/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vpx_config.h" #include "vp9/encoder/vp9_encodemb.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/encoder/vp9_quantize.h" #include "vp9/encoder/vp9_tokenize.h" #include "vp9/common/vp9_invtrans.h" #include "vp9/common/vp9_reconintra.h" #include "vpx_mem/vpx_mem.h" #include "vp9/encoder/vp9_rdopt.h" #include "vp9/common/vp9_systemdependent.h" #include "vp9_rtcd.h" void vp9_subtract_block(int rows, int cols, int16_t *diff_ptr, int diff_stride, const uint8_t *src_ptr, int src_stride, const uint8_t *pred_ptr, int pred_stride) { int r, c; for (r = 0; r < rows; r++) { for (c = 0; c < cols; c++) diff_ptr[c] = src_ptr[c] - pred_ptr[c]; diff_ptr += diff_stride; pred_ptr += pred_stride; src_ptr += src_stride; } } static void subtract_plane(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize, int plane) { const MACROBLOCKD * const xd = &x->e_mbd; const int bw = 4 << (b_width_log2(bsize) - xd->plane[plane].subsampling_x); const int bh = 4 << (b_height_log2(bsize) - xd->plane[plane].subsampling_y); const uint8_t *src = x->plane[plane].src.buf; const int src_stride = x->plane[plane].src.stride; assert(plane < 3); vp9_subtract_block(bh, bw, x->plane[plane].src_diff, bw, src, src_stride, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride); } void vp9_subtract_sby(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { subtract_plane(x, bsize, 0); } void vp9_subtract_sbuv(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { int i; for (i = 1; i < MAX_MB_PLANE; i++) subtract_plane(x, bsize, i); } void vp9_subtract_sb(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { vp9_subtract_sby(x, bsize); vp9_subtract_sbuv(x, bsize); } void vp9_transform_sby_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize) - 3, bw = 1 << bwl; const int bh = 1 << (b_height_log2(bsize) - 3); const int stride = 32 << bwl; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; vp9_short_fdct32x32(x->plane[0].src_diff + y_idx * stride * 32 + x_idx * 32, x->plane[0].coeff + n * 1024, stride * 2); } } void vp9_transform_sby_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize) - 2, bw = 1 << bwl; const int bh = 1 << (b_height_log2(bsize) - 2); const int stride = 16 << bwl, bstride = 4 << bwl; MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; const TX_TYPE tx_type = get_tx_type_16x16(xd, (y_idx * bstride + x_idx) * 4); if (tx_type != DCT_DCT) { vp9_short_fht16x16(x->plane[0].src_diff + y_idx * stride * 16 + x_idx * 16, x->plane[0].coeff + n * 256, stride, tx_type); } else { x->fwd_txm16x16(x->plane[0].src_diff + y_idx * stride * 16 + x_idx * 16, x->plane[0].coeff + n * 256, stride * 2); } } } void vp9_transform_sby_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize) - 1, bw = 1 << bwl; const int bh = 1 << (b_height_log2(bsize) - 1); const int stride = 8 << bwl, bstride = 2 << bwl; MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; const TX_TYPE tx_type = get_tx_type_8x8(xd, (y_idx * bstride + x_idx) * 2); if (tx_type != DCT_DCT) { vp9_short_fht8x8(x->plane[0].src_diff + y_idx * stride * 8 + x_idx * 8, x->plane[0].coeff + n * 64, stride, tx_type); } else { x->fwd_txm8x8(x->plane[0].src_diff + y_idx * stride * 8 + x_idx * 8, x->plane[0].coeff + n * 64, stride * 2); } } } void vp9_transform_sby_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize), bw = 1 << bwl; const int bh = 1 << b_height_log2(bsize); const int stride = 4 << bwl; MACROBLOCKD *const xd = &x->e_mbd; int n; for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> bwl; const TX_TYPE tx_type = get_tx_type_4x4(xd, n); if (tx_type != DCT_DCT) { vp9_short_fht4x4(x->plane[0].src_diff + y_idx * stride * 4 + x_idx * 4, x->plane[0].coeff + n * 16, stride, tx_type); } else { x->fwd_txm4x4(x->plane[0].src_diff + y_idx * stride * 4 + x_idx * 4, x->plane[0].coeff + n * 16, stride * 2); } } } void vp9_transform_sbuv_32x32(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { assert(bsize == BLOCK_SIZE_SB64X64); vp9_clear_system_state(); vp9_short_fdct32x32(x->plane[1].src_diff, x->plane[1].coeff, 