/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #if !defined(WIN32) && CONFIG_OS_SUPPORT == 1 # include #endif #ifdef __APPLE__ #include #endif #include "onyxd_int.h" #include "vpx_mem/vpx_mem.h" #include "threading.h" #include "loopfilter.h" #include "extend.h" #include "vpx_ports/vpx_timer.h" #include "detokenize.h" #include "reconinter.h" #include "reconintra_mt.h" extern void mb_init_dequantizer(VP8D_COMP *pbi, MACROBLOCKD *xd); extern void clamp_mvs(MACROBLOCKD *xd); extern void vp8_build_uvmvs(MACROBLOCKD *x, int fullpixel); #if CONFIG_RUNTIME_CPU_DETECT #define RTCD_VTABLE(x) (&(pbi)->common.rtcd.x) #else #define RTCD_VTABLE(x) NULL #endif void vp8_setup_decoding_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count) { #if CONFIG_MULTITHREAD VP8_COMMON *const pc = & pbi->common; int i, j; for (i = 0; i < count; i++) { MACROBLOCKD *mbd = &mbrd[i].mbd; #if CONFIG_RUNTIME_CPU_DETECT mbd->rtcd = xd->rtcd; #endif mbd->subpixel_predict = xd->subpixel_predict; mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; mbd->mode_info_context = pc->mi + pc->mode_info_stride * (i + 1); mbd->mode_info_stride = pc->mode_info_stride; mbd->frame_type = pc->frame_type; mbd->frames_since_golden = pc->frames_since_golden; mbd->frames_till_alt_ref_frame = pc->frames_till_alt_ref_frame; mbd->pre = pc->yv12_fb[pc->lst_fb_idx]; mbd->dst = pc->yv12_fb[pc->new_fb_idx]; vp8_setup_block_dptrs(mbd); vp8_build_block_doffsets(mbd); mbd->segmentation_enabled = xd->segmentation_enabled; mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta; vpx_memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); /*signed char ref_lf_deltas[MAX_REF_LF_DELTAS];*/ vpx_memcpy(mbd->ref_lf_deltas, xd->ref_lf_deltas, sizeof(xd->ref_lf_deltas)); /*signed char mode_lf_deltas[MAX_MODE_LF_DELTAS];*/ vpx_memcpy(mbd->mode_lf_deltas, xd->mode_lf_deltas, sizeof(xd->mode_lf_deltas)); /*unsigned char mode_ref_lf_delta_enabled; unsigned char mode_ref_lf_delta_update;*/ mbd->mode_ref_lf_delta_enabled = xd->mode_ref_lf_delta_enabled; mbd->mode_ref_lf_delta_update = xd->mode_ref_lf_delta_update; mbd->current_bc = &pbi->bc2; for (j = 0; j < 25; j++) { mbd->block[j].dequant = xd->block[j].dequant; } } for (i=0; i< pc->mb_rows; i++) pbi->mt_current_mb_col[i]=-1; #else (void) pbi; (void) xd; (void) mbrd; (void) count; #endif } void vp8mt_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd, int mb_row, int mb_col) { #if CONFIG_MULTITHREAD int eobtotal = 0; int i, do_clamp = xd->mode_info_context->mbmi.need_to_clamp_mvs; VP8_COMMON *pc = &pbi->common; if (xd->mode_info_context->mbmi.mb_skip_coeff) { vp8_reset_mb_tokens_context(xd); } else { eobtotal = vp8_decode_mb_tokens(pbi, xd); } /* Perform temporary clamping of the MV to be used for prediction */ if (do_clamp) { clamp_mvs(xd); } xd->mode_info_context->mbmi.dc_diff = 1; if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV && eobtotal == 0) { xd->mode_info_context->mbmi.dc_diff = 0; /*mt_skip_recon_mb(pbi, xd, mb_row, mb_col);*/ if (xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8mt_build_intra_predictors_mbuv_s(pbi, xd, mb_row, mb_col); vp8mt_build_intra_predictors_mby_s(pbi, xd, mb_row, mb_col); } else { vp8_build_inter_predictors_mb_s(xd); } return; } if (xd->segmentation_enabled) mb_init_dequantizer(pbi, xd); /* do prediction */ if (xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { vp8mt_build_intra_predictors_mbuv(pbi, xd, mb_row, mb_col); if (xd->mode_info_context->mbmi.mode != B_PRED) { vp8mt_build_intra_predictors_mby(pbi, xd, mb_row, mb_col); } else { vp8mt_intra_prediction_down_copy(pbi, xd, mb_row, mb_col); } } else { vp8_build_inter_predictors_mb(xd); } /* dequantization and idct */ if (xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.mode != SPLITMV) { BLOCKD *b = &xd->block[24]; DEQUANT_INVOKE(&pbi->dequant, block)(b); /* do 2nd order transform on the dc block */ if (xd->eobs[24] > 1) { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh16)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; ((int *)b->qcoeff)[1] = 0; ((int *)b->qcoeff)[2] = 0; ((int *)b->qcoeff)[3] = 0; ((int *)b->qcoeff)[4] = 0; ((int *)b->qcoeff)[5] = 0; ((int *)b->qcoeff)[6] = 0; ((int *)b->qcoeff)[7] = 0; } else { IDCT_INVOKE(RTCD_VTABLE(idct), iwalsh1)(&b->dqcoeff[0], b->diff); ((int *)b->qcoeff)[0] = 0; } DEQUANT_INVOKE (&pbi->dequant, dc_idct_add_y_block) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs, xd->block[24].diff); } else if ((xd->frame_type == KEY_FRAME || xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) && xd->mode_info_context->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *b = &xd->block[i]; vp8mt_predict_intra4x4(pbi, xd, b->bmi.mode, b->predictor, mb_row, mb_col, i); if (xd->eobs[i] > 1) { DEQUANT_INVOKE(&pbi->dequant, idct_add) (b->qcoeff, b->dequant, b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); } else { IDCT_INVOKE(RTCD_VTABLE(idct), idct1_scalar_add) (b->qcoeff[0] * b->dequant[0], b->predictor, *(b->base_dst) + b->dst, 16, b->dst_stride); ((int *)b->qcoeff)[0] = 0; } } } else { DEQUANT_INVOKE (&pbi->dequant, idct_add_y_block) (xd->qcoeff, xd->block[0].dequant, xd->predictor, xd->dst.y_buffer, xd->dst.y_stride, xd->eobs); } DEQUANT_INVOKE (&pbi->dequant, idct_add_uv_block) (xd->qcoeff+16*16, xd->block[16].dequant, xd->predictor+16*16, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.uv_stride, xd->eobs+16); #else (void) pbi; (void) xd; (void) mb_row; (void) mb_col; #endif } THREAD_FUNCTION vp8_thread_decoding_proc(void *p_data) { #if CONFIG_MULTITHREAD int ithread = ((DECODETHREAD_DATA *)p_data)->ithread; VP8D_COMP *pbi = (VP8D_COMP *)(((DECODETHREAD_DATA *)p_data)->ptr1); MB_ROW_DEC *mbrd = (MB_ROW_DEC *)(((DECODETHREAD_DATA *)p_data)->ptr2); ENTROPY_CONTEXT_PLANES mb_row_left_context; while (1) { if (pbi->b_multithreaded_rd == 0) break; /*if(WaitForSingleObject(pbi->h_event_start_decoding[ithread], INFINITE) == WAIT_OBJECT_0)*/ if (sem_wait(&pbi->h_event_start_decoding[ithread]) == 0) { if (pbi->b_multithreaded_rd == 0) break; else { VP8_COMMON *pc = &pbi->common; MACROBLOCKD *xd = &mbrd->mbd; int mb_row; int num_part = 1 << pbi->common.multi_token_partition; volatile int *last_row_current_mb_col; int nsync = pbi->sync_range; for (mb_row = ithread+1; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1)) { int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; int filter_level; loop_filter_info *lfi = pc->lf_info; int alt_flt_enabled = xd->segmentation_enabled; int Segment; pbi->mb_row_di[ithread].mb_row = mb_row; pbi->mb_row_di[ithread].mbd.current_bc = &pbi->mbc[mb_row%num_part]; last_row_current_mb_col = &pbi->mt_current_mb_col[mb_row -1]; recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; /* reset above block coeffs */ xd->above_context = pc->above_context; xd->left_context = &mb_row_left_context; vpx_memset(&mb_row_left_context, 0, sizeof(mb_row_left_context)); xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { if ((mb_col & (nsync-1)) == 0) { while (mb_col > (*last_row_current_mb_col - nsync) && *last_row_current_mb_col != pc->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *d = &xd->block[i]; vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); } } if(pbi->common.filter_level) { /*update loopfilter info*/ Segment = (alt_flt_enabled) ? xd->mode_info_context->mbmi.segment_id : 0; filter_level = pbi->mt_baseline_filter_level[Segment]; /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to values that are in 1/8th pel units * Apply any context driven MB level adjustment */ vp8_adjust_mb_lf_value(xd, &filter_level); } /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to values that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); /* Select the appropriate reference frame for this MB */ if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; vp8_build_uvmvs(xd, pc->full_pixel); vp8mt_decode_macroblock(pbi, xd, mb_row, mb_col); if (pbi->common.filter_level) { if( mb_row != pc->mb_rows-1 ) { /* Save decoded MB last row data for next-row decoding */ vpx_memcpy((pbi->mt_yabove_row[mb_row + 1] + 32 + mb_col*16), (xd->dst.y_buffer + 15 * recon_y_stride), 16); vpx_memcpy((pbi->mt_uabove_row[mb_row + 1] + 16 + mb_col*8), (xd->dst.u_buffer + 7 * recon_uv_stride), 8); vpx_memcpy((pbi->mt_vabove_row[mb_row + 1] + 16 + mb_col*8), (xd->dst.v_buffer + 7 * recon_uv_stride), 8); } /* save left_col for next MB decoding */ if(mb_col != pc->mb_cols-1) { MODE_INFO *next = xd->mode_info_context +1; if (xd->frame_type == KEY_FRAME || next->mbmi.ref_frame == INTRA_FRAME) { for (i = 0; i < 16; i++) pbi->mt_yleft_col[mb_row][i] = xd->dst.y_buffer [i* recon_y_stride + 15]; for (i = 0; i < 8; i++) { pbi->mt_uleft_col[mb_row][i] = xd->dst.u_buffer [i* recon_uv_stride + 7]; pbi->mt_vleft_col[mb_row][i] = xd->dst.v_buffer [i* recon_uv_stride + 7]; } } } /* loopfilter on this macroblock. */ if (filter_level) { if (mb_col > 0) pc->lf_mbv(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); if (xd->mode_info_context->mbmi.dc_diff > 0) pc->lf_bv(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); /* don't apply across umv border */ if (mb_row > 0) pc->lf_mbh(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); if (xd->mode_info_context->mbmi.dc_diff > 0) pc->lf_bh(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); } } recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; /*pbi->mb_row_di[ithread].current_mb_col = mb_col;*/ pbi->mt_current_mb_col[mb_row] = mb_col; } /* adjust to the next row of mbs */ if (pbi->common.filter_level) { if(mb_row != pc->mb_rows-1) { int lasty = pc->yv12_fb[ref_fb_idx].y_width + VP8BORDERINPIXELS; int lastuv = (pc->yv12_fb[ref_fb_idx].y_width>>1) + (VP8BORDERINPIXELS>>1); for (i = 0; i < 4; i++) { pbi->mt_yabove_row[mb_row +1][lasty + i] = pbi->mt_yabove_row[mb_row +1][lasty -1]; pbi->mt_uabove_row[mb_row +1][lastuv + i] = pbi->mt_uabove_row[mb_row +1][lastuv -1]; pbi->mt_vabove_row[mb_row +1][lastuv + i] = pbi->mt_vabove_row[mb_row +1][lastuv -1]; } } } else vp8_extend_mb_row(&pc->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); ++xd->mode_info_context; /* skip prediction column */ /* since we have multithread */ xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count; } } } /* add