/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vpx_ports/config.h" #include "encodemb.h" #include "encodemv.h" #include "vp8/common/common.h" #include "onyx_int.h" #include "vp8/common/extend.h" #include "vp8/common/entropymode.h" #include "vp8/common/quant_common.h" #include "segmentation.h" #include "vp8/common/setupintrarecon.h" #include "encodeintra.h" #include "vp8/common/reconinter.h" #include "rdopt.h" #include "pickinter.h" #include "vp8/common/findnearmv.h" #include "vp8/common/reconintra.h" #include #include #include #include "vp8/common/subpixel.h" #include "vpx_ports/vpx_timer.h" //#if CONFIG_SEGFEATURES //#define DBG_PRNT_SEGMAP 1 #if CONFIG_RUNTIME_CPU_DETECT #define RTCD(x) &cpi->common.rtcd.x #define IF_RTCD(x) (x) #else #define RTCD(x) NULL #define IF_RTCD(x) NULL #endif #ifdef ENC_DEBUG int enc_debug=0; int mb_row_debug, mb_col_debug; #endif extern void vp8_stuff_mb(VP8_COMP *cpi, MACROBLOCKD *x, TOKENEXTRA **t) ; extern void vp8cx_initialize_me_consts(VP8_COMP *cpi, int QIndex); extern void vp8_auto_select_speed(VP8_COMP *cpi); extern void vp8cx_init_mbrthread_data(VP8_COMP *cpi, MACROBLOCK *x, MB_ROW_COMP *mbr_ei, int mb_row, int count); void vp8_build_block_offsets(MACROBLOCK *x); void vp8_setup_block_ptrs(MACROBLOCK *x); int vp8cx_encode_inter_macroblock(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset); int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t); static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x ); #ifdef MODE_STATS unsigned int inter_y_modes[10] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int inter_uv_modes[VP8_UV_MODES] = {0, 0, 0, 0}; unsigned int inter_b_modes[15] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int y_modes[VP8_YMODES] = {0, 0, 0, 0, 0}; unsigned int i8x8_modes[VP8_I8X8_MODES]={0 }; unsigned int uv_modes[VP8_UV_MODES] = {0, 0, 0, 0}; unsigned int uv_modes_y[VP8_YMODES][VP8_UV_MODES]= { {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0} }; unsigned int b_modes[14] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; #endif /* activity_avg must be positive, or flat regions could get a zero weight * (infinite lambda), which confounds analysis. * This also avoids the need for divide by zero checks in * vp8_activity_masking(). */ #define VP8_ACTIVITY_AVG_MIN (64) /* This is used as a reference when computing the source variance for the * purposes of activity masking. * Eventually this should be replaced by custom no-reference routines, * which will be faster. */ static const unsigned char VP8_VAR_OFFS[16]= { 128,128,128,128,128,128,128,128,128,128,128,128,128,128,128,128 }; #if CONFIG_T8X8 //INTRA mode transform size //When all three criteria are off the default is 4x4 //#define INTRA_VARIANCE_ENTROPY_CRITERIA #define INTRA_WTD_SSE_ENTROPY_CRITERIA //#define INTRA_TEST_8X8_ONLY // //INTER mode transform size //When all three criteria are off the default is 4x4 //#define INTER_VARIANCE_ENTROPY_CRITERIA #define INTER_WTD_SSE_ENTROPY_CRITERIA //#define INTER_TEST_8X8_ONLY double variance_Block(short *b1, int pitch, int dimension) { short ip[8][8]={{0}}; short *b = b1; int i, j = 0; double mean = 0.0, variance = 0.0; for (i = 0; i < dimension; i++) { for (j = 0; j < dimension; j++) { ip[i][j] = b[j]; mean += ip[i][j]; } b += pitch; } mean /= (dimension*dimension); for (i = 0; i < dimension; i++) { for (j = 0; j < dimension; j++) { variance += (ip[i][j]-mean)*(ip[i][j]-mean); } } variance /= (dimension*dimension); return variance; } double mean_Block(short *b, int pitch, int dimension) { short ip[8][8]={{0}}; int i, j = 0; double mean = 0; for (i = 0; i < dimension; i++) { for (j = 0; j < dimension; j++) { ip[i][j] = b[j]; mean += ip[i][j]; } b += pitch; } mean /= (dimension*dimension); return mean; } int SSE_Block(short *b, int pitch, int dimension) { int i, j, sse_block = 0; for (i = 0; i < dimension; i++) { for (j = 0; j < dimension; j++) { sse_block += b[j]*b[j]; } b += pitch; } return sse_block; } double Compute_Variance_Entropy(MACROBLOCK *x) { double variance_8[4] = {0.0, 0.0, 0.0, 0.0}, sum_var = 0.0, all_entropy = 0.0; variance_8[0] = variance_Block(x->block[0].src_diff, 16, 8); variance_8[1] = variance_Block(x->block[2].src_diff, 16, 8); variance_8[2] = variance_Block(x->block[8].src_diff, 16, 8); variance_8[3] = variance_Block(x->block[10].src_diff, 16, 8); sum_var = variance_8[0] + variance_8[1] + variance_8[2] + variance_8[3]; if(sum_var) { int i; for(i = 0; i <4; i++) { if(variance_8[i]) { variance_8[i] /= sum_var; all_entropy -= variance_8[i]*log(variance_8[i]); } } } return (all_entropy /log(2)); } double Compute_Wtd_SSE_SubEntropy(MACROBLOCK *x) { double variance_8[4] = {0.0, 0.0, 0.0, 0.0}; double entropy_8[4] = {0.0, 0.0, 0.0, 0.0}; double sse_1, sse_2, sse_3, sse_4, sse_0; int i; for (i=0;i<3;i+=2) { sse_0 = SSE_Block(x->block[i].src_diff, 16, 8); if(sse_0) { sse_1 = SSE_Block(x->block[i].src_diff, 16, 4)/sse_0; sse_2 = SSE_Block(x->block[i+1].src_diff, 16, 4)/sse_0; sse_3 = SSE_Block(x->block[i+4].src_diff, 16, 4)/sse_0; sse_4 = SSE_Block(x->block[i+5].src_diff, 16, 4)/sse_0; variance_8[i]= variance_Block(x->block[i].src_diff, 16, 8); if(sse_1 && sse_2 && sse_3 && sse_4) entropy_8[i]= (-sse_1*log(sse_1) -sse_2*log(sse_2) -sse_3*log(sse_3) -sse_4*log(sse_4))/log(2); } } for (i=8;i<11;i+=2) { if(sse_0) { sse_0 = SSE_Block(x->block[i].src_diff, 16, 8); sse_1 = SSE_Block(x->block[i].src_diff, 16, 4)/sse_0; sse_2 = SSE_Block(x->block[i+1].src_diff, 16, 4)/sse_0; sse_3 = SSE_Block(x->block[i+4].src_diff, 16, 4)/sse_0; sse_4 = SSE_Block(x->block[i+5].src_diff, 16, 4)/sse_0; variance_8[i-7]= variance_Block(x->block[i].src_diff, 16, 8); if(sse_1 && sse_2 && sse_3 && sse_4) entropy_8[i-7]= (-sse_1*log(sse_1) -sse_2*log(sse_2) -sse_3*log(sse_3) -sse_4*log(sse_4))/log(2); } } if(variance_8[0]+variance_8[1]+variance_8[2]+variance_8[3]) return (entropy_8[0]*variance_8[0]+ entropy_8[1]*variance_8[1]+ entropy_8[2]*variance_8[2]+ entropy_8[3]*variance_8[3])/ (variance_8[0]+ variance_8[1]+ variance_8[2]+ variance_8[3]); else return 0; } int vp8_8x8_selection_intra(MACROBLOCK *x) { #ifdef INTRA_VARIANCE_ENTROPY_CRITERIA return (Compute_Variance_Entropy(x) > 1.2); #elif defined(INTRA_WTD_SSE_ENTROPY_CRITERIA) return (Compute_Wtd_SSE_SubEntropy(x) > 1.2); #elif defined(INTRA_TEST_8X8_ONLY) return 1; #else return 0; //when all criteria are off use the default 4x4 only #endif } int vp8_8x8_selection_inter(MACROBLOCK *x) { #ifdef INTER_VARIANCE_ENTROPY_CRITERIA return (Compute_Variance_Entropy(x) > 1.5); #elif defined(INTER_WTD_SSE_ENTROPY_CRITERIA) return (Compute_Wtd_SSE_SubEntropy(x) > 1.5); #elif defined(INTER_TEST_8X8_ONLY) return 1; #else return 0; //when all criteria are off use the default 4x4 only #endif } #endif // Original activity measure from Tim T's code. static unsigned int tt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x ) { unsigned int act; unsigned int sse; /* TODO: This could also be done over smaller areas (8x8), but that would * require extensive changes elsewhere, as lambda is assumed to be fixed * over an entire MB in most of the code. * Another option is to compute four 8x8 variances, and pick a single * lambda using a non-linear combination (e.g., the smallest, or second * smallest, etc.). */ act = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16)(x->src.y_buffer, x->src.y_stride, VP8_VAR_OFFS, 0, &sse); act = act<<4; /* If the region is flat, lower the activity some more. */ if (act < 8<<12) act = act < 5<<12 ? act : 5<<12; return act; } // Stub for alternative experimental activity measures. static unsigned int alt_activity_measure( VP8_COMP *cpi, MACROBLOCK *x, int use_dc_pred ) { return vp8_encode_intra(cpi,x, use_dc_pred); } // Measure the activity of the current macroblock // What we measure here is TBD so abstracted to this function #define ALT_ACT_MEASURE 1 static unsigned int mb_activity_measure( VP8_COMP *cpi, MACROBLOCK *x, int mb_row, int mb_col) { unsigned int mb_activity; if ( ALT_ACT_MEASURE ) { int use_dc_pred = (mb_col || mb_row) && (!mb_col || !mb_row); // Or use and alternative. mb_activity = alt_activity_measure( cpi, x, use_dc_pred ); } else { // Original activity measure from Tim T's code. mb_activity = tt_activity_measure( cpi, x ); } if ( mb_activity < VP8_ACTIVITY_AVG_MIN ) mb_activity = VP8_ACTIVITY_AVG_MIN; return mb_activity; } // Calculate an "average" mb activity value for the frame #define ACT_MEDIAN 0 static void calc_av_activity( VP8_COMP *cpi, int64_t activity_sum ) { #if ACT_MEDIAN // Find median: Simple n^2 algorithm for experimentation { unsigned int median; unsigned int i,j; unsigned int * sortlist; unsigned int tmp; // Create a list to sort to CHECK_MEM_ERROR(sortlist, vpx_calloc(sizeof(unsigned int), cpi->common.MBs)); // Copy map to sort list vpx_memcpy( sortlist, cpi->mb_activity_map, sizeof(unsigned int) * cpi->common.MBs ); // Ripple each value down to its correct position for ( i = 1; i < cpi->common.MBs; i ++ ) { for ( j = i; j > 0; j -- ) { if ( sortlist[j] < sortlist[j-1] ) { // Swap values tmp = sortlist[j-1]; sortlist[j-1] = sortlist[j]; sortlist[j] = tmp; } else break; } } // Even number MBs so estimate median as mean of two either side. median = ( 1 + sortlist[cpi->common.MBs >> 1] + sortlist[(cpi->common.MBs >> 1) + 1] ) >> 1; cpi->activity_avg = median; vpx_free(sortlist); } #else // Simple mean for now cpi->activity_avg = (unsigned int)(activity_sum/cpi->common.MBs); #endif if (cpi->activity_avg < VP8_ACTIVITY_AVG_MIN) cpi->activity_avg = VP8_ACTIVITY_AVG_MIN; // Experimental code: return fixed value normalized for several clips if ( ALT_ACT_MEASURE ) cpi->activity_avg = 100000; } #define USE_ACT_INDEX 0 #define OUTPUT_NORM_ACT_STATS 0 #if USE_ACT_INDEX // Calculate and activity index for each mb static void calc_activity_index( VP8_COMP *cpi, MACROBLOCK *x ) { VP8_COMMON *const cm = & cpi->common; int mb_row, mb_col; int64_t act; int64_t a; int64_t b; #if OUTPUT_NORM_ACT_STATS FILE *f = fopen("norm_act.stt", "a"); fprintf(f, "\n%12d\n", cpi->activity_avg ); #endif // Reset pointers to start of activity map x->mb_activity_ptr = cpi->mb_activity_map; // Calculate normalized mb activity number. for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { // Read activity from the map act = *(x->mb_activity_ptr); // Calculate a normalized activity number a = act + 4*cpi->activity_avg; b = 4*act + cpi->activity_avg; if ( b >= a ) *(x->activity_ptr) = (int)((b + (a>>1))/a) - 1; else *(x->activity_ptr) = 1 - (int)((a + (b>>1))/b); #if OUTPUT_NORM_ACT_STATS fprintf(f, " %6d", *(x->mb_activity_ptr)); #endif // Increment activity map pointers x->mb_activity_ptr++; } #if OUTPUT_NORM_ACT_STATS fprintf(f, "\n"); #endif } #if OUTPUT_NORM_ACT_STATS fclose(f); #endif } #endif // Loop through all MBs. Note activity of each, average activity and // calculate a normalized activity for each static void build_activity_map( VP8_COMP *cpi ) { MACROBLOCK *const x = & cpi->mb; MACROBLOCKD *xd = &x->e_mbd; VP8_COMMON *const cm = & cpi->common; #if ALT_ACT_MEASURE YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; int recon_yoffset; int recon_y_stride = new_yv12->y_stride; #endif int mb_row, mb_col; unsigned int mb_activity; int64_t activity_sum = 0; // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { #if ALT_ACT_MEASURE // reset above block coeffs xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); #endif // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { #if ALT_ACT_MEASURE xd->dst.y_buffer = new_yv12->y_buffer + recon_yoffset; xd->left_available = (mb_col != 0); recon_yoffset += 16; #endif //Copy current mb to a buffer RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); // measure activity mb_activity = mb_activity_measure( cpi, x, mb_row, mb_col ); // Keep frame sum activity_sum += mb_activity; // Store MB level activity details. *x->mb_activity_ptr = mb_activity; // Increment activity map pointer x->mb_activity_ptr++; // adjust to the next column of source macroblocks x->src.y_buffer += 16; } // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; #if ALT_ACT_MEASURE //extend the recon for intra prediction vp8_extend_mb_row(new_yv12, xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); #endif } // Calculate an "average" MB activity calc_av_activity(cpi, activity_sum); #if USE_ACT_INDEX // Calculate an activity index number of each mb calc_activity_index( cpi, x ); #endif } // Macroblock activity masking void vp8_activity_masking(VP8_COMP *cpi, MACROBLOCK *x) { #if USE_ACT_INDEX x->rdmult += *(x->mb_activity_ptr) * (x->rdmult >> 2); x->errorperbit = x->rdmult * 100 /(110 * x->rddiv); x->errorperbit += (x->errorperbit==0); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + (2*cpi->activity_avg); b = (2*act) + cpi->activity_avg; x->rdmult = (unsigned int)(((int64_t)x->rdmult*b + (a>>1))/a); x->errorperbit = x->rdmult * 100 /(110 * x->rddiv); x->errorperbit += (x->errorperbit==0); #endif // Activity based Zbin adjustment adjust_act_zbin(cpi, x); } static void encode_mb_row(VP8_COMP *cpi, VP8_COMMON *cm, int mb_row, MACROBLOCK *x, MACROBLOCKD *xd, TOKENEXTRA **tp, int *totalrate) { int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = cm->lst_fb_idx; int dst_fb_idx = cm->new_fb_idx; int recon_y_stride = cm->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = cm->yv12_fb[ref_fb_idx].uv_stride; int map_index = (mb_row * cpi->common.mb_cols); #if CONFIG_MULTITHREAD const int nsync = cpi->mt_sync_range; const int rightmost_col = cm->mb_cols - 1; volatile const int *last_row_current_mb_col; if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) last_row_current_mb_col = &cpi->mt_current_mb_col[mb_row - 1]; else last_row_current_mb_col = &rightmost_col; #endif // reset above block coeffs xd->above_context = cm->above_context; xd->up_available = (mb_row != 0); recon_yoffset = (mb_row * recon_y_stride * 16); recon_uvoffset = (mb_row * recon_uv_stride * 8); cpi->tplist[mb_row].start = *tp; //printf("Main mb_row = %d\n", mb_row); // Distance of Mb to the top & bottom edges, specified in 1/8th pel // units as they are always compared to values that are in 1/8th pel units xd->mb_to_top_edge = -((mb_row * 16) << 3); xd->mb_to_bottom_edge = ((cm->mb_rows - 1 - mb_row) * 16) << 3; // Set up limit values for vertical motion vector components // to prevent them extending beyond the UMV borders x->mv_row_min = -((mb_row * 16) + (VP8BORDERINPIXELS - 16)); x->mv_row_max = ((cm->mb_rows - 1 - mb_row) * 16) + (VP8BORDERINPIXELS - 16); // Set the mb activity pointer to the start of the row. x->mb_activity_ptr = &cpi->mb_activity_map[map_index]; // for each macroblock col in image for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { #ifdef ENC_DEBUG //enc_debug = (cpi->count==29 && mb_row==5 && mb_col==0); enc_debug = (cpi->count==4 && mb_row==17 && mb_col==13); mb_col_debug=mb_col; mb_row_debug=mb_row; #endif // Distance of Mb to the left & right edges, specified in // 1/8th pel units as they are always compared to values // that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((cm->mb_cols - 1 - mb_col) * 16) << 3; // Set up limit values for horizontal motion vector components // to prevent them extending beyond the UMV borders x->mv_col_min = -((mb_col * 16) + (VP8BORDERINPIXELS - 16)); x->mv_col_max = ((cm->mb_cols - 1 - mb_col) * 16) + (VP8BORDERINPIXELS - 16); xd->dst.y_buffer = cm->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = cm->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = cm->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); x->rddiv = cpi->RDDIV; x->rdmult = cpi->RDMULT; //Copy current mb to a buffer RECON_INVOKE(&xd->rtcd->recon, copy16x16)(x->src.y_buffer, x->src.y_stride, x->thismb, 16); #if CONFIG_MULTITHREAD if ((cpi->b_multi_threaded != 0) && (mb_row != 0)) { if ((mb_col & (nsync - 1)) == 0) { while (mb_col > (*last_row_current_mb_col - nsync) && (*last_row_current_mb_col) != (cm->mb_cols - 1)) { x86_pause_hint(); thread_sleep(0); } } } #endif if(cpi->oxcf.tuning == VP8_TUNE_SSIM) vp8_activity_masking(cpi, x); // Is segmentation enabled if (xd->segmentation_enabled) { // Code to set segment id in xd->mbmi.segment_id if (cpi->segmentation_map[map_index+mb_col] <= 3) xd->mode_info_context->mbmi.segment_id = cpi->segmentation_map[map_index+mb_col]; else xd->mode_info_context->mbmi.segment_id = 0; vp8cx_mb_init_quantizer(cpi, x); } else // Set to Segment 0 by default xd->mode_info_context->mbmi.segment_id = 0; x->active_ptr = cpi->active_map + map_index + mb_col; if (cm->frame_type == KEY_FRAME) { *totalrate += vp8cx_encode_intra_macro_block(cpi, x, tp); //Note the encoder may have changed the segment_id #ifdef MODE_STATS y_modes[xd->mode_info_context->mbmi.mode] ++; #endif } else { *totalrate += vp8cx_encode_inter_macroblock(cpi, x, tp, recon_yoffset, recon_uvoffset); //Note the encoder may have changed the segment_id #ifdef MODE_STATS inter_y_modes[xd->mode_info_context->mbmi.mode] ++; if (xd->mode_info_context->mbmi.mode == SPLITMV) { int b; for (b = 0; b < x->partition_info->count; b++) { inter_b_modes[x->partition_info->bmi[b].mode] ++; } } #endif // Count of last ref frame 0,0 usage if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) cpi->inter_zz_count ++; // Actions required if segmentation enabled if ( xd->segmentation_enabled ) { // Special case code for cyclic refresh // If cyclic update enabled then copy xd->mbmi.segment_id; // (which may have been updated based on mode during // vp8cx_encode_inter_macroblock()) back into the global // segmentation map if (cpi->cyclic_refresh_mode_enabled) { cpi->segmentation_map[map_index+mb_col] = xd->mode_info_context->mbmi.segment_id; // If the block has been refreshed mark it as clean (the // magnitude of the -ve influences how long it will be // before we consider another refresh): // Else if it was coded (last frame 0,0) and has not // already been refreshed then mark it as a candidate // for cleanup next time (marked 0) // else mark it as dirty (1). if (xd->mode_info_context->mbmi.segment_id) cpi->cyclic_refresh_map[map_index+mb_col] = -1; else if ((xd->mode_info_context->mbmi.mode == ZEROMV) && (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME)) { if (cpi->cyclic_refresh_map[map_index+mb_col] == 1) cpi->cyclic_refresh_map[map_index+mb_col] = 0; } else cpi->cyclic_refresh_map[map_index+mb_col] = 1; } } } cpi->tplist[mb_row].stop = *tp; // Increment pointer into gf usage flags structure. x->gf_active_ptr++; // Increment the activity mask pointers. x->mb_activity_ptr++; // adjust to the