64); vp9_short_fdct32x32(x->plane[2].src_diff, x->plane[2].coeff, 64); } void vp9_transform_sbuv_16x16(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize) - 2, bhl = b_height_log2(bsize) - 2; const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1); const int stride = 16 << (bwl - 1); int n; vp9_clear_system_state(); for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); x->fwd_txm16x16(x->plane[1].src_diff + y_idx * stride * 16 + x_idx * 16, x->plane[1].coeff + n * 256, stride * 2); x->fwd_txm16x16(x->plane[2].src_diff + y_idx * stride * 16 + x_idx * 16, x->plane[2].coeff + n * 256, stride * 2); } } void vp9_transform_sbuv_8x8(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize) - 1, bhl = b_height_log2(bsize) - 1; const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1); const int stride = 8 << (bwl - 1); int n; vp9_clear_system_state(); for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); x->fwd_txm8x8(x->plane[1].src_diff + y_idx * stride * 8 + x_idx * 8, x->plane[1].coeff + n * 64, stride * 2); x->fwd_txm8x8(x->plane[2].src_diff + y_idx * stride * 8 + x_idx * 8, x->plane[2].coeff + n * 64, stride * 2); } } void vp9_transform_sbuv_4x4(MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { const int bwl = b_width_log2(bsize), bhl = b_height_log2(bsize); const int bw = 1 << (bwl - 1), bh = 1 << (bhl - 1); const int stride = 4 << (bwl - 1); int n; vp9_clear_system_state(); for (n = 0; n < bw * bh; n++) { const int x_idx = n & (bw - 1), y_idx = n >> (bwl - 1); x->fwd_txm4x4(x->plane[1].src_diff + y_idx * stride * 4 + x_idx * 4, x->plane[1].coeff + n * 16, stride * 2); x->fwd_txm4x4(x->plane[2].src_diff + y_idx * stride * 4 + x_idx * 4, x->plane[2].coeff + n * 16, stride * 2); } } #define RDTRUNC(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) #define RDTRUNC_8x8(RM,DM,R,D) ( (128+(R)*(RM)) & 0xFF ) typedef struct vp9_token_state vp9_token_state; struct vp9_token_state { int rate; int error; int next; signed char token; short qc; }; // TODO: experiments to find optimal multiple numbers #define Y1_RD_MULT 4 #define UV_RD_MULT 2 static const int plane_rd_mult[4] = { Y1_RD_MULT, UV_RD_MULT, }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int *scan, const int *nb, int idx, int token, uint8_t *token_cache, int pad, int l) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = token; pt = vp9_get_coef_context(scan, nb, pad, token_cache, idx + 1, l); token_cache[scan[idx]] = bak; return pt; } static void optimize_b(VP9_COMMON *const cm, MACROBLOCK *mb, int plane, int block, BLOCK_SIZE_TYPE bsize, ENTROPY_CONTEXT *a, ENTROPY_CONTEXT *l, TX_SIZE tx_size) { const int ref = mb->e_mbd.mode_info_context->mbmi.ref_frame != INTRA_FRAME; MACROBLOCKD *const xd = &mb->e_mbd; vp9_token_state tokens[1025][2]; unsigned best_index[1025][2]; const int16_t *coeff_ptr = BLOCK_OFFSET(mb->plane[plane].coeff, block, 16); int16_t *qcoeff_ptr; int16_t *dqcoeff_ptr; int eob = xd->plane[plane].eobs[block], final_eob, sz = 0; const int i0 = 0; int rc, x, next, i; int64_t rdmult, rddiv, rd_cost0, rd_cost1; int rate0, rate1, error0, error1, t0, t1; int best, band, pt; PLANE_TYPE type = xd->plane[plane].plane_type; int err_mult = plane_rd_mult[type]; int default_eob, pad; int const *scan, *nb; const int mul = 1 + (tx_size == TX_32X32); uint8_t token_cache[1024]; const int ib = txfrm_block_to_raster_block(xd, bsize, plane, block, 2 * tx_size); const int16_t *dequant_ptr = xd->plane[plane].dequant; assert((!type && !plane) || (type && plane)); dqcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].dqcoeff, block, 16); qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, block, 16); switch (tx_size) { default: case TX_4X4: { const TX_TYPE tx_type = plane == 0 ? get_tx_type_4x4(xd, ib) : DCT_DCT; default_eob = 16; scan = get_scan_4x4(tx_type); break; } case TX_8X8: { const TX_TYPE tx_type = plane == 0 ? get_tx_type_8x8(xd, ib) : DCT_DCT; scan = get_scan_8x8(tx_type); default_eob = 