/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "vp9/common/vp9_pragmas.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/encoder/vp9_treewriter.h" #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_modecosts.h" #include "vp9/encoder/vp9_encodeintra.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_reconintra.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_quant_common.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_variance.h" #include "vp9/encoder/vp9_mcomp.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/encoder/vp9_ratectrl.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9/encoder/vp9_encodemv.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9_rtcd.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_common.h" #define INVALID_MV 0x80008000 /* Factor to weigh the rate for switchable interp filters */ #define SWITCHABLE_INTERP_RATE_FACTOR 1 DECLARE_ALIGNED(16, extern const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]); #define LAST_FRAME_MODE_MASK 0xFFDADCD60 #define GOLDEN_FRAME_MODE_MASK 0xFFB5A3BB0 #define ALT_REF_MODE_MASK 0xFF8C648D0 const MODE_DEFINITION vp9_mode_order[MAX_MODES] = { {RD_NEARESTMV, LAST_FRAME, NONE}, {RD_NEARESTMV, ALTREF_FRAME, NONE}, {RD_NEARESTMV, GOLDEN_FRAME, NONE}, {RD_DC_PRED, INTRA_FRAME, NONE}, {RD_NEWMV, LAST_FRAME, NONE}, {RD_NEWMV, ALTREF_FRAME, NONE}, {RD_NEWMV, GOLDEN_FRAME, NONE}, {RD_NEARMV, LAST_FRAME, NONE}, {RD_NEARMV, ALTREF_FRAME, NONE}, {RD_NEARESTMV, LAST_FRAME, ALTREF_FRAME}, {RD_NEARESTMV, GOLDEN_FRAME, ALTREF_FRAME}, {RD_TM_PRED, INTRA_FRAME, NONE}, {RD_NEARMV, LAST_FRAME, ALTREF_FRAME}, {RD_NEWMV, LAST_FRAME, ALTREF_FRAME}, {RD_NEARMV, GOLDEN_FRAME, NONE}, {RD_NEARMV, GOLDEN_FRAME, ALTREF_FRAME}, {RD_NEWMV, GOLDEN_FRAME, ALTREF_FRAME}, {RD_SPLITMV, LAST_FRAME, NONE}, {RD_SPLITMV, GOLDEN_FRAME, NONE}, {RD_SPLITMV, ALTREF_FRAME, NONE}, {RD_SPLITMV, LAST_FRAME, ALTREF_FRAME}, {RD_SPLITMV, GOLDEN_FRAME, ALTREF_FRAME}, {RD_ZEROMV, LAST_FRAME, NONE}, {RD_ZEROMV, GOLDEN_FRAME, NONE}, {RD_ZEROMV, ALTREF_FRAME, NONE}, {RD_ZEROMV, LAST_FRAME, ALTREF_FRAME}, {RD_ZEROMV, GOLDEN_FRAME, ALTREF_FRAME}, {RD_I4X4_PRED, INTRA_FRAME, NONE}, {RD_H_PRED, INTRA_FRAME, NONE}, {RD_V_PRED, INTRA_FRAME, NONE}, {RD_D135_PRED, INTRA_FRAME, NONE}, {RD_D207_PRED, INTRA_FRAME, NONE}, {RD_D153_PRED, INTRA_FRAME, NONE}, {RD_D63_PRED, INTRA_FRAME, NONE}, {RD_D117_PRED, INTRA_FRAME, NONE}, {RD_D45_PRED, INTRA_FRAME, NONE}, }; // The baseline rd thresholds for breaking out of the rd loop for // certain modes are assumed to be based on 8x8 blocks. // This table is used to correct for blocks size. // The factors here are << 2 (2 = x0.5, 32 = x8 etc). static int rd_thresh_block_size_factor[BLOCK_SIZES] = {2, 3, 3, 4, 6, 6, 8, 12, 12, 16, 24, 24, 32}; #define MAX_RD_THRESH_FACT 64 #define RD_THRESH_INC 1 static void fill_token_costs(vp9_coeff_cost *c, vp9_coeff_probs_model (*p)[BLOCK_TYPES]) { int i, j, k, l; TX_SIZE t; for (t = TX_4X4; t <= TX_32X32; t++) for (i = 0; i < BLOCK_TYPES; i++) for (j = 0; j < REF_TYPES; j++) for (k = 0; k < COEF_BANDS; k++) for (l = 0; l < PREV_COEF_CONTEXTS; l++) { vp9_prob probs[ENTROPY_NODES]; vp9_model_to_full_probs(p[t][i][j][k][l], probs); vp9_cost_tokens((int *)c[t][i][j][k][0][l], probs, vp9_coef_tree); vp9_cost_tokens_skip((int *)c[t][i][j][k][1][l], probs, vp9_coef_tree); assert(c[t][i][j][k][0][l][DCT_EOB_TOKEN] == c[t][i][j][k][1][l][DCT_EOB_TOKEN]); } } static const int rd_iifactor[32] = { 4, 4, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; // 3* dc_qlookup[Q]*dc_qlookup[Q]; /* values are now correlated to quantizer */ static int sad_per_bit16lut[QINDEX_RANGE]; static int sad_per_bit4lut[QINDEX_RANGE]; void vp9_init_me_luts() { int i; // Initialize the sad lut tables using a formulaic calculation for now // This is to make it easier to resolve the impact of experimental changes // to the quantizer tables. for (i = 0; i < QINDEX_RANGE; i++) { sad_per_bit16lut[i] = (int)((0.0418 * vp9_convert_qindex_to_q(i)) + 2.4107); sad_per_bit4lut[i] = (int)(0.063 * vp9_convert_qindex_to_q(i) + 2.742); } } static int compute_rd_mult(int qindex) { const int q = vp9_dc_quant(qindex, 0); return (11 * q * q) >> 2; } static MB_PREDICTION_MODE rd_mode_to_mode(RD_PREDICTION_MODE rd_mode) { if (rd_mode == RD_SPLITMV || rd_mode == RD_I4X4_PRED) { assert(!"Invalid rd_mode"); return MB_MODE_COUNT; } assert((int)rd_mode < (int)MB_MODE_COUNT); return (MB_PREDICTION_MODE)rd_mode; } void vp9_initialize_me_consts(VP9_COMP *cpi, int qindex) { cpi->mb.sadperbit16 = sad_per_bit16lut[qindex]; cpi->mb.sadperbit4 = sad_per_bit4lut[qindex]; } void vp9_initialize_rd_consts(VP9_COMP *cpi, int qindex) { int q, i, bsize; vp9_clear_system_state(); // __asm emms; // Further tests required to see if optimum is different // for key frames, golden frames and arf frames. // if (cpi->common.refresh_golden_frame || // cpi->common.refresh_alt_ref_frame) qindex = clamp(qindex, 0, MAXQ); cpi->RDMULT = compute_rd_mult(qindex); if (cpi->pass == 2 && (cpi->common.frame_type != KEY_FRAME)) { if (cpi->twopass.next_iiratio > 31) cpi->RDMULT += (cpi->RDMULT * rd_iifactor[31]) >> 4; else cpi->RDMULT += (cpi->RDMULT * rd_iifactor[cpi->twopass.next_iiratio]) >> 4; } cpi->mb.errorperbit = cpi->RDMULT >> 6; cpi->mb.errorperbit += (cpi->mb.errorperbit == 0); vp9_set_speed_features(cpi); q = (int)pow(vp9_dc_quant(qindex, 0) >> 2, 1.25); q <<= 2; if (q < 8) q = 8; if (cpi->RDMULT > 1000) { cpi->RDDIV = 1; cpi->RDMULT /= 100; for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { for (i = 0; i < MAX_MODES; ++i) { // Threshold here seem unecessarily harsh but fine given actual // range of values used for cpi->sf.thresh_mult[] int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]); // *4 relates to the scaling of rd_thresh_block_size_factor[] if ((int64_t)cpi->sf.thresh_mult[i] < thresh_max) { cpi->rd_threshes[bsize][i] = cpi->sf.thresh_mult[i] * q * rd_thresh_block_size_factor[bsize] / (4 * 100); } else { cpi->rd_threshes[bsize][i] = INT_MAX; } } } } else { cpi->RDDIV = 100; for (bsize = 0; bsize < BLOCK_SIZES; ++bsize) { for (i = 0; i < MAX_MODES; i++) { // Threshold here seem unecessarily harsh but fine given actual // range of values used for cpi->sf.thresh_mult[] int thresh_max = INT_MAX / (q * rd_thresh_block_size_factor[bsize]); if (cpi->sf.thresh_mult[i] < thresh_max) { cpi->rd_threshes[bsize][i] = cpi->sf.thresh_mult[i] * q * rd_thresh_block_size_factor[bsize] / 4; } else { cpi->rd_threshes[bsize][i] = INT_MAX; } } } } fill_token_costs(cpi->mb.token_costs, cpi->common.fc.coef_probs); for (i = 0; i < NUM_PARTITION_CONTEXTS; i++) vp9_cost_tokens(cpi->mb.partition_cost[i], cpi->common.fc.partition_prob[cpi->common.frame_type][i], vp9_partition_tree); /*rough estimate for costing*/ vp9_init_mode_costs(cpi); if (cpi->common.frame_type != KEY_FRAME) { vp9_build_nmv_cost_table( cpi->mb.nmvjointcost, cpi->mb.e_mbd.allow_high_precision_mv ? cpi->mb.nmvcost_hp : cpi->mb.nmvcost, &cpi->common.fc.nmvc, cpi->mb.e_mbd.allow_high_precision_mv, 1, 1); for (i = 0; i < INTER_MODE_CONTEXTS; i++) { MB_PREDICTION_MODE m; for (m = NEARESTMV; m < MB_MODE_COUNT; m++) cpi->mb.inter_mode_cost[i][m - NEARESTMV] = cost_token(vp9_inter_mode_tree, cpi->common.fc.inter_mode_probs[i], vp9_inter_mode_encodings + (m - NEARESTMV)); } } } static INLINE void linear_interpolate2(double x, int ntab, int inv_step, const double *tab1, const double *tab2, double *v1, double *v2) { double y = x * inv_step; int d = (int) y; if (d >= ntab - 1) { *v1 = tab1[ntab - 1]; *v2 = tab2[ntab - 1]; } else { double a = y - d; *v1 = tab1[d] * (1 - a) + tab1[d + 1] * a; *v2 = tab2[d] * (1 - a) + tab2[d + 1] * a; } } static void model_rd_norm(double x, double *R, double *D) { static const int inv_tab_step = 8; static const int tab_size = 120; // NOTE: The tables below must be of the same size // // Normalized rate // This table models the rate for a Laplacian source // source with given variance when quantized with a uniform quantizer // with given stepsize. The closed form expression is: // Rn(x) = H(sqrt(r)) + sqrt(r)*[1 + H(r)/(1 - r)], // where r = exp(-sqrt(2) * x) and x = qpstep / sqrt(variance), // and H(x) is the binary entropy function. static const double rate_tab[] = { 64.00, 4.944, 3.949, 3.372, 2.966, 2.655, 2.403, 2.194, 2.014, 1.858, 1.720, 1.596, 1.485, 1.384, 1.291, 1.206, 1.127, 1.054, 0.986, 0.923, 0.863, 0.808, 0.756, 0.708, 0.662, 0.619, 0.579, 0.541, 0.506, 0.473, 0.442, 0.412, 0.385, 0.359, 0.335, 0.313, 0.291, 0.272, 0.253, 0.236, 0.220, 0.204, 0.190, 0.177, 0.165, 0.153, 0.142, 0.132, 0.123, 0.114, 0.106, 0.099, 0.091, 0.085, 0.079, 0.073, 0.068, 0.063, 0.058, 0.054, 0.050, 0.047, 0.043, 0.040, 0.037, 0.034, 0.032, 0.029, 0.027, 0.025, 0.023, 0.022, 0.020, 0.019, 0.017, 0.016, 0.015, 0.014, 0.013, 0.012, 0.011, 0.010, 0.009, 0.008, 0.008, 0.007, 0.007, 0.006, 0.006, 0.005, 0.005, 0.005, 0.004, 0.004, 0.004, 0.003, 0.003, 0.003, 0.003, 0.002, 0.002, 0.002, 0.002, 0.002, 0.002, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.000, }; // Normalized distortion // This table models the normalized distortion for a Laplacian source // source with given variance when quantized with a uniform quantizer // with given stepsize. The closed form expression is: // Dn(x) = 1 - 1/sqrt(2) * x / sinh(x/sqrt(2)) // where x = qpstep / sqrt(variance) // Note the actual distortion is Dn * variance. static const double dist_tab[] = { 0.000, 0.001, 0.005, 0.012, 0.021, 0.032, 0.045, 0.061, 0.079, 0.098, 0.119, 0.142, 0.166, 0.190, 0.216, 0.242, 0.269, 0.296, 0.324, 0.351, 0.378, 0.405, 0.432, 0.458, 0.484, 0.509, 0.534, 0.557, 0.580, 0.603, 0.624, 0.645, 0.664, 0.683, 0.702, 0.719, 0.735, 0.751, 0.766, 0.780, 0.794, 0.807, 0.819, 0.830, 0.841, 0.851, 0.861, 0.870, 0.878, 0.886, 0.894, 0.901, 0.907, 0.913, 0.919, 0.925, 0.930, 0.935, 0.939, 0.943, 0.947, 0.951, 0.954, 0.957, 0.960, 0.963, 0.966, 0.968, 0.971, 0.973, 0.975, 0.976, 0.978, 0.980, 0.981, 0.982, 0.984, 0.985, 0.986, 0.987, 0.988, 0.989, 0.990, 0.990, 0.991, 0.992, 0.992, 0.993, 0.993, 0.994, 0.994, 0.995, 0.995, 0.996, 0.996, 0.996, 0.996, 0.997, 0.997, 0.997, 0.997, 0.998, 0.998, 0.998, 0.998, 0.998, 0.998, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 0.999, 1.000, }; /* assert(sizeof(rate_tab) == tab_size * sizeof(rate_tab[0]); assert(sizeof(dist_tab) == tab_size * sizeof(dist_tab[0]); assert(sizeof(rate_tab) == sizeof(dist_tab)); */ assert(x >= 0.0); linear_interpolate2(x, tab_size, inv_tab_step, rate_tab, dist_tab, R, D); } static void model_rd_from_var_lapndz(int var, int n, int qstep, int *rate, int64_t *dist) { // This function models the rate and distortion for a Laplacian // source with given variance when quantized with a uniform quantizer // with given stepsize. The closed form expressions are in: // Hang and Chen, "Source Model for transform video coder and its // application - Part I: Fundamental Theory", IEEE Trans. Circ. // Sys. for Video Tech., April 1997. vp9_clear_system_state(); if (var == 0 || n == 0) { *rate = 0; *dist = 0; } else { double D, R; double s2 = (double) var / n; double x = qstep / sqrt(s2); model_rd_norm(x, &R, &D); *rate = (int)((n << 8) * R + 0.5); *dist = (int)(var * D + 0.5); } vp9_clear_system_state(); } static void model_rd_for_sb(VP9_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, int64_t *out_dist_sum) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. int i, rate_sum = 0, dist_sum = 0; for (i = 0; i < MAX_MB_PLANE; ++i) { struct macroblock_plane *const p = &x->plane[i]; struct macroblockd_plane *const pd = &xd->plane[i]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); unsigned int sse; int rate; int64_t dist; (void) cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); // sse works better than var, since there is no dc prediction used model_rd_from_var_lapndz(sse, 1 << num_pels_log2_lookup[bs], pd->dequant[1] >> 3, &rate, &dist); rate_sum += rate; dist_sum += (int)dist; } *out_rate_sum = rate_sum; *out_dist_sum = dist_sum << 4; } static void model_rd_for_sb_y_tx(VP9_COMP *cpi, BLOCK_SIZE bsize, TX_SIZE tx_size, MACROBLOCK *x, MACROBLOCKD *xd, int *out_rate_sum, int64_t *out_dist_sum, int *out_skip) { int j, k; BLOCK_SIZE bs; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const int width = 4 << num_4x4_blocks_wide_lookup[bsize]; const int height = 4 << num_4x4_blocks_high_lookup[bsize]; int rate_sum = 0; int64_t dist_sum = 0; const int t = 4 << tx_size; if (tx_size == TX_4X4) { bs = BLOCK_4X4; } else if (tx_size == TX_8X8) { bs = BLOCK_8X8; } else if (tx_size == TX_16X16) { bs = BLOCK_16X16; } else if (tx_size == TX_32X32) { bs = BLOCK_32X32; } else { assert(0); } *out_skip = 1; for (j = 0; j < height; j += t) { for (k = 0; k < width; k += t) { int rate; int64_t dist; unsigned int sse; cpi->fn_ptr[bs].vf(&p->src.buf[j * p->src.stride + k], p->src.stride, &pd->dst.buf[j * pd->dst.stride + k], pd->dst.stride, &sse); // sse works better than var, since there is no dc prediction used model_rd_from_var_lapndz(sse, t * t, pd->dequant[1] >> 3, &rate, &dist); rate_sum += rate; dist_sum += dist; *out_skip &= (rate < 1024); } } *out_rate_sum = rate_sum; *out_dist_sum = dist_sum << 4; } int64_t vp9_block_error_c(int16_t *coeff, int16_t *dqcoeff, intptr_t block_size, int64_t *ssz) { int i; int64_t error = 0, sqcoeff = 0; for (i = 0; i < block_size; i++) { int this_diff = coeff[i] - dqcoeff[i]; error += (unsigned)this_diff * this_diff; sqcoeff += (unsigned) coeff[i] * coeff[i]; } *ssz = sqcoeff; return error; } /* The trailing '0' is a terminator which is used inside cost_coeffs() to * decide whether to include cost of a trailing EOB node or not (i.e. we * can skip this if the last coefficient in this transform block, e.g. the * 16th coefficient in a 4x4 block or the 64th coefficient in a 8x8 block, * were non-zero). */ static const int16_t band_counts[TX_SIZES][8] = { { 1, 2, 3, 4, 3, 16 - 13, 0 }, { 1, 2, 3, 4, 11, 64 - 21, 0 }, { 1, 2, 3, 4, 11, 256 - 21, 0 }, { 1, 2, 3, 4, 11, 1024 - 21, 0 }, }; static INLINE int cost_coeffs(MACROBLOCK *mb, int plane, int block, ENTROPY_CONTEXT *A, ENTROPY_CONTEXT *L, TX_SIZE tx_size, const int16_t *scan, const int16_t *nb) { MACROBLOCKD *const xd = &mb->e_mbd; MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; struct macroblockd_plane *pd = &xd->plane[plane]; const PLANE_TYPE type = pd->plane_type; const int16_t *band_count = &band_counts[tx_size][1]; const int eob = pd->eobs[block]; const int16_t *const qcoeff_ptr = BLOCK_OFFSET(pd->qcoeff, block); const int ref = mbmi->ref_frame[0] != INTRA_FRAME; unsigned int (*token_costs)[2][PREV_COEF_CONTEXTS][MAX_ENTROPY_TOKENS] = mb->token_costs[tx_size][type][ref]; const ENTROPY_CONTEXT above_ec = !!