/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp8/common/header.h" #include "encodemv.h" #include "vp8/common/entropymode.h" #include "vp8/common/findnearmv.h" #include "mcomp.h" #include "vp8/common/systemdependent.h" #include #include #include "vp8/common/pragmas.h" #include "vpx_mem/vpx_mem.h" #include "bitstream.h" #if CONFIG_SEGMENTATION static int segment_cost = 0; #endif const int vp8cx_base_skip_false_prob[128] = { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 251, 248, 244, 240, 236, 232, 229, 225, 221, 217, 213, 208, 204, 199, 194, 190, 187, 183, 179, 175, 172, 168, 164, 160, 157, 153, 149, 145, 142, 138, 134, 130, 127, 124, 120, 117, 114, 110, 107, 104, 101, 98, 95, 92, 89, 86, 83, 80, 77, 74, 71, 68, 65, 62, 59, 56, 53, 50, 47, 44, 41, 38, 35, 32, 30, 28, 26, 24, 22, 20, 18, 16, }; #if defined(SECTIONBITS_OUTPUT) unsigned __int64 Sectionbits[500]; #endif #ifdef ENTROPY_STATS int intra_mode_stats[10][10][10]; static unsigned int tree_update_hist [BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1] [2]; extern unsigned int active_section; #endif #ifdef MODE_STATS int count_mb_seg[4] = { 0, 0, 0, 0 }; #endif static void update_mode( vp8_writer *const w, int n, vp8_token tok [/* n */], vp8_tree tree, vp8_prob Pnew [/* n-1 */], vp8_prob Pcur [/* n-1 */], unsigned int bct [/* n-1 */] [2], const unsigned int num_events[/* n */] ) { unsigned int new_b = 0, old_b = 0; int i = 0; vp8_tree_probs_from_distribution( n--, tok, tree, Pnew, bct, num_events, 256, 1 ); do { new_b += vp8_cost_branch(bct[i], Pnew[i]); old_b += vp8_cost_branch(bct[i], Pcur[i]); } while (++i < n); if (new_b + (n << 8) < old_b) { int i = 0; vp8_write_bit(w, 1); do { const vp8_prob p = Pnew[i]; vp8_write_literal(w, Pcur[i] = p ? p : 1, 8); } while (++i < n); } else vp8_write_bit(w, 0); } static void update_mbintra_mode_probs(VP8_COMP *cpi) { VP8_COMMON *const x = & cpi->common; vp8_writer *const w = & cpi->bc; { vp8_prob Pnew [VP8_YMODES-1]; unsigned int bct [VP8_YMODES-1] [2]; update_mode( w, VP8_YMODES, vp8_ymode_encodings, vp8_ymode_tree, Pnew, x->fc.ymode_prob, bct, (unsigned int *)cpi->ymode_count ); } { vp8_prob Pnew [VP8_UV_MODES-1]; unsigned int bct [VP8_UV_MODES-1] [2]; update_mode( w, VP8_UV_MODES, vp8_uv_mode_encodings, vp8_uv_mode_tree, Pnew, x->fc.uv_mode_prob, bct, (unsigned int *)cpi->uv_mode_count ); } } static void write_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_ymode_tree, p, vp8_ymode_encodings + m); } static void kfwrite_ymode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_kf_ymode_tree, p, vp8_kf_ymode_encodings + m); } static void write_uv_mode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_uv_mode_tree, p, vp8_uv_mode_encodings + m); } static void write_bmode(vp8_writer *bc, int m, const vp8_prob *p) { vp8_write_token(bc, vp8_bmode_tree, p, vp8_bmode_encodings + m); } static void write_split(vp8_writer *bc, int x) { vp8_write_token( bc, vp8_mbsplit_tree, vp8_mbsplit_probs, vp8_mbsplit_encodings + x ); } static const unsigned int norm[256] = { 0, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; static void pack_tokens_c(vp8_writer *w, const TOKENEXTRA *p, int xcount) { const TOKENEXTRA *const stop = p + xcount; unsigned int split; unsigned int shift; int count = w->count; unsigned int range = w->range; unsigned int lowvalue = w->lowvalue; while (p < stop) { const int t = p->Token; vp8_token *const a = vp8_coef_encodings + t; const vp8_extra_bit_struct *const b = vp8_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; if (p->skip_eob_node) { n--; i = 2; } do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = vp8_coef_tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *pp = b->prob; int v = e >> 1; int n = L; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = b->tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); } { split = (range + 1) >> 1; if (e & 1) { lowvalue += split; range = range - split; } else { range = split; } range <<= 1; if ((lowvalue & 0x80000000)) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } lowvalue <<= 1; if (!