this to each frame */ if ((mbrd->mb_row == pbi->common.mb_rows-1) || ((mbrd->mb_row == pbi->common.mb_rows-2) && (pbi->common.mb_rows % (pbi->decoding_thread_count+1))==1)) { /*SetEvent(pbi->h_event_end_decoding);*/ sem_post(&pbi->h_event_end_decoding); } } #else (void) p_data; #endif return 0 ; } void vp8_decoder_create_threads(VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD int core_count = 0; int ithread; pbi->b_multithreaded_rd = 0; pbi->allocated_decoding_thread_count = 0; core_count = (pbi->max_threads > 16) ? 16 : pbi->max_threads; if (core_count > 1) { pbi->b_multithreaded_rd = 1; pbi->decoding_thread_count = core_count -1; CHECK_MEM_ERROR(pbi->h_decoding_thread, vpx_malloc(sizeof(pthread_t) * pbi->decoding_thread_count)); CHECK_MEM_ERROR(pbi->h_event_start_decoding, vpx_malloc(sizeof(sem_t) * pbi->decoding_thread_count)); CHECK_MEM_ERROR(pbi->mb_row_di, vpx_memalign(32, sizeof(MB_ROW_DEC) * pbi->decoding_thread_count)); vpx_memset(pbi->mb_row_di, 0, sizeof(MB_ROW_DEC) * pbi->decoding_thread_count); CHECK_MEM_ERROR(pbi->de_thread_data, vpx_malloc(sizeof(DECODETHREAD_DATA) * pbi->decoding_thread_count)); for (ithread = 0; ithread < pbi->decoding_thread_count; ithread++) { sem_init(&pbi->h_event_start_decoding[ithread], 0, 0); pbi->de_thread_data[ithread].ithread = ithread; pbi->de_thread_data[ithread].ptr1 = (void *)pbi; pbi->de_thread_data[ithread].ptr2 = (void *) &pbi->mb_row_di[ithread]; pthread_create(&pbi->h_decoding_thread[ithread], 0, vp8_thread_decoding_proc, (&pbi->de_thread_data[ithread])); } sem_init(&pbi->h_event_end_decoding, 0, 0); pbi->allocated_decoding_thread_count = pbi->decoding_thread_count; } #else (void) pbi; #endif } void vp8mt_de_alloc_temp_buffers(VP8D_COMP *pbi, int mb_rows) { #if CONFIG_MULTITHREAD VP8_COMMON *const pc = & pbi->common; int i; if (pbi->b_multithreaded_rd) { if (pbi->mt_current_mb_col) { vpx_free(pbi->mt_current_mb_col); pbi->mt_current_mb_col = NULL ; } /* Free above_row buffers. */ if (pbi->mt_yabove_row) { for (i=0; i< mb_rows; i++) { if (pbi->mt_yabove_row[i]) { vpx_free(pbi->mt_yabove_row[i]); pbi->mt_yabove_row[i] = NULL ; } } vpx_free(pbi->mt_yabove_row); pbi->mt_yabove_row = NULL ; } if (pbi->mt_uabove_row) { for (i=0; i< mb_rows; i++) { if (pbi->mt_uabove_row[i]) { vpx_free(pbi->mt_uabove_row[i]); pbi->mt_uabove_row[i] = NULL ; } } vpx_free(pbi->mt_uabove_row); pbi->mt_uabove_row = NULL ; } if (pbi->mt_vabove_row) { for (i=0; i< mb_rows; i++) { if (pbi->mt_vabove_row[i]) { vpx_free(pbi->mt_vabove_row[i]); pbi->mt_vabove_row[i] = NULL ; } } vpx_free(pbi->mt_vabove_row); pbi->mt_vabove_row = NULL ; } /* Free left_col buffers. */ if (pbi->mt_yleft_col) { for (i=0; i< mb_rows; i++) { if (pbi->mt_yleft_col[i]) { vpx_free(pbi->mt_yleft_col[i]); pbi->mt_yleft_col[i] = NULL ; } } vpx_free(pbi->mt_yleft_col); pbi->mt_yleft_col = NULL ; } if (pbi->mt_uleft_col) { for (i=0; i< mb_rows; i++) { if (pbi->mt_uleft_col[i]) { vpx_free(pbi->mt_uleft_col[i]); pbi->mt_uleft_col[i] = NULL ; } } vpx_free(pbi->mt_uleft_col); pbi->mt_uleft_col = NULL ; } if (pbi->mt_vleft_col) { for (i=0; i< mb_rows; i++) { if (pbi->mt_vleft_col[i]) { vpx_free(pbi->mt_vleft_col[i]); pbi->mt_vleft_col[i] = NULL ; } } vpx_free(pbi->mt_vleft_col); pbi->mt_vleft_col = NULL ; } } #else (void) pbi; #endif } void vp8mt_alloc_temp_buffers(VP8D_COMP *pbi, int width, int prev_mb_rows) { #if