*A, left_ec = !!*L; uint8_t token_cache[1024]; int pt = combine_entropy_contexts(above_ec, left_ec); int c, cost; // Check for consistency of tx_size with mode info assert(type == PLANE_TYPE_Y_WITH_DC ? mbmi->tx_size == tx_size : get_uv_tx_size(mbmi) == tx_size); if (eob == 0) { // single eob token cost = token_costs[0][0][pt][DCT_EOB_TOKEN]; c = 0; } else { int band_left = *band_count++; // dc token int v = qcoeff_ptr[0]; int prev_t = vp9_dct_value_tokens_ptr[v].token; cost = (*token_costs)[0][pt][prev_t] + vp9_dct_value_cost_ptr[v]; token_cache[0] = vp9_pt_energy_class[prev_t]; ++token_costs; // ac tokens for (c = 1; c < eob; c++) { const int rc = scan[c]; int t; v = qcoeff_ptr[rc]; t = vp9_dct_value_tokens_ptr[v].token; pt = get_coef_context(nb, token_cache, c); cost += (*token_costs)[!prev_t][pt][t] + vp9_dct_value_cost_ptr[v]; token_cache[rc] = vp9_pt_energy_class[t]; prev_t = t; if (!--band_left) { band_left = *band_count++; ++token_costs; } } // eob token if (band_left) { pt = get_coef_context(nb, token_cache, c); cost += (*token_costs)[0][pt][DCT_EOB_TOKEN]; } } // is eob first coefficient; *A = *L = (c > 0); return cost; } struct rdcost_block_args { MACROBLOCK *x; ENTROPY_CONTEXT t_above[16]; ENTROPY_CONTEXT t_left[16]; TX_SIZE tx_size; int bw; int bh; int rate[256]; int64_t dist[256]; int64_t sse[256]; int this_rate; int64_t this_dist; int64_t this_sse; int64_t this_rd; int64_t best_rd; int skip; const int16_t *scan, *nb; }; static void dist_block(int plane, int block, TX_SIZE tx_size, void *arg) { const int ss_txfrm_size = tx_size << 1; struct rdcost_block_args* args = arg; MACROBLOCK* const x = args->x; MACROBLOCKD* const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; int64_t this_sse; int shift = args->tx_size == TX_32X32 ? 0 : 2; int16_t *const coeff = BLOCK_OFFSET(p->coeff, block); int16_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); args->dist[block] = vp9_block_error(coeff, dqcoeff, 16 << ss_txfrm_size, &this_sse) >> shift; args->sse[block] = this_sse >> shift; if (x->skip_encode && xd->this_mi->mbmi.ref_frame[0] == INTRA_FRAME) { // TODO(jingning): tune the model to better capture the distortion. int64_t p = (pd->dequant[1] * pd->dequant[1] * (1 << ss_txfrm_size)) >> shift; args->dist[block] = p; args->sse[block] = p; } } static void rate_block(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct rdcost_block_args* args = arg; int x_idx, y_idx; txfrm_block_to_raster_xy(plane_bsize, args->tx_size, block, &x_idx, &y_idx); args->rate[block] = cost_coeffs(args->x, plane, block, args->t_above + x_idx, args->t_left + y_idx, args->tx_size, args->scan, args->nb); } static void block_yrd_txfm(int plane, int block, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct rdcost_block_args *args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct encode_b_args encode_args = {x, NULL}; int64_t rd1, rd2, rd; if (args->skip) return; if (!is_inter_block(&xd->this_mi->mbmi)) vp9_encode_block_intra(plane, block, plane_bsize, tx_size, &encode_args); else vp9_xform_quant(plane, block, plane_bsize, tx_size, &encode_args); dist_block(plane, block, tx_size, args); rate_block(plane, block, plane_bsize, tx_size, args); rd1 = RDCOST(x->rdmult, x->rddiv, args->rate[block], args->dist[block]); rd2 = RDCOST(x->rdmult, x->rddiv, 0, args->sse[block]); // TODO(jingning): temporarily enabled only for luma component rd = MIN(rd1, rd2); if (plane == 0) x->zcoeff_blk[tx_size][block] = rd1 > rd2; args->this_rate += args->rate[block]; args->this_dist += args->dist[block]; args->this_sse += args->sse[block]; args->this_rd += rd; if (args->this_rd > args->best_rd) { args->skip = 1; return; } } static void txfm_rd_in_plane(MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, int64_t ref_best_rd, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size) { MACROBLOCKD *const xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bs]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bs]; int i; struct rdcost_block_args args = { x, { 0 }, { 0 }, tx_size, num_4x4_blocks_wide, num_4x4_blocks_high, { 0 }, { 0 }, { 0 }, 0, 0, 0, 0, ref_best_rd, 0 }; if (plane == 0) xd->this_mi->mbmi.tx_size = tx_size; switch (tx_size) { case TX_4X4: vpx_memcpy(&args.t_above, pd->above_context, sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide); vpx_memcpy(&args.t_left, pd->left_context, sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high); get_scan_nb_4x4(get_tx_type_4x4(pd->plane_type, xd, 0), &args.scan, &args.nb); break; case TX_8X8: for (i = 0; i < num_4x4_blocks_wide; i += 2) args.t_above[i] = !!*(uint16_t *)&pd->above_context[i]; for (i = 0; i < num_4x4_blocks_high; i += 2) args.t_left[i] = !!*(uint16_t *)&pd->left_context[i]; get_scan_nb_8x8(get_tx_type_8x8(pd->plane_type, xd), &args.scan, &args.nb); break; case TX_16X16: for (i = 0; i < num_4x4_blocks_wide; i += 4) args.t_above[i] = !!*(uint32_t *)&pd->above_context[i]; for (i = 0; i < num_4x4_blocks_high; i += 4) args.t_left[i] = !!*(uint32_t *)&pd->left_context[i]; get_scan_nb_16x16(get_tx_type_16x16(pd->plane_type, xd), &args.scan, &args.nb); break; case TX_32X32: for (i = 0; i < num_4x4_blocks_wide; i += 8) args.t_above[i] = !!*(uint64_t *)&pd->above_context[i]; for (i = 0; i < num_4x4_blocks_high; i += 8) args.t_left[i] = !!*(uint64_t *)&pd->left_context[i]; args.scan = vp9_default_scan_32x32; args.nb = vp9_default_scan_32x32_neighbors; break; default: assert(0); } foreach_transformed_block_in_plane(xd, bsize, plane, block_yrd_txfm, &args); if (args.skip) { *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; } else { *distortion = args.this_dist; *rate = args.this_rate; *sse = args.this_sse; *skippable = vp9_is_skippable_in_plane(xd, bsize, plane); } } static void choose_largest_txfm_size(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *sse, int64_t ref_best_rd, BLOCK_SIZE bs) { const TX_SIZE max_txfm_size = max_txsize_lookup[bs]; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; if (max_txfm_size == TX_32X32 && (cm->tx_mode == ALLOW_32X32 || cm->tx_mode == TX_MODE_SELECT)) { mbmi->tx_size = TX_32X32; } else if (max_txfm_size >= TX_16X16 && (cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32 || cm->tx_mode == TX_MODE_SELECT)) { mbmi->tx_size = TX_16X16; } else if (cm->tx_mode != ONLY_4X4) { mbmi->tx_size = TX_8X8; } else { mbmi->tx_size = TX_4X4; } txfm_rd_in_plane(x, rate, distortion, skip, &sse[mbmi->tx_size], ref_best_rd, 0, bs, mbmi->tx_size); cpi->txfm_stepdown_count[0]++; } static void choose_txfm_size_from_rd(VP9_COMP *cpi, MACROBLOCK *x, int (*r)[2], int *rate, int64_t *d, int64_t *distortion, int *s, int *skip, int64_t tx_cache[TX_MODES], BLOCK_SIZE bs) { const TX_SIZE max_tx_size = max_txsize_lookup[bs]; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd); int64_t rd[TX_SIZES][2]; int n, m; int s0, s1; const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs, xd->this_mi); for (n = TX_4X4; n <= max_tx_size; n++) { r[n][1] = r[n][0]; if (r[n][0] == INT_MAX) continue; for (m = 0; m <= n - (n == max_tx_size); m++) { if (m == n) r[n][1] += vp9_cost_zero(tx_probs[m]); else r[n][1] += vp9_cost_one(tx_probs[m]); } } assert(skip_prob > 0); s0 = vp9_cost_bit(skip_prob, 0); s1 = vp9_cost_bit(skip_prob, 1); for (n = TX_4X4; n <= max_tx_size; n++) { if (d[n] == INT64_MAX) { rd[n][0] = rd[n][1] = INT64_MAX; continue; } if (s[n]) { rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); } else { rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); } } if (max_tx_size == TX_32X32 && (cm->tx_mode == ALLOW_32X32 || (cm->tx_mode == TX_MODE_SELECT && rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && rd[TX_32X32][1] < rd[TX_4X4][1]))) { mbmi->tx_size = TX_32X32; } else if (max_tx_size >= TX_16X16 && (cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32 || (cm->tx_mode == TX_MODE_SELECT && rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]))) { mbmi->tx_size = TX_16X16; } else if (cm->tx_mode == ALLOW_8X8 || cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32 || (cm->tx_mode == TX_MODE_SELECT && rd[TX_8X8][1] < rd[TX_4X4][1])) { mbmi->tx_size = TX_8X8; } else { mbmi->tx_size = TX_4X4; } *distortion = d[mbmi->tx_size]; *rate = r[mbmi->tx_size][cm->tx_mode == TX_MODE_SELECT]; *skip = s[mbmi->tx_size]; tx_cache[ONLY_4X4] = rd[TX_4X4][0]; tx_cache[ALLOW_8X8] = rd[TX_8X8][0]; tx_cache[ALLOW_16X16] = rd[MIN(max_tx_size, TX_16X16)][0]; tx_cache[ALLOW_32X32] = rd[MIN(max_tx_size, TX_32X32)][0]; if (max_tx_size == TX_32X32 && rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && rd[TX_32X32][1] < rd[TX_4X4][1]) tx_cache[TX_MODE_SELECT] = rd[TX_32X32][1]; else if (max_tx_size >= TX_16X16 && rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]) tx_cache[TX_MODE_SELECT] = rd[TX_16X16][1]; else tx_cache[TX_MODE_SELECT] = rd[TX_4X4][1] < rd[TX_8X8][1] ? rd[TX_4X4][1] : rd[TX_8X8][1]; if (max_tx_size == TX_32X32 && rd[TX_32X32][1] < rd[TX_16X16][1] && rd[TX_32X32][1] < rd[TX_8X8][1] && rd[TX_32X32][1] < rd[TX_4X4][1]) { cpi->txfm_stepdown_count[0]++; } else if (max_tx_size >= TX_16X16 && rd[TX_16X16][1] < rd[TX_8X8][1] && rd[TX_16X16][1] < rd[TX_4X4][1]) { cpi->txfm_stepdown_count[max_tx_size - TX_16X16]++; } else if (rd[TX_8X8][1] < rd[TX_4X4][1]) { cpi->txfm_stepdown_count[max_tx_size - TX_8X8]++; } else { cpi->txfm_stepdown_count[max_tx_size - TX_4X4]++; } } static void choose_txfm_size_from_modelrd(VP9_COMP *cpi, MACROBLOCK *x, int (*r)[2], int *rate, int64_t *d, int64_t *distortion, int *s, int *skip, int64_t *sse, int64_t ref_best_rd, BLOCK_SIZE bs) { const TX_SIZE max_txfm_size = max_txsize_lookup[bs]; VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd); int64_t rd[TX_SIZES][2]; int n, m; int s0, s1; double scale_rd[TX_SIZES] = {1.73, 1.44, 1.20, 1.00}; // double scale_r[TX_SIZES] = {2.82, 2.00, 1.41, 1.00}; const vp9_prob *tx_probs = get_tx_probs2(xd, &cm->fc.tx_probs, xd->this_mi); // for (n = TX_4X4; n <= max_txfm_size; n++) // r[n][0] = (r[n][0] * scale_r[n]); for (n = TX_4X4; n <= max_txfm_size; n++) { r[n][1] = r[n][0]; for (m = 0; m <= n - (n == max_txfm_size); m++) { if (m == n) r[n][1] += vp9_cost_zero(tx_probs[m]); else r[n][1] += vp9_cost_one(tx_probs[m]); } } assert(skip_prob > 0); s0 = vp9_cost_bit(skip_prob, 0); s1 = vp9_cost_bit(skip_prob, 1); for (n = TX_4X4; n <= max_txfm_size; n++) { if (s[n]) { rd[n][0] = rd[n][1] = RDCOST(x->rdmult, x->rddiv, s1, d[n]); } else { rd[n][0] = RDCOST(x->rdmult, x->rddiv, r[n][0] + s0, d[n]); rd[n][1] = RDCOST(x->rdmult, x->rddiv, r[n][1] + s0, d[n]); } } for (n = TX_4X4; n <= max_txfm_size; n++) { rd[n][0] = (int64_t)(scale_rd[n] * rd[n][0]); rd[n][1] = (int64_t)(scale_rd[n] * rd[n][1]); } if (max_txfm_size == TX_32X32 && (cm->tx_mode == ALLOW_32X32 || (cm->tx_mode == TX_MODE_SELECT && rd[TX_32X32][1] <= rd[TX_16X16][1] && rd[TX_32X32][1] <= rd[TX_8X8][1] && rd[TX_32X32][1] <= rd[TX_4X4][1]))) { mbmi->tx_size = TX_32X32; } else if (max_txfm_size >= TX_16X16 && (cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32 || (cm->tx_mode == TX_MODE_SELECT && rd[TX_16X16][1] <= rd[TX_8X8][1] && rd[TX_16X16][1] <= rd[TX_4X4][1]))) { mbmi->tx_size = TX_16X16; } else if (cm->tx_mode == ALLOW_8X8 || cm->tx_mode == ALLOW_16X16 || cm->tx_mode == ALLOW_32X32 || (cm->tx_mode == TX_MODE_SELECT && rd[TX_8X8][1] <= rd[TX_4X4][1])) { mbmi->tx_size = TX_8X8; } else { mbmi->tx_size = TX_4X4; } // Actually encode using the chosen mode if a model was used, but do not // update the r, d costs txfm_rd_in_plane(x, rate, distortion, skip, &sse[mbmi->tx_size], ref_best_rd, 0, bs, mbmi->tx_size); if (max_txfm_size == TX_32X32 && rd[TX_32X32][1] <= rd[TX_16X16][1] && rd[TX_32X32][1] <= rd[TX_8X8][1] && rd[TX_32X32][1] <= rd[TX_4X4][1]) { cpi->txfm_stepdown_count[0]++; } else if (max_txfm_size >= TX_16X16 && rd[TX_16X16][1] <= rd[TX_8X8][1] && rd[TX_16X16][1] <= rd[TX_4X4][1]) { cpi->txfm_stepdown_count[max_txfm_size - TX_16X16]++; } else if (rd[TX_8X8][1] <= rd[TX_4X4][1]) { cpi->txfm_stepdown_count[max_txfm_size - TX_8X8]++; } else { cpi->txfm_stepdown_count[max_txfm_size - TX_4X4]++; } } static void super_block_yrd(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int64_t *distortion, int *skip, int64_t *psse, BLOCK_SIZE bs, int64_t txfm_cache[TX_MODES], int64_t ref_best_rd) { int r[TX_SIZES][2], s[TX_SIZES]; int64_t d[TX_SIZES], sse[TX_SIZES]; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; assert(bs == mbmi->sb_type); if (mbmi->ref_frame[0] > INTRA_FRAME) vp9_subtract_sby(x, bs); if (cpi->sf.tx_size_search_method == USE_LARGESTALL || (cpi->sf.tx_size_search_method != USE_FULL_RD && mbmi->ref_frame[0] == INTRA_FRAME)) { vpx_memset(txfm_cache, 0, TX_MODES * sizeof(int64_t)); choose_largest_txfm_size(cpi, x, rate, distortion, skip, sse, ref_best_rd, bs); if (psse) *psse = sse[mbmi->tx_size]; return; } if (cpi->sf.tx_size_search_method == USE_LARGESTINTRA_MODELINTER && mbmi->ref_frame[0] > INTRA_FRAME) { if (bs >= BLOCK_32X32) model_rd_for_sb_y_tx(cpi, bs, TX_32X32, x, xd, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32]); if (bs >= BLOCK_16X16) model_rd_for_sb_y_tx(cpi, bs, TX_16X16, x, xd, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16]); model_rd_for_sb_y_tx(cpi, bs, TX_8X8, x, xd, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8]); model_rd_for_sb_y_tx(cpi, bs, TX_4X4, x, xd, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4]); choose_txfm_size_from_modelrd(cpi, x, r, rate, d, distortion, s, skip, sse, ref_best_rd, bs); } else { if (bs >= BLOCK_32X32) txfm_rd_in_plane(x, &r[TX_32X32][0], &d[TX_32X32], &s[TX_32X32], &sse[TX_32X32], ref_best_rd, 0, bs, TX_32X32); if (bs >= BLOCK_16X16) txfm_rd_in_plane(x, &r[TX_16X16][0], &d[TX_16X16], &s[TX_16X16], &sse[TX_16X16], ref_best_rd, 0, bs, TX_16X16); txfm_rd_in_plane(x, &r[TX_8X8][0], &d[TX_8X8], &s[TX_8X8], &sse[TX_8X8], ref_best_rd, 0, bs, TX_8X8); txfm_rd_in_plane(x, &r[TX_4X4][0], &d[TX_4X4], &s[TX_4X4], &sse[TX_4X4], ref_best_rd, 0, bs, TX_4X4); choose_txfm_size_from_rd(cpi, x, r, rate, d, distortion, s, skip, txfm_cache, bs); } if (psse) *psse = sse[mbmi->tx_size]; } static int conditional_skipintra(MB_PREDICTION_MODE mode, MB_PREDICTION_MODE best_intra_mode) { if (mode == D117_PRED && best_intra_mode != V_PRED && best_intra_mode != D135_PRED) return 1; if (mode == D63_PRED && best_intra_mode != V_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D207_PRED && best_intra_mode != H_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D153_PRED && best_intra_mode != H_PRED && best_intra_mode != D135_PRED) return 1; return 0; } static int64_t rd_pick_intra4x4block(VP9_COMP *cpi, MACROBLOCK *x, int ib, MB_PREDICTION_MODE *best_mode, int *bmode_costs, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, int *bestrate, int *bestratey, int64_t *bestdistortion, BLOCK_SIZE bsize, int64_t rd_thresh) { MB_PREDICTION_MODE mode; MACROBLOCKD *xd = &x->e_mbd; int64_t best_rd = rd_thresh; int rate = 0; int64_t distortion; struct macroblock_plane *p = &x->plane[0]; struct macroblockd_plane *pd = &xd->plane[0]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; uint8_t *src_init = raster_block_offset_uint8(BLOCK_8X8, ib, p->src.buf, src_stride); uint8_t *dst_init = raster_block_offset_uint8(BLOCK_8X8, ib, pd->dst.buf, dst_stride); int16_t *src_diff, *coeff; ENTROPY_CONTEXT ta[2], tempa[2]; ENTROPY_CONTEXT tl[2], templ[2]; TX_TYPE tx_type = DCT_DCT; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy, block; uint8_t best_dst[8 * 8]; assert(ib < 4); vpx_memcpy(ta, a, sizeof(ta)); vpx_memcpy(tl, l, sizeof(tl)); xd->this_mi->mbmi.tx_size = TX_4X4; for (mode = DC_PRED; mode <= TM_PRED; ++mode) { int64_t this_rd; int ratey = 0; if (!