++count) { count = -8; w->buffer[w->pos++] = (lowvalue >> 24); lowvalue &= 0xffffff; } } } ++p; } w->count = count; w->lowvalue = lowvalue; w->range = range; } static void write_partition_size(unsigned char *cx_data, int size) { signed char csize; csize = size & 0xff; *cx_data = csize; csize = (size >> 8) & 0xff; *(cx_data + 1) = csize; csize = (size >> 16) & 0xff; *(cx_data + 2) = csize; } static void pack_tokens_into_partitions_c(VP8_COMP *cpi, unsigned char *cx_data, int num_part, int *size) { int i; unsigned char *ptr = cx_data; unsigned int shift; vp8_writer *w = &cpi->bc2; *size = 3 * (num_part - 1); ptr = cx_data + (*size); for (i = 0; i < num_part; i++) { vp8_start_encode(w, ptr); { unsigned int split; int count = w->count; unsigned int range = w->range; unsigned int lowvalue = w->lowvalue; int mb_row; for (mb_row = i; mb_row < cpi->common.mb_rows; mb_row += num_part) { TOKENEXTRA *p = cpi->tplist[mb_row].start; TOKENEXTRA *stop = cpi->tplist[mb_row].stop; while (p < stop) { const int t = p->Token; vp8_token *const a = vp8_coef_encodings + t; const vp8_extra_bit_struct *const b = vp8_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; if (p->skip_eob_node) { n--; i = 2; } do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = vp8_coef_tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *pp = b->prob; int v = e >> 1; int n = L; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = b->tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); } { split = (range + 1) >> 1; if (e & 1) { lowvalue += split; range = range - split; } else { range = split; } range <<= 1; if ((lowvalue & 0x80000000)) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } lowvalue <<= 1; if (!++count) { count = -8; w->buffer[w->pos++] = (lowvalue >> 24); lowvalue &= 0xffffff; } } } ++p; } } w->count = count; w->lowvalue = lowvalue; w->range = range; } vp8_stop_encode(w); *size += w->pos; if (i < (num_part - 1)) { write_partition_size(cx_data, w->pos); cx_data += 3; ptr += w->pos; } } } static void pack_mb_row_tokens_c(VP8_COMP *cpi, vp8_writer *w) { unsigned int split; int count = w->count; unsigned int range = w->range; unsigned int lowvalue = w->lowvalue; unsigned int shift; int mb_row; for (mb_row = 0; mb_row < cpi->common.mb_rows; mb_row++) { TOKENEXTRA *p = cpi->tplist[mb_row].start; TOKENEXTRA *stop = cpi->tplist[mb_row].stop; while (p < stop) { const int t = p->Token; vp8_token *const a = vp8_coef_encodings + t; const vp8_extra_bit_struct *const b = vp8_extra_bits + t; int i = 0; const unsigned char *pp = p->context_tree; int v = a->value; int n = a->Len; if (p->skip_eob_node) { n--; i = 2; } do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = vp8_coef_tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); if (b->base_val) { const int e = p->Extra, L = b->Len; if (L) { const unsigned char *pp = b->prob; int v = e >> 1; int n = L; /* number of bits in v, assumed nonzero */ int i = 0; do { const int bb = (v >> --n) & 1; split = 1 + (((range - 1) * pp[i>>1]) >> 8); i = b->tree[i+bb]; if (bb) { lowvalue += split; range = range - split; } else { range = split; } shift = norm[range]; range <<= shift; count += shift; if (count >= 0) { int offset = shift - count; if ((lowvalue << (offset - 1)) & 0x80000000) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } w->buffer[w->pos++] = (lowvalue >> (24 - offset)); lowvalue <<= offset; shift = count; lowvalue &= 0xffffff; count -= 8 ; } lowvalue <<= shift; } while (n); } { split = (range + 1) >> 1; if (e & 1) { lowvalue += split; range = range - split; } else { range = split; } range <<= 1; if ((lowvalue & 0x80000000)) { int x = w->pos - 1; while (x >= 0 && w->buffer[x] == 0xff) { w->buffer[x] = (unsigned char)0; x--; } w->buffer[x] += 1; } lowvalue <<= 1; if (!