CONFIG_MULTITHREAD VP8_COMMON *const pc = & pbi->common; int i; int uv_width; if (pbi->b_multithreaded_rd) { vp8mt_de_alloc_temp_buffers(pbi, prev_mb_rows); /* our internal buffers are always multiples of 16 */ if ((width & 0xf) != 0) width += 16 - (width & 0xf); if (width < 640) pbi->sync_range = 1; else if (width <= 1280) pbi->sync_range = 8; else if (width <= 2560) pbi->sync_range =16; else pbi->sync_range = 32; uv_width = width >>1; /* Allocate an int for each mb row. */ CHECK_MEM_ERROR(pbi->mt_current_mb_col, vpx_malloc(sizeof(int) * pc->mb_rows)); /* Allocate memory for above_row buffers. */ CHECK_MEM_ERROR(pbi->mt_yabove_row, vpx_malloc(sizeof(unsigned char *) * pc->mb_rows)); for (i=0; i< pc->mb_rows; i++) CHECK_MEM_ERROR(pbi->mt_yabove_row[i], vpx_calloc(sizeof(unsigned char) * (width + (VP8BORDERINPIXELS<<1)), 1)); CHECK_MEM_ERROR(pbi->mt_uabove_row, vpx_malloc(sizeof(unsigned char *) * pc->mb_rows)); for (i=0; i< pc->mb_rows; i++) CHECK_MEM_ERROR(pbi->mt_uabove_row[i], vpx_calloc(sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS), 1)); CHECK_MEM_ERROR(pbi->mt_vabove_row, vpx_malloc(sizeof(unsigned char *) * pc->mb_rows)); for (i=0; i< pc->mb_rows; i++) CHECK_MEM_ERROR(pbi->mt_vabove_row[i], vpx_calloc(sizeof(unsigned char) * (uv_width + VP8BORDERINPIXELS), 1)); /* Allocate memory for left_col buffers. */ CHECK_MEM_ERROR(pbi->mt_yleft_col, vpx_malloc(sizeof(unsigned char *) * pc->mb_rows)); for (i=0; i< pc->mb_rows; i++) CHECK_MEM_ERROR(pbi->mt_yleft_col[i], vpx_calloc(sizeof(unsigned char) * 16, 1)); CHECK_MEM_ERROR(pbi->mt_uleft_col, vpx_malloc(sizeof(unsigned char *) * pc->mb_rows)); for (i=0; i< pc->mb_rows; i++) CHECK_MEM_ERROR(pbi->mt_uleft_col[i], vpx_calloc(sizeof(unsigned char) * 8, 1)); CHECK_MEM_ERROR(pbi->mt_vleft_col, vpx_malloc(sizeof(unsigned char *) * pc->mb_rows)); for (i=0; i< pc->mb_rows; i++) CHECK_MEM_ERROR(pbi->mt_vleft_col[i], vpx_calloc(sizeof(unsigned char) * 8, 1)); } #else (void) pbi; (void) width; #endif } void vp8_decoder_remove_threads(VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD /* shutdown MB Decoding thread; */ if (pbi->b_multithreaded_rd) { int i; pbi->b_multithreaded_rd = 0; /* allow all threads to exit */ for (i = 0; i < pbi->allocated_decoding_thread_count; i++) { sem_post(&pbi->h_event_start_decoding[i]); pthread_join(pbi->h_decoding_thread[i], NULL); } for (i = 0; i < pbi->allocated_decoding_thread_count; i++) { sem_destroy(&pbi->h_event_start_decoding[i]); } sem_destroy(&pbi->h_event_end_decoding); if (pbi->h_decoding_thread) { vpx_free(pbi->h_decoding_thread); pbi->h_decoding_thread = NULL; } if (pbi->h_event_start_decoding) { vpx_free(pbi->h_event_start_decoding); pbi->h_event_start_decoding = NULL; } if (pbi->mb_row_di) { vpx_free(pbi->mb_row_di); pbi->mb_row_di = NULL ; } if (pbi->de_thread_data) { vpx_free(pbi->de_thread_data); pbi->de_thread_data = NULL; } } #else (void) pbi; #endif } void vp8mt_lpf_init( VP8D_COMP *pbi, int default_filt_lvl) { #if CONFIG_MULTITHREAD VP8_COMMON *cm = &pbi->common; MACROBLOCKD *mbd = &pbi->mb; /*YV12_BUFFER_CONFIG *post = &cm->new_frame;*/ /*frame_to_show;*/ loop_filter_info *lfi = cm->lf_info; FRAME_TYPE frame_type = cm->frame_type; /*int mb_row; int mb_col; int baseline_filter_level[MAX_MB_SEGMENTS];*/ int alt_flt_enabled = mbd->segmentation_enabled; int i; /*unsigned char *y_ptr, *u_ptr, *v_ptr;*/ /* Note the baseline filter values for