(cpi->sf.intra_y_mode_mask & (1 << mode))) continue; // Only do the oblique modes if the best so far is // one of the neighboring directional modes if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(mode, *best_mode)) continue; } rate = bmode_costs[mode]; distortion = 0; vpx_memcpy(tempa, ta, sizeof(ta)); vpx_memcpy(templ, tl, sizeof(tl)); for (idy = 0; idy < num_4x4_blocks_high; ++idy) { for (idx = 0; idx < num_4x4_blocks_wide; ++idx) { int64_t ssz; const int16_t *scan; uint8_t *src = src_init + idx * 4 + idy * 4 * src_stride; uint8_t *dst = dst_init + idx * 4 + idy * 4 * dst_stride; block = ib + idy * 2 + idx; xd->this_mi->bmi[block].as_mode = mode; src_diff = raster_block_offset_int16(BLOCK_8X8, block, p->src_diff); coeff = BLOCK_OFFSET(x->plane[0].coeff, block); vp9_predict_intra_block(xd, block, 1, TX_4X4, mode, x->skip_encode ? src : dst, x->skip_encode ? src_stride : dst_stride, dst, dst_stride); vp9_subtract_block(4, 4, src_diff, 8, src, src_stride, dst, dst_stride); tx_type = get_tx_type_4x4(PLANE_TYPE_Y_WITH_DC, xd, block); if (tx_type != DCT_DCT) { vp9_short_fht4x4(src_diff, coeff, 8, tx_type); x->quantize_b_4x4(x, block, tx_type, 16); } else { x->fwd_txm4x4(src_diff, coeff, 16); x->quantize_b_4x4(x, block, tx_type, 16); } scan = get_scan_4x4(get_tx_type_4x4(PLANE_TYPE_Y_WITH_DC, xd, block)); ratey += cost_coeffs(x, 0, block, tempa + idx, templ + idy, TX_4X4, scan, vp9_get_coef_neighbors_handle(scan)); distortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, block), 16, &ssz) >> 2; if (RDCOST(x->rdmult, x->rddiv, ratey, distortion) >= best_rd) goto next; if (tx_type != DCT_DCT) vp9_short_iht4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, pd->dst.stride, tx_type); else xd->inv_txm4x4_add(BLOCK_OFFSET(pd->dqcoeff, block), dst, pd->dst.stride); } } rate += ratey; this_rd = RDCOST(x->rdmult, x->rddiv, rate, distortion); if (this_rd < best_rd) { *bestrate = rate; *bestratey = ratey; *bestdistortion = distortion; best_rd = this_rd; *best_mode = mode; vpx_memcpy(a, tempa, sizeof(tempa)); vpx_memcpy(l, templ, sizeof(templ)); for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) vpx_memcpy(best_dst + idy * 8, dst_init + idy * dst_stride, num_4x4_blocks_wide * 4); } next: {} } if (best_rd >= rd_thresh || x->skip_encode) return best_rd; for (idy = 0; idy < num_4x4_blocks_high * 4; ++idy) vpx_memcpy(dst_init + idy * dst_stride, best_dst + idy * 8, num_4x4_blocks_wide * 4); return best_rd; } static int64_t rd_pick_intra_sub_8x8_y_mode(VP9_COMP * const cpi, MACROBLOCK * const mb, int * const rate, int * const rate_y, int64_t * const distortion, int64_t best_rd) { int i, j; MACROBLOCKD *const xd = &mb->e_mbd; MODE_INFO *const mic = xd->this_mi; const MODE_INFO *above_mi = xd->mi_8x8[-xd->mode_info_stride]; const MODE_INFO *left_mi = xd->mi_8x8[-1]; const BLOCK_SIZE bsize = xd->this_mi->mbmi.sb_type; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; int idx, idy; int cost = 0; int64_t total_distortion = 0; int tot_rate_y = 0; int64_t total_rd = 0; ENTROPY_CONTEXT t_above[4], t_left[4]; int *bmode_costs; vpx_memcpy(t_above, xd->plane[0].above_context, sizeof(t_above)); vpx_memcpy(t_left, xd->plane[0].left_context, sizeof(t_left)); bmode_costs = mb->mbmode_cost; // Pick modes for each sub-block (of size 4x4, 4x8, or 8x4) in an 8x8 block. for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { MB_PREDICTION_MODE best_mode = DC_PRED; int r = INT_MAX, ry = INT_MAX; int64_t d = INT64_MAX, this_rd = INT64_MAX; i = idy * 2 + idx; if (cpi->common.frame_type == KEY_FRAME) { const MB_PREDICTION_MODE A = above_block_mode(mic, above_mi, i); const MB_PREDICTION_MODE L = (xd->left_available || idx) ? left_block_mode(mic, left_mi, i) : DC_PRED; bmode_costs = mb->y_mode_costs[A][L]; } this_rd = rd_pick_intra4x4block(cpi, mb, i, &best_mode, bmode_costs, t_above + idx, t_left + idy, &r, &ry, &d, bsize, best_rd - total_rd); if (this_rd >= best_rd - total_rd) return INT64_MAX; total_rd += this_rd; cost += r; total_distortion += d; tot_rate_y += ry; mic->bmi[i].as_mode = best_mode; for (j = 1; j < num_4x4_blocks_high; ++j) mic->bmi[i + j * 2].as_mode = best_mode; for (j = 1; j < num_4x4_blocks_wide; ++j) mic->bmi[i + j].as_mode = best_mode; if (total_rd >= best_rd) return INT64_MAX; } } *rate = cost; *rate_y = tot_rate_y; *distortion = total_distortion; mic->mbmi.mode = mic->bmi[3].as_mode; return RDCOST(mb->rdmult, mb->rddiv, cost, total_distortion); } static int64_t rd_pick_intra_sby_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize, int64_t tx_cache[TX_MODES], int64_t best_rd) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE mode_selected = DC_PRED; MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->this_mi; int this_rate, this_rate_tokenonly, s; int64_t this_distortion, this_rd; TX_SIZE best_tx = TX_4X4; int i; int *bmode_costs = x->mbmode_cost; if (cpi->sf.tx_size_search_method == USE_FULL_RD) for (i = 0; i < TX_MODES; i++) tx_cache[i] = INT64_MAX; /* Y Search for intra prediction mode */ for (mode = DC_PRED; mode <= TM_PRED; mode++) { int64_t local_tx_cache[TX_MODES]; MODE_INFO *above_mi = xd->mi_8x8[-xd->mode_info_stride]; MODE_INFO *left_mi = xd->mi_8x8[-1]; if (!(cpi->sf.intra_y_mode_mask & (1 << mode))) continue; if (cpi->common.frame_type == KEY_FRAME) { const MB_PREDICTION_MODE A = above_block_mode(mic, above_mi, 0); const MB_PREDICTION_MODE L = xd->left_available ? left_block_mode(mic, left_mi, 0) : DC_PRED; bmode_costs = x->y_mode_costs[A][L]; } mic->mbmi.mode = mode; super_block_yrd(cpi, x, &this_rate_tokenonly, &this_distortion, &s, NULL, bsize, local_tx_cache, best_rd); if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + bmode_costs[mode]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; best_tx = mic->mbmi.tx_size; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } if (cpi->sf.tx_size_search_method == USE_FULL_RD && this_rd < INT64_MAX) { for (i = 0; i < TX_MODES && local_tx_cache[i] < INT64_MAX; i++) { const int64_t adj_rd = this_rd + local_tx_cache[i] - local_tx_cache[cpi->common.tx_mode]; if (adj_rd < tx_cache[i]) { tx_cache[i] = adj_rd; } } } } mic->mbmi.mode = mode_selected; mic->mbmi.tx_size = best_tx; return best_rd; } static void super_block_uvrd(VP9_COMMON *const cm, MACROBLOCK *x, int *rate, int64_t *distortion, int *skippable, int64_t *sse, BLOCK_SIZE bsize, int64_t ref_best_rd) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; TX_SIZE uv_txfm_size = get_uv_tx_size(mbmi); int plane; int pnrate = 0, pnskip = 1; int64_t pndist = 0, pnsse = 0; if (ref_best_rd < 0) goto term; if (is_inter_block(mbmi)) vp9_subtract_sbuv(x, bsize); *rate = 0; *distortion = 0; *sse = 0; *skippable = 1; for (plane = 1; plane < MAX_MB_PLANE; ++plane) { txfm_rd_in_plane(x, &pnrate, &pndist, &pnskip, &pnsse, ref_best_rd, plane, bsize, uv_txfm_size); if (pnrate == INT_MAX) goto term; *rate += pnrate; *distortion += pndist; *sse += pnsse; *skippable &= pnskip; } return; term: *rate = INT_MAX; *distortion = INT64_MAX; *sse = INT64_MAX; *skippable = 0; return; } static int64_t rd_pick_intra_sbuv_mode(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize) { MB_PREDICTION_MODE mode; MB_PREDICTION_MODE mode_selected = DC_PRED; int64_t best_rd = INT64_MAX, this_rd; int this_rate_tokenonly, this_rate, s; int64_t this_distortion, this_sse; // int mode_mask = (bsize <= BLOCK_8X8) // ? ALL_INTRA_MODES : cpi->sf.intra_uv_mode_mask; for (mode = DC_PRED; mode <= TM_PRED; mode++) { // if (!(mode_mask & (1 << mode))) if (!(cpi->sf.intra_uv_mode_mask & (1 << mode))) continue; x->e_mbd.mi_8x8[0]->mbmi.uv_mode = mode; super_block_uvrd(&cpi->common, x, &this_rate_tokenonly, &this_distortion, &s, &this_sse, bsize, best_rd); if (this_rate_tokenonly == INT_MAX) continue; this_rate = this_rate_tokenonly + x->intra_uv_mode_cost[cpi->common.frame_type][mode]; this_rd = RDCOST(x->rdmult, x->rddiv, this_rate, this_distortion); if (this_rd < best_rd) { mode_selected = mode; best_rd = this_rd; *rate = this_rate; *rate_tokenonly = this_rate_tokenonly; *distortion = this_distortion; *skippable = s; } } x->e_mbd.mi_8x8[0]->mbmi.uv_mode = mode_selected; return best_rd; } static int64_t rd_sbuv_dcpred(VP9_COMP *cpi, MACROBLOCK *x, int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, BLOCK_SIZE bsize) { int64_t this_rd; int64_t this_sse; x->e_mbd.mi_8x8[0]->mbmi.uv_mode = DC_PRED; super_block_uvrd(&cpi->common, x, rate_tokenonly, distortion, skippable, &this_sse, bsize, INT64_MAX); *rate = *rate_tokenonly + x->intra_uv_mode_cost[cpi->common.frame_type][DC_PRED]; this_rd = RDCOST(x->rdmult, x->rddiv, *rate, *distortion); return this_rd; } static void choose_intra_uv_mode(VP9_COMP *cpi, BLOCK_SIZE bsize, int *rate_uv, int *rate_uv_tokenonly, int64_t *dist_uv, int *skip_uv, MB_PREDICTION_MODE *mode_uv) { MACROBLOCK *const x = &cpi->mb; // Use an estimated rd for uv_intra based on DC_PRED if the // appropriate speed flag is set. if (cpi->sf.use_uv_intra_rd_estimate) { rd_sbuv_dcpred(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); // Else do a proper rd search for each possible transform size that may // be considered in the main rd loop. } else { rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); } *mode_uv = x->e_mbd.mi_8x8[0]->mbmi.uv_mode; } static int cost_mv_ref(VP9_COMP *cpi, MB_PREDICTION_MODE mode, int mode_context) { MACROBLOCK *const x = &cpi->mb; MACROBLOCKD *const xd = &x->e_mbd; const int segment_id = xd->this_mi->mbmi.segment_id; // Don't account for mode here if segment skip is enabled. if (!vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) { assert(is_inter_mode(mode)); return x->inter_mode_cost[mode_context][mode - NEARESTMV]; } else { return 0; } } void vp9_set_mbmode_and_mvs(MACROBLOCK *x, MB_PREDICTION_MODE mb, int_mv *mv) { x->e_mbd.mi_8x8[0]->mbmi.mode = mb; x->e_mbd.mi_8x8[0]->mbmi.mv[0].as_int = mv->as_int; } static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row, int mi_col, int_mv single_newmv[MAX_REF_FRAMES], int *rate_mv); static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv); static int labels2mode(MACROBLOCK *x, int i, MB_PREDICTION_MODE this_mode, int_mv *this_mv, int_mv *this_second_mv, int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES], int_mv seg_mvs[MAX_REF_FRAMES], int_mv *best_ref_mv, int_mv *second_best_ref_mv, int *mvjcost, int *mvcost[2], VP9_COMP *cpi) { MACROBLOCKD *const xd = &x->e_mbd; MODE_INFO *const mic = xd->this_mi; MB_MODE_INFO *mbmi = &mic->mbmi; int cost = 0, thismvcost = 0; int idx, idy; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[mbmi->sb_type]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[mbmi->sb_type]; const int has_second_rf = has_second_ref(mbmi); /* We have to be careful retrieving previously-encoded motion vectors. Ones from this macroblock have to be pulled from the BLOCKD array as they have not yet made it to the bmi array in our MB_MODE_INFO. */ MB_PREDICTION_MODE m; // the only time we should do costing for new motion vector or mode // is when we are on a new label (jbb May 08, 2007) switch (m = this_mode) { case NEWMV: this_mv->as_int = seg_mvs[mbmi->ref_frame[0]].as_int; thismvcost = vp9_mv_bit_cost(&this_mv->as_mv, &best_ref_mv->as_mv, mvjcost, mvcost, 102); if (has_second_rf) { this_second_mv->as_int = seg_mvs[mbmi->ref_frame[1]].as_int; thismvcost += vp9_mv_bit_cost(&this_second_mv->as_mv, &second_best_ref_mv->as_mv, mvjcost, mvcost, 102); } break; case NEARESTMV: this_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int; if (has_second_rf) this_second_mv->as_int = frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int; break; case NEARMV: this_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[0]].as_int; if (has_second_rf) this_second_mv->as_int = frame_mv[NEARMV][mbmi->ref_frame[1]].as_int; break; case ZEROMV: this_mv->as_int = 0; if (has_second_rf) this_second_mv->as_int = 0; break; default: break; } cost = cost_mv_ref(cpi, this_mode, mbmi->mode_context[mbmi->ref_frame[0]]); mic->bmi[i].as_mv[0].as_int = this_mv->as_int; if (has_second_rf) mic->bmi[i].as_mv[1].as_int = this_second_mv->as_int; x->partition_info->bmi[i].mode = m; for (idy = 0; idy < num_4x4_blocks_high; ++idy) for (idx = 0; idx < num_4x4_blocks_wide; ++idx) vpx_memcpy(&mic->bmi[i + idy * 2 + idx], &mic->bmi[i], sizeof(mic->bmi[i])); cost += thismvcost; return cost; } static int64_t encode_inter_mb_segment(VP9_COMP *cpi, MACROBLOCK *x, int64_t best_yrd, int i, int *labelyrate, int64_t *distortion, int64_t *sse, ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl) { int k; MACROBLOCKD *xd = &x->e_mbd; struct macroblockd_plane *const pd = &xd->plane[0]; struct macroblock_plane *const p = &x->plane[0]; MODE_INFO *const mi = xd->this_mi; const BLOCK_SIZE bsize = mi->mbmi.sb_type; const int width = plane_block_width(bsize, pd); const int height = plane_block_height(bsize, pd); int idx, idy; uint8_t *const src = raster_block_offset_uint8(BLOCK_8X8, i, p->src.buf, p->src.stride); uint8_t *const dst = raster_block_offset_uint8(BLOCK_8X8, i, pd->dst.buf, pd->dst.stride); int64_t thisdistortion = 0, thissse = 0; int thisrate = 0, ref; const int is_compound = has_second_ref(&mi->mbmi); for (ref = 0; ref < 1 + is_compound; ++ref) { const uint8_t *pre = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[ref].buf, pd->pre[ref].stride); vp9_build_inter_predictor(pre, pd->pre[ref].stride, dst, pd->dst.stride, &mi->bmi[i].as_mv[ref].as_mv, &xd->scale_factor[ref], width, height, ref, &xd->subpix, MV_PRECISION_Q3); } vp9_subtract_block(height, width, raster_block_offset_int16(BLOCK_8X8, i, p->src_diff), 8, src, p->src.stride, dst, pd->dst.stride); k = i; for (idy = 0; idy < height / 4; ++idy) { for (idx = 0; idx < width / 4; ++idx) { int64_t ssz, rd, rd1, rd2; int16_t* coeff; k += (idy * 2 + idx); coeff = BLOCK_OFFSET(p->coeff, k); x->fwd_txm4x4(raster_block_offset_int16(BLOCK_8X8, k, p->src_diff), coeff, 16); x->quantize_b_4x4(x, k, DCT_DCT, 16); thisdistortion += vp9_block_error(coeff, BLOCK_OFFSET(pd->dqcoeff, k), 16, &ssz); thissse += ssz; thisrate += cost_coeffs(x, 0, k, ta + (k & 1), tl + (k >> 1), TX_4X4, vp9_default_scan_4x4, vp9_default_scan_4x4_neighbors); rd1 = RDCOST(x->rdmult, x->rddiv, thisrate, thisdistortion >> 2); rd2 = RDCOST(x->rdmult, x->rddiv, 0, thissse >> 2); rd = MIN(rd1, rd2); if (rd >= best_yrd) return INT64_MAX; } } *distortion = thisdistortion >> 2; *labelyrate = thisrate; *sse = thissse >> 2; return RDCOST(x->rdmult, x->rddiv, *labelyrate, *distortion); } typedef struct { int eobs; int brate; int byrate; int64_t bdist; int64_t bsse; int64_t brdcost; int_mv mvs[2]; ENTROPY_CONTEXT ta[2]; ENTROPY_CONTEXT tl[2]; } SEG_RDSTAT; typedef struct { int_mv *ref_mv, *second_ref_mv; int_mv mvp; int64_t segment_rd; int r; int64_t d; int64_t sse; int segment_yrate; MB_PREDICTION_MODE modes[4]; SEG_RDSTAT rdstat[4][INTER_MODES]; int mvthresh; } BEST_SEG_INFO; static INLINE int mv_check_bounds(MACROBLOCK *x, int_mv *mv) { int r = 0; r |= (mv->as_mv.row >> 3) < x->mv_row_min; r |= (mv->as_mv.row >> 3) > x->mv_row_max; r |= (mv->as_mv.col >> 3) < x->mv_col_min; r |= (mv->as_mv.col >> 3) > x->mv_col_max; return r; } static INLINE void mi_buf_shift(MACROBLOCK *x, int i) { MB_MODE_INFO *const mbmi = &x->e_mbd.mi_8x8[0]->mbmi; struct macroblock_plane *const p = &x->plane[0]; struct macroblockd_plane *const pd = &x->e_mbd.plane[0]; p->src.buf = raster_block_offset_uint8(BLOCK_8X8, i, p->src.buf, p->src.stride); assert(((intptr_t)pd->pre[0].buf & 0x7) == 0); pd->pre[0].buf = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[0].buf, pd->pre[0].stride); if (has_second_ref(mbmi)) pd->pre[1].buf = raster_block_offset_uint8(BLOCK_8X8, i, pd->pre[1].buf, pd->pre[1].stride); } static INLINE void mi_buf_restore(MACROBLOCK *x, struct buf_2d orig_src, struct buf_2d orig_pre[2]) { MB_MODE_INFO *mbmi = &x->e_mbd.mi_8x8[0]->mbmi; x->plane[0].src = orig_src; x->e_mbd.plane[0].pre[0] = orig_pre[0]; if (has_second_ref(mbmi)) x->e_mbd.plane[0].pre[1] = orig_pre[1]; } static void rd_check_segment_txsize(VP9_COMP *cpi, MACROBLOCK *x, BEST_SEG_INFO *bsi_buf, int filter_idx, int_mv seg_mvs[4][MAX_REF_FRAMES], int mi_row, int mi_col) { int i, j, br = 0, idx, idy; int64_t bd = 0, block_sse = 0; MB_PREDICTION_MODE this_mode; MODE_INFO *mi = x->e_mbd.mi_8x8[0]; MB_MODE_INFO *const mbmi = &mi->mbmi; const int label_count = 4; int64_t this_segment_rd = 0; int label_mv_thresh; int segmentyrate = 0; const BLOCK_SIZE bsize = mbmi->sb_type; const int num_4x4_blocks_wide = num_4x4_blocks_wide_lookup[bsize]; const int num_4x4_blocks_high = num_4x4_blocks_high_lookup[bsize]; vp9_variance_fn_ptr_t *v_fn_ptr; ENTROPY_CONTEXT t_above[2], t_left[2]; BEST_SEG_INFO *bsi = bsi_buf + filter_idx; int mode_idx; int subpelmv = 1, have_ref = 0; const int has_second_rf = has_second_ref(mbmi); vpx_memcpy(t_above, x->e_mbd.plane[0].above_context, sizeof(t_above)); vpx_memcpy(t_left, x->e_mbd.plane[0].left_context, sizeof(t_left)); v_fn_ptr = &cpi->fn_ptr[bsize]; // 64 makes this threshold really big effectively // making it so that we very rarely check mvs on // segments. setting this to 1 would make mv thresh // roughly equal to what it is for macroblocks label_mv_thresh = 1 * bsi->mvthresh / label_count; // Segmentation method overheads for (idy = 0; idy < 2; idy += num_4x4_blocks_high) { for (idx = 0; idx < 2; idx += num_4x4_blocks_wide) { // TODO(jingning,rbultje): rewrite the rate-distortion optimization // loop for 4x4/4x8/8x4 block coding. to be replaced with new rd loop int_mv mode_mv[MB_MODE_COUNT], second_mode_mv[MB_MODE_COUNT]; int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; MB_PREDICTION_MODE mode_selected = ZEROMV; int64_t best_rd = INT64_MAX; i = idy * 2 + idx; frame_mv[ZEROMV][mbmi->ref_frame[0]].as_int = 0; vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, &frame_mv[NEARESTMV][mbmi->ref_frame[0]], &frame_mv[NEARMV][mbmi->ref_frame[0]], i, 0, mi_row, mi_col); if (has_second_rf) { frame_mv[ZEROMV][mbmi->ref_frame[1]].as_int = 0; vp9_append_sub8x8_mvs_for_idx(&cpi->common, &x->e_mbd, &frame_mv[NEARESTMV][mbmi->ref_frame[1]], &frame_mv[NEARMV][mbmi->ref_frame[1]], i, 1, mi_row, mi_col); } // search for the best motion vector on this segment for (this_mode = NEARESTMV; this_mode <= NEWMV; ++this_mode) { const struct buf_2d orig_src = x->plane[0].src; struct buf_2d orig_pre[2]; mode_idx = inter_mode_offset(this_mode); bsi->rdstat[i][mode_idx].brdcost = INT64_MAX; // if we're near/nearest and mv == 0,0, compare to zeromv if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && frame_mv[this_mode][mbmi->ref_frame[0]].as_int == 0 && (!has_second_rf || frame_mv[this_mode][mbmi->ref_frame[1]].as_int == 0)) { int rfc = mbmi->mode_context[mbmi->ref_frame[0]]; int c1 = cost_mv_ref(cpi, NEARMV, rfc); int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); int c3 = cost_mv_ref(cpi, ZEROMV, rfc); if (this_mode == NEARMV) { if (c1 > c3) continue; } else if (this_mode == NEARESTMV) { if (c2 > c3) continue; } else { assert(this_mode == ZEROMV); if (!has_second_rf) { if ((c3 >= c2 && frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) || (c3 >= c1 && frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0)) continue; } else { if ((c3 >= c2 && frame_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 && frame_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) || (c3 >= c1 && frame_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 && frame_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0)) continue; } } } vpx_memcpy(orig_pre, x->e_mbd.plane[0].pre, sizeof(orig_pre)); vpx_memcpy(bsi->rdstat[i][mode_idx].ta, t_above, sizeof(bsi->rdstat[i][mode_idx].ta)); vpx_memcpy(bsi->rdstat[i][mode_idx].tl, t_left, sizeof(bsi->rdstat[i][mode_idx].tl)); // motion search for newmv (single predictor case only) if (!has_second_rf && this_mode == NEWMV && seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) { int step_param = 0; int further_steps; int thissme, bestsme = INT_MAX; int sadpb = x->sadperbit4; int_mv mvp_full; int max_mv; /* Is the best so far sufficiently good that we cant justify doing * and new motion search. */ if (best_rd < label_mv_thresh) break; if (cpi->compressor_speed) { // use previous block's result as next block's MV predictor. if (i > 0) { bsi->mvp.as_int = mi->bmi[i - 1].as_mv[0].as_int; if (i == 2) bsi->mvp.as_int = mi->bmi[i - 2].as_mv[0].as_int; } } if (i == 0) max_mv = x->max_mv_context[mbmi->ref_frame[0]]; else max_mv = MAX(abs(bsi->mvp.as_mv.row), abs(bsi->mvp.as_mv.col)) >> 3; if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and the best ref mvs of the current block for // the given reference. step_param = (vp9_init_search_range(cpi, max_mv) + cpi->mv_step_param) >> 1; } else { step_param = cpi->mv_step_param; } mvp_full.as_mv.row = bsi->mvp.as_mv.row >> 3; mvp_full.as_mv.col = bsi->mvp.as_mv.col >> 3; if (cpi->sf.adaptive_motion_search && cpi->common.show_frame) { mvp_full.as_mv.row = x->pred_mv[mbmi->ref_frame[0]].as_mv.row >> 3; mvp_full.as_mv.col = x->pred_mv[mbmi->ref_frame[0]].as_mv.col >> 3; step_param = MAX(step_param, 8); } further_steps = (MAX_MVSEARCH_STEPS - 1) - step_param; // adjust src pointer for this block mi_buf_shift(x, i); if (cpi->sf.search_method == HEX) { bestsme = vp9_hex_search(x, &mvp_full, step_param, sadpb, 1, v_fn_ptr, 1, bsi->ref_mv, &mode_mv[NEWMV]); } else if (cpi->sf.search_method == SQUARE) { bestsme = vp9_square_search(x, &mvp_full, step_param, sadpb, 1, v_fn_ptr, 1, bsi->ref_mv, &mode_mv[NEWMV]); } else if (cpi->sf.search_method == BIGDIA) { bestsme = vp9_bigdia_search(x, &mvp_full, step_param, sadpb, 1, v_fn_ptr, 1, bsi->ref_mv, &mode_mv[NEWMV]); } else { bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param, sadpb, further_steps, 0, v_fn_ptr, bsi->ref_mv, &mode_mv[NEWMV]); } // Should we do a full search (best quality only) if (cpi->compressor_speed == 0) { /* Check if mvp_full is within the range. */ clamp_mv(&mvp_full.as_mv, x->mv_col_min, x->mv_col_max, x->mv_row_min, x->mv_row_max); thissme = cpi->full_search_sad(x, &mvp_full, sadpb, 16, v_fn_ptr, x->nmvjointcost, x->mvcost, bsi->ref_mv, i); if (thissme < bestsme) { bestsme = thissme; mode_mv[NEWMV].as_int = mi->bmi[i].as_mv[0].as_int; } else { /* The full search result is actually worse so re-instate the * previous best vector */ mi->bmi[i].as_mv[0].as_int = mode_mv[NEWMV].as_int; } } if (bestsme < INT_MAX) { int distortion; unsigned int sse; cpi->find_fractional_mv_step(x, &mode_mv[NEWMV], bsi->ref_mv, x->errorperbit, v_fn_ptr, 0, cpi->sf.subpel_iters_per_step, x->nmvjointcost, x->mvcost, &distortion, &sse); // save motion search result for use in compound prediction seg_mvs[i][mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int; } if (cpi->sf.adaptive_motion_search) x->pred_mv[mbmi->ref_frame[0]].as_int = mode_mv[NEWMV].as_int; // restore src pointers mi_buf_restore(x, orig_src, orig_pre); } if (has_second_rf && this_mode == NEWMV && mbmi->interp_filter == EIGHTTAP) { if (seg_mvs[i][mbmi->ref_frame[1]].as_int == INVALID_MV || seg_mvs[i][mbmi->ref_frame[0]].as_int == INVALID_MV) continue; // adjust src pointers mi_buf_shift(x, i); if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { int rate_mv; joint_motion_search(cpi, x, bsize, frame_mv[this_mode], mi_row, mi_col, seg_mvs[i], &rate_mv); seg_mvs[i][mbmi->ref_frame[0]].as_int = frame_mv[this_mode][mbmi->ref_frame[0]].as_int; seg_mvs[i][mbmi->ref_frame[1]].as_int = frame_mv[this_mode][mbmi->ref_frame[1]].as_int; } // restore src pointers mi_buf_restore(x, orig_src, orig_pre); } bsi->rdstat[i][mode_idx].brate = labels2mode(x, i, this_mode, &mode_mv[this_mode], &second_mode_mv[this_mode], frame_mv, seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, x->mvcost, cpi); bsi->rdstat[i][mode_idx].mvs[0].as_int = mode_mv[this_mode].as_int; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].mvs[0].as_int = mode_mv[this_mode].as_int; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].mvs[0].as_int = mode_mv[this_mode].as_int; if (has_second_rf) { bsi->rdstat[i][mode_idx].mvs[1].as_int = second_mode_mv[this_mode].as_int; if (num_4x4_blocks_wide > 1) bsi->rdstat[i + 1][mode_idx].mvs[1].as_int = second_mode_mv[this_mode].as_int; if (num_4x4_blocks_high > 1) bsi->rdstat[i + 2][mode_idx].mvs[1].as_int = second_mode_mv[this_mode].as_int; } // Trap vectors that reach beyond the UMV borders if (mv_check_bounds(x, &mode_mv[this_mode])) continue; if (has_second_rf && mv_check_bounds(x, &second_mode_mv[this_mode])) continue; if (filter_idx > 0) { BEST_SEG_INFO *ref_bsi = bsi_buf; subpelmv = (mode_mv[this_mode].as_mv.row & 0x0f) || (mode_mv[this_mode].as_mv.col & 0x0f); have_ref = mode_mv[this_mode].as_int == ref_bsi->rdstat[i][mode_idx].mvs[0].as_int; if (has_second_rf) { subpelmv |= (second_mode_mv[this_mode].as_mv.row & 0x0f) || (second_mode_mv[this_mode].as_mv.col & 0x0f); have_ref &= second_mode_mv[this_mode].as_int == ref_bsi->rdstat[i][mode_idx].mvs[1].as_int; } if (filter_idx > 1 && !subpelmv && !have_ref) { ref_bsi = bsi_buf + 1; have_ref = mode_mv[this_mode].as_int == ref_bsi->rdstat[i][mode_idx].mvs[0].as_int; if (has_second_rf) { have_ref &= second_mode_mv[this_mode].as_int == ref_bsi->rdstat[i][mode_idx].mvs[1].as_int; } } if (!subpelmv && have_ref && ref_bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { vpx_memcpy(&bsi->rdstat[i][mode_idx], &ref_bsi->rdstat[i][mode_idx], sizeof(SEG_RDSTAT)); if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { mode_selected = this_mode; best_rd = bsi->rdstat[i][mode_idx].brdcost; } continue; } } bsi->rdstat[i][mode_idx].brdcost = encode_inter_mb_segment(cpi, x, bsi->segment_rd - this_segment_rd, i, &bsi->rdstat[i][mode_idx].byrate, &bsi->rdstat[i][mode_idx].bdist, &bsi->rdstat[i][mode_idx].bsse, bsi->rdstat[i][mode_idx].ta, bsi->rdstat[i][mode_idx].tl); if (bsi->rdstat[i][mode_idx].brdcost < INT64_MAX) { bsi->rdstat[i][mode_idx].brdcost += RDCOST(x->rdmult, x->rddiv, bsi->rdstat[i][mode_idx].brate, 0); bsi->rdstat[i][mode_idx].brate += bsi->rdstat[i][mode_idx].byrate; bsi->rdstat[i][mode_idx].eobs = x->e_mbd.plane[0].eobs[i]; } if (bsi->rdstat[i][mode_idx].brdcost < best_rd) { mode_selected = this_mode; best_rd = bsi->rdstat[i][mode_idx].brdcost; } } /*for each 4x4 mode*/ if (best_rd == INT64_MAX) { int iy, midx; for (iy = i + 1; iy < 4; ++iy) for (midx = 0; midx < INTER_MODES; ++midx) bsi->rdstat[iy][midx].brdcost = INT64_MAX; bsi->segment_rd = INT64_MAX; return; } mode_idx = inter_mode_offset(mode_selected); vpx_memcpy(t_above, bsi->rdstat[i][mode_idx].ta, sizeof(t_above)); vpx_memcpy(t_left, bsi->rdstat[i][mode_idx].tl, sizeof(t_left)); labels2mode(x, i, mode_selected, &mode_mv[mode_selected], &second_mode_mv[mode_selected], frame_mv, seg_mvs[i], bsi->ref_mv, bsi->second_ref_mv, x->nmvjointcost, x->mvcost, cpi); br += bsi->rdstat[i][mode_idx].brate; bd += bsi->rdstat[i][mode_idx].bdist; block_sse += bsi->rdstat[i][mode_idx].bsse; segmentyrate += bsi->rdstat[i][mode_idx].byrate; this_segment_rd += bsi->rdstat[i][mode_idx].brdcost; if (this_segment_rd > bsi->segment_rd) { int iy, midx; for (iy = i + 1; iy < 4; ++iy) for (midx = 0; midx < INTER_MODES; ++midx) bsi->rdstat[iy][midx].brdcost = INT64_MAX; bsi->segment_rd = INT64_MAX; return; } for (j = 1; j < num_4x4_blocks_high; ++j) vpx_memcpy(&x->partition_info->bmi[i + j * 2], &x->partition_info->bmi[i], sizeof(x->partition_info->bmi[i])); for (j = 1; j < num_4x4_blocks_wide; ++j) vpx_memcpy(&x->partition_info->bmi[i + j], &x->partition_info->bmi[i], sizeof(x->partition_info->bmi[i])); } } /* for each label */ bsi->r = br; bsi->d = bd; bsi->segment_yrate = segmentyrate; bsi->segment_rd = this_segment_rd; bsi->sse = block_sse; // update the coding decisions for (i = 0; i < 4; ++i) bsi->modes[i] = x->partition_info->bmi[i].mode; } static int64_t rd_pick_best_mbsegmentation(VP9_COMP *cpi, MACROBLOCK *x, int_mv *best_ref_mv, int_mv *second_best_ref_mv, int64_t best_rd, int *returntotrate, int *returnyrate, int64_t *returndistortion, int *skippable, int64_t *psse, int mvthresh, int_mv seg_mvs[4][MAX_REF_FRAMES], BEST_SEG_INFO *bsi_buf, int filter_idx, int mi_row, int mi_col) { int i; BEST_SEG_INFO *bsi = bsi_buf + filter_idx; MACROBLOCKD *xd = &x->e_mbd; MODE_INFO *mi = xd->this_mi; MB_MODE_INFO *mbmi = &mi->mbmi; int mode_idx; vp9_zero(*bsi); bsi->segment_rd = best_rd; bsi->ref_mv = best_ref_mv; bsi->second_ref_mv = second_best_ref_mv; bsi->mvp.as_int = best_ref_mv->as_int; bsi->mvthresh = mvthresh; for (i = 0; i < 4; i++) bsi->modes[i] = ZEROMV; rd_check_segment_txsize(cpi, x, bsi_buf, filter_idx, seg_mvs, mi_row, mi_col); if (bsi->segment_rd > best_rd) return INT64_MAX; /* set it to the best */ for (i = 0; i < 4; i++) { mode_idx = inter_mode_offset(bsi->modes[i]); mi->bmi[i].as_mv[0].as_int = bsi->rdstat[i][mode_idx].mvs[0].as_int; if (has_second_ref(mbmi)) mi->bmi[i].as_mv[1].as_int = bsi->rdstat[i][mode_idx].mvs[1].as_int; xd->plane[0].eobs[i] = bsi->rdstat[i][mode_idx].eobs; x->partition_info->bmi[i].mode = bsi->modes[i]; } /* * used to set mbmi->mv.as_int */ *returntotrate = bsi->r; *returndistortion = bsi->d; *returnyrate = bsi->segment_yrate; *skippable = vp9_is_skippable_in_plane(&x->e_mbd, BLOCK_8X8, 0); *psse = bsi->sse; mbmi->mode = bsi->modes[3]; return bsi->segment_rd; } static void mv_pred(VP9_COMP *cpi, MACROBLOCK *x, uint8_t *ref_y_buffer, int ref_y_stride, int ref_frame, BLOCK_SIZE block_size ) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; int_mv this_mv; int i; int zero_seen = 0; int best_index = 0; int best_sad = INT_MAX; int this_sad = INT_MAX; unsigned int max_mv = 0; uint8_t *src_y_ptr = x->plane[0].src.buf; uint8_t *ref_y_ptr; int row_offset, col_offset; int num_mv_refs = MAX_MV_REF_CANDIDATES + (cpi->sf.adaptive_motion_search && cpi->common.show_frame && block_size < cpi->sf.max_partition_size); // Get the sad for each candidate reference mv for (i = 0; i < num_mv_refs; i++) { this_mv.as_int = (i < MAX_MV_REF_CANDIDATES) ? mbmi->ref_mvs[ref_frame][i].as_int : x->pred_mv[ref_frame].as_int; max_mv = MAX(max_mv, MAX(abs(this_mv.as_mv.row), abs(this_mv.as_mv.col)) >> 3); // The list is at an end if we see 0 for a second time. if (!this_mv.as_int && zero_seen) break; zero_seen = zero_seen || !this_mv.as_int; row_offset = this_mv.as_mv.row >> 3; col_offset = this_mv.as_mv.col >> 3; ref_y_ptr = ref_y_buffer + (ref_y_stride * row_offset) + col_offset; // Find sad for current vector. this_sad = cpi->fn_ptr[block_size].sdf(src_y_ptr, x->plane[0].src.stride, ref_y_ptr, ref_y_stride, 0x7fffffff); // Note if it is the best so far. if (this_sad < best_sad) { best_sad = this_sad; best_index = i; } } // Note the index of the mv that worked best in the reference list. x->mv_best_ref_index[ref_frame] = best_index; x->max_mv_context[ref_frame] = max_mv; } static void estimate_ref_frame_costs(VP9_COMP *cpi, int segment_id, unsigned int *ref_costs_single, unsigned int *ref_costs_comp, vp9_prob *comp_mode_p) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; int seg_ref_active = vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { vpx_memset(ref_costs_single, 0, MAX_REF_FRAMES * sizeof(*ref_costs_single)); vpx_memset(ref_costs_comp, 0, MAX_REF_FRAMES * sizeof(*ref_costs_comp)); *comp_mode_p = 128; } else { vp9_prob intra_inter_p = vp9_get_pred_prob_intra_inter(cm, xd); vp9_prob comp_inter_p = 128; if (cm->comp_pred_mode == HYBRID_PREDICTION) { comp_inter_p = vp9_get_pred_prob_comp_inter_inter(cm, xd); *comp_mode_p = comp_inter_p; } else { *comp_mode_p = 128; } ref_costs_single[INTRA_FRAME] = vp9_cost_bit(intra_inter_p, 0); if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) { vp9_prob ref_single_p1 = vp9_get_pred_prob_single_ref_p1(cm, xd); vp9_prob ref_single_p2 = vp9_get_pred_prob_single_ref_p2(cm, xd); unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); if (cm->comp_pred_mode == HYBRID_PREDICTION) base_cost += vp9_cost_bit(comp_inter_p, 0); ref_costs_single[LAST_FRAME] = ref_costs_single[GOLDEN_FRAME] = ref_costs_single[ALTREF_FRAME] = base_cost; ref_costs_single[LAST_FRAME] += vp9_cost_bit(ref_single_p1, 0); ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p1, 1); ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p1, 1); ref_costs_single[GOLDEN_FRAME] += vp9_cost_bit(ref_single_p2, 0); ref_costs_single[ALTREF_FRAME] += vp9_cost_bit(ref_single_p2, 1); } else { ref_costs_single[LAST_FRAME] = 512; ref_costs_single[GOLDEN_FRAME] = 512; ref_costs_single[ALTREF_FRAME] = 512; } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) { vp9_prob ref_comp_p = vp9_get_pred_prob_comp_ref_p(cm, xd); unsigned int base_cost = vp9_cost_bit(intra_inter_p, 1); if (cm->comp_pred_mode == HYBRID_PREDICTION) base_cost += vp9_cost_bit(comp_inter_p, 1); ref_costs_comp[LAST_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 0); ref_costs_comp[GOLDEN_FRAME] = base_cost + vp9_cost_bit(ref_comp_p, 1); } else { ref_costs_comp[LAST_FRAME] = 512; ref_costs_comp[GOLDEN_FRAME] = 512; } } } static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, PARTITION_INFO *partition, int_mv *ref_mv, int_mv *second_ref_mv, int64_t comp_pred_diff[NB_PREDICTION_TYPES], int64_t tx_size_diff[TX_MODES], int64_t best_filter_diff[SWITCHABLE_FILTERS + 1]) { MACROBLOCKD *const xd = &x->e_mbd; // Take a snapshot of the coding context so it can be // restored if we decide to encode this way ctx->skip = x->skip; ctx->best_mode_index = mode_index; ctx->mic = *xd->this_mi; if (partition) ctx->partition_info = *partition; ctx->best_ref_mv.as_int = ref_mv->as_int; ctx->second_best_ref_mv.as_int = second_ref_mv->as_int; ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_PREDICTION_ONLY]; ctx->comp_pred_diff = (int)comp_pred_diff[COMP_PREDICTION_ONLY]; ctx->hybrid_pred_diff = (int)comp_pred_diff[HYBRID_PREDICTION]; vpx_memcpy(ctx->zcoeff_blk, x->zcoeff_blk[xd->this_mi->mbmi.tx_size], sizeof(ctx->zcoeff_blk)); vpx_memcpy(ctx->tx_rd_diff, tx_size_diff, sizeof(ctx->tx_rd_diff)); vpx_memcpy(ctx->best_filter_diff, best_filter_diff, sizeof(*best_filter_diff) * (SWITCHABLE_FILTERS + 1)); } static void setup_pred_block(const MACROBLOCKD *xd, struct buf_2d dst[MAX_MB_PLANE], const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col, const struct scale_factors *scale, const struct scale_factors *scale_uv) { int i; dst[0].buf = src->y_buffer; dst[0].stride = src->y_stride; dst[1].buf = src->u_buffer; dst[2].buf = src->v_buffer; dst[1].stride = dst[2].stride = src->uv_stride; #if CONFIG_ALPHA dst[3].buf = src->alpha_buffer; dst[3].stride = src->alpha_stride; #endif // TODO(jkoleszar): Make scale factors per-plane data for (i = 0; i < MAX_MB_PLANE; i++) { setup_pred_plane(dst + i, dst[i].buf, dst[i].stride, mi_row, mi_col, i ? scale_uv : scale, xd->plane[i].subsampling_x, xd->plane[i].subsampling_y); } } static void setup_buffer_inter(VP9_COMP *cpi, MACROBLOCK *x, int idx, MV_REFERENCE_FRAME frame_type, BLOCK_SIZE block_size, int mi_row, int mi_col, int_mv frame_nearest_mv[MAX_REF_FRAMES], int_mv frame_near_mv[MAX_REF_FRAMES], struct buf_2d yv12_mb[4][MAX_MB_PLANE], struct scale_factors scale[MAX_REF_FRAMES]) { VP9_COMMON *cm = &cpi->common; YV12_BUFFER_CONFIG *yv12 = &cm->yv12_fb[cpi->common.ref_frame_map[idx]]; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; // set up scaling factors scale[frame_type] = cpi->common.active_ref_scale[frame_type - 1]; scale[frame_type].x_offset_q4 = ROUND_POWER_OF_TWO(mi_col * MI_SIZE * scale[frame_type].x_scale_fp, REF_SCALE_SHIFT) & 0xf; scale[frame_type].y_offset_q4 = ROUND_POWER_OF_TWO(mi_row * MI_SIZE * scale[frame_type].y_scale_fp, REF_SCALE_SHIFT) & 0xf; // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this // use the UV scaling factors. setup_pred_block(xd, yv12_mb[frame_type], yv12, mi_row, mi_col, &scale[frame_type], &scale[frame_type]); // Gets an initial list of candidate vectors from neighbours and orders them vp9_find_mv_refs(&cpi->common, xd, xd->this_mi, xd->last_mi, frame_type, mbmi->ref_mvs[frame_type], mi_row, mi_col); // Candidate refinement carried out at encoder and decoder vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[frame_type], &frame_nearest_mv[frame_type], &frame_near_mv[frame_type]); // Further refinement that is encode side only to test the top few candidates // in full and choose the best as the centre point for subsequent searches. // The current implementation doesn't support scaling. if (!vp9_is_scaled(&scale[frame_type]) && block_size >= BLOCK_8X8) mv_pred(cpi, x, yv12_mb[frame_type][0].buf, yv12->y_stride, frame_type, block_size); } static YV12_BUFFER_CONFIG *get_scaled_ref_frame(VP9_COMP *cpi, int ref_frame) { YV12_BUFFER_CONFIG *scaled_ref_frame = NULL; int fb = get_ref_frame_idx(cpi, ref_frame); int fb_scale = get_scale_ref_frame_idx(cpi, ref_frame); if (cpi->scaled_ref_idx[fb_scale] != cpi->common.ref_frame_map[fb]) scaled_ref_frame = &cpi->common.yv12_fb[cpi->scaled_ref_idx[fb_scale]]; return scaled_ref_frame; } static INLINE int get_switchable_rate(const MACROBLOCK *x) { const MACROBLOCKD *const xd = &x->e_mbd; const MB_MODE_INFO *const mbmi = &xd->this_mi->mbmi; const int ctx = vp9_get_pred_context_switchable_interp(xd); return SWITCHABLE_INTERP_RATE_FACTOR * x->switchable_interp_costs[ctx][mbmi->interp_filter]; } static void single_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv) { MACROBLOCKD *xd = &x->e_mbd; VP9_COMMON *cm = &cpi->common; MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}}; int bestsme = INT_MAX; int further_steps, step_param; int sadpb = x->sadperbit16; int_mv mvp_full; int ref = mbmi->ref_frame[0]; int_mv ref_mv = mbmi->ref_mvs[ref][0]; const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]); int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; YV12_BUFFER_CONFIG *scaled_ref_frame = get_scaled_ref_frame(cpi, ref); if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL); } vp9_clamp_mv_min_max(x, &ref_mv.as_mv); // Adjust search parameters based on small partitions' result. if (x->fast_ms) { // && abs(mvp_full.as_mv.row - x->pred_mv.as_mv.row) < 24 && // abs(mvp_full.as_mv.col - x->pred_mv.as_mv.col) < 24) { // adjust search range step_param = 6; if (x->fast_ms > 1) step_param = 8; // Get prediction MV. mvp_full.as_int = x->pred_mv[ref].as_int; // Adjust MV sign if needed. if (cm->ref_frame_sign_bias[ref]) { mvp_full.as_mv.col *= -1; mvp_full.as_mv.row *= -1; } } else { // Work out the size of the first step in the mv step search. // 0 here is maximum length first step. 1 is MAX >> 1 etc. if (cpi->sf.auto_mv_step_size && cpi->common.show_frame) { // Take wtd average of the step_params based on the last frame's // max mv magnitude and that based on the best ref mvs of the current // block for the given reference. step_param = (vp9_init_search_range(cpi, x->max_mv_context[ref]) + cpi->mv_step_param) >> 1; } else { step_param = cpi->mv_step_param; } } if (cpi->sf.adaptive_motion_search && bsize < BLOCK_64X64 && cpi->common.show_frame) { int boffset = 2 * (b_width_log2(BLOCK_64X64) - MIN(b_height_log2(bsize), b_width_log2(bsize))); step_param = MAX(step_param, boffset); } mvp_full.as_int = x->mv_best_ref_index[ref] < MAX_MV_REF_CANDIDATES ? mbmi->ref_mvs[ref][x->mv_best_ref_index[ref]].as_int : x->pred_mv[ref].as_int; mvp_full.as_mv.col >>= 3; mvp_full.as_mv.row >>= 3; // Further step/diamond searches as necessary further_steps = (cpi->sf.max_step_search_steps - 1) - step_param; if (cpi->sf.search_method == HEX) { bestsme = vp9_hex_search(x, &mvp_full, step_param, sadpb, 1, &cpi->fn_ptr[block_size], 1, &ref_mv, tmp_mv); } else if (cpi->sf.search_method == SQUARE) { bestsme = vp9_square_search(x, &mvp_full, step_param, sadpb, 1, &cpi->fn_ptr[block_size], 1, &ref_mv, tmp_mv); } else if (cpi->sf.search_method == BIGDIA) { bestsme = vp9_bigdia_search(x, &mvp_full, step_param, sadpb, 1, &cpi->fn_ptr[block_size], 1, &ref_mv, tmp_mv); } else { bestsme = vp9_full_pixel_diamond(cpi, x, &mvp_full, step_param, sadpb, further_steps, 1, &cpi->fn_ptr[block_size], &ref_mv, tmp_mv); } x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; /* TODO: use dis in distortion calculation later. */ unsigned int sse; cpi->find_fractional_mv_step(x, tmp_mv, &ref_mv, x->errorperbit, &cpi->fn_ptr[block_size], 0, cpi->sf.subpel_iters_per_step, x->nmvjointcost, x->mvcost, &dis, &sse); } *rate_mv = vp9_mv_bit_cost(&tmp_mv->as_mv, &ref_mv.as_mv, x->nmvjointcost, x->mvcost, 96); if (cpi->sf.adaptive_motion_search && cpi->common.show_frame) x->pred_mv[ref].as_int = tmp_mv->as_int; if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } } static void joint_motion_search(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row, int mi_col, int_mv single_newmv[MAX_REF_FRAMES], int *rate_mv) { int pw = 4 << b_width_log2(bsize), ph = 4 << b_height_log2(bsize); MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; int refs[2] = { mbmi->ref_frame[0], (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; int_mv ref_mv[2]; const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]); int ite; // Prediction buffer from second frame. uint8_t *second_pred = vpx_memalign(16, pw * ph * sizeof(uint8_t)); // Do joint motion search in compound mode to get more accurate mv. struct buf_2d backup_yv12[MAX_MB_PLANE] = {{0}}; struct buf_2d backup_second_yv12[MAX_MB_PLANE] = {{0}}; struct buf_2d scaled_first_yv12; int last_besterr[2] = {INT_MAX, INT_MAX}; YV12_BUFFER_CONFIG *scaled_ref_frame[2] = {NULL, NULL}; scaled_ref_frame[0] = get_scaled_ref_frame(cpi, mbmi->ref_frame[0]); scaled_ref_frame[1] = get_scaled_ref_frame(cpi, mbmi->ref_frame[1]); ref_mv[0] = mbmi->ref_mvs[refs[0]][0]; ref_mv[1] = mbmi->ref_mvs[refs[1]][0]; if (scaled_ref_frame[0]) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; setup_pre_planes(xd, 0, scaled_ref_frame[0], mi_row, mi_col, NULL); } if (scaled_ref_frame[1]) { int i; for (i = 0; i < MAX_MB_PLANE; i++) backup_second_yv12[i] = xd->plane[i].pre[1]; setup_pre_planes(xd, 1, scaled_ref_frame[1], mi_row, mi_col, NULL); } xd->scale_factor[0].set_scaled_offsets(&xd->scale_factor[0], mi_row, mi_col); xd->scale_factor[1].set_scaled_offsets(&xd->scale_factor[1], mi_row, mi_col); scaled_first_yv12 = xd->plane[0].pre[0]; // Initialize mv using single prediction mode result. frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; // Allow joint search multiple times iteratively for each ref frame // and break out the search loop if it couldn't find better mv. for (ite = 0; ite < 4; ite++) { struct buf_2d ref_yv12[2]; int bestsme = INT_MAX; int sadpb = x->sadperbit16; int_mv tmp_mv; int search_range = 3; int tmp_col_min = x->mv_col_min; int tmp_col_max = x->mv_col_max; int tmp_row_min = x->mv_row_min; int tmp_row_max = x->mv_row_max; int id = ite % 2; // Initialized here because of compiler problem in Visual Studio. ref_yv12[0] = xd->plane[0].pre[0]; ref_yv12[1] = xd->plane[0].pre[1]; // Get pred block from second frame. vp9_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, &frame_mv[refs[!id]].as_mv, &xd->scale_factor[!id], pw, ph, 0, &xd->subpix, MV_PRECISION_Q3); // Compound motion search on first ref frame. if (id) xd->plane[0].pre[0] = ref_yv12[id]; vp9_clamp_mv_min_max(x, &ref_mv[id].as_mv); // Use mv result from single mode as mvp. tmp_mv.as_int = frame_mv[refs[id]].as_int; tmp_mv.as_mv.col >>= 3; tmp_mv.as_mv.row >>= 3; // Small-range full-pixel motion search bestsme = vp9_refining_search_8p_c(x, &tmp_mv, sadpb, search_range, &cpi->fn_ptr[block_size], x->nmvjointcost, x->mvcost, &ref_mv[id], second_pred, pw, ph); x->mv_col_min = tmp_col_min; x->mv_col_max = tmp_col_max; x->mv_row_min = tmp_row_min; x->mv_row_max = tmp_row_max; if (bestsme < INT_MAX) { int dis; /* TODO: use dis in distortion calculation later. */ unsigned int sse; bestsme = cpi->find_fractional_mv_step_comp( x, &tmp_mv, &ref_mv[id], x->errorperbit, &cpi->fn_ptr[block_size], 0, cpi->sf.subpel_iters_per_step, x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, pw, ph); } if (id) xd->plane[0].pre[0] = scaled_first_yv12; if (bestsme < last_besterr[id]) { frame_mv[refs[id]].as_int = tmp_mv.as_int; last_besterr[id] = bestsme; } else { break; } } // restore the predictor if (scaled_ref_frame[0]) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } if (scaled_ref_frame[1]) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[1] = backup_second_yv12[i]; } *rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv, &mbmi->ref_mvs[refs[0]][0].as_mv, x->nmvjointcost, x->mvcost, 96); *rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv, &mbmi->ref_mvs[refs[1]][0].as_mv, x->nmvjointcost, x->mvcost, 96); vpx_free(second_pred); } static int64_t handle_inter_mode(VP9_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int64_t txfm_cache[], int *rate2, int64_t *distortion, int *skippable, int *rate_y, int64_t *distortion_y, int *rate_uv, int64_t *distortion_uv, int *mode_excluded, int *disable_skip, INTERPOLATIONFILTERTYPE *best_filter, int_mv (*mode_mv)[MAX_REF_FRAMES], int mi_row, int mi_col, int_mv single_newmv[MAX_REF_FRAMES], int64_t *psse, const int64_t ref_best_rd) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; const int is_comp_pred = (mbmi->ref_frame[1] > 0); const int num_refs = is_comp_pred ? 