/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "./vp10_rtcd.h" #include "./vpx_config.h" #include "./vpx_dsp_rtcd.h" #include "vpx_dsp/quantize.h" #include "vpx_mem/vpx_mem.h" #include "vpx_ports/mem.h" #include "vp10/common/idct.h" #include "vp10/common/reconinter.h" #include "vp10/common/reconintra.h" #include "vp10/common/scan.h" #include "vp10/encoder/encodemb.h" #include "vp10/encoder/hybrid_fwd_txfm.h" #include "vp10/encoder/quantize.h" #include "vp10/encoder/rd.h" #include "vp10/encoder/tokenize.h" struct optimize_ctx { ENTROPY_CONTEXT ta[MAX_MB_PLANE][2 * MI_BLOCK_SIZE]; ENTROPY_CONTEXT tl[MAX_MB_PLANE][2 * MI_BLOCK_SIZE]; }; void vp10_subtract_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &x->e_mbd.plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int bw = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int bh = 4 * num_4x4_blocks_high_lookup[plane_bsize]; #if CONFIG_VP9_HIGHBITDEPTH if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vpx_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, x->e_mbd.bd); return; } #endif // CONFIG_VP9_HIGHBITDEPTH vpx_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } #define RDTRUNC(RM, DM, R, D) \ (((1 << (VP9_PROB_COST_SHIFT - 1)) + (R) * (RM)) & \ ((1 << VP9_PROB_COST_SHIFT) - 1)) typedef struct vp10_token_state { int rate; int error; int next; int16_t token; short qc; } vp10_token_state; // TODO(jimbankoski): experiment to find optimal RD numbers. static const int plane_rd_mult[PLANE_TYPES] = { 4, 2 }; #define UPDATE_RD_COST()\ {\ rd_cost0 = RDCOST(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDCOST(rdmult, rddiv, rate1, error1);\ if (rd_cost0 == rd_cost1) {\ rd_cost0 = RDTRUNC(rdmult, rddiv, rate0, error0);\ rd_cost1 = RDTRUNC(rdmult, rddiv, rate1, error1);\ }\ } // This function is a place holder for now but may ultimately need // to scan previous tokens to work out the correct context. static int trellis_get_coeff_context(const int16_t *scan, const int16_t *nb, int idx, int token, uint8_t *token_cache) { int bak = token_cache[scan[idx]], pt; token_cache[scan[idx]] = vp10_pt_energy_class[token]; pt = get_coef_context(nb, token_cache, idx + 1); token_cache[scan[idx]] = bak; return pt; } static int optimize_b(MACROBLOCK *mb, int plane, int block, TX_SIZE tx_size, int ctx) { MACROBLOCKD *const xd = &mb->e_mbd; struct macroblock_plane *const p = &mb->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const int ref = is_inter_block(&xd->mi[0]->mbmi); vp10_token_state tokens[MAX_TX_SQUARE+1][2]; unsigned best_index[MAX_TX_SQUARE+1][2]; uint8_t token_cache[MAX_TX_SQUARE]; const tran_low_t *const coeff = BLOCK_OFFSET(mb->plane[plane].coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); const int eob = p->eobs[block]; const PLANE_TYPE type = pd->plane_type; const int default_eob = 16 << (tx_size << 1); int mul; const int16_t *dequant_ptr = pd->dequant; const uint8_t *const band_translate = get_band_translate(tx_size); TX_TYPE tx_type = get_tx_type(type, xd, block, tx_size); const scan_order *const so = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); const int16_t *const scan = so->scan; const int16_t *const nb = so->neighbors; int next = eob, sz = 0; int64_t rdmult = mb->rdmult * plane_rd_mult[type], rddiv = mb->rddiv; int64_t rd_cost0, rd_cost1; int rate0, rate1, error0, error1; int16_t t0, t1; EXTRABIT e0; int best, band, pt, i, final_eob; #if CONFIG_VP9_HIGHBITDEPTH const int *cat6_high_cost = vp10_get_high_cost_table(xd->bd); #else const int *cat6_high_cost = vp10_get_high_cost_table(8); #endif assert((!type && !plane) || (type && plane)); assert(eob <= default_eob); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH && xd->bd == BITDEPTH_10) { mul = 1; } else { mul = 1 + (tx_size == TX_32X32); } #else mul = 1 + (tx_size == TX_32X32); #endif /* Now set up a Viterbi trellis to evaluate alternative roundings. */ if (!ref) rdmult = (rdmult * 9) >> 4; /* Initialize the sentinel node of the trellis. */ tokens[eob][0].rate = 0; tokens[eob][0].error = 0; tokens[eob][0].next = default_eob; tokens[eob][0].token = EOB_TOKEN; tokens[eob][0].qc = 0; tokens[eob][1] = tokens[eob][0]; for (i = 0; i < eob; i++) token_cache[scan[i]] = vp10_pt_energy_class[vp10_get_token(qcoeff[scan[i]])]; for (i = eob; i-- > 0;) { int base_bits, d2, dx; const int rc = scan[i]; int x = qcoeff[rc]; /* Only add a