/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "treereader.h" #include "entropymv.h" #include "entropymode.h" #include "onyxd_int.h" #include "findnearmv.h" #include "demode.h" #if CONFIG_DEBUG #include #endif static int read_mvcomponent(vp8_reader *r, const MV_CONTEXT *mvc) { const vp8_prob *const p = (const vp8_prob *) mvc; int x = 0; if (vp8_read(r, p [mvpis_short])) /* Large */ { int i = 0; do { x += vp8_read(r, p [MVPbits + i]) << i; } while (++i < 3); i = mvlong_width - 1; /* Skip bit 3, which is sometimes implicit */ do { x += vp8_read(r, p [MVPbits + i]) << i; } while (--i > 3); if (!(x & 0xFFF0) || vp8_read(r, p [MVPbits + 3])) x += 8; } else /* small */ x = vp8_treed_read(r, vp8_small_mvtree, p + MVPshort); if (x && vp8_read(r, p [MVPsign])) x = -x; return x; } static void read_mv(vp8_reader *r, MV *mv, const MV_CONTEXT *mvc) { mv->row = (short)(read_mvcomponent(r, mvc) << 1); mv->col = (short)(read_mvcomponent(r, ++mvc) << 1); } static void read_mvcontexts(vp8_reader *bc, MV_CONTEXT *mvc) { int i = 0; do { const vp8_prob *up = vp8_mv_update_probs[i].prob; vp8_prob *p = (vp8_prob *)(mvc + i); vp8_prob *const pstop = p + MVPcount; do { if (vp8_read(bc, *up++)) { const vp8_prob x = (vp8_prob)vp8_read_literal(bc, 7); *p = x ? x << 1 : 1; } } while (++p < pstop); } while (++i < 2); } static MB_PREDICTION_MODE read_mv_ref(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_mv_ref_tree, p); return (MB_PREDICTION_MODE)i; } static MB_PREDICTION_MODE sub_mv_ref(vp8_reader *bc, const vp8_prob *p) { const int i = vp8_treed_read(bc, vp8_sub_mv_ref_tree, p); return (MB_PREDICTION_MODE)i; } unsigned int vp8_mv_cont_count[5][4] = { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; void vp8_decode_mode_mvs(VP8D_COMP *pbi) { const MV Zero = { 0, 0}; VP8_COMMON *const pc = & pbi->common; vp8_reader *const bc = & pbi->bc; MODE_INFO *mi = pc->mi, *ms; const int mis = pc->mode_info_stride; MV_CONTEXT *const mvc = pc->fc.mvc; int mb_row = -1; vp8_prob prob_intra; vp8_prob prob_last; vp8_prob prob_gf; vp8_prob prob_skip_false = 0; if (pc->mb_no_coeff_skip) prob_skip_false = (vp8_prob)vp8_read_literal(bc, 8); prob_intra = (vp8_prob)vp8_read_literal(bc, 8); prob_last = (vp8_prob)vp8_read_literal(bc, 8); prob_gf = (vp8_prob)vp8_read_literal(bc, 8); ms = pc->mi - 1; if (vp8_read_bit(bc)) { int i = 0; do { pc->fc.ymode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8); } while (++i < 4); } if (vp8_read_bit(bc)) { int i = 0; do { pc->fc.uv_mode_prob[i] = (vp8_prob) vp8_read_literal(bc, 8); } while (++i < 3); } read_mvcontexts(bc, mvc); while (++mb_row < pc->mb_rows) { int mb_col = -1; while (++mb_col < pc->mb_cols) { MB_MODE_INFO *const mbmi = & mi->mbmi; MV *const mv = & mbmi->mv.as_mv; VP8_COMMON *const pc = &pbi->common; MACROBLOCKD *xd = &pbi->mb; mbmi->need_to_clamp_mvs = 0; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; // If required read in new segmentation data for this MB if (pbi->mb.update_mb_segmentation_map) vp8_read_mb_features(bc, mbmi, &pbi->mb); // Read the macroblock coeff skip flag if this feature is in use, else default to 0 if (pc->mb_no_coeff_skip) mbmi->mb_skip_coeff = vp8_read(bc, prob_skip_false); else mbmi->mb_skip_coeff = 0; mbmi->uv_mode = DC_PRED; if ((mbmi->ref_frame = (MV_REFERENCE_FRAME) vp8_read(bc, prob_intra))) /* inter MB */ { int rct[4]; vp8_prob mv_ref_p [VP8_MVREFS-1]; MV nearest, nearby, best_mv; if (vp8_read(bc, prob_last)) { mbmi->ref_frame = (MV_REFERENCE_FRAME)((int)mbmi->ref_frame + (int)(1 + vp8_read(bc, prob_gf))); } vp8_find_near_mvs(xd, mi, &nearest, &nearby, &best_mv, rct, mbmi->ref_frame, pbi->common.ref_frame_sign_bias); vp8_mv_ref_probs(mv_ref_p, rct); switch (mbmi->mode = read_mv_ref(bc, mv_ref_p)) { case SPLITMV: { const int s = mbmi->partitioning = vp8_treed_read( bc, vp8_mbsplit_tree, vp8_mbsplit_probs ); const int num_p = vp8_mbsplit_count [s]; const int *const L = vp8_mbsplits [s]; int j = 0; do /* for each subset j */ { B_MODE_INFO *const bmi = mbmi->partition_bmi + j; MV *const mv = & bmi->mv.as_mv; int k = -1; /* first block in subset j */ int mv_contz; while (j != L[++k]) { #if CONFIG_DEBUG