++count) { count = -8; w->buffer[w->pos++] = (lowvalue >> 24); lowvalue &= 0xffffff; } } } ++p; } } w->count = count; w->lowvalue = lowvalue; w->range = range; } static void write_mv_ref ( vp8_writer *w, MB_PREDICTION_MODE m, const vp8_prob *p ) { assert(NEARESTMV <= m && m <= SPLITMV); vp8_write_token(w, vp8_mv_ref_tree, p, vp8_mv_ref_encoding_array - NEARESTMV + m); } static void write_sub_mv_ref ( vp8_writer *w, B_PREDICTION_MODE m, const vp8_prob *p ) { assert(LEFT4X4 <= m && m <= NEW4X4); vp8_write_token(w, vp8_sub_mv_ref_tree, p, vp8_sub_mv_ref_encoding_array - LEFT4X4 + m); } static void write_mv ( vp8_writer *w, const MV *mv, const int_mv *ref, const MV_CONTEXT *mvc ) { MV e; e.row = mv->row - ref->as_mv.row; e.col = mv->col - ref->as_mv.col; vp8_encode_motion_vector(w, &e, mvc); } static void write_mb_features(vp8_writer *w, const MB_MODE_INFO *mi, const MACROBLOCKD *x) { // Encode the MB segment id. if (x->segmentation_enabled && x->update_mb_segmentation_map) { switch (mi->segment_id) { case 0: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[1]); #if CONFIG_SEGMENTATION segment_cost += vp8_cost_zero(x->mb_segment_tree_probs[0]) + vp8_cost_zero(x->mb_segment_tree_probs[1]); #endif break; case 1: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 1, x->mb_segment_tree_probs[1]); #if CONFIG_SEGMENTATION segment_cost += vp8_cost_zero(x->mb_segment_tree_probs[0]) + vp8_cost_one(x->mb_segment_tree_probs[1]); #endif break; case 2: vp8_write(w, 1, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[2]); #if CONFIG_SEGMENTATION segment_cost += vp8_cost_one(x->mb_segment_tree_probs[0]) + vp8_cost_zero(x->mb_segment_tree_probs[2]); #endif break; case 3: vp8_write(w, 1, x->mb_segment_tree_probs[0]); vp8_write(w, 1, x->mb_segment_tree_probs[2]); #if CONFIG_SEGMENTATION segment_cost += vp8_cost_one(x->mb_segment_tree_probs[0]) + vp8_cost_one(x->mb_segment_tree_probs[2]); #endif break; // TRAP.. This should not happen default: vp8_write(w, 0, x->mb_segment_tree_probs[0]); vp8_write(w, 0, x->mb_segment_tree_probs[1]); #if CONFIG_SEGMENTATION segment_cost += vp8_cost_zero(x->mb_segment_tree_probs[0]) + vp8_cost_zero(x->mb_segment_tree_probs[1]); #endif break; } } } static void pack_inter_mode_mvs(VP8_COMP *const cpi) { VP8_COMMON *const pc = & cpi->common; vp8_writer *const w = & cpi->bc; const MV_CONTEXT *mvc = pc->fc.mvc; MACROBLOCKD *xd = &cpi->mb.e_mbd; #if CONFIG_SEGMENTATION int left_id, above_id; int i; int sum; int index = 0; #endif const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; MODE_INFO *m = pc->mi, *ms; const int mis = pc->mode_info_stride; int mb_row = -1; int prob_last_coded; int prob_gf_coded; int prob_skip_false = 0; ms = pc->mi - 1; cpi->mb.partition_info = cpi->mb.pi; // Calculate the probabilities to be used to code the reference frame based on actual useage this frame if (!