trellis state for non-zero coefficients. */ if (x) { int shortcut = 0; error0 = tokens[next][0].error; error1 = tokens[next][1].error; /* Evaluate the first possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; vp10_get_token_extra(x, &t0, &e0); /* Consider both possible successor states. */ if (next < default_eob) { band = band_translate[i + 1]; pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][band][0][pt] [tokens[next][0].token]; rate1 += mb->token_costs[tx_size][type][ref][band][0][pt] [tokens[next][1].token]; } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = vp10_get_cost(t0, e0, cat6_high_cost); dx = mul * (dqcoeff[rc] - coeff[rc]); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx >>= xd->bd - 8; } #endif // CONFIG_VP9_HIGHBITDEPTH d2 = dx * dx; tokens[i][0].rate = base_bits + (best ? rate1 : rate0); tokens[i][0].error = d2 + (best ? error1 : error0); tokens[i][0].next = next; tokens[i][0].token = t0; tokens[i][0].qc = x; best_index[i][0] = best; /* Evaluate the second possibility for this state. */ rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; if ((abs(x) * dequant_ptr[rc != 0] > abs(coeff[rc]) * mul) && (abs(x) * dequant_ptr[rc != 0] < abs(coeff[rc]) * mul + dequant_ptr[rc != 0])) shortcut = 1; else shortcut = 0; if (shortcut) { sz = -(x < 0); x -= 2 * sz + 1; } /* Consider both possible successor states. */ if (!x) { /* If we reduced this coefficient to zero, check to see if * we need to move the EOB back here. */ t0 = tokens[next][0].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; t1 = tokens[next][1].token == EOB_TOKEN ? EOB_TOKEN : ZERO_TOKEN; e0 = 0; } else { vp10_get_token_extra(x, &t0, &e0); t1 = t0; } if (next < default_eob) { band = band_translate[i + 1]; if (t0 != EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t0, token_cache); rate0 += mb->token_costs[tx_size][type][ref][band][!x][pt] [tokens[next][0].token]; } if (t1 != EOB_TOKEN) { pt = trellis_get_coeff_context(scan, nb, i, t1, token_cache); rate1 += mb->token_costs[tx_size][type][ref][band][!x][pt] [tokens[next][1].token]; } } UPDATE_RD_COST(); /* And pick the best. */ best = rd_cost1 < rd_cost0; base_bits = vp10_get_cost(t0, e0, cat6_high_cost); if (shortcut) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { dx -= ((dequant_ptr[rc != 0] >> (xd->bd - 8)) + sz) ^ sz; } else { dx -= (dequant_ptr[rc != 0] + sz) ^ sz; } #else dx -= (dequant_ptr[rc != 0] + sz) ^ sz; #endif // CONFIG_VP9_HIGHBITDEPTH d2 = dx * dx; } tokens[i][1].rate = base_bits + (best ? rate1 : rate0); tokens[i][1].error = d2 + (best ? error1 : error0); tokens[i][1].next = next; tokens[i][1].token = best ? t1 : t0; tokens[i][1].qc = x; best_index[i][1] = best; /* Finally, make this the new head of the trellis. */ next = i; } else { /* There's no choice to make for a zero coefficient, so we don't * add a new trellis node, but we do need to update the costs. */ band = band_translate[i + 1]; t0 = tokens[next][0].token; t1 = tokens[next][1].token; /* Update the cost of each path if we're past the EOB token. */ if (t0 != EOB_TOKEN) { tokens[next][0].rate += mb->token_costs[tx_size][type][ref][band][1][0][t0]; tokens[next][0].token = ZERO_TOKEN; } if (t1 != EOB_TOKEN) { tokens[next][1].rate += mb->token_costs[tx_size][type][ref][band][1][0][t1]; tokens[next][1].token = ZERO_TOKEN; } best_index[i][0] = best_index[i][1] = 0; /* Don't update next, because we didn't add a new node. */ } } /* Now pick the best path through the whole trellis. */ band = band_translate[i + 1]; rate0 = tokens[next][0].rate; rate1 = tokens[next][1].rate; error0 = tokens[next][0].error; error1 = tokens[next][1].error; t0 = tokens[next][0].token; t1 = tokens[next][1].token; rate0 += mb->token_costs[tx_size][type][ref][band][0][ctx][t0]; rate1 += mb->token_costs[tx_size][type][ref][band][0][ctx][t1]; UPDATE_RD_COST(); best = rd_cost1 < rd_cost0; final_eob = -1; memset(qcoeff, 0, sizeof(*qcoeff) * (16 << (tx_size * 2))); memset(dqcoeff, 0, sizeof(*dqcoeff) * (16 << (tx_size * 2))); for (i = next; i < eob; i = next) { const int x = tokens[i][best].qc; const int rc = scan[i]; if (x) { final_eob = i; } qcoeff[rc] = x; dqcoeff[rc] = (x * dequant_ptr[rc != 0]) / mul; next = tokens[i][best].next; best = best_index[i][best]; } final_eob++; mb->plane[plane].eobs[block] = final_eob; assert(final_eob <= default_eob); return final_eob; } #if