each segment */ if (alt_flt_enabled) { for (i = 0; i < MAX_MB_SEGMENTS; i++) { /* Abs value */ if (mbd->mb_segement_abs_delta == SEGMENT_ABSDATA) pbi->mt_baseline_filter_level[i] = mbd->segment_feature_data[MB_LVL_ALT_LF][i]; /* Delta Value */ else { pbi->mt_baseline_filter_level[i] = default_filt_lvl + mbd->segment_feature_data[MB_LVL_ALT_LF][i]; pbi->mt_baseline_filter_level[i] = (pbi->mt_baseline_filter_level[i] >= 0) ? ((pbi->mt_baseline_filter_level[i] <= MAX_LOOP_FILTER) ? pbi->mt_baseline_filter_level[i] : MAX_LOOP_FILTER) : 0; /* Clamp to valid range */ } } } else { for (i = 0; i < MAX_MB_SEGMENTS; i++) pbi->mt_baseline_filter_level[i] = default_filt_lvl; } /* Initialize the loop filter for this frame. */ if ((cm->last_filter_type != cm->filter_type) || (cm->last_sharpness_level != cm->sharpness_level)) vp8_init_loop_filter(cm); else if (frame_type != cm->last_frame_type) vp8_frame_init_loop_filter(lfi, frame_type); #else (void) pbi; (void) default_filt_lvl; #endif } void vp8mt_decode_mb_rows( VP8D_COMP *pbi, MACROBLOCKD *xd) { #if CONFIG_MULTITHREAD int mb_row; VP8_COMMON *pc = &pbi->common; int ibc = 0; int num_part = 1 << pbi->common.multi_token_partition; int i; volatile int *last_row_current_mb_col = NULL; int nsync = pbi->sync_range; int filter_level; loop_filter_info *lfi = pc->lf_info; int alt_flt_enabled = xd->segmentation_enabled; int Segment; if(pbi->common.filter_level) { /* Set above_row buffer to 127 for decoding first MB row */ vpx_memset(pbi->mt_yabove_row[0] + VP8BORDERINPIXELS-1, 127, pc->yv12_fb[pc->lst_fb_idx].y_width + 5); vpx_memset(pbi->mt_uabove_row[0] + (VP8BORDERINPIXELS>>1)-1, 127, (pc->yv12_fb[pc->lst_fb_idx].y_width>>1) +5); vpx_memset(pbi->mt_vabove_row[0] + (VP8BORDERINPIXELS>>1)-1, 127, (pc->yv12_fb[pc->lst_fb_idx].y_width>>1) +5); for (i=1; imb_rows; i++) { vpx_memset(pbi->mt_yabove_row[i] + VP8BORDERINPIXELS-1, (unsigned char)129, 1); vpx_memset(pbi->mt_uabove_row[i] + (VP8BORDERINPIXELS>>1)-1, (unsigned char)129, 1); vpx_memset(pbi->mt_vabove_row[i] + (VP8BORDERINPIXELS>>1)-1, (unsigned char)129, 1); } /* Set left_col to 129 initially */ for (i=0; imb_rows; i++) { vpx_memset(pbi->mt_yleft_col[i], (unsigned char)129, 16); vpx_memset(pbi->mt_uleft_col[i], (unsigned char)129, 8); vpx_memset(pbi->mt_vleft_col[i], (unsigned char)129, 8); } vp8mt_lpf_init(pbi, pc->filter_level); } vp8_setup_decoding_thread_data(pbi, xd, pbi->mb_row_di, pbi->decoding_thread_count); for (i = 0; i < pbi->decoding_thread_count; i++) sem_post(&pbi->h_event_start_decoding[i]); for (mb_row = 0; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1)) { xd->current_bc = &pbi->mbc[mb_row%num_part]; /* vp8_decode_mb_row(pbi, pc, mb_row, xd); */ { int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; /* volatile int *last_row_current_mb_col = NULL; */ if (mb_row > 0) last_row_current_mb_col = &pbi->mt_current_mb_col[mb_row -1]; vpx_memset(&pc->left_context, 0, sizeof(pc->left_context)); recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; /* reset above block coeffs */ xd->above_context = pc->above_context; xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { if ( mb_row > 0 && (mb_col & (nsync-1)) == 0){ while (mb_col > (*last_row_current_mb_col - nsync) && *last_row_current_mb_col != pc->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *d = &xd->block[i]; vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); } } if(pbi->common.filter_level) { /* update