(cpi->prob_intra_coded = rf_intra * 255 / (rf_intra + rf_inter))) cpi->prob_intra_coded = 1; prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (!prob_last_coded) prob_last_coded = 1; prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (!prob_gf_coded) prob_gf_coded = 1; #ifdef ENTROPY_STATS active_section = 1; #endif if (pc->mb_no_coeff_skip) { prob_skip_false = cpi->skip_false_count * 256 / (cpi->skip_false_count + cpi->skip_true_count); if (prob_skip_false <= 1) prob_skip_false = 1; if (prob_skip_false > 255) prob_skip_false = 255; cpi->prob_skip_false = prob_skip_false; vp8_write_literal(w, prob_skip_false, 8); } vp8_write_literal(w, cpi->prob_intra_coded, 8); vp8_write_literal(w, prob_last_coded, 8); vp8_write_literal(w, prob_gf_coded, 8); update_mbintra_mode_probs(cpi); vp8_write_mvprobs(cpi); #if CONFIG_SEGMENTATION vp8_write_bit(w, (xd->temporal_update) ? 1:0); #endif while (++mb_row < pc->mb_rows) { int mb_col = -1; while (++mb_col < pc->mb_cols) { const MB_MODE_INFO *const mi = & m->mbmi; const MV_REFERENCE_FRAME rf = mi->ref_frame; const MB_PREDICTION_MODE mode = mi->mode; //MACROBLOCKD *xd = &cpi->mb.e_mbd; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to MV values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; xd->up_available = (mb_row != 0); xd->left_available = (mb_col != 0); #ifdef ENTROPY_STATS active_section = 9; #endif if (cpi->mb.e_mbd.update_mb_segmentation_map) { #if CONFIG_SEGMENTATION if (xd->temporal_update) { sum = 0; if (mb_col != 0) sum += (m-1)->mbmi.segment_flag; if (mb_row != 0) sum += (m-pc->mb_cols)->mbmi.segment_flag; if (m->mbmi.segment_flag == 0) { vp8_write(w,0,xd->mb_segment_tree_probs[3+sum]); segment_cost += vp8_cost_zero(xd->mb_segment_tree_probs[3+sum]); } else { vp8_write(w,1,xd->mb_segment_tree_probs[3+sum]); segment_cost += vp8_cost_one(xd->mb_segment_tree_probs[3+sum]); write_mb_features(w, mi, &cpi->mb.e_mbd); cpi->segmentation_map[index] = mi->segment_id; } } else { write_mb_features(w, mi, &cpi->mb.e_mbd); cpi->segmentation_map[index] = mi->segment_id; } index++; #else write_mb_features(w, mi, &cpi->mb.e_mbd); #endif } if (pc->mb_no_coeff_skip) vp8_encode_bool(w, m->mbmi.mb_skip_coeff, prob_skip_false); if (rf == INTRA_FRAME) { vp8_write(w, 0, cpi->prob_intra_coded); #ifdef ENTROPY_STATS active_section = 6; #endif write_ymode(w, mode, pc->fc.ymode_prob); if (mode == B_PRED) { int j = 0; do write_bmode(w, m->bmi[j].as_mode, pc->fc.bmode_prob); while (++j < 16); } write_uv_mode(w, mi->uv_mode, pc->fc.uv_mode_prob); } else /* inter coded */ { int_mv best_mv; vp8_prob mv_ref_p [VP8_MVREFS-1]; vp8_write(w, 1, cpi->prob_intra_coded); if (rf == LAST_FRAME) vp8_write(w, 0, prob_last_coded); else { vp8_write(w, 1, prob_last_coded); vp8_write(w, (rf == GOLDEN_FRAME) ? 0 : 1, prob_gf_coded); } { int_mv n1, n2; int ct[4]; vp8_find_near_mvs(xd, m, &n1, &n2, &best_mv, ct, rf, cpi->common.ref_frame_sign_bias); vp8_mv_ref_probs(mv_ref_p, ct); #ifdef ENTROPY_STATS accum_mv_refs(mode, ct); #endif } #ifdef ENTROPY_STATS active_section = 3; #endif write_mv_ref(w, mode, mv_ref_p); switch (mode) /* new, split require MVs */ { case NEWMV: #ifdef ENTROPY_STATS active_section = 5; #endif write_mv(w, &mi->mv.as_mv, &best_mv, mvc); break; case SPLITMV: { int j = 0; #ifdef MODE_STATS ++count_mb_seg [mi->partitioning]; #endif write_split(w, mi->partitioning); do { const B_MODE_INFO *const b = cpi->mb.partition_info->bmi + j; const int *const L = vp8_mbsplits [mi->partitioning]; int k = -1; /* first block in subset j */ int mv_contz; int_mv leftmv, abovemv; while (j != L[++k]) if (k >= 16) assert(0); leftmv.as_int = left_block_mv(m, k); abovemv.as_int = above_block_mv(m, k, mis); mv_contz = vp8_mv_cont(&leftmv, &abovemv); write_sub_mv_ref(w, b->mode, vp8_sub_mv_ref_prob2 [mv_contz]); //pc->fc.sub_mv_ref_prob); if (b->mode == NEW4X4) { #ifdef ENTROPY_STATS active_section = 11; #endif write_mv(w, &b->mv.as_mv, &best_mv, (const MV_CONTEXT *) mvc); } } while (++j < cpi->mb.partition_info->count); } break; default: break; } } ++m; cpi->mb.partition_info++; } ++m; /* skip L prediction border */ cpi->mb.partition_info++; } } static void write_kfmodes(VP8_COMP *cpi) { vp8_writer *const bc = & cpi->bc; const VP8_COMMON *const c = & cpi->common; /* const */ MODE_INFO *m = c->mi; #if CONFIG_SEGMENTATION int left_id, above_id; int i; int index = 0; #endif int mb_row = -1; int prob_skip_false = 0; if (c->mb_no_coeff_skip) { prob_skip_false = cpi->skip_false_count * 256 / (cpi->skip_false_count + cpi->skip_true_count); if (prob_skip_false <= 1) prob_skip_false = 1; if (prob_skip_false >= 255) prob_skip_false = 255; cpi->prob_skip_false = prob_skip_false; vp8_write_literal(bc, prob_skip_false, 8); } while (++mb_row < c->mb_rows) { int mb_col = -1; while (++mb_col < c->mb_cols) { const int ym = m->mbmi.mode; #if CONFIG_SEGMENTATION MACROBLOCKD *xd = &cpi->mb.e_mbd; xd->up_available = (mb_row != 0); xd->left_available = (mb_col != 0); #endif if (cpi->mb.e_mbd.update_mb_segmentation_map) { #if CONFIG_SEGMENTATION write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd); cpi->segmentation_map[index] = m->mbmi.segment_id; index++; #else write_mb_features(bc, &m->mbmi, &cpi->mb.e_mbd); #endif } if (c->mb_no_coeff_skip) vp8_encode_bool(bc, m->mbmi.mb_skip_coeff, prob_skip_false); kfwrite_ymode(bc, ym, c->kf_ymode_prob); if (ym == B_PRED) { const int mis = c->mode_info_stride; int i = 0; do { const B_PREDICTION_MODE A = above_block_mode(m, i, mis); const B_PREDICTION_MODE L = left_block_mode(m, i); const int bm = m->bmi[i].as_mode; #ifdef ENTROPY_STATS ++intra_mode_stats [A] [L] [bm]; #endif write_bmode(bc, bm, c->kf_bmode_prob [A] [L]); } while (++i < 16); } write_uv_mode(bc, (m++)->mbmi.uv_mode, c->kf_uv_mode_prob); } m++; // skip L prediction border } } int vp8_estimate_entropy_savings(VP8_COMP *cpi) { int i = 0; int savings = 0; const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; int new_intra, new_last, gf_last, oldtotal, newtotal; int ref_frame_cost[MAX_REF_FRAMES]; vp8_clear_system_state(); //__asm emms; if (cpi->common.frame_type != KEY_FRAME) { if (!(new_intra = rf_intra * 255 / (rf_intra + rf_inter))) new_intra = 1; new_last = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; gf_last = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; // new costs ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(new_intra); ref_frame_cost[LAST_FRAME] = vp8_cost_one(new_intra) + vp8_cost_zero(new_last); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(new_intra) + vp8_cost_one(new_last) + vp8_cost_zero(gf_last); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(new_intra) + vp8_cost_one(new_last) + vp8_cost_one(gf_last); newtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] + rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] + rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] + rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME]; // old costs ref_frame_cost[INTRA_FRAME] = vp8_cost_zero(cpi->prob_intra_coded); ref_frame_cost[LAST_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_zero(cpi->prob_last_coded); ref_frame_cost[GOLDEN_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_zero(cpi->prob_gf_coded); ref_frame_cost[ALTREF_FRAME] = vp8_cost_one(cpi->prob_intra_coded) + vp8_cost_one(cpi->prob_last_coded) + vp8_cost_one(cpi->prob_gf_coded); oldtotal = rfct[INTRA_FRAME] * ref_frame_cost[INTRA_FRAME] + rfct[LAST_FRAME] * ref_frame_cost[LAST_FRAME] + rfct[GOLDEN_FRAME] * ref_frame_cost[GOLDEN_FRAME] + rfct[ALTREF_FRAME] * ref_frame_cost[ALTREF_FRAME]; savings += (oldtotal - newtotal) / 256; } do { int j = 0; do { int k = 0; do { /* at every context */ /* calc probs and branch cts for this frame only */ //vp8_prob new_p [vp8_coef_tokens-1]; //unsigned int branch_ct [vp8_coef_tokens-1] [2]; int t = 0; /* token/prob index */ vp8_tree_probs_from_distribution( vp8_coef_tokens, vp8_coef_encodings, vp8_coef_tree, cpi->frame_coef_probs [i][j][k], cpi->frame_branch_ct [i][j][k], cpi->coef_counts [i][j][k], 256, 1 ); do { const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t]; const vp8_prob old = cpi->common.fc.coef_probs [i][j][k][t]; const vp8_prob upd = vp8_coef_update_probs [i][j][k][t]; const int old_b = vp8_cost_branch(ct, old); const int new_b = vp8_cost_branch(ct, newp); const int update_b = 8 + ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8); const int s = old_b - new_b - update_b; if (s > 0) savings += s; } while (++t < vp8_coef_tokens - 1); } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); return savings; } static void update_coef_probs(VP8_COMP *cpi) { int i = 0; vp8_writer *const w = & cpi->bc; int savings = 0; vp8_clear_system_state(); //__asm emms; do { int j = 0; do { int k = 0; do { //note: use result from vp8_estimate_entropy_savings, so no need to call vp8_tree_probs_from_distribution here. /* at every context */ /* calc probs and branch cts for this frame only */ //vp8_prob new_p [vp8_coef_tokens-1]; //unsigned int branch_ct [vp8_coef_tokens-1] [2]; int t = 0; /* token/prob index */ //vp8_tree_probs_from_distribution( // vp8_coef_tokens, vp8_coef_encodings, vp8_coef_tree, // new_p, branch_ct, (unsigned int *)cpi->coef_counts [i][j][k], // 256, 1 // ); do { const unsigned int *ct = cpi->frame_branch_ct [i][j][k][t]; const vp8_prob newp = cpi->frame_coef_probs [i][j][k][t]; vp8_prob *Pold = cpi->common.fc.coef_probs [i][j][k] + t; const vp8_prob old = *Pold; const vp8_prob upd = vp8_coef_update_probs [i][j][k][t]; const int old_b = vp8_cost_branch(ct, old); const int new_b = vp8_cost_branch(ct, newp); const int update_b = 8 + ((vp8_cost_one(upd) - vp8_cost_zero(upd)) >> 8); const int s = old_b - new_b - update_b; const int u = s > 0 ? 1 : 0; vp8_write(w, u, upd); #ifdef ENTROPY_STATS ++ tree_update_hist [i][j][k][t] [u]; #endif if (u) { /* send/use new probability */ *Pold = newp; vp8_write_literal(w, newp, 8); savings += s; } } while (++t < vp8_coef_tokens - 1); /* Accum token counts for generation of default statistics */ #ifdef ENTROPY_STATS t = 0; do { context_counters [i][j][k][t] += cpi->coef_counts [i][j][k][t]; } while (++t < vp8_coef_tokens); #endif } while (++k < PREV_COEF_CONTEXTS); } while (++j < COEF_BANDS); } while (++i < BLOCK_TYPES); } #ifdef PACKET_TESTING FILE *vpxlogc = 0; #endif static void put_delta_q(vp8_writer *bc, int delta_q) { if (delta_q != 0) { vp8_write_bit(bc, 1); vp8_write_literal(bc, abs(delta_q), 4); if (delta_q < 0) vp8_write_bit(bc, 1); else vp8_write_bit(bc, 0); } else vp8_write_bit(bc, 0); } void vp8_pack_bitstream(VP8_COMP *cpi, unsigned char *dest, unsigned long *size) { int i, j; VP8_HEADER oh; VP8_COMMON *const pc = & cpi->common; vp8_writer *const bc = & cpi->bc; MACROBLOCKD *const xd = & cpi->mb.e_mbd; int extra_bytes_packed = 0; unsigned char *cx_data = dest; const int *mb_feature_data_bits; oh.show_frame = (int) pc->show_frame; oh.type = (int)pc->frame_type; oh.version = pc->version; oh.first_partition_length_in_bytes = 0; mb_feature_data_bits = vp8_mb_feature_data_bits; cx_data += 3; #if defined(SECTIONBITS_OUTPUT) Sectionbits[active_section = 1] += sizeof(VP8_HEADER) * 8 * 256; #endif //vp8_kf_default_bmode_probs() is called in vp8_setup_key_frame() once for each //K frame before encode frame. pc->kf_bmode_prob