next column of macroblocks x->src.y_buffer += 16; x->src.u_buffer += 8; x->src.v_buffer += 8; recon_yoffset += 16; recon_uvoffset += 8; // skip to next mb xd->mode_info_context++; x->partition_info++; xd->above_context++; #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded != 0) { cpi->mt_current_mb_col[mb_row] = mb_col; } #endif } //extend the recon for intra prediction vp8_extend_mb_row( &cm->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8); // this is to account for the border xd->mode_info_context++; x->partition_info++; #if CONFIG_MULTITHREAD if ((cpi->b_multi_threaded != 0) && (mb_row == cm->mb_rows - 1)) { sem_post(&cpi->h_event_end_encoding); /* signal frame encoding end */ } #endif //#if CONFIG_SEGFEATURES // debug output #if DBG_PRNT_SEGMAP { FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "\n" ); fclose(statsfile); } #endif } void init_encode_frame_mb_context(VP8_COMP *cpi) { MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; // GF active flags data structure x->gf_active_ptr = (signed char *)cpi->gf_active_flags; // Activity map pointer x->mb_activity_ptr = cpi->mb_activity_map; x->vector_range = 32; x->act_zbin_adj = 0; x->partition_info = x->pi; xd->mode_info_context = cm->mi; xd->mode_info_stride = cm->mode_info_stride; xd->frame_type = cm->frame_type; xd->frames_since_golden = cm->frames_since_golden; xd->frames_till_alt_ref_frame = cm->frames_till_alt_ref_frame; // reset intra mode contexts if (cm->frame_type == KEY_FRAME) vp8_init_mbmode_probs(cm); // Copy data over into macro block data sturctures. x->src = * cpi->Source; xd->pre = cm->yv12_fb[cm->lst_fb_idx]; xd->dst = cm->yv12_fb[cm->new_fb_idx]; // set up frame for intra coded blocks vp8_setup_intra_recon(&cm->yv12_fb[cm->new_fb_idx]); vp8_build_block_offsets(x); vp8_setup_block_dptrs(&x->e_mbd); vp8_setup_block_ptrs(x); xd->mode_info_context->mbmi.mode = DC_PRED; xd->mode_info_context->mbmi.uv_mode = DC_PRED; xd->left_context = &cm->left_context; vp8_zero(cpi->count_mb_ref_frame_usage) vp8_zero(cpi->ymode_count) vp8_zero(cpi->uv_mode_count) x->mvc = cm->fc.mvc; vpx_memset(cm->above_context, 0, sizeof(ENTROPY_CONTEXT_PLANES) * cm->mb_cols); xd->ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded); // Special case treatment when GF and ARF are not sensible options for reference if (cpi->ref_frame_flags == VP8_LAST_FLAG) { xd->ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(255); xd->ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_zero(128); xd->ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(255) + vp8_cost_one(128); } else { xd->ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(cpi->prob_last_coded); xd->ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_zero(cpi->prob_gf_coded); xd->ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_one(cpi->prob_gf_coded); } xd->fullpixel_mask = 0xffffffff; if(cm->full_pixel) xd->fullpixel_mask = 0xfffffff8; } void vp8_encode_frame(VP8_COMP *cpi) { int mb_row; MACROBLOCK *const x = & cpi->mb; VP8_COMMON *const cm = & cpi->common; MACROBLOCKD *const xd = & x->e_mbd; TOKENEXTRA *tp = cpi->tok; int totalrate; //#if CONFIG_SEGFEATURES // debug output #if DBG_PRNT_SEGMAP { FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "\n" ); fclose(statsfile); } #endif totalrate = 0; if (cpi->compressor_speed == 2) { if (cpi->oxcf.cpu_used < 0) cpi->Speed = -(cpi->oxcf.cpu_used); else vp8_auto_select_speed(cpi); } // Functions setup for all frame types so we can use MC in AltRef if (cm->mcomp_filter_type == SIXTAP) { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, sixtap16x16); } else { xd->subpixel_predict = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear4x4); xd->subpixel_predict8x4 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x4); xd->subpixel_predict8x8 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear8x8); xd->subpixel_predict16x16 = SUBPIX_INVOKE( &cpi->common.rtcd.subpix, bilinear16x16); } // Reset frame count of inter 0,0 motion vector usage. cpi->inter_zz_count = 0; cpi->prediction_error = 0; cpi->intra_error = 0; cpi->skip_true_count = 0; cpi->skip_false_count = 0; #if 0 // Experimental code cpi->frame_distortion = 0; cpi->last_mb_distortion = 0; #endif xd->mode_info_context = cm->mi; vp8_zero(cpi->MVcount); vp8_zero(cpi->coef_counts); vp8cx_frame_init_quantizer(cpi); vp8_initialize_rd_consts(cpi, cm->base_qindex + cm->y1dc_delta_q); vp8cx_initialize_me_consts(cpi, cm->base_qindex); if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Initialize encode frame context. init_encode_frame_mb_context(cpi); // Build a frame level activity map