loopfilter info */ Segment = (alt_flt_enabled) ? xd->mode_info_context->mbmi.segment_id : 0; filter_level = pbi->mt_baseline_filter_level[Segment]; /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to values that are in 1/8th pel units * Apply any context driven MB level adjustment */ vp8_adjust_mb_lf_value(xd, &filter_level); } /* Distance of Mb to the various image edges. * These are specified to 8th pel as they are always compared to values that are in 1/8th pel units */ xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); /* Select the appropriate reference frame for this MB */ if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME) { /* propagate errors from reference frames */ xd->corrupted |= pc->yv12_fb[ref_fb_idx].corrupted; } vp8_build_uvmvs(xd, pc->full_pixel); vp8mt_decode_macroblock(pbi, xd, mb_row, mb_col); /* check if the boolean decoder has suffered an error */ xd->corrupted |= vp8dx_bool_error(xd->current_bc); if (pbi->common.filter_level) { /* Save decoded MB last row data for next-row decoding */ if(mb_row != pc->mb_rows-1) { vpx_memcpy((pbi->mt_yabove_row[mb_row +1] + 32 + mb_col*16), (xd->dst.y_buffer + 15 * recon_y_stride), 16); vpx_memcpy((pbi->mt_uabove_row[mb_row +1] + 16 + mb_col*8), (xd->dst.u_buffer + 7 * recon_uv_stride), 8); vpx_memcpy((pbi->mt_vabove_row[mb_row +1] + 16 + mb_col*8), (xd->dst.v_buffer + 7 * recon_uv_stride), 8); } /* save left_col for next MB decoding */ if(mb_col != pc->mb_cols-1) { MODE_INFO *next = xd->mode_info_context +1; if (xd->frame_type == KEY_FRAME || next->mbmi.ref_frame == INTRA_FRAME) { for (i = 0; i < 16; i++) pbi->mt_yleft_col[mb_row][i] = xd->dst.y_buffer [i* recon_y_stride + 15]; for (i = 0; i < 8; i++) { pbi->mt_uleft_col[mb_row][i] = xd->dst.u_buffer [i* recon_uv_stride + 7]; pbi->mt_vleft_col[mb_row][i] = xd->dst.v_buffer [i* recon_uv_stride + 7]; } } } /* loopfilter on this macroblock. */ if (filter_level) { if (mb_col > 0) pc->lf_mbv(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); if (xd->mode_info_context->mbmi.dc_diff > 0) pc->lf_bv(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); /* don't apply across umv border */ if (mb_row > 0) pc->lf_mbh(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); if (xd->mode_info_context->mbmi.dc_diff > 0) pc->lf_bh(xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, recon_y_stride, recon_uv_stride, &lfi[filter_level], pc->simpler_lpf); } } recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; pbi->mt_current_mb_col[mb_row] = mb_col; } /* adjust to the next row of mbs */ if (pbi->common.filter_level) { if(mb_row != pc->mb_rows-1) { int lasty = pc->yv12_fb[ref_fb_idx].y_width + VP8BORDERINPIXELS; int lastuv = (pc->yv12_fb[ref_fb_idx].y_width>>1) + (VP8BORDERINPIXELS>>1); for (i = 0; i < 4; i++) { pbi->mt_yabove_row[mb_row +1][lasty + i] = pbi->mt_yabove_row[mb_row +1][lasty -1]; pbi->mt_uabove_row[mb_row +1][lastuv + i] = pbi->mt_uabove_row[mb_row +1][lastuv -1]; pbi->mt_vabove_row[mb_row +1][lastuv + i] = pbi->mt_vabove_row[mb_row +1][lastuv -1]; } } }else vp8_extend_mb_row(&pc->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); ++xd->mode_info_context; /* skip prediction column */ } xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count; } sem_wait(&pbi->h_event_end_decoding); /* add back for each frame */ #else (void) pbi; (void) xd; #endif }