/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "onyxd_int.h" #include "header.h" #include "reconintra.h" #include "reconintra4x4.h" #include "recon.h" #include "reconinter.h" #include "dequantize.h" #include "detokenize.h" #include "invtrans.h" #include "alloccommon.h" #include "entropymode.h" #include "quant_common.h" #include "segmentation_common.h" #include "setupintrarecon.h" #include "demode.h" #include "decodemv.h" #include "extend.h" #include "vpx_mem/vpx_mem.h" #include "idct.h" #include "dequantize.h" #include "predictdc.h" #include "threading.h" #include "decoderthreading.h" #include "dboolhuff.h" #include #include void vp8cx_init_de_quantizer(VP8D_COMP *pbi) { int r, c; int i; int Q; VP8_COMMON *const pc = & pbi->common; for (Q = 0; Q < QINDEX_RANGE; Q++) { pc->Y1dequant[Q][0][0] = (short)vp8_dc_quant(Q, pc->y1dc_delta_q); pc->Y2dequant[Q][0][0] = (short)vp8_dc2quant(Q, pc->y2dc_delta_q); pc->UVdequant[Q][0][0] = (short)vp8_dc_uv_quant(Q, pc->uvdc_delta_q); // all the ac values = ; for (i = 1; i < 16; i++) { int rc = vp8_default_zig_zag1d[i]; r = (rc >> 2); c = (rc & 3); pc->Y1dequant[Q][r][c] = (short)vp8_ac_yquant(Q); pc->Y2dequant[Q][r][c] = (short)vp8_ac2quant(Q, pc->y2ac_delta_q); pc->UVdequant[Q][r][c] = (short)vp8_ac_uv_quant(Q, pc->uvac_delta_q); } } } static void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd) { int i; int QIndex; MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; VP8_COMMON *const pc = & pbi->common; // Decide whether to use the default or alternate baseline Q value. if (xd->segmentation_enabled) { // Abs Value if (xd->mb_segement_abs_delta == SEGMENT_ABSDATA) QIndex = xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; // Delta Value else { QIndex = pc->base_qindex + xd->segment_feature_data[MB_LVL_ALT_Q][mbmi->segment_id]; QIndex = (QIndex >= 0) ? ((QIndex <= MAXQ) ? QIndex : MAXQ) : 0; // Clamp to valid range } } else QIndex = pc->base_qindex; // Set up the block level dequant pointers for (i = 0; i < 16; i++) { xd->block[i].dequant = pc->Y1dequant[QIndex]; } for (i = 16; i < 24; i++) { xd->block[i].dequant = pc->UVdequant[QIndex]; } xd->block[24].dequant = pc->Y2dequant[QIndex]; } #if CONFIG_RUNTIME_CPU_DETECT #define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x) #else #define RTCD_VTABLE(x) NULL #endif //skip_recon_mb() is Modified: Instead of writing the result to predictor buffer and then copying it // to dst buffer, we can write the result directly to dst buffer. This eliminates unnecessary copy. static void skip_recon_mb(VP8D_COMP *pbi, MACROBLOCKD *xd) { if (xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME) { vp8_build_intra_predictors_mbuv_s(xd); vp8_build_intra_predictors_mby_s_ptr(xd); } else { vp8_build_inter_predictors_mb_s(xd); } } static void clamp_mv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { /* If the MV points so far into the UMV border that no visible pixels * are used for reconstruction, the subpel part of the MV can be * discarded and the MV limited to 16 pixels with equivalent results. * * This limit kicks in at 19 pixels for the top and left edges, for * the 16 pixels plus 3 taps right of the central pixel when subpel * filtering. The bottom and right edges use 16 pixels plus 2 pixels * left of the central pixel when filtering. */ if (mv->col < (xd->mb_to_left_edge - (19 << 3))) mv->col = xd->mb_to_left_edge - (16 << 3); else if (mv->col > xd->mb_to_right_edge + (18 << 3)) mv->col = xd->mb_to_right_edge + (16 << 3); if (mv->row < (xd->mb_to_top_edge - (19 << 3))) mv->row = xd->mb_to_top_edge - (16 << 3); else if (mv->row > xd->mb_to_bottom_edge + (18 << 3)) mv->row = xd->mb_to_bottom_edge + (16 << 3); } /* A version of the above function for chroma block MVs.