build_activity_map(cpi); } // re-initencode frame context. init_encode_frame_mb_context(cpi); { struct vpx_usec_timer emr_timer; vpx_usec_timer_start(&emr_timer); #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded) { int i; vp8cx_init_mbrthread_data(cpi, x, cpi->mb_row_ei, 1, cpi->encoding_thread_count); for (i = 0; i < cm->mb_rows; i++) cpi->mt_current_mb_col[i] = -1; for (i = 0; i < cpi->encoding_thread_count; i++) { sem_post(&cpi->h_event_start_encoding[i]); } for (mb_row = 0; mb_row < cm->mb_rows; mb_row += (cpi->encoding_thread_count + 1)) { vp8_zero(cm->left_context) tp = cpi->tok + mb_row * (cm->mb_cols * 16 * 24); encode_mb_row(cpi, cm, mb_row, x, xd, &tp, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride * (cpi->encoding_thread_count + 1) - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride * (cpi->encoding_thread_count + 1) - 8 * cm->mb_cols; xd->mode_info_context += xd->mode_info_stride * cpi->encoding_thread_count; x->partition_info += xd->mode_info_stride * cpi->encoding_thread_count; x->gf_active_ptr += cm->mb_cols * cpi->encoding_thread_count; } sem_wait(&cpi->h_event_end_encoding); /* wait for other threads to finish */ cpi->tok_count = 0; for (mb_row = 0; mb_row < cm->mb_rows; mb_row ++) { cpi->tok_count += cpi->tplist[mb_row].stop - cpi->tplist[mb_row].start; } for (i = 0; i < cpi->encoding_thread_count; i++) { totalrate += cpi->mb_row_ei[i].totalrate; } } else #endif { // for each macroblock row in image for (mb_row = 0; mb_row < cm->mb_rows; mb_row++) { vp8_zero(cm->left_context) encode_mb_row(cpi, cm, mb_row, x, xd, &tp, &totalrate); // adjust to the next row of mbs x->src.y_buffer += 16 * x->src.y_stride - 16 * cm->mb_cols; x->src.u_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; x->src.v_buffer += 8 * x->src.uv_stride - 8 * cm->mb_cols; } cpi->tok_count = tp - cpi->tok; } vpx_usec_timer_mark(&emr_timer); cpi->time_encode_mb_row += vpx_usec_timer_elapsed(&emr_timer); } // 256 rate units to the bit cpi->projected_frame_size = totalrate >> 8; // projected_frame_size in units of BYTES // Make a note of the percentage MBs coded Intra. if (cm->frame_type == KEY_FRAME) { cpi->this_frame_percent_intra = 100; } else { int tot_modes; tot_modes = cpi->count_mb_ref_frame_usage[INTRA_FRAME] + cpi->count_mb_ref_frame_usage[LAST_FRAME] + cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] + cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; if (tot_modes) cpi->this_frame_percent_intra = cpi->count_mb_ref_frame_usage[INTRA_FRAME] * 100 / tot_modes; } #if 0 { int cnt = 0; int flag[2] = {0, 0}; for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[0][cnt] != cm->fc.mvc[0][cnt]) { flag[0] = 1; vpx_memcpy(cm->fc.pre_mvc[0], cm->fc.mvc[0], MVPcount); break; } } for (cnt = 0; cnt < MVPcount; cnt++) { if (cm->fc.pre_mvc[1][cnt] != cm->fc.mvc[1][cnt]) { flag[1] = 1; vpx_memcpy(cm->fc.pre_mvc[1], cm->fc.mvc[1], MVPcount); break; } } if (flag[0] || flag[1]) vp8_build_component_cost_table(cpi->mb.mvcost, (const MV_CONTEXT *) cm->fc.mvc, flag); } #endif // Adjust the projected reference frame usage probability numbers to reflect // what we have just seen. This may be usefull when we make multiple itterations // of the recode loop rather than continuing to use values from the previous frame. if ((cm->frame_type != KEY_FRAME) && !cm->refresh_alt_ref_frame && !cm->refresh_golden_frame) { const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if ((rf_intra + rf_inter) > 0) { cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); if (cpi->prob_intra_coded < 1) cpi->prob_intra_coded = 1; if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) { cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (cpi->prob_last_coded < 1) cpi->prob_last_coded = 1; cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (cpi->prob_gf_coded < 1) cpi->prob_gf_coded = 1; } } //#if CONFIG_SEGFEATURES else { // Trap case where cpi->count_mb_ref_frame_usage[] blank. cpi->prob_intra_coded = 63; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } } #if 0 // Keep record of the total distortion this time around for future use cpi->last_frame_distortion = cpi->frame_distortion; #endif } void vp8_setup_block_ptrs(MACROBLOCK *x) { int r, c; int i; for (r = 0; r < 4; r++) { for (c = 0; c < 4; c++) { x->block[r*4+c].src_diff = x->src_diff + r * 4 * 16 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[16 + r*2+c].src_diff = x->src_diff + 256 + r * 4 * 8 + c * 4; } } for (r = 0; r < 2; r++) { for (c = 0; c < 2; c++) { x->block[20 + r*2+c].src_diff = x->src_diff + 320 + r * 4 * 8 + c * 4; } } x->block[24].src_diff = x->src_diff + 384; for (i = 0; i < 