doesn't get changed anywhere //else. No need to call it again here. --yw //vp8_kf_default_bmode_probs( pc->kf_bmode_prob); // every keyframe send startcode, width, height, scale factor, clamp and color type if (oh.type == KEY_FRAME) { int v; // Start / synch code cx_data[0] = 0x9D; cx_data[1] = 0x01; cx_data[2] = 0x2a; v = (pc->horiz_scale << 14) | pc->Width; cx_data[3] = v; cx_data[4] = v >> 8; v = (pc->vert_scale << 14) | pc->Height; cx_data[5] = v; cx_data[6] = v >> 8; extra_bytes_packed = 7; cx_data += extra_bytes_packed ; vp8_start_encode(bc, cx_data); // signal clr type vp8_write_bit(bc, pc->clr_type); vp8_write_bit(bc, pc->clamp_type); } else vp8_start_encode(bc, cx_data); xd->update_mb_segmentation_map = 1; // Signal whether or not Segmentation is enabled vp8_write_bit(bc, (xd->segmentation_enabled) ? 1 : 0); // Indicate which features are enabled if (xd->segmentation_enabled) { // Signal whether or not the segmentation map is being updated. vp8_write_bit(bc, (xd->update_mb_segmentation_map) ? 1 : 0); vp8_write_bit(bc, (xd->update_mb_segmentation_data) ? 1 : 0); if (xd->update_mb_segmentation_data) { signed char Data; vp8_write_bit(bc, (xd->mb_segement_abs_delta) ? 1 : 0); // For each segmentation feature (Quant and loop filter level) for (i = 0; i < MB_LVL_MAX; i++) { // For each of the segments for (j = 0; j < MAX_MB_SEGMENTS; j++) { Data = xd->segment_feature_data[i][j]; // Frame level data if (Data) { vp8_write_bit(bc, 1); if (Data < 0) { Data = - Data; vp8_write_literal(bc, Data, mb_feature_data_bits[i]); vp8_write_bit(bc, 1); } else { vp8_write_literal(bc, Data, mb_feature_data_bits[i]); vp8_write_bit(bc, 0); } } else vp8_write_bit(bc, 0); } } } if (xd->update_mb_segmentation_map) { #if CONFIG_SEGMENTATION // Write the probs used to decode the segment id for each macro block. for (i = 0; i < MB_FEATURE_TREE_PROBS+3; i++) #else for (i = 0; i < MB_FEATURE_TREE_PROBS; i++) #endif { int Data = xd->mb_segment_tree_probs[i]; if (Data != 255) { vp8_write_bit(bc, 1); vp8_write_literal(bc, Data, 8); } else vp8_write_bit(bc, 0); } } } // Code to determine whether or not to update the scan order. vp8_write_bit(bc, pc->filter_type); vp8_write_literal(bc, pc->filter_level, 6); vp8_write_literal(bc, pc->sharpness_level, 3); // Write out loop filter deltas applied at the MB level based on mode or ref frame (if they are enabled). vp8_write_bit(bc, (xd->mode_ref_lf_delta_enabled) ? 1 : 0); if (xd->mode_ref_lf_delta_enabled) { // Do the deltas need to be updated int send_update = xd->mode_ref_lf_delta_update || cpi->oxcf.error_resilient_mode; vp8_write_bit(bc, send_update); if (send_update) { int Data; // Send update for (i = 0; i < MAX_REF_LF_DELTAS; i++) { Data = xd->ref_lf_deltas[i]; // Frame level data if (xd->ref_lf_deltas[i] != xd->last_ref_lf_deltas[i] || cpi->oxcf.error_resilient_mode) { xd->last_ref_lf_deltas[i] = xd->ref_lf_deltas[i]; vp8_write_bit(bc, 1); if (Data > 0) { vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 0); // sign } else { Data = -Data; vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 1); // sign } } else vp8_write_bit(bc, 0); } // Send update for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { Data = xd->mode_lf_deltas[i]; if (xd->mode_lf_deltas[i] != xd->last_mode_lf_deltas[i] || cpi->oxcf.error_resilient_mode) { xd->last_mode_lf_deltas[i] = xd->mode_lf_deltas[i]; vp8_write_bit(bc, 1); if (Data > 0) { vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 0); // sign } else { Data = -Data; vp8_write_literal(bc, (Data & 0x3F), 6); vp8_write_bit(bc, 1); // sign } } else vp8_write_bit(bc, 0); } } } //signal here is multi token partition is