*/ static void clamp_uvmv_to_umv_border(MV *mv, const MACROBLOCKD *xd) { if (2*mv->col < (xd->mb_to_left_edge - (19 << 3))) mv->col = (xd->mb_to_left_edge - (16 << 3)) >> 1; else if (2*mv->col > xd->mb_to_right_edge + (18 << 3)) mv->col = (xd->mb_to_right_edge + (16 << 3)) >> 1; if (2*mv->row < (xd->mb_to_top_edge - (19 << 3))) mv->row = (xd->mb_to_top_edge - (16 << 3)) >> 1; else if (2*mv->row > xd->mb_to_bottom_edge + (18 << 3)) mv->row = (xd->mb_to_bottom_edge + (16 << 3)) >> 1; } static void clamp_mvs(MACROBLOCKD *xd) { if (xd->mbmi.mode == SPLITMV) { int i; for (i=0; i<16; i++) clamp_mv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); for (i=16; i<24; i++) clamp_uvmv_to_umv_border(&xd->block[i].bmi.mv.as_mv, xd); } else { clamp_mv_to_umv_border(&xd->mbmi.mv.as_mv, xd); clamp_uvmv_to_umv_border(&xd->block[16].bmi.mv.as_mv, xd); } } void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd) { int eobtotal = 0; MV orig_mvs[24]; int i, do_clamp = xd->mbmi.need_to_clamp_mvs; if (xd->mbmi.mb_skip_coeff) { vp8_reset_mb_tokens_context(xd); } else { eobtotal = vp8_decode_mb_tokens(pbi, xd); } /* Perform temporary clamping of the MV to be used for prediction */ if (do_clamp) { if (xd->mbmi.mode == SPLITMV) for (i=0; i<24; i++) orig_mvs[i] = xd->block[i].bmi.mv.as_mv; else { orig_mvs[0] = xd->mbmi.mv.as_mv; orig_mvs[1] = xd->block[16].bmi.mv.as_mv; } clamp_mvs(xd); } xd->mode_info_context->mbmi.dc_diff = 1; if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV && eobtotal == 0) { xd->mode_info_context->mbmi.dc_diff = 0; skip_recon_mb(pbi, xd); return; } if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); // do prediction if (xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME) { vp8_build_intra_predictors_mbuv(xd); if (xd->mbmi.mode != B_PRED) { vp8_build_intra_predictors_mby_ptr(xd); } else { vp8_intra_prediction_down_copy(xd); } } else { vp8_build_inter_predictors_mb(xd); } // dequantization and idct if (xd->mbmi.mode != B_PRED && xd->mbmi.mode != SPLITMV) { BLOCKD *b = &xd->block[24]; DEQUANT_INVOKE(&pbi->dequant, block)(b); // do 2nd order transform on the dc block if (b->eob > 1) { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } for (i = 0; i < 16; i++) { b = &xd->block[i]; if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, dc_idct_add) (b->qcoeff, &b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride, xd->block[24].diff[i]); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)(xd->block[24].diff[i], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } } } else if ((xd->frame_type == KEY_FRAME || xd->mbmi.ref_frame == INTRA_FRAME) && xd->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; vp8_predict_intra4x4(b, b->bmi.mode, b->predictor); if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add)(b->qcoeff, &b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)(b->qcoeff[0] * b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } } else { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add)(b->qcoeff, &b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)(b->qcoeff[0] * b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } } for (i = 16; i < 24; i++) { BLOCKD *b = &xd->block[i]; if (b->eob > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add)(b->qcoeff, &b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add)(b->qcoeff[0] * b->dequant[0][0], b->predictor, *(b->base_dst) + b->dst, 8, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } } static int get_delta_q(vp8_reader *bc, int prev, int *q_update) { int ret_val = 0; if (vp8_read_bit(bc)) { ret_val = vp8_read_literal(bc, 4); if (vp8_read_bit(bc)) ret_val = -ret_val; } /* Trigger a quantizer update if the delta-q value has changed */ if (ret_val != prev) *q_update = 1; return ret_val; } #ifdef PACKET_TESTING #include FILE *vpxlog = 0; #endif void vp8_decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd) { int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; vpx_memset(pc->left_context, 0, sizeof(pc->left_context)); recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; // reset above block coeffs xd->above_context[Y1CONTEXT] = pc->above_context[Y1CONTEXT]; xd->above_context[UCONTEXT ] = pc->above_context[UCONTEXT]; xd->above_context[VCONTEXT ] = pc->above_context[VCONTEXT]; xd->above_context[Y2CONTEXT] = pc->above_context[Y2CONTEXT]; xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { // Take a copy of the mode and Mv information for this macroblock into the xd->mbmi // the partition_bmi array is unused in the decoder, so don't copy it. vpx_memcpy(&xd->mbmi, &xd->mode_info_context->mbmi, sizeof(MB_MODE_INFO) - sizeof(xd->mbmi.partition_bmi)); if (xd->mbmi.mode == SPLITMV || xd->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *d = &xd->block[i]; vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); } } // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); // Select the appropriate reference frame for this MB if (xd->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; vp8_build_uvmvs(xd, pc->full_pixel); /* if(pc->current_video_frame==0 &&mb_col==1 && mb_row==0) pbi->debugoutput =1; else pbi->debugoutput =0; */ vp8_decode_macroblock(pbi, xd); recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->gf_active_ptr++; // GF useage flag for next MB xd->above_context[Y1CONTEXT] += 4; xd->above_context[UCONTEXT ] += 2; xd->above_context[VCONTEXT ] += 2; xd->above_context[Y2CONTEXT] ++; pbi->current_mb_col_main = mb_col; } // adjust to the next row of mbs vp8_extend_mb_row( &pc->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8 ); ++xd->mode_info_context; /* skip prediction column */ pbi->last_mb_row_decoded = mb_row; } static unsigned int read_partition_size(const unsigned char *cx_size) { const unsigned int size = cx_size[0] + (cx_size[1] << 8) + (cx_size[2] << 16); return size; } static void setup_token_decoder(VP8D_COMP *pbi, const unsigned char *cx_data) { int num_part; int i; VP8_COMMON *pc = &pbi->common; const unsigned char *user_data_end = pbi->Source + pbi->source_sz; vp8_reader *bool_decoder; const unsigned char *partition; /* Parse number of token partitions to use */ pc->multi_token_partition = (TOKEN_PARTITION)vp8_read_literal(&pbi->bc, 2); num_part = 1 << pc->multi_token_partition; /* Set up pointers to the first partition */ partition = cx_data; bool_decoder = &pbi->bc2; if (num_part > 1) { CHECK_MEM_ERROR(pbi->mbc, vpx_malloc(num_part * sizeof(vp8_reader))); bool_decoder = pbi->mbc; partition += 3 * (num_part - 1); } for (i = 0; i < num_part; i++) { const unsigned char *partition_size_ptr = cx_data + i * 3; unsigned int partition_size; /* Calculate the length of this partition. The last partition * size is implicit. */ if (i < num_part - 1) { partition_size = read_partition_size(partition_size_ptr); } else { partition_size = user_data_end - partition; } if (partition + partition_size > user_data_end) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition " "%d length", i + 1); if (vp8dx_start_decode(bool_decoder, IF_RTCD(&pbi->dboolhuff), partition, partition_size)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder %d", i + 1); /* Advance to the next partition */ partition += partition_size; bool_decoder++; } /* Clamp number of decoder threads */ if (pbi->decoding_thread_count > num_part - 1) pbi->decoding_thread_count = num_part - 1; } static void stop_token_decoder(VP8D_COMP *pbi) { int i; VP8_COMMON *pc = &pbi->common; if (pc->multi_token_partition != ONE_PARTITION) vpx_free(pbi->mbc); } static void init_frame(VP8D_COMP *pbi) { VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; if (pc->frame_type == KEY_FRAME) { // Various keyframe initializations vpx_memcpy(pc->fc.mvc, vp8_default_mv_context, sizeof(vp8_default_mv_context)); vp8_init_mbmode_probs(pc); vp8_default_coef_probs(pc); vp8_kf_default_bmode_probs(pc->kf_bmode_prob); // reset the segment feature data to 0 with delta coding (Default state). vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); xd->mb_segement_abs_delta = SEGMENT_DELTADATA; // reset the mode ref deltasa for loop filter vpx_memset(xd->ref_lf_deltas, 0, sizeof(xd->ref_lf_deltas)); vpx_memset(xd->mode_lf_deltas, 0, sizeof(xd->mode_lf_deltas)); // All buffers are implicitly updated on key frames. pc->refresh_golden_frame = 1; pc->refresh_alt_ref_frame = 1; pc->copy_buffer_to_gf = 0; pc->copy_buffer_to_arf = 0; // Note that Golden and Altref modes cannot be used on a key frame so // ref_frame_sign_bias[] is undefined and meaningless pc->ref_frame_sign_bias[GOLDEN_FRAME] = 0; pc->ref_frame_sign_bias[ALTREF_FRAME] = 0; } else { if (!pc->use_bilinear_mc_filter) pc->mcomp_filter_type = SIXTAP; else pc->mcomp_filter_type = BILINEAR; // To enable choice of different interploation filters if (pc->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE(RTCD_VTABLE(subpix), bilinear16x16); } } xd->left_context = pc->left_context; xd->mode_info_context = pc->mi; xd->frame_type = pc->frame_type; xd->mbmi.mode = DC_PRED; xd->mode_info_stride = pc->mode_info_stride; } int vp8_decode_frame(VP8D_COMP *pbi) { vp8_reader *const bc = & pbi->bc; VP8_COMMON *const pc = & pbi->common; MACROBLOCKD *const xd = & pbi->mb; const unsigned char *data = (const unsigned char *)pbi->Source; const unsigned char *const data_end = data + pbi->source_sz; int first_partition_length_in_bytes; int mb_row; int i, j, k, l; const int *const mb_feature_data_bits = vp8_mb_feature_data_bits; pc->frame_type = (FRAME_TYPE)(data[0] & 1); pc->version = (data[0] >> 1) & 7; pc->show_frame = (data[0] >> 4) & 1; first_partition_length_in_bytes = (data[0] | (data[1] << 8) | (data[2] << 16)) >> 5; data += 3; if (data + first_partition_length_in_bytes > data_end) vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Truncated packet or corrupt partition 0 length"); vp8_setup_version(pc); if (pc->frame_type == KEY_FRAME) { const int Width = pc->Width; const int Height = pc->Height; // vet via sync code if (data[0] != 0x9d || data[1] != 0x01 || data[2] != 0x2a) vpx_internal_error(&pc->error, VPX_CODEC_UNSUP_BITSTREAM, "Invalid frame sync code"); pc->Width = (data[3] | (data[4] << 8)) & 0x3fff; pc->horiz_scale = data[4] >> 6; pc->Height = (data[5] | (data[6] << 8)) & 0x3fff; pc->vert_scale = data[6] >> 6; data += 7; if (Width != pc->Width || Height != pc->Height) { if (pc->Width <= 0) { pc->Width = Width; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame width"); } if (pc->Height <= 0) { pc->Height = Height; vpx_internal_error(&pc->error, VPX_CODEC_CORRUPT_FRAME, "Invalid frame height"); } if (vp8_alloc_frame_buffers(pc, pc->Width, pc->Height)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); } } if (pc->Width == 0 || pc->Height == 0) { return -1; } init_frame(pbi); if (vp8dx_start_decode(bc, IF_RTCD(&pbi->dboolhuff), data, data_end - data)) vpx_internal_error(&pc->error, VPX_CODEC_MEM_ERROR, "Failed to allocate bool decoder 0"); if (pc->frame_type == KEY_FRAME) { pc->clr_type = (YUV_TYPE)vp8_read_bit(bc); pc->clamp_type = (CLAMP_TYPE)vp8_read_bit(bc); } // Is segmentation enabled xd->segmentation_enabled = (unsigned char)vp8_read_bit(bc); if (xd->segmentation_enabled) { // Signal whether or not the segmentation map is being explicitly updated this frame. xd->update_mb_segmentation_map = (unsigned char)vp8_read_bit(bc); xd->update_mb_segmentation_data = (unsigned char)vp8_read_bit(bc); if (xd->update_mb_segmentation_data) { xd->mb_segement_abs_delta = (unsigned char)vp8_read_bit(bc); vpx_memset(xd->segment_feature_data, 0, sizeof(xd->segment_feature_data)); // For each segmentation feature (Quant and loop filter level) for (i = 0; i < MB_LVL_MAX; i++) { for (j = 0; j < MAX_MB_SEGMENTS; j++) { // Frame level data if (vp8_read_bit(bc)) { xd->segment_feature_data[i][j] = (signed char)vp8_read_literal(bc, mb_feature_data_bits[i]); if (vp8_read_bit(bc)) xd->segment_feature_data[i][j] = -xd->segment_feature_data[i][j]; } else xd->segment_feature_data[i][j] = 0; } } } if (xd->update_mb_segmentation_map) { // Which macro block level features are enabled vpx_memset(xd->mb_segment_tree_probs, 255, sizeof(xd->mb_segment_tree_probs)); // Read the probs used to decode the segment id for each macro block. for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) { // If not explicitly set value is defaulted to 255 by memset above if (vp8_read_bit(bc)) xd->mb_segment_tree_probs[i] = (vp8_prob)vp8_read_literal(bc, 8); } } } // Read the loop filter level and type pc->filter_type = (LOOPFILTERTYPE) vp8_read_bit(bc); pc->filter_level = vp8_read_literal(bc, 6); pc->sharpness_level = vp8_read_literal(bc, 3); // Read in loop filter deltas applied at the MB level based on mode or ref frame. xd->mode_ref_lf_delta_update = 0; xd->mode_ref_lf_delta_enabled = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated xd->mode_ref_lf_delta_update = (unsigned char)vp8_read_bit(bc); if (xd->mode_ref_lf_delta_update) { // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { //sign = vp8_read_bit( bc ); xd->ref_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) // Apply sign xd->ref_lf_deltas[i] = xd->ref_lf_deltas[i] * -1; } } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { if (vp8_read_bit(bc)) { //sign = vp8_read_bit( bc ); xd->mode_lf_deltas[i] = (signed char)vp8_read_literal(bc, 6); if (vp8_read_bit(bc)) // Apply sign xd->mode_lf_deltas[i] = xd->mode_lf_deltas[i] * -1; } } } } setup_token_decoder(pbi, data + first_partition_length_in_bytes); xd->current_bc = &pbi->bc2; // Read the default quantizers. { int Q, q_update; Q = vp8_read_literal(bc, 7); // AC 1st order Q = default pc->base_qindex = Q; q_update = 0; pc->y1dc_delta_q = get_delta_q(bc, pc->y1dc_delta_q, &q_update); pc->y2dc_delta_q = get_delta_q(bc, pc->y2dc_delta_q, &q_update); pc->y2ac_delta_q = get_delta_q(bc, pc->y2ac_delta_q, &q_update); pc->uvdc_delta_q = get_delta_q(bc, pc->uvdc_delta_q, &q_update); pc->uvac_delta_q = get_delta_q(bc, pc->uvac_delta_q, &q_update); if (q_update) vp8cx_init_de_quantizer(pbi); // MB level dequantizer setup mb_init_dequantizer(pbi, &pbi->mb); } // Determine if the golden frame or ARF buffer should be updated and how. // For all non key frames the GF and ARF refresh flags and sign bias // flags must be set explicitly. if (pc->frame_type != KEY_FRAME) { // Should the GF or ARF be