25; i++) { x->block[i].coeff = x->coeff + i * 16; } } void vp8_build_block_offsets(MACROBLOCK *x) { int block = 0; int br, bc; vp8_build_block_doffsets(&x->e_mbd); // y blocks x->thismb_ptr = &x->thismb[0]; for (br = 0; br < 4; br++) { for (bc = 0; bc < 4; bc++) { BLOCK *this_block = &x->block[block]; //this_block->base_src = &x->src.y_buffer; //this_block->src_stride = x->src.y_stride; //this_block->src = 4 * br * this_block->src_stride + 4 * bc; this_block->base_src = &x->thismb_ptr; this_block->src_stride = 16; this_block->src = 4 * br * 16 + 4 * bc; ++block; } } // u blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.u_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } // v blocks for (br = 0; br < 2; br++) { for (bc = 0; bc < 2; bc++) { BLOCK *this_block = &x->block[block]; this_block->base_src = &x->src.v_buffer; this_block->src_stride = x->src.uv_stride; this_block->src = 4 * br * this_block->src_stride + 4 * bc; ++block; } } } static void sum_intra_stats(VP8_COMP *cpi, MACROBLOCK *x) { const MACROBLOCKD *xd = & x->e_mbd; const MB_PREDICTION_MODE m = xd->mode_info_context->mbmi.mode; const MB_PREDICTION_MODE uvm = xd->mode_info_context->mbmi.uv_mode; #ifdef MODE_STATS const int is_key = cpi->common.frame_type == KEY_FRAME; ++ (is_key ? uv_modes : inter_uv_modes)[uvm]; ++ uv_modes_y[m][uvm]; if (m == B_PRED) { unsigned int *const bct = is_key ? b_modes : inter_b_modes; int b = 0; do { ++ bct[xd->block[b].bmi.as_mode]; } while (++b < 16); } #if CONFIG_I8X8 if(m==I8X8_PRED) { i8x8_modes[xd->block[0].bmi.as_mode]++; i8x8_modes[xd->block[2].bmi.as_mode]++; i8x8_modes[xd->block[8].bmi.as_mode]++; i8x8_modes[xd->block[10].bmi.as_mode]++; } #endif #endif ++cpi->ymode_count[m]; ++cpi->uv_mode_count[uvm]; } // Experimental stub function to create a per MB zbin adjustment based on // some previously calculated measure of MB activity. static void adjust_act_zbin( VP8_COMP *cpi, MACROBLOCK *x ) { #if USE_ACT_INDEX x->act_zbin_adj = *(x->mb_activity_ptr); #else int64_t a; int64_t b; int64_t act = *(x->mb_activity_ptr); // Apply the masking to the RD multiplier. a = act + 4*cpi->activity_avg; b = 4*act + cpi->activity_avg; if ( act > cpi->activity_avg ) x->act_zbin_adj = (int)(((int64_t)b + (a>>1))/a) - 1; else x->act_zbin_adj = 1 - (int)(((int64_t)a + (b>>1))/b); #endif } int vp8cx_encode_intra_macro_block(VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t) { int rate; if (cpi->sf.RD && cpi->compressor_speed != 2) vp8_rd_pick_intra_mode(cpi, x, &rate); else vp8_pick_intra_mode(cpi, x, &rate); if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { adjust_act_zbin( cpi, x ); vp8_update_zbin_extra(cpi, x); } #if CONFIG_I8X8 if(x->e_mbd.mode_info_context->mbmi.mode == I8X8_PRED) { vp8_encode_intra8x8mby(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra8x8mbuv(IF_RTCD(&cpi->rtcd), x); } else #endif if (x->e_mbd.mode_info_context->mbmi.mode == B_PRED) vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); else { vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } #if CONFIG_I8X8 if(x->e_mbd.mode_info_context->mbmi.mode != I8X8_PRED) #endif vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); sum_intra_stats(cpi, x); vp8_tokenize_mb(cpi, &x->e_mbd, t); #if CONFIG_T8X8 if ( get_seg_tx_type(&x->e_mbd, x->e_mbd.mode_info_context->mbmi.segment_id) == TX_8X8 ) { cpi->t8x8_count++; } else cpi->t4x4_count++; #endif return rate; } #ifdef SPEEDSTATS extern int cnt_pm; #endif extern void vp8_fix_contexts(MACROBLOCKD *x); int vp8cx_encode_inter_macroblock ( VP8_COMP *cpi, MACROBLOCK *x, TOKENEXTRA **t, int recon_yoffset, int recon_uvoffset ) { MACROBLOCKD *const xd = &x->e_mbd; int intra_error = 0; int rate; int distortion; unsigned char *segment_id = &xd->mode_info_context->mbmi.segment_id; x->skip = 0; if (xd->segmentation_enabled) x->encode_breakout = cpi->segment_encode_breakout[*segment_id]; else x->encode_breakout = cpi->oxcf.encode_breakout; if (cpi->sf.RD) { int zbin_mode_boost_enabled = cpi->zbin_mode_boost_enabled; /* Are we using the fast quantizer for the mode selection? */ if(cpi->sf.use_fastquant_for_pick) { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb); cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb_pair); /* the fast quantizer does not use zbin_extra, so * do not recalculate */ cpi->zbin_mode_boost_enabled = 0; } vp8_rd_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); /* switch back to the regular quantizer for the encode */ if (cpi->sf.improved_quant) { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb); cpi->mb.quantize_b_pair = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb_pair); } /* restore