2 : 1; const int this_mode = mbmi->mode; int_mv *frame_mv = mode_mv[this_mode]; int i; int refs[2] = { mbmi->ref_frame[0], (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; int_mv cur_mv[2]; int64_t this_rd = 0; DECLARE_ALIGNED_ARRAY(16, uint8_t, tmp_buf, MAX_MB_PLANE * 64 * 64); int pred_exists = 0; int intpel_mv; int64_t rd, best_rd = INT64_MAX; int best_needs_copy = 0; uint8_t *orig_dst[MAX_MB_PLANE]; int orig_dst_stride[MAX_MB_PLANE]; int rs = 0; if (this_mode == NEWMV) { int rate_mv; if (is_comp_pred) { // Initialize mv using single prediction mode result. frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, single_newmv, &rate_mv); } else { rate_mv = vp9_mv_bit_cost(&frame_mv[refs[0]].as_mv, &mbmi->ref_mvs[refs[0]][0].as_mv, x->nmvjointcost, x->mvcost, 96); rate_mv += vp9_mv_bit_cost(&frame_mv[refs[1]].as_mv, &mbmi->ref_mvs[refs[1]][0].as_mv, x->nmvjointcost, x->mvcost, 96); } if (frame_mv[refs[0]].as_int == INVALID_MV || frame_mv[refs[1]].as_int == INVALID_MV) return INT64_MAX; *rate2 += rate_mv; } else { int_mv tmp_mv; single_motion_search(cpi, x, bsize, mi_row, mi_col, &tmp_mv, &rate_mv); *rate2 += rate_mv; frame_mv[refs[0]].as_int = xd->this_mi->bmi[0].as_mv[0].as_int = tmp_mv.as_int; single_newmv[refs[0]].as_int = tmp_mv.as_int; } } // if we're near/nearest and mv == 0,0, compare to zeromv if ((this_mode == NEARMV || this_mode == NEARESTMV || this_mode == ZEROMV) && frame_mv[refs[0]].as_int == 0 && !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP) && (num_refs == 1 || frame_mv[refs[1]].as_int == 0)) { int rfc = mbmi->mode_context[mbmi->ref_frame[0]]; int c1 = cost_mv_ref(cpi, NEARMV, rfc); int c2 = cost_mv_ref(cpi, NEARESTMV, rfc); int c3 = cost_mv_ref(cpi, ZEROMV, rfc); if (this_mode == NEARMV) { if (c1 > c3) return INT64_MAX; } else if (this_mode == NEARESTMV) { if (c2 > c3) return INT64_MAX; } else { assert(this_mode == ZEROMV); if (num_refs == 1) { if ((c3 >= c2 && mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0) || (c3 >= c1 && mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0)) return INT64_MAX; } else { if ((c3 >= c2 && mode_mv[NEARESTMV][mbmi->ref_frame[0]].as_int == 0 && mode_mv[NEARESTMV][mbmi->ref_frame[1]].as_int == 0) || (c3 >= c1 && mode_mv[NEARMV][mbmi->ref_frame[0]].as_int == 0 && mode_mv[NEARMV][mbmi->ref_frame[1]].as_int == 0)) return INT64_MAX; } } } for (i = 0; i < num_refs; ++i) { cur_mv[i] = frame_mv[refs[i]]; // Clip "next_nearest" so that it does not extend to far out of image if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd); if (mv_check_bounds(x, &cur_mv[i])) return INT64_MAX; mbmi->mv[i].as_int = cur_mv[i].as_int; } // do first prediction into the destination buffer. Do the next // prediction into a temporary buffer. Then keep track of which one // of these currently holds the best predictor, and use the other // one for future predictions. In the end, copy from tmp_buf to // dst if necessary. for (i = 0; i < MAX_MB_PLANE; i++) { orig_dst[i] = xd->plane[i].dst.buf; orig_dst_stride[i] = xd->plane[i].dst.stride; } /* We don't include the cost of the second reference here, because there * are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other * words if you present them in that order, the second one is always known * if the first is known */ *rate2 += cost_mv_ref(cpi, this_mode, mbmi->mode_context[mbmi->ref_frame[0]]); if (!(*mode_excluded)) { if (is_comp_pred) { *mode_excluded = (cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY); } else { *mode_excluded = (cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY); } } pred_exists = 0; // Are all MVs integer pel for Y and UV intpel_mv = (mbmi->mv[0].as_mv.row & 15) == 0 && (mbmi->mv[0].as_mv.col & 15) == 0; if (is_comp_pred) intpel_mv &= (mbmi->mv[1].as_mv.row & 15) == 0 && (mbmi->mv[1].as_mv.col & 15) == 0; // Search for best switchable filter by checking the variance of // pred error irrespective of whether the filter will be used if (cm->mcomp_filter_type != BILINEAR) { *best_filter = EIGHTTAP; if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { *best_filter = EIGHTTAP; vp9_zero(cpi->rd_filter_cache); } else { int i, newbest; int tmp_rate_sum = 0; int64_t tmp_dist_sum = 0; cpi->rd_filter_cache[SWITCHABLE_FILTERS] = INT64_MAX; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { int j; int64_t rs_rd; mbmi->interp_filter = i; vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); rs = get_switchable_rate(x); rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); if (i > 0 && intpel_mv) { cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv, tmp_rate_sum, tmp_dist_sum); cpi->rd_filter_cache[SWITCHABLE_FILTERS] = MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS], cpi->rd_filter_cache[i] + rs_rd); rd = cpi->rd_filter_cache[i]; if (cm->mcomp_filter_type == SWITCHABLE) rd += rs_rd; } else { int rate_sum = 0; int64_t dist_sum = 0; if ((cm->mcomp_filter_type == SWITCHABLE && (!i || best_needs_copy)) || (cm->mcomp_filter_type != SWITCHABLE && (cm->mcomp_filter_type == mbmi->interp_filter || (i == 0 && intpel_mv)))) { for (j = 0; j < MAX_MB_PLANE; j++) { xd->plane[j].dst.buf = orig_dst[j]; xd->plane[j].dst.stride = orig_dst_stride[j]; } } else { for (j = 0; j < MAX_MB_PLANE; j++) { xd->plane[j].dst.buf = tmp_buf + j * 64 * 64; xd->plane[j].dst.stride = 64; } } vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); model_rd_for_sb(cpi, bsize, x, xd, &rate_sum, &dist_sum); cpi->rd_filter_cache[i] = RDCOST(x->rdmult, x->rddiv, rate_sum, dist_sum); cpi->rd_filter_cache[SWITCHABLE_FILTERS] = MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS], cpi->rd_filter_cache[i] + rs_rd); rd = cpi->rd_filter_cache[i]; if (cm->mcomp_filter_type == SWITCHABLE) rd += rs_rd; if (i == 0 && intpel_mv) { tmp_rate_sum = rate_sum; tmp_dist_sum = dist_sum; } } if (i == 0 && cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { if (rd / 2 > ref_best_rd) { for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } return INT64_MAX; } } newbest = i == 0 || rd < best_rd; if (newbest) { best_rd = rd; *best_filter = mbmi->interp_filter; if (cm->mcomp_filter_type == SWITCHABLE && i && !intpel_mv) best_needs_copy = !best_needs_copy; } if ((cm->mcomp_filter_type == SWITCHABLE && newbest) || (cm->mcomp_filter_type != SWITCHABLE && cm->mcomp_filter_type == mbmi->interp_filter)) { pred_exists = 1; } } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } } } // Set the appropriate filter mbmi->interp_filter = cm->mcomp_filter_type != SWITCHABLE ? cm->mcomp_filter_type : *best_filter; vp9_setup_interp_filters(xd, mbmi->interp_filter, cm); rs = cm->mcomp_filter_type == SWITCHABLE ? get_switchable_rate(x) : 0; if (pred_exists) { if (best_needs_copy) { // again temporarily set the buffers to local memory to prevent a memcpy for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = tmp_buf + i * 64 * 64; xd->plane[i].dst.stride = 64; } } } else { // Handles the special case when a filter that is not in the // switchable list (ex. bilinear, 6-tap) is indicated at the frame level vp9_build_inter_predictors_sb(xd, mi_row, mi_col, bsize); } if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { int tmp_rate; int64_t tmp_dist; model_rd_for_sb(cpi, bsize, x, xd, &tmp_rate, &tmp_dist); rd = RDCOST(x->rdmult, x->rddiv, rs + tmp_rate, tmp_dist); // if current pred_error modeled rd is substantially more than the best // so far, do not bother doing full rd if (rd / 2 > ref_best_rd) { for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } return INT64_MAX; } } if (cpi->common.mcomp_filter_type == SWITCHABLE) *rate2 += get_switchable_rate(x); if (!is_comp_pred && cpi->enable_encode_breakout) { if (cpi->active_map_enabled && x->active_ptr[0] == 0) x->skip = 1; else if (x->encode_breakout) { const BLOCK_SIZE y_size = get_plane_block_size(bsize, &xd->plane[0]); const BLOCK_SIZE uv_size = get_plane_block_size(bsize, &xd->plane[1]); unsigned int var, sse; // Skipping threshold for ac. unsigned int thresh_ac; // The encode_breakout input unsigned int encode_breakout = x->encode_breakout << 4; unsigned int max_thresh = 36000; // Use extreme low threshold for static frames to limit skipping. if (cpi->enable_encode_breakout == 2) max_thresh = 128; // Calculate threshold according to dequant value. thresh_ac = (xd->plane[0].dequant[1] * xd->plane[0].dequant[1]) / 9; // Use encode_breakout input if it is bigger than internal threshold. if (thresh_ac < encode_breakout) thresh_ac = encode_breakout; // Set a maximum for threshold to avoid big PSNR loss in low bitrate case. if (thresh_ac > max_thresh) thresh_ac = max_thresh; var = cpi->fn_ptr[y_size].vf(x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf, xd->plane[0].dst.stride, &sse); // Adjust threshold according to partition size. thresh_ac >>= 8 - (b_width_log2_lookup[bsize] + b_height_log2_lookup[bsize]); // Y skipping condition checking if (sse < thresh_ac || sse == 0) { // Skipping threshold for dc unsigned int thresh_dc; thresh_dc = (xd->plane[0].dequant[0] * xd->plane[0].dequant[0] >> 6); // dc skipping checking if ((sse - var) < thresh_dc || sse == var) { unsigned int sse_u, sse_v; unsigned int var_u, var_v; var_u = cpi->fn_ptr[uv_size].vf(x->plane[1].src.buf, x->plane[1].src.stride, xd->plane[1].dst.buf, xd->plane[1].dst.stride, &sse_u); // U skipping condition checking if ((sse_u * 4 < thresh_ac || sse_u == 0) && (sse_u - var_u < thresh_dc || sse_u == var_u)) { var_v = cpi->fn_ptr[uv_size].vf(x->plane[2].src.buf, x->plane[2].src.stride, xd->plane[2].dst.buf, xd->plane[2].dst.stride, &sse_v); // V skipping condition checking if ((sse_v * 4 < thresh_ac || sse_v == 0) && (sse_v - var_v < thresh_dc || sse_v == var_v)) { x->skip = 1; // The cost of skip bit needs to be added. *rate2 += vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1); // Scaling factor for SSE from spatial domain to frequency domain // is 16. Adjust distortion accordingly. *distortion_uv = (sse_u + sse_v) << 4; *distortion = (sse << 4) + *distortion_uv; *disable_skip = 1; this_rd = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); } } } } } } if (!x->skip) { int skippable_y, skippable_uv; int64_t sseuv = INT64_MAX; int64_t rdcosty = INT64_MAX; // Y cost and distortion super_block_yrd(cpi, x, rate_y, distortion_y, &skippable_y, psse, bsize, txfm_cache, ref_best_rd); if (*rate_y == INT_MAX) { *rate2 = INT_MAX; *distortion = INT64_MAX; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } return INT64_MAX; } *rate2 += *rate_y; *distortion += *distortion_y; rdcosty = RDCOST(x->rdmult, x->rddiv, *rate2, *distortion); rdcosty = MIN(rdcosty, RDCOST(x->rdmult, x->rddiv, 0, *psse)); super_block_uvrd(cm, x, rate_uv, distortion_uv, &skippable_uv, &sseuv, bsize, ref_best_rd - rdcosty); if (*rate_uv == INT_MAX) { *rate2 = INT_MAX; *distortion = INT64_MAX; for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } return INT64_MAX; } *psse += sseuv; *rate2 += *rate_uv; *distortion += *distortion_uv; *skippable = skippable_y && skippable_uv; } for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].dst.buf = orig_dst[i]; xd->plane[i].dst.stride = orig_dst_stride[i]; } return this_rd; // if 0, this will be re-calculated by caller } void vp9_rd_pick_intra_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, int *returnrate, int64_t *returndist, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; int y_skip = 0, uv_skip = 0; int64_t dist_y = 0, dist_uv = 0, tx_cache[TX_MODES] = { 0 }; x->skip_encode = 0; ctx->skip = 0; xd->this_mi->mbmi.ref_frame[0] = INTRA_FRAME; if (bsize >= BLOCK_8X8) { if (rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, &y_skip, bsize, tx_cache, best_rd) >= best_rd) { *returnrate = INT_MAX; return; } rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, &uv_skip, bsize); } else { y_skip = 0; if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, best_rd) >= best_rd) { *returnrate = INT_MAX; return; } rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, &uv_skip, BLOCK_8X8); } if (y_skip && uv_skip) { *returnrate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1); *returndist = dist_y + dist_uv; vp9_zero(ctx->tx_rd_diff); } else { int i; *returnrate = rate_y + rate_uv + vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 0); *returndist = dist_y + dist_uv; if (cpi->sf.tx_size_search_method == USE_FULL_RD) for (i = 0; i < TX_MODES; i++) { if (tx_cache[i] < INT64_MAX && tx_cache[cm->tx_mode] < INT64_MAX) ctx->tx_rd_diff[i] = tx_cache[i] - tx_cache[cm->tx_mode]; else ctx->tx_rd_diff[i] = 0; } } ctx->mic = *xd->this_mi; } int64_t vp9_rd_pick_inter_mode_sb(VP9_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, int *returnrate, int64_t *returndistortion, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { VP9_COMMON *cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->this_mi->mbmi; const struct segmentation *seg = &cm->seg; const BLOCK_SIZE block_size = get_plane_block_size(bsize, &xd->plane[0]); RD_PREDICTION_MODE this_mode; MV_REFERENCE_FRAME ref_frame, second_ref_frame; unsigned char segment_id = mbmi->segment_id; int comp_pred, i; int_mv frame_mv[MB_MODE_COUNT][MAX_REF_FRAMES]; struct buf_2d yv12_mb[4][MAX_MB_PLANE]; int_mv single_newmv[MAX_REF_FRAMES] = { { 0 } }; static const int flag_list[4] = { 0, VP9_LAST_FLAG, VP9_GOLD_FLAG, VP9_ALT_FLAG }; int idx_list[4] = {0, cpi->lst_fb_idx, cpi->gld_fb_idx, cpi->alt_fb_idx}; int64_t best_rd = best_rd_so_far; int64_t best_yrd = best_rd_so_far; // FIXME(rbultje) more precise int64_t best_tx_rd[TX_MODES]; int64_t best_tx_diff[TX_MODES]; int64_t best_pred_diff[NB_PREDICTION_TYPES]; int64_t best_pred_rd[NB_PREDICTION_TYPES]; int64_t best_filter_rd[SWITCHABLE_FILTERS + 1]; int64_t best_filter_diff[SWITCHABLE_FILTERS + 1]; MB_MODE_INFO best_mbmode = { 0 }; int j; int mode_index, best_mode_index = 0; unsigned int ref_costs_single[MAX_REF_FRAMES], ref_costs_comp[MAX_REF_FRAMES]; vp9_prob comp_mode_p; int64_t best_intra_rd = INT64_MAX; int64_t best_inter_rd = INT64_MAX; MB_PREDICTION_MODE best_intra_mode = DC_PRED; // MB_PREDICTION_MODE best_inter_mode = ZEROMV; MV_REFERENCE_FRAME best_inter_ref_frame = LAST_FRAME; INTERPOLATIONFILTERTYPE tmp_best_filter = SWITCHABLE; int rate_uv_intra[TX_SIZES], rate_uv_tokenonly[TX_SIZES]; int64_t dist_uv[TX_SIZES]; int skip_uv[TX_SIZES]; MB_PREDICTION_MODE mode_uv[TX_SIZES]; struct scale_factors scale_factor[4]; unsigned int ref_frame_mask = 0; unsigned int mode_mask = 0; int64_t mode_distortions[MB_MODE_COUNT] = {-1}; int64_t frame_distortions[MAX_REF_FRAMES] = {-1}; int intra_cost_penalty = 20 * vp9_dc_quant(cpi->common.base_qindex, cpi->common.y_dc_delta_q); int_mv seg_mvs[4][MAX_REF_FRAMES]; union b_mode_info best_bmodes[4]; PARTITION_INFO best_partition; const int bws = num_8x8_blocks_wide_lookup[bsize] / 2; const int bhs = num_8x8_blocks_high_lookup[bsize] / 2; int best_skip2 = 0; unsigned char best_zcoeff_blk[256] = { 0 }; x->skip_encode = cpi->sf.skip_encode_frame && xd->q_index < QIDX_SKIP_THRESH; vpx_memset(x->zcoeff_blk, 0, sizeof(x->zcoeff_blk)); vpx_memset(ctx->zcoeff_blk, 0, sizeof(ctx->zcoeff_blk)); for (i = 0; i < 4; i++) { int j; for (j = 0; j < MAX_REF_FRAMES; j++) seg_mvs[i][j].as_int = INVALID_MV; } // Everywhere the flag is set the error is much higher than its neighbors. ctx->frames_with_high_error = 0; ctx->modes_with_high_error = 0; estimate_ref_frame_costs(cpi, segment_id, ref_costs_single, ref_costs_comp, &comp_mode_p); for (i = 0; i < NB_PREDICTION_TYPES; ++i) best_pred_rd[i] = INT64_MAX; for (i = 0; i < TX_MODES; i++) best_tx_rd[i] = INT64_MAX; for (i = 0; i <= SWITCHABLE_FILTERS; i++) best_filter_rd[i] = INT64_MAX; for (i = 0; i < TX_SIZES; i++) rate_uv_intra[i] = INT_MAX; *returnrate = INT_MAX; // Create a mask set to 1 for each reference frame used by a smaller // resolution. if (cpi->sf.use_avoid_tested_higherror) { switch (block_size) { case BLOCK_64X64: for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { ref_frame_mask |= x->mb_context[i][j].frames_with_high_error; mode_mask |= x->mb_context[i][j].modes_with_high_error; } } for (i = 0; i < 4; i++) { ref_frame_mask |= x->sb32_context[i].frames_with_high_error; mode_mask |= x->sb32_context[i].modes_with_high_error; } break; case BLOCK_32X32: for (i = 0; i < 4; i++) { ref_frame_mask |= x->mb_context[xd->sb_index][i].frames_with_high_error; mode_mask |= x->mb_context[xd->sb_index][i].modes_with_high_error; } break; default: // Until we handle all block sizes set it to present; ref_frame_mask = 0; mode_mask = 0; break; } ref_frame_mask = ~ref_frame_mask; mode_mask = ~mode_mask; } for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { if (cpi->ref_frame_flags & flag_list[ref_frame]) { setup_buffer_inter(cpi, x, idx_list[ref_frame], ref_frame, block_size, mi_row, mi_col, frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb, scale_factor); } frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; frame_mv[ZEROMV][ref_frame].as_int = 0; } for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { int mode_excluded = 0; int64_t this_rd = INT64_MAX; int disable_skip = 0; int compmode_cost = 0; int rate2 = 0, rate_y = 0, rate_uv = 0; int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; int skippable = 0; int64_t tx_cache[TX_MODES]; int i; int this_skip2 = 0; int64_t total_sse = INT_MAX; int early_term = 0; for (i = 0; i < TX_MODES; ++i) tx_cache[i] = INT64_MAX; x->skip = 0; this_mode = vp9_mode_order[mode_index].mode; ref_frame = vp9_mode_order[mode_index].ref_frame; second_ref_frame = vp9_mode_order[mode_index].second_ref_frame; // Look at the reference frame of the best mode so far and set the // skip mask to look at a subset of the remaining modes. if (mode_index > cpi->sf.mode_skip_start) { if (mode_index == (cpi->sf.mode_skip_start + 1)) { switch (vp9_mode_order[best_mode_index].ref_frame) { case INTRA_FRAME: cpi->mode_skip_mask = 0; break; case LAST_FRAME: cpi->mode_skip_mask = LAST_FRAME_MODE_MASK; break; case GOLDEN_FRAME: cpi->mode_skip_mask = GOLDEN_FRAME_MODE_MASK; break; case ALTREF_FRAME: cpi->mode_skip_mask = ALT_REF_MODE_MASK; break; case NONE: case MAX_REF_FRAMES: assert(!"Invalid Reference frame"); } } if (cpi->mode_skip_mask & ((int64_t)1 << mode_index)) continue; } // Skip if the current reference frame has been masked off if (cpi->sf.reference_masking && !cpi->set_ref_frame_mask && (cpi->ref_frame_mask & (1 << ref_frame))) continue; // Test best rd so far against threshold for trying this mode. if ((best_rd < ((int64_t)cpi->rd_threshes[bsize][mode_index] * cpi->rd_thresh_freq_fact[bsize][mode_index] >> 5)) || cpi->rd_threshes[bsize][mode_index] == INT_MAX) continue; // Do not allow compound prediction if the segment level reference // frame feature is in use as in this case there can only be one reference. if ((second_ref_frame > INTRA_FRAME) && vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; // Skip some checking based on small partitions' result. if (x->fast_ms > 1 && !ref_frame) continue; if (x->fast_ms > 2 && ref_frame != x->subblock_ref) continue; if (cpi->sf.use_avoid_tested_higherror && bsize >= BLOCK_8X8) { if (!(ref_frame_mask & (1 << ref_frame))) { continue; } if (!(mode_mask & (1 << this_mode))) { continue; } if (second_ref_frame != NONE && !(ref_frame_mask & (1 << second_ref_frame))) { continue; } } mbmi->ref_frame[0] = ref_frame; mbmi->ref_frame[1] = second_ref_frame; if (!(ref_frame == INTRA_FRAME || (cpi->ref_frame_flags & flag_list[ref_frame]))) { continue; } if (!(second_ref_frame == NONE || (cpi->ref_frame_flags & flag_list[second_ref_frame]))) { continue; } comp_pred = second_ref_frame > INTRA_FRAME; if (comp_pred) { if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) continue; if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH) if (ref_frame != best_inter_ref_frame && second_ref_frame != best_inter_ref_frame) continue; } // TODO(jingning, jkoleszar): scaling reference frame not supported for // SPLITMV. if (ref_frame > 0 && vp9_is_scaled(&scale_factor[ref_frame]) && this_mode == RD_SPLITMV) continue; if (second_ref_frame > 0 && vp9_is_scaled(&scale_factor[second_ref_frame]) && this_mode == RD_SPLITMV) continue; if (bsize >= BLOCK_8X8 && (this_mode == RD_I4X4_PRED || this_mode == RD_SPLITMV)) continue; if (bsize < BLOCK_8X8 && !(this_mode == RD_I4X4_PRED || this_mode == RD_SPLITMV)) continue; set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor); mbmi->uv_mode = DC_PRED; // Evaluate all sub-pel filters irrespective of whether we can use // them for this frame. mbmi->interp_filter = cm->mcomp_filter_type; vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); if (comp_pred) { if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; set_scale_factors(xd, ref_frame, second_ref_frame, scale_factor); mode_excluded = mode_excluded ? mode_excluded : cm->comp_pred_mode == SINGLE_PREDICTION_ONLY; } else { if (ref_frame != INTRA_FRAME && second_ref_frame != INTRA_FRAME) { mode_excluded = mode_excluded ? mode_excluded : cm->comp_pred_mode == COMP_PREDICTION_ONLY; } } // Select prediction reference frames. for (i = 0; i < MAX_MB_PLANE; i++) { xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; } // If the segment reference frame feature is enabled.... // then do nothing if the current ref frame is not allowed.. if (vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && vp9_get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { continue; // If the segment skip feature is enabled.... // then do nothing if the current mode is not allowed.. } else if (vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP) && (this_mode != RD_ZEROMV && ref_frame != INTRA_FRAME)) { continue; // Disable this drop out case if the ref frame // segment level feature is enabled for this segment. This is to // prevent the possibility that we end up unable to pick any mode. } else if (!vp9_segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Only consider ZEROMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative. We allow near/nearest as well // because they may result in zero-zero MVs but be cheaper. if (cpi->is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { if ((this_mode != RD_ZEROMV && !(this_mode == RD_NEARMV && frame_mv[RD_NEARMV][ALTREF_FRAME].as_int == 0) && !(this_mode == RD_NEARESTMV && frame_mv[RD_NEARESTMV][ALTREF_FRAME].as_int == 0)) || ref_frame != ALTREF_FRAME) { continue; } } } // TODO(JBB): This is to make up for the fact that we don't have sad // functions that work when the block size reads outside the umv. We // should fix this either by making the motion search just work on // a representative block in the boundary ( first ) and then implement a // function that does sads when inside the border.. if (((mi_row + bhs) > cm->mi_rows || (mi_col + bws) > cm->mi_cols) && this_mode == RD_NEWMV) { continue; } #ifdef MODE_TEST_HIT_STATS // TEST/DEBUG CODE // Keep a rcord of the number of test hits at each size cpi->mode_test_hits[bsize]++; #endif if (this_mode == RD_I4X4_PRED) { int rate; /* if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && (vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME)) continue; */ // RD_I4X4_PRED is only considered for block sizes less than 8x8. mbmi->tx_size = TX_4X4; if (rd_pick_intra_sub_8x8_y_mode(cpi, x, &rate, &rate_y, &distortion_y, best_rd) >= best_rd) continue; rate2 += rate; rate2 += intra_cost_penalty; distortion2 += distortion_y; if (rate_uv_intra[TX_4X4] == INT_MAX) { choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[TX_4X4], &rate_uv_tokenonly[TX_4X4], &dist_uv[TX_4X4], &skip_uv[TX_4X4], &mode_uv[TX_4X4]); } rate2 += rate_uv_intra[TX_4X4]; rate_uv = rate_uv_tokenonly[TX_4X4]; distortion2 += dist_uv[TX_4X4]; distortion_uv = dist_uv[TX_4X4]; mbmi->uv_mode = mode_uv[TX_4X4]; tx_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); for (i = 0; i < TX_MODES; ++i) tx_cache[i] = tx_cache[ONLY_4X4]; } else if (ref_frame == INTRA_FRAME) { TX_SIZE uv_tx; // Disable intra modes other than DC_PRED for blocks with low variance // Threshold for intra skipping based on source variance // TODO(debargha): Specialize the threshold for super block sizes static const unsigned int skip_intra_var_thresh[BLOCK_SIZES] = { 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, 64, }; if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && this_mode != RD_DC_PRED && x->source_variance < skip_intra_var_thresh[mbmi->sb_type]) continue; // Only search the oblique modes if the best so far is // one of the neighboring directional modes if ((cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && (this_mode >= RD_D45_PRED && this_mode <= RD_TM_PRED)) { if (vp9_mode_order[best_mode_index].ref_frame > INTRA_FRAME) continue; } mbmi->mode = rd_mode_to_mode(this_mode); if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra(mbmi->mode, best_intra_mode)) continue; } super_block_yrd(cpi, x, &rate_y, &distortion_y, &skippable, NULL, bsize, tx_cache, best_rd); if (rate_y == INT_MAX) continue; uv_tx = MIN(mbmi->tx_size, max_uv_txsize_lookup[bsize]); if (rate_uv_intra[uv_tx] == INT_MAX) { choose_intra_uv_mode(cpi, bsize, &rate_uv_intra[uv_tx], &rate_uv_tokenonly[uv_tx], &dist_uv[uv_tx], &skip_uv[uv_tx], &mode_uv[uv_tx]); } rate_uv = rate_uv_tokenonly[uv_tx]; distortion_uv = dist_uv[uv_tx]; skippable = skippable && skip_uv[uv_tx]; mbmi->uv_mode = mode_uv[uv_tx]; rate2 = rate_y + x->mbmode_cost[mbmi->mode] + rate_uv_intra[uv_tx]; if (this_mode != RD_DC_PRED && this_mode != RD_TM_PRED) rate2 += intra_cost_penalty; distortion2 = distortion_y + distortion_uv; } else if (this_mode == RD_SPLITMV) { const int is_comp_pred = second_ref_frame > 0; int rate; int64_t distortion; int64_t this_rd_thresh; int64_t tmp_rd, tmp_best_rd = INT64_MAX, tmp_best_rdu = INT64_MAX; int tmp_best_rate = INT_MAX, tmp_best_ratey = INT_MAX; int64_t tmp_best_distortion = INT_MAX, tmp_best_sse, uv_sse; int tmp_best_skippable = 0; int switchable_filter_index; int_mv *second_ref = is_comp_pred ? &mbmi->ref_mvs[second_ref_frame][0] : NULL; union b_mode_info tmp_best_bmodes[16]; MB_MODE_INFO tmp_best_mbmode; PARTITION_INFO tmp_best_partition; BEST_SEG_INFO bsi[SWITCHABLE_FILTERS]; int pred_exists = 0; int uv_skippable; if (is_comp_pred) { if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) continue; if (cpi->sf.mode_search_skip_flags & FLAG_SKIP_COMP_REFMISMATCH) if (ref_frame != best_inter_ref_frame && second_ref_frame != best_inter_ref_frame) continue; } this_rd_thresh = (ref_frame == LAST_FRAME) ? cpi->rd_threshes[bsize][THR_NEWMV] : cpi->rd_threshes[bsize][THR_NEWA]; this_rd_thresh = (ref_frame == GOLDEN_FRAME) ? cpi->rd_threshes[bsize][THR_NEWG] : this_rd_thresh; xd->this_mi->mbmi.tx_size = TX_4X4; cpi->rd_filter_cache[SWITCHABLE_FILTERS] = INT64_MAX; if (cm->mcomp_filter_type != BILINEAR) { tmp_best_filter = EIGHTTAP; if (x->source_variance < cpi->sf.disable_filter_search_var_thresh) { tmp_best_filter = EIGHTTAP; vp9_zero(cpi->rd_filter_cache); } else { for (switchable_filter_index = 0; switchable_filter_index < SWITCHABLE_FILTERS; ++switchable_filter_index) { int newbest, rs; int64_t rs_rd; mbmi->interp_filter = switchable_filter_index; vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); tmp_rd = rd_pick_best_mbsegmentation(cpi, x, &mbmi->ref_mvs[ref_frame][0], second_ref, best_yrd, &rate, &rate_y, &distortion, &skippable, &total_sse, (int)this_rd_thresh, seg_mvs, bsi, switchable_filter_index, mi_row, mi_col); if (tmp_rd == INT64_MAX) continue; cpi->rd_filter_cache[switchable_filter_index] = tmp_rd; rs = get_switchable_rate(x); rs_rd = RDCOST(x->rdmult, x->rddiv, rs, 0); cpi->rd_filter_cache[SWITCHABLE_FILTERS] = MIN(cpi->rd_filter_cache[SWITCHABLE_FILTERS], tmp_rd + rs_rd); if (cm->mcomp_filter_type == SWITCHABLE) tmp_rd += rs_rd; newbest = (tmp_rd < tmp_best_rd); if (newbest) { tmp_best_filter = mbmi->interp_filter; tmp_best_rd = tmp_rd; } if ((newbest && cm->mcomp_filter_type == SWITCHABLE) || (mbmi->interp_filter == cm->mcomp_filter_type && cm->mcomp_filter_type != SWITCHABLE)) { tmp_best_rdu = tmp_rd; tmp_best_rate = rate; tmp_best_ratey = rate_y; tmp_best_distortion = distortion; tmp_best_sse = total_sse; tmp_best_skippable = skippable; tmp_best_mbmode = *mbmi; tmp_best_partition = *x->partition_info; for (i = 0; i < 4; i++) tmp_best_bmodes[i] = xd->this_mi->bmi[i]; pred_exists = 1; if (switchable_filter_index == 0 && cpi->sf.use_rd_breakout && best_rd < INT64_MAX) { if (tmp_best_rdu / 2 > best_rd) { // skip searching the other filters if the first is // already substantially larger than the best so far tmp_best_filter = mbmi->interp_filter; tmp_best_rdu = INT64_MAX; break; } } } } // switchable_filter_index loop } } if (tmp_best_rdu == INT64_MAX) continue; mbmi->interp_filter = (cm->mcomp_filter_type == SWITCHABLE ? tmp_best_filter : cm->mcomp_filter_type); vp9_setup_interp_filters(xd, mbmi->interp_filter, &cpi->common); if (!pred_exists) { // Handles the special case when a filter that is not in the // switchable list (bilinear, 6-tap) is indicated at the frame level tmp_rd = rd_pick_best_mbsegmentation(cpi, x, &mbmi->ref_mvs[ref_frame][0], second_ref, best_yrd, &rate, &rate_y, &distortion, &skippable, &total_sse, (int)this_rd_thresh, seg_mvs, bsi, 0, mi_row, mi_col); if (tmp_rd == INT64_MAX) continue; } else { if (cpi->common.mcomp_filter_type == SWITCHABLE) { int rs = get_switchable_rate(x); tmp_best_rdu -= RDCOST(x->rdmult, x->rddiv, rs, 0); } tmp_rd = tmp_best_rdu; total_sse = tmp_best_sse; rate = tmp_best_rate; rate_y = tmp_best_ratey; distortion = tmp_best_distortion; skippable = tmp_best_skippable; *mbmi = tmp_best_mbmode; *x->partition_info = tmp_best_partition; for (i = 0; i < 4; i++) xd->this_mi->bmi[i] = tmp_best_bmodes[i]; } rate2 += rate; distortion2 += distortion; if (cpi->common.mcomp_filter_type == SWITCHABLE) rate2 += get_switchable_rate(x); if (!mode_excluded) { if (is_comp_pred) mode_excluded = cpi->common.comp_pred_mode == SINGLE_PREDICTION_ONLY; else mode_excluded = cpi->common.comp_pred_mode == COMP_PREDICTION_ONLY; } compmode_cost = vp9_cost_bit(comp_mode_p, is_comp_pred); tmp_best_rdu = best_rd - MIN(RDCOST(x->rdmult, x->rddiv, rate2, distortion2), RDCOST(x->rdmult, x->rddiv, 0, total_sse)); if (tmp_best_rdu > 0) { // If even the 'Y' rd value of split is higher than best so far // then dont bother looking at UV vp9_build_inter_predictors_sbuv(&x->e_mbd, mi_row, mi_col, BLOCK_8X8); super_block_uvrd(cm, x, &rate_uv, &distortion_uv, &uv_skippable, &uv_sse, BLOCK_8X8, tmp_best_rdu); if (rate_uv == INT_MAX) continue; rate2 += rate_uv; distortion2 += distortion_uv; skippable = skippable && uv_skippable; total_sse += uv_sse; tx_cache[ONLY_4X4] = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); for (i = 0; i < TX_MODES; ++i) tx_cache[i] = tx_cache[ONLY_4X4]; } } else { mbmi->mode = rd_mode_to_mode(this_mode); compmode_cost = vp9_cost_bit(comp_mode_p, second_ref_frame > INTRA_FRAME); this_rd = handle_inter_mode(cpi, x, bsize, tx_cache, &rate2, &distortion2, &skippable, &rate_y, &distortion_y, &rate_uv, &distortion_uv, &mode_excluded, &disable_skip, &tmp_best_filter, frame_mv, mi_row, mi_col, single_newmv, &total_sse, best_rd); if (this_rd == INT64_MAX) continue; } if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { rate2 += compmode_cost; } // Estimate the reference frame signaling cost and add it // to the rolling cost variable. if (second_ref_frame > INTRA_FRAME) { rate2 += ref_costs_comp[ref_frame]; } else { rate2 += ref_costs_single[ref_frame]; } if (!disable_skip) { // Test for the condition where skip block will be activated // because there are no non zero coefficients and make any // necessary adjustment for rate. Ignore if skip is coded at // segment level as the cost wont have been added in. // Is Mb level skip allowed (i.e. not coded at segment level). const int mb_skip_allowed = !vp9_segfeature_active(seg, segment_id, SEG_LVL_SKIP); if (skippable && bsize >= BLOCK_8X8) { // Back out the coefficient coding costs rate2 -= (rate_y + rate_uv); // for best yrd calculation rate_uv = 0; if (mb_skip_allowed) { int prob_skip_cost; // Cost the skip mb case vp9_prob skip_prob = vp9_get_pred_prob_mbskip(cm, xd); if (skip_prob) { prob_skip_cost = vp9_cost_bit(skip_prob, 1); rate2 += prob_skip_cost; } } } else if (mb_skip_allowed && ref_frame != INTRA_FRAME && !xd->lossless) { if (RDCOST(x->rdmult, x->rddiv, rate_y + rate_uv, distortion2) < RDCOST(x->rdmult, x->rddiv, 0, total_sse)) { // Add in the cost of the no skip flag. int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 0); rate2 += prob_skip_cost; } else { // FIXME(rbultje) make this work for splitmv also int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 1); rate2 += prob_skip_cost; distortion2 = total_sse; assert(total_sse >= 0); rate2 -= (rate_y + rate_uv); rate_y = 0; rate_uv = 0; this_skip2 = 1; } } else if (mb_skip_allowed) { // Add in the cost of the no skip flag. int prob_skip_cost = vp9_cost_bit(vp9_get_pred_prob_mbskip(cm, xd), 0); rate2 += prob_skip_cost; } // Calculate the final RD estimate for this mode. this_rd = RDCOST(x->rdmult, x->rddiv, rate2, distortion2); } // Keep record of best intra rd if (xd->this_mi->mbmi.ref_frame[0] == INTRA_FRAME && is_intra_mode(xd->this_mi->mbmi.mode) && this_rd < best_intra_rd) { best_intra_rd = this_rd; best_intra_mode = xd->this_mi->mbmi.mode; } // Keep record of best inter rd with single reference if (xd->this_mi->mbmi.ref_frame[0] > INTRA_FRAME && xd->this_mi->mbmi.ref_frame[1] == NONE && !mode_excluded && this_rd < best_inter_rd) { best_inter_rd = this_rd; best_inter_ref_frame = ref_frame; // best_inter_mode = xd->this_mi->mbmi.mode; } if (!disable_skip && ref_frame == INTRA_FRAME) { for (i = 0; i < NB_PREDICTION_TYPES; ++i) best_pred_rd[i] = MIN(best_pred_rd[i], this_rd); for (i = 0; i <= SWITCHABLE_FILTERS; i++) best_filter_rd[i] = MIN(best_filter_rd[i], this_rd); } if (this_mode != RD_I4X4_PRED && this_mode != RD_SPLITMV) { // Store the respective mode distortions for later use. if (mode_distortions[this_mode] == -1 || distortion2 < mode_distortions[this_mode]) { mode_distortions[this_mode] = distortion2; } if (frame_distortions[ref_frame] == -1 || distortion2 < frame_distortions[ref_frame]) { frame_distortions[ref_frame] = distortion2; } } // Did this mode help.. i.e. is it the new best mode if (this_rd < best_rd || x->skip) { if (!mode_excluded) { // Note index of best mode so far best_mode_index = mode_index; if (ref_frame == INTRA_FRAME) { /* required for left and above block mv */ mbmi->mv[0].as_int = 0; } *returnrate = rate2; *returndistortion = distortion2; best_rd = this_rd; best_yrd = best_rd - RDCOST(x->rdmult, x->rddiv, rate_uv, distortion_uv); best_mbmode = *mbmi; best_skip2 = this_skip2; best_partition = *x->partition_info; vpx_memcpy(best_zcoeff_blk, x->zcoeff_blk[mbmi->tx_size], sizeof(best_zcoeff_blk)); if (this_mode == RD_I4X4_PRED || this_mode == RD_SPLITMV) for (i = 0; i < 4; i++) best_bmodes[i] = xd->this_mi->bmi[i]; // TODO(debargha): enhance this test with a better distortion prediction // based on qp, activity mask and history if (cpi->sf.mode_search_skip_flags & FLAG_EARLY_TERMINATE) { const int qstep = xd->plane[0].dequant[1]; // TODO(debargha): Enhance this by specializing for each mode_index int scale = 4; if (x->source_variance < UINT_MAX) { const int var_adjust = (x->source_variance < 16); scale -= var_adjust; } if (ref_frame > INTRA_FRAME && distortion2 * scale < qstep * qstep) { early_term = 1; } } } } /* keep record of best compound/single-only prediction */ if (!disable_skip && ref_frame != INTRA_FRAME) { int single_rd, hybrid_rd, single_rate, hybrid_rate; if (cpi->common.comp_pred_mode == HYBRID_PREDICTION) { single_rate = rate2 - compmode_cost; hybrid_rate = rate2; } else { single_rate = rate2; hybrid_rate = rate2 + compmode_cost; } single_rd = RDCOST(x->rdmult, x->rddiv, single_rate, distortion2); hybrid_rd = RDCOST(x->rdmult, x->rddiv, hybrid_rate, distortion2); if (second_ref_frame <= INTRA_FRAME && single_rd < best_pred_rd[SINGLE_PREDICTION_ONLY]) { best_pred_rd[SINGLE_PREDICTION_ONLY] = single_rd; } else if (second_ref_frame > INTRA_FRAME && single_rd < best_pred_rd[COMP_PREDICTION_ONLY]) { best_pred_rd[COMP_PREDICTION_ONLY] = single_rd; } if (hybrid_rd < best_pred_rd[HYBRID_PREDICTION]) best_pred_rd[HYBRID_PREDICTION] = hybrid_rd; } /* keep record of best filter type */ if (!mode_excluded && !disable_skip && ref_frame != INTRA_FRAME && cm->mcomp_filter_type != BILINEAR) { int64_t ref = cpi->rd_filter_cache[cm->mcomp_filter_type == SWITCHABLE ? SWITCHABLE_FILTERS : cm->mcomp_filter_type]; for (i = 0; i <= SWITCHABLE_FILTERS; i++) { int64_t adj_rd; // In cases of poor prediction, filter_cache[] can contain really big // values, which actually are bigger than this_rd itself. This can // cause negative best_filter_rd[] values, which is obviously silly. // Therefore, if filter_cache < ref, we do an adjusted calculation. if (cpi->rd_filter_cache[i] >= ref) adj_rd = this_rd + cpi->rd_filter_cache[i] - ref; else // FIXME(rbultje) do this for comppred also adj_rd = this_rd - (ref - cpi->rd_filter_cache[i]) * this_rd / ref; best_filter_rd[i] = MIN(best_filter_rd[i], adj_rd); } } /* keep record of best txfm size */ if (bsize < BLOCK_32X32) { if (bsize < BLOCK_16X16) { if (this_mode == RD_SPLITMV || this_mode == RD_I4X4_PRED) tx_cache[ALLOW_8X8] = tx_cache[ONLY_4X4]; tx_cache[ALLOW_16X16] = tx_cache[ALLOW_8X8]; } tx_cache[ALLOW_32X32] = tx_cache[ALLOW_16X16]; } if (!mode_excluded && this_rd != INT64_MAX) { for (i = 0; i < TX_MODES && tx_cache[i] < INT64_MAX; i++) { int64_t adj_rd = INT64_MAX; if (this_mode != RD_I4X4_PRED) { adj_rd = this_rd + tx_cache[i] - tx_cache[cm->tx_mode]; } else { adj_rd = this_rd; } if (adj_rd < best_tx_rd[i]) best_tx_rd[i] = adj_rd; } } if (early_term) break; if (x->skip && !comp_pred) break; } if (best_rd >= best_rd_so_far) return INT64_MAX; // If we used an estimate for the uv intra rd in the loop above... if (cpi->sf.use_uv_intra_rd_estimate) { // Do Intra UV best rd mode selection if best mode choice above was intra. if (vp9_mode_order[best_mode_index].ref_frame == INTRA_FRAME) { TX_SIZE uv_tx_size = get_uv_tx_size(mbmi); rd_pick_intra_sbuv_mode(cpi, x, &rate_uv_intra[uv_tx_size], &rate_uv_tokenonly[uv_tx_size], &dist_uv[uv_tx_size], &skip_uv[uv_tx_size], bsize < BLOCK_8X8 ? BLOCK_8X8 : bsize); } } // If we are using reference masking and the set mask flag is set then // create the reference frame mask. if (cpi->sf.reference_masking && cpi->set_ref_frame_mask) cpi->ref_frame_mask = ~(1 << vp9_mode_order[best_mode_index].ref_frame); // Flag all modes that have a distortion thats > 2x the best we found at // this level. for (mode_index = 0; mode_index < MB_MODE_COUNT; ++mode_index) { if (mode_index == NEARESTMV || mode_index == NEARMV || mode_index == NEWMV) continue; if (mode_distortions[mode_index] > 2 * *returndistortion) { ctx->modes_with_high_error |= (1 << mode_index); } } // Flag all ref frames that have a distortion thats > 2x the best we found at // this level. for (ref_frame = INTRA_FRAME; ref_frame <= ALTREF_FRAME; ref_frame++) { if (frame_distortions[ref_frame] > 2 * *returndistortion) { ctx->frames_with_high_error |= (1 << ref_frame); } } if (best_rd == INT64_MAX && bsize < BLOCK_8X8) { *returnrate = INT_MAX; *returndistortion = INT_MAX; return best_rd; } assert((cm->mcomp_filter_type == SWITCHABLE) || (cm->mcomp_filter_type == best_mbmode.interp_filter) || (best_mbmode.ref_frame[0] == INTRA_FRAME)); // Updating rd_thresh_freq_fact[] here means that the different // partition/block sizes are handled independently based on the best // choice for the current partition. It may well be better to keep a scaled // best rd so far value and update rd_thresh_freq_fact based on the mode/size // combination that wins out. if (cpi->sf.adaptive_rd_thresh) { for (mode_index = 0; mode_index < MAX_MODES; ++mode_index) { if (mode_index == best_mode_index) { cpi->rd_thresh_freq_fact[bsize][mode_index] -= (cpi->rd_thresh_freq_fact[bsize][mode_index] >> 3); } else { cpi->rd_thresh_freq_fact[bsize][mode_index] += RD_THRESH_INC; if (cpi->rd_thresh_freq_fact[bsize][mode_index] > (cpi->sf.adaptive_rd_thresh * MAX_RD_THRESH_FACT)) { cpi->rd_thresh_freq_fact[bsize][mode_index] = cpi->sf.adaptive_rd_thresh * MAX_RD_THRESH_FACT; } } } } // macroblock modes *mbmi = best_mbmode; x->skip |= best_skip2; if (best_mbmode.ref_frame[0] == INTRA_FRAME && best_mbmode.sb_type < BLOCK_8X8) { for (i = 0; i < 4; i++) xd->this_mi->bmi[i].as_mode = best_bmodes[i].as_mode; } if (best_mbmode.ref_frame[0] != INTRA_FRAME && best_mbmode.sb_type < BLOCK_8X8) { for (i = 0; i < 4; i++) xd->this_mi->bmi[i].as_mv[0].as_int = best_bmodes[i].as_mv[0].as_int; if (mbmi->ref_frame[1] > 0) for (i = 0; i < 4; i++) xd->this_mi->bmi[i].as_mv[1].as_int = best_bmodes[i].as_mv[1].as_int; *x->partition_info = best_partition; mbmi->mv[0].as_int = xd->this_mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = xd->this_mi->bmi[3].as_mv[1].as_int; } vpx_memcpy(x->zcoeff_blk[mbmi->tx_size], best_zcoeff_blk, sizeof(best_zcoeff_blk)); for (i = 0; i < NB_PREDICTION_TYPES; ++i) { if (best_pred_rd[i] == INT64_MAX) best_pred_diff[i] = INT_MIN; else best_pred_diff[i] = best_rd - best_pred_rd[i]; } if (!x->skip) { for (i = 0; i <= SWITCHABLE_FILTERS; i++) { if (best_filter_rd[i] == INT64_MAX) best_filter_diff[i] = 0; else best_filter_diff[i] = best_rd - best_filter_rd[i]; } if (cm->mcomp_filter_type == SWITCHABLE) assert(best_filter_diff[SWITCHABLE_FILTERS] == 0); } else { vpx_memset(best_filter_diff, 0, sizeof(best_filter_diff)); } if (!x->skip) { for (i = 0; i < TX_MODES; i++) { if (best_tx_rd[i] == INT64_MAX) best_tx_diff[i] = 0; else best_tx_diff[i] = best_rd - best_tx_rd[i]; } } else { vpx_memset(best_tx_diff, 0, sizeof(best_tx_diff)); } set_scale_factors(xd, mbmi->ref_frame[0], mbmi->ref_frame[1], scale_factor); store_coding_context(x, ctx, best_mode_index, &best_partition, &mbmi->ref_mvs[mbmi->ref_frame[0]][0], &mbmi->ref_mvs[mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]][0], best_pred_diff, best_tx_diff, best_filter_diff); return best_rd; }