64; break; } case TX_16X16: { const TX_TYPE tx_type = plane == 0 ? get_tx_type_16x16(xd, ib) : DCT_DCT; scan = get_scan_16x16(tx_type); default_eob = 256; break; } case TX_32X32: scan = vp9_default_zig_zag1d_32x32; default_eob = 1024; break; } assert(eob <= default_eob); /* Now set up a Viterbi trellis to evaluate alternative roundings. */ rdmult = mb->rdmult * err_mult; if (mb->e_mbd.mode_info_context->mbmi.ref_frame == INTRA_FRAME) rdmult = (rdmult * 9) >> 4; rddiv = mb->rddiv; memset(best_index, 0, sizeof(best_index)); /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = DCT_EOB_TOKEN; tokens[eob][0].qc = 0; *(tokens[eob] + 1) = *(tokens[eob] + 0); next = eob; for (i = 0; i < eob; i++) token_cache[scan[i]] = vp9_dct_value_tokens_ptr[qcoeff_ptr[scan[i]]].token; nb = vp9_get_coef_neighbors_handle(scan, &pad); for (i = eob; i-- > i0;) { int base_bits, d2, dx; rc = scan[i]; x = qcoeff_ptr[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; t0 = (vp9_dct_value_tokens_ptr + x)->token; /* Consider both possible successor states. */ if (next < default_eob) { band = get_coef_band(scan, tx_size, i + 1); pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache, pad, default_eob); rate0 += mb->token_costs[tx_size][type][ref][band][pt][tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][ref][band][pt][tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); dx = mul * (dqcoeff_ptr[rc] - coeff_ptr[rc]); d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x)*dequant_ptr[rc != 0] > abs(coeff_ptr[rc]) * mul) && (abs(x)*dequant_ptr[rc != 0] < abs(coeff_ptr[rc]) * mul + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == DCT_EOB_TOKEN ? DCT_EOB_TOKEN : ZERO_TOKEN; } else { t0 = t1 = (vp9_dct_value_tokens_ptr + x)->token; } if (next < default_eob) { band = get_coef_band(scan, tx_size, i + 1); if (t0 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache, pad, default_eob); rate0 += mb->token_costs[tx_size][type][ref][band][pt][ tokens[next][0].token]; } if (t1 != DCT_EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache, pad, default_eob); rate1 += mb->token_costs[tx_size][type][ref][band][pt][ tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = *(vp9_dct_value_cost_ptr + x); if (shortcut) { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ else { band = get_coef_band(scan, tx_size, i + 1); t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != DCT_EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][ref][band][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != DCT_EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][ref][band][0][t1]; tokens[next][1].token = ZERO_TOKEN; } /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = get_coef_band(scan, tx_size, i + 1); pt = combine_entropy_contexts(*a, *l); rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][ref][band][pt][t0]; rate1 += mb->token_costs[tx_size][type][ref][band][pt][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = i0 - 1; vpx_memset(qcoeff_ptr, 0, sizeof(*qcoeff_ptr) * (16 << (tx_size * 2))); vpx_memset(dqcoeff_ptr, 0, sizeof(*dqcoeff_ptr) * (16 << (tx_size * 2))); for (i = next; i < eob; i = next) { x = tokens[i][best].qc; if (x) { final_eob = i; } rc = scan[i]; qcoeff_ptr[rc] = x; dqcoeff_ptr[rc] = (x * dequant_ptr[rc != 0]) / mul; next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; xd->plane[plane].eobs[block] = final_eob; *a = *l = (final_eob > 0); } struct optimize_ctx { ENTROPY_CONTEXT ta[MAX_MB_PLANE][16]; ENTROPY_CONTEXT tl[MAX_MB_PLANE][16]; }; struct optimize_block_args { VP9_COMMON *cm; MACROBLOCK *x; struct optimize_ctx *ctx; }; static void optimize_block(int plane, int block, BLOCK_SIZE_TYPE bsize, int ss_txfrm_size, void *arg) { const struct optimize_block_args* const args = arg; MACROBLOCKD* const xd = &args->x->e_mbd; int x, y; // find current entropy context txfrm_block_to_raster_xy(xd, bsize, plane, block, ss_txfrm_size, &x, &y); optimize_b(args->cm, args->x, plane, block, bsize, &args->ctx->ta[plane][x], &args->ctx->tl[plane][y], ss_txfrm_size / 2); } void vp9_optimize_init(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, struct optimize_ctx *ctx) { int p; for (p = 0; p < MAX_MB_PLANE; p++) { const struct macroblockd_plane* const plane = &xd->plane[p]; const int bwl = b_width_log2(bsize) - plane->subsampling_x; const int bhl = b_height_log2(bsize) - plane->subsampling_y; const TX_SIZE tx_size = tx_size_for_plane(xd, bsize, p); int i, j; for (i = 0; i < 1 << bwl; i += 1 << tx_size) { int c = 0; ctx->ta[p][i] = 0; for (j = 0; j < 1 << tx_size && !c; j++) { c = ctx->ta[p][i] |= plane->above_context[i + j]; } } for (i = 0; i < 1 << bhl; i += 1 << tx_size) { int c = 0; ctx->tl[p][i] = 0; for (j = 0; j < 1 << tx_size && !c; j++) { c = ctx->tl[p][i] |= plane->left_context[i + j]; } } } } void vp9_optimize_sby(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { struct optimize_ctx ctx; struct optimize_block_args arg = {cm, x, &ctx}; vp9_optimize_init(&x->e_mbd, bsize, &ctx); foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, #if !CONFIG_SB8X8 0, #endif optimize_block, &arg); } void vp9_optimize_sbuv(VP9_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE_TYPE bsize) { struct optimize_ctx ctx; struct optimize_block_args arg = {cm, x, &ctx}; vp9_optimize_init(&x->e_mbd, bsize, &ctx); foreach_transformed_block_uv(&x->e_mbd, bsize, optimize_block, &arg); } #if !CONFIG_SB8X8 void vp9_fidct_mb(VP9_COMMON *const cm, MACROBLOCK *x) { MACROBLOCKD *const xd = &x->e_mbd; const TX_SIZE tx_size = xd->mode_info_context->mbmi.txfm_size; if (tx_size == TX_16X16) { vp9_transform_sby_16x16(x, BLOCK_SIZE_MB16X16); vp9_transform_sbuv_8x8(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_16x16(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_8x8(x, BLOCK_SIZE_MB16X16); if (x->optimize) { vp9_optimize_sby(cm, x, BLOCK_SIZE_MB16X16); vp9_optimize_sbuv(cm, x, BLOCK_SIZE_MB16X16); } vp9_inverse_transform_sby_16x16(xd, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_8x8(xd, BLOCK_SIZE_MB16X16); } else if (tx_size == TX_8X8) { vp9_transform_sby_8x8(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_8x8(x, BLOCK_SIZE_MB16X16); if (x->optimize) vp9_optimize_sby(cm, x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sby_8x8(xd, BLOCK_SIZE_MB16X16); if (xd->mode_info_context->mbmi.mode == SPLITMV) { assert(xd->mode_info_context->mbmi.partitioning != PARTITIONING_4X4); vp9_transform_sbuv_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_4x4(x, BLOCK_SIZE_MB16X16); if (x->optimize) vp9_optimize_sbuv(cm, x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_4x4(xd, BLOCK_SIZE_MB16X16); } else { vp9_transform_sbuv_8x8(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_8x8(x, BLOCK_SIZE_MB16X16); if (x->optimize) vp9_optimize_sbuv(cm, x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_8x8(xd, BLOCK_SIZE_MB16X16); } } else { vp9_transform_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_transform_sbuv_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sbuv_4x4(x, BLOCK_SIZE_MB16X16); if (x->optimize) { vp9_optimize_sby(cm, x, BLOCK_SIZE_MB16X16); vp9_optimize_sbuv(cm, x, BLOCK_SIZE_MB16X16); } vp9_inverse_transform_sby_4x4(xd, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sbuv_4x4(xd, BLOCK_SIZE_MB16X16); } } void vp9_encode_inter16x16(VP9_COMMON *const cm, MACROBLOCK *x, int mi_row, int mi_col) { MACROBLOCKD *const xd = &x->e_mbd; vp9_build_inter_predictors_sb(xd, mi_row, mi_col, BLOCK_SIZE_MB16X16); vp9_subtract_sb(x, BLOCK_SIZE_MB16X16); vp9_fidct_mb(cm, x); vp9_recon_sb(xd, BLOCK_SIZE_MB16X16); } #endif /* this function is used by first pass only */ void vp9_encode_inter16x16y(MACROBLOCK *x, int mi_row, int mi_col) { MACROBLOCKD *xd = &x->e_mbd; vp9_build_inter_predictors_sby(xd, mi_row, mi_col, BLOCK_SIZE_MB16X16); vp9_subtract_sby(x, BLOCK_SIZE_MB16X16); vp9_transform_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_quantize_sby_4x4(x, BLOCK_SIZE_MB16X16); vp9_inverse_transform_sby_4x4(xd, BLOCK_SIZE_MB16X16); vp9_recon_sby(xd, BLOCK_SIZE_MB16X16); }