if (k >= 16) { assert(0); } #endif } mv_contz = vp8_mv_cont(&(vp8_left_bmi(mi, k)->mv.as_mv), &(vp8_above_bmi(mi, k, mis)->mv.as_mv)); switch (bmi->mode = (B_PREDICTION_MODE) sub_mv_ref(bc, vp8_sub_mv_ref_prob2 [mv_contz])) //pc->fc.sub_mv_ref_prob)) { case NEW4X4: read_mv(bc, mv, (const MV_CONTEXT *) mvc); mv->row += best_mv.row; mv->col += best_mv.col; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][3]++; #endif break; case LEFT4X4: *mv = vp8_left_bmi(mi, k)->mv.as_mv; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][0]++; #endif break; case ABOVE4X4: *mv = vp8_above_bmi(mi, k, mis)->mv.as_mv; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][1]++; #endif break; case ZERO4X4: *mv = Zero; #ifdef VPX_MODE_COUNT vp8_mv_cont_count[mv_contz][2]++; #endif break; default: break; } if (mv->col < xd->mb_to_left_edge - LEFT_TOP_MARGIN || mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN || mv->row < xd->mb_to_top_edge - LEFT_TOP_MARGIN || mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN ) mbmi->need_to_clamp_mvs = 1; /* Fill (uniform) modes, mvs of jth subset. Must do it here because ensuing subsets can refer back to us via "left" or "above". */ do if (j == L[k]) mi->bmi[k] = *bmi; while (++k < 16); } while (++j < num_p); } *mv = mi->bmi[15].mv.as_mv; break; /* done with SPLITMV */ case NEARMV: *mv = nearby; // Clip "next_nearest" so that it does not extend to far out of image if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN)) mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN; else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN) mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN)) mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN; else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN) mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; goto propagate_mv; case NEARESTMV: *mv = nearest; // Clip "next_nearest" so that it does not extend to far out of image if (mv->col < (xd->mb_to_left_edge - LEFT_TOP_MARGIN)) mv->col = xd->mb_to_left_edge - LEFT_TOP_MARGIN; else if (mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN) mv->col = xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN; if (mv->row < (xd->mb_to_top_edge - LEFT_TOP_MARGIN)) mv->row = xd->mb_to_top_edge - LEFT_TOP_MARGIN; else if (mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN) mv->row = xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN; goto propagate_mv; case ZEROMV: *mv = Zero; goto propagate_mv; case NEWMV: read_mv(bc, mv, (const MV_CONTEXT *) mvc); mv->row += best_mv.row; mv->col += best_mv.col; /* Don't need to check this on NEARMV and NEARESTMV modes * since those modes clamp the MV. The NEWMV mode does not, * so signal to the prediction stage whether special * handling may be required. */ if (mv->col < xd->mb_to_left_edge - LEFT_TOP_MARGIN || mv->col > xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN || mv->row < xd->mb_to_top_edge - LEFT_TOP_MARGIN || mv->row > xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN ) mbmi->need_to_clamp_mvs = 1; propagate_mv: /* same MV throughout */ { //int i=0; //do //{ // mi->bmi[i].mv.as_mv = *mv; //} //while( ++i < 16); mi->bmi[0].mv.as_mv = *mv; mi->bmi[1].mv.as_mv = *mv; mi->bmi[2].mv.as_mv = *mv; mi->bmi[3].mv.as_mv = *mv; mi->bmi[4].mv.as_mv = *mv; mi->bmi[5].mv.as_mv = *mv; mi->bmi[6].mv.as_mv = *mv; mi->bmi[7].mv.as_mv = *mv; mi->bmi[8].mv.as_mv = *mv; mi->bmi[9].mv.as_mv = *mv; mi->bmi[10].mv.as_mv = *mv; mi->bmi[11].mv.as_mv = *mv; mi->bmi[12].mv.as_mv = *mv; mi->bmi[13].mv.as_mv = *mv; mi->bmi[14].mv.as_mv = *mv; mi->bmi[15].mv.as_mv = *mv; } break; default:; #if CONFIG_DEBUG assert(0); #endif } } else { /* MB is intra coded */ int j = 0; do { mi->bmi[j].mv.as_mv = Zero; } while (++j < 16); *mv = Zero; if ((mbmi->mode = (MB_PREDICTION_MODE) vp8_read_ymode(bc, pc->fc.ymode_prob)) == B_PRED) { int j = 0; do { mi->bmi[j].mode = (B_PREDICTION_MODE)vp8_read_bmode(bc, pc->fc.bmode_prob); } while (++j < 16); } mbmi->uv_mode = (MB_PREDICTION_MODE)vp8_read_uv_mode(bc, pc->fc.uv_mode_prob); } mi++; // next macroblock } mi++; // skip left predictor each row } }