTANTIATE_TEST_CASE_P(SSE2, SADTest, ::testing::ValuesIn(sse2_tests)); #if CONFIG_VP9_ENCODER const sad_n_by_n_by_4_fn_t sad_64x64x4d_sse2 = vp9_sad64x64x4d_sse2; const sad_n_by_n_by_4_fn_t sad_32x32x4d_sse2 = vp9_sad32x32x4d_sse2; const sad_n_by_n_by_4_fn_t sad_16x16x4d_sse2 = vp9_sad16x16x4d_sse2; const sad_n_by_n_by_4_fn_t sad_16x8x4d_sse2 = vp9_sad16x8x4d_sse2; const sad_n_by_n_by_4_fn_t sad_8x16x4d_sse2 = vp9_sad8x16x4d_sse2; const sad_n_by_n_by_4_fn_t sad_8x8x4d_sse2 = vp9_sad8x8x4d_sse2; INSTANTIATE_TEST_CASE_P(SSE2, SADx4Test, ::testing::Values( make_tuple(64, 64, sad_64x64x4d_sse2), make_tuple(32, 32, sad_32x32x4d_sse2), make_tuple(16, 16, sad_16x16x4d_sse2), make_tuple(16, 8, sad_16x8x4d_sse2), make_tuple(8, 16, sad_8x16x4d_sse2), make_tuple(8, 8, sad_8x8x4d_sse2))); #endif #endif #if HAVE_SSE3 #if CONFIG_VP8_ENCODER const sad_n_by_n_by_4_fn_t sad_16x16x4d_sse3 = vp8_sad16x16x4d_sse3; const sad_n_by_n_by_4_fn_t sad_16x8x4d_sse3 = vp8_sad16x8x4d_sse3; const sad_n_by_n_by_4_fn_t sad_8x16x4d_sse3 = vp8_sad8x16x4d_sse3; const sad_n_by_n_by_4_fn_t sad_8x8x4d_sse3 = vp8_sad8x8x4d_sse3; const sad_n_by_n_by_4_fn_t sad_4x4x4d_sse3 = vp8_sad4x4x4d_sse3; INSTANTIATE_TEST_CASE_P(SSE3, SADx4Test, ::testing::Values( make_tuple(16, 16, sad_16x16x4d_sse3), make_tuple(16, 8, sad_16x8x4d_sse3), make_tuple(8, 16, sad_8x16x4d_sse3), make_tuple(8, 8, sad_8x8x4d_sse3), make_tuple(4, 4, sad_4x4x4d_sse3))); #endif #endif #if HAVE_SSSE3 const sad_m_by_n_fn_t sad_16x16_sse3 = vp8_sad16x16_sse3; INSTANTIATE_TEST_CASE_P(SSE3, SADTest, ::testing::Values( make_tuple(16, 16, sad_16x16_sse3))); #endif } // namespace