updated from the current frame pc->refresh_golden_frame = vp8_read_bit(bc); pc->refresh_alt_ref_frame = vp8_read_bit(bc); // Buffer to buffer copy flags. pc->copy_buffer_to_gf = 0; if (!pc->refresh_golden_frame) pc->copy_buffer_to_gf = vp8_read_literal(bc, 2); pc->copy_buffer_to_arf = 0; if (!pc->refresh_alt_ref_frame) pc->copy_buffer_to_arf = vp8_read_literal(bc, 2); pc->ref_frame_sign_bias[GOLDEN_FRAME] = vp8_read_bit(bc); pc->ref_frame_sign_bias[ALTREF_FRAME] = vp8_read_bit(bc); } pc->refresh_entropy_probs = vp8_read_bit(bc); if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->lfc, &pc->fc, sizeof(pc->fc)); } pc->refresh_last_frame = pc->frame_type == KEY_FRAME || vp8_read_bit(bc); if (0) { FILE *z = fopen("decodestats.stt", "a"); fprintf(z, "%6d F:%d,G:%d,A:%d,L:%d,Q:%d\n", pc->current_video_frame, pc->frame_type, pc->refresh_golden_frame, pc->refresh_alt_ref_frame, pc->refresh_last_frame, pc->base_qindex); fclose(z); } { // read coef probability tree for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < COEF_BANDS; j++) for (k = 0; k < PREV_COEF_CONTEXTS; k++) for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) { vp8_prob *const p = pc->fc.coef_probs [i][j][k] + l; if (vp8_read(bc, vp8_coef_update_probs [i][j][k][l])) { *p = (vp8_prob)vp8_read_literal(bc, 8); } } } vpx_memcpy(&xd->pre, &pc->yv12_fb[pc->lst_fb_idx], sizeof(YV12_BUFFER_CONFIG)); vpx_memcpy(&xd->dst, &pc->yv12_fb[pc->new_fb_idx], sizeof(YV12_BUFFER_CONFIG)); // set up frame new frame for intra coded blocks vp8_setup_intra_recon(&pc->yv12_fb[pc->new_fb_idx]); vp8_setup_block_dptrs(xd); vp8_build_block_doffsets(xd); // clear out the coeff buffer vpx_memset(xd->qcoeff, 0, sizeof(xd->qcoeff)); // Read the mb_no_coeff_skip flag pc->mb_no_coeff_skip = (int)vp8_read_bit(bc); if (pc->frame_type == KEY_FRAME) vp8_kfread_modes(pbi); else vp8_decode_mode_mvs(pbi); // reset since these guys are used as iterators vpx_memset(pc->above_context[Y1CONTEXT], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 4); vpx_memset(pc->above_context[UCONTEXT ], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 2); vpx_memset(pc->above_context[VCONTEXT ], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols * 2); vpx_memset(pc->above_context[Y2CONTEXT], 0, sizeof(ENTROPY_CONTEXT) * pc->mb_cols); xd->gf_active_ptr = (signed char *)pc->gf_active_flags; // Point to base of GF active flags data structure vpx_memcpy(&xd->block[0].bmi, &xd->mode_info_context->bmi[0], sizeof(B_MODE_INFO)); if (pbi->b_multithreaded_lf && pc->filter_level != 0) vp8_start_lfthread(pbi); if (pbi->b_multithreaded_rd && pc->multi_token_partition != ONE_PARTITION) { vp8_mtdecode_mb_rows(pbi, xd); } else { int ibc = 0; int num_part = 1 << pc->multi_token_partition; // Decode the individual macro block for (mb_row = 0; mb_row < pc->mb_rows; mb_row++) { if (num_part > 1) { xd->current_bc = & pbi->mbc[ibc]; ibc++; if (ibc == num_part) ibc = 0; } vp8_decode_mb_row(pbi, pc, mb_row, xd); } pbi->last_mb_row_decoded = mb_row; } stop_token_decoder(pbi); // vpx_log("Decoder: Frame Decoded, Size Roughly:%d bytes \n",bc->pos+pbi->bc2.pos); // If this was a kf or Gf note the Q used if ((pc->frame_type == KEY_FRAME) || pc->refresh_golden_frame || pc->refresh_alt_ref_frame) { pc->last_kf_gf_q = pc->base_qindex; } if (pc->refresh_entropy_probs == 0) { vpx_memcpy(&pc->fc, &pc->lfc, sizeof(pc->fc)); } #ifdef PACKET_TESTING { FILE *f = fopen("decompressor.VP8", "ab"); unsigned int size = pbi->bc2.pos + pbi->bc.pos + 8; fwrite((void *) &size, 4, 1, f); fwrite((void *) pbi->Source, size, 1, f); fclose(f); } #endif return 0; }