enabled vp8_write_literal(bc, pc->multi_token_partition, 2); // Frame Qbaseline quantizer index vp8_write_literal(bc, pc->base_qindex, 7); // Transmit Dc, Second order and Uv quantizer delta information put_delta_q(bc, pc->y1dc_delta_q); put_delta_q(bc, pc->y2dc_delta_q); put_delta_q(bc, pc->y2ac_delta_q); put_delta_q(bc, pc->uvdc_delta_q); put_delta_q(bc, pc->uvac_delta_q); // When there is a key frame all reference buffers are updated using the new key frame if (pc->frame_type != KEY_FRAME) { // Should the GF or ARF be updated using the transmitted frame or buffer vp8_write_bit(bc, pc->refresh_golden_frame); vp8_write_bit(bc, pc->refresh_alt_ref_frame); // If not being updated from current frame should either GF or ARF be updated from another buffer if (!pc->refresh_golden_frame) vp8_write_literal(bc, pc->copy_buffer_to_gf, 2); if (!pc->refresh_alt_ref_frame) vp8_write_literal(bc, pc->copy_buffer_to_arf, 2); // Indicate reference frame sign bias for Golden and ARF frames (always 0 for last frame buffer) vp8_write_bit(bc, pc->ref_frame_sign_bias[GOLDEN_FRAME]); vp8_write_bit(bc, pc->ref_frame_sign_bias[ALTREF_FRAME]); } vp8_write_bit(bc, pc->refresh_entropy_probs); if (pc->frame_type != KEY_FRAME) vp8_write_bit(bc, pc->refresh_last_frame); #ifdef ENTROPY_STATS if (pc->frame_type == INTER_FRAME) active_section = 0; else active_section = 7; #endif vp8_clear_system_state(); //__asm emms; //************************************************ // save a copy for later refresh { vpx_memcpy(&cpi->common.lfc, &cpi->common.fc, sizeof(cpi->common.fc)); } update_coef_probs(cpi); #ifdef ENTROPY_STATS active_section = 2; #endif // Write out the mb_no_coeff_skip flag vp8_write_bit(bc, pc->mb_no_coeff_skip); if (pc->frame_type == KEY_FRAME) { write_kfmodes(cpi); #ifdef ENTROPY_STATS active_section = 8; #endif } else { pack_inter_mode_mvs(cpi); #ifdef ENTROPY_STATS active_section = 1; #endif } #if CONFIG_SEGMENTATION //printf("%d\n",segment_cost); #endif vp8_stop_encode(bc); oh.first_partition_length_in_bytes = cpi->bc.pos; /* update frame tag */ { int v = (oh.first_partition_length_in_bytes << 5) | (oh.show_frame << 4) | (oh.version << 1) | oh.type; dest[0] = v; dest[1] = v >> 8; dest[2] = v >> 16; } *size = VP8_HEADER_SIZE + extra_bytes_packed + cpi->bc.pos; if (pc->multi_token_partition != ONE_PARTITION) { int num_part; int asize; num_part = 1 << pc->multi_token_partition; pack_tokens_into_partitions(cpi, cx_data + bc->pos, num_part, &asize); *size += asize; } else { vp8_start_encode(&cpi->bc2, cx_data + bc->pos); #if CONFIG_MULTITHREAD if (cpi->b_multi_threaded) pack_mb_row_tokens(cpi, &cpi->bc2); else #endif pack_tokens(&cpi->bc2, cpi->tok, cpi->tok_count); vp8_stop_encode(&cpi->bc2); *size += cpi->bc2.pos; } } #ifdef ENTROPY_STATS void print_tree_update_probs() { int i, j, k, l; FILE *f = fopen("context.c", "a"); int Sum; fprintf(f, "\n/* Update probabilities for token entropy tree. */\n\n"); fprintf(f, "const vp8_prob tree_update_probs[BLOCK_TYPES] [COEF_BANDS] [PREV_COEF_CONTEXTS] [vp8_coef_tokens-1] = {\n"); for (i = 0; i < BLOCK_TYPES; i++) { fprintf(f, " { \n"); for (j = 0; j < COEF_BANDS; j++) { fprintf(f, " {\n"); for (k = 0; k < PREV_COEF_CONTEXTS; k++) { fprintf(f, " {"); for (l = 0; l < MAX_ENTROPY_TOKENS - 1; l++) { Sum = tree_update_hist[i][j][k][l][0] + tree_update_hist[i][j][k][l][1]; if (Sum > 0) { if (((tree_update_hist[i][j][k][l][0] * 255) / Sum) > 0) fprintf(f, "%3ld, ", (tree_update_hist[i][j][k][l][0] * 255) / Sum); else fprintf(f, "%3ld, ", 1); } else fprintf(f, "%3ld, ", 128); } fprintf(f, "},\n"); } fprintf(f, " },\n"); } fprintf(f, " },\n"); } fprintf(f, "};\n"); fclose(f); } #endif