cpi->zbin_mode_boost_enabled */ cpi->zbin_mode_boost_enabled = zbin_mode_boost_enabled; } else vp8_pick_inter_mode(cpi, x, recon_yoffset, recon_uvoffset, &rate, &distortion, &intra_error); cpi->prediction_error += distortion; cpi->intra_error += intra_error; if(cpi->oxcf.tuning == VP8_TUNE_SSIM) { // Adjust the zbin based on this MB rate. adjust_act_zbin( cpi, x ); } #if 0 // Experimental RD code cpi->frame_distortion += distortion; cpi->last_mb_distortion = distortion; #endif // MB level adjutment to quantizer setup if (xd->segmentation_enabled) { // If cyclic update enabled if (cpi->cyclic_refresh_mode_enabled) { // Clear segment_id back to 0 if not coded (last frame 0,0) if ( (*segment_id == 1) && ( (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) || (xd->mode_info_context->mbmi.mode != ZEROMV) ) ) { *segment_id = 0; /* segment_id changed, so update */ vp8cx_mb_init_quantizer(cpi, x); } } //#if CONFIG_SEGFEATURES else { //segfeature_test_function(cpi, xd); #if DBG_PRNT_SEGMAP // Debug output { FILE *statsfile; statsfile = fopen("segmap2.stt", "a"); fprintf(statsfile, "%2d%2d%2d ", *segment_id, xd->mode_info_context->mbmi.ref_frame, xd->mode_info_context->mbmi.mode ); fclose(statsfile); } #endif } } { // Experimental code. Special case for gf and arf zeromv modes. // Increase zbin size to supress noise cpi->zbin_mode_boost = 0; if (cpi->zbin_mode_boost_enabled) { if ( xd->mode_info_context->mbmi.ref_frame != INTRA_FRAME ) { if (xd->mode_info_context->mbmi.mode == ZEROMV) { if (xd->mode_info_context->mbmi.ref_frame != LAST_FRAME) cpi->zbin_mode_boost = GF_ZEROMV_ZBIN_BOOST; else cpi->zbin_mode_boost = LF_ZEROMV_ZBIN_BOOST; } else if (xd->mode_info_context->mbmi.mode == SPLITMV) cpi->zbin_mode_boost = 0; else cpi->zbin_mode_boost = MV_ZBIN_BOOST; } } /* The fast quantizer doesn't use zbin_extra, only do so with * the regular quantizer. */ if (cpi->sf.improved_quant) vp8_update_zbin_extra(cpi, x); } //#if CONFIG_SEGFEATURES // If we have just a single reference frame coded for a segment then // exclude from the reference frame counts used to work out // probabilities. NOTE: At the moment we dont support custom trees // for the reference frame coding for each segment but this is a // possible future action. if ( !segfeature_active( xd, *segment_id, SEG_LVL_REF_FRAME ) || ( ( check_segref( xd, *segment_id, INTRA_FRAME ) + check_segref( xd, *segment_id, LAST_FRAME ) + check_segref( xd, *segment_id, GOLDEN_FRAME ) + check_segref( xd, *segment_id, ALTREF_FRAME ) ) > 1 ) ) { cpi->count_mb_ref_frame_usage[xd->mode_info_context->mbmi.ref_frame]++; } if (xd->mode_info_context->mbmi.ref_frame == INTRA_FRAME) { if (xd->mode_info_context->mbmi.mode == B_PRED) { vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra4x4mby(IF_RTCD(&cpi->rtcd), x); } else { vp8_encode_intra16x16mbuv(IF_RTCD(&cpi->rtcd), x); vp8_encode_intra16x16mby(IF_RTCD(&cpi->rtcd), x); } sum_intra_stats(cpi, x); } else { int ref_fb_idx; if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = cpi->common.lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = cpi->common.gld_fb_idx; else ref_fb_idx = cpi->common.alt_fb_idx; xd->pre.y_buffer = cpi->common.yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = cpi->common.yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = cpi->common.yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; if (!x->skip) { vp8_encode_inter16x16(IF_RTCD(&cpi->rtcd), x); // Clear mb_skip_coeff if mb_no_coeff_skip is not set if (!cpi->common.mb_no_coeff_skip) xd->mode_info_context->mbmi.mb_skip_coeff = 0; } else vp8_build_inter16x16_predictors_mb(xd, xd->dst.y_buffer, xd->dst.u_buffer, xd->dst.v_buffer, xd->dst.y_stride, xd->dst.uv_stride); } #if CONFIG_T8X8 if ( get_seg_tx_type( xd, *segment_id ) == TX_8X8 ) { cpi->t8x8_count++; } else cpi->t4x4_count++; #endif if (!x->skip) { #ifdef ENC_DEBUG if (enc_debug) { int i; printf("Segment=%d [%d, %d]: %d %d:\n", x->e_mbd.mode_info_context->mbmi.segment_id, mb_col_debug, mb_row_debug, xd->mb_to_left_edge, xd->mb_to_top_edge); for (i =0; i<400; i++) { printf("%3d ", xd->qcoeff[i]); if (i%16 == 15) printf("\n"); } printf("\n"); printf("eobs = "); for (i=0;i<25;i++) printf("%d:%d ", i, xd->block[i].eob); printf("\n"); fflush(stdout); } #endif vp8_tokenize_mb(cpi, xd, t); #ifdef ENC_DEBUG if (enc_debug) { printf("Tokenized\n"); fflush(stdout); } #endif } else { if (cpi->common.mb_no_coeff_skip) { xd->mode_info_context->mbmi.mb_skip_coeff = 1; cpi->skip_true_count ++; vp8_fix_contexts(xd); } else { vp8_stuff_mb(cpi, xd, t); xd->mode_info_context->mbmi.mb_skip_coeff = 0; cpi->skip_false_count ++; } } return rate; }