CONFIG_VP9_HIGHBITDEPTH typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_LOWBD_32 = 1, QUANT_FUNC_HIGHBD = 2, QUANT_FUNC_HIGHBD_32 = 3, QUANT_FUNC_LAST = 4 } QUANT_FUNC; static VP10_QUANT_FACADE quant_func_list[VP10_XFORM_QUANT_LAST][QUANT_FUNC_LAST] = { {vp10_quantize_fp_facade, vp10_quantize_fp_32x32_facade, vp10_highbd_quantize_fp_facade, vp10_highbd_quantize_fp_32x32_facade}, {vp10_quantize_b_facade, vp10_quantize_b_32x32_facade, vp10_highbd_quantize_b_facade, vp10_highbd_quantize_b_32x32_facade}, {vp10_quantize_dc_facade, vp10_quantize_dc_32x32_facade, vp10_highbd_quantize_dc_facade, vp10_highbd_quantize_dc_32x32_facade}, {NULL, NULL, NULL, NULL}}; #else typedef enum QUANT_FUNC { QUANT_FUNC_LOWBD = 0, QUANT_FUNC_LOWBD_32 = 1, QUANT_FUNC_LAST = 2 } QUANT_FUNC; static VP10_QUANT_FACADE quant_func_list[VP10_XFORM_QUANT_LAST][QUANT_FUNC_LAST] = { {vp10_quantize_fp_facade, vp10_quantize_fp_32x32_facade}, {vp10_quantize_b_facade, vp10_quantize_b_32x32_facade}, {vp10_quantize_dc_facade, vp10_quantize_dc_32x32_facade}, {NULL, NULL}}; #endif static FWD_TXFM_OPT fwd_txfm_opt_list[VP10_XFORM_QUANT_LAST] = { FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_NORMAL, FWD_TXFM_OPT_DC, FWD_TXFM_OPT_NORMAL}; void vp10_xform_quant(MACROBLOCK *x, int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, VP10_XFORM_QUANT xform_quant_idx) { MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); const scan_order *const scan_order = get_scan(tx_size, tx_type, is_inter_block(&xd->mi[0]->mbmi)); tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block); tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint16_t *const eob = &p->eobs[block]; const int diff_stride = 4 * num_4x4_blocks_wide_lookup[plane_bsize]; const int16_t *src_diff; const int tx1d_size = get_tx1d_size(tx_size); const int tx2d_size = tx1d_size * tx1d_size; FWD_TXFM_PARAM fwd_txfm_param; fwd_txfm_param.tx_type = get_tx_type(plane_type, xd, block, tx_size); fwd_txfm_param.tx_size = tx_size; fwd_txfm_param.fwd_txfm_opt = fwd_txfm_opt_list[xform_quant_idx]; fwd_txfm_param.rd_transform = x->use_lp32x32fdct; fwd_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; #if CONFIG_VP9_HIGHBITDEPTH fwd_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (xform_quant_idx != VP10_XFORM_QUANT_SKIP_QUANT) { if (x->skip_block) { vp10_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } else { if (tx_size == TX_32X32 && xd->bd != 10) quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD_32]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order); else quant_func_list[xform_quant_idx][QUANT_FUNC_HIGHBD]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order); } } return; } #endif // CONFIG_VP9_HIGHBITDEPTH fwd_txfm(src_diff, coeff, diff_stride, &fwd_txfm_param); if (xform_quant_idx != VP10_XFORM_QUANT_SKIP_QUANT) { if (x->skip_block) { vp10_quantize_skip(tx2d_size, qcoeff, dqcoeff, eob); } else { if (tx_size == TX_32X32) quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD_32]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order); else quant_func_list[xform_quant_idx][QUANT_FUNC_LOWBD]( coeff, tx2d_size, p, qcoeff, pd, dqcoeff, eob, scan_order); } } } static void encode_block(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx *const ctx = args->ctx; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; ENTROPY_CONTEXT *a, *l; INV_TXFM_PARAM inv_txfm_param; #if CONFIG_VAR_TX int i; const int bwl = b_width_log2_lookup[plane_bsize]; #endif dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; a = &ctx->ta[plane][blk_col]; l = &ctx->tl[plane][blk_row]; // TODO(jingning): per transformed block zero forcing only enabled for // luma component. will integrate chroma components as well. // Turn this back on when the rate-distortion loop is synchronized with // the recursive transform block coding. // if (x->zcoeff_blk[tx_size][block] && plane == 0) { // p->eobs[block] = 0; // *a = *l = 0; // return; // } #if CONFIG_VAR_TX if (!x->skip_recode && x->blk_skip[plane][(blk_row << bwl) + blk_col] == 0) { #else if (!x->skip_recode) { #endif if (x->quant_fp) { // Encoding process for rtc mode if (x->skip_txfm[0][0] == SKIP_TXFM_AC_DC && plane == 0) { // skip forward transform p->eobs[block] = 0; *a = *l = 0; return; } else { vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_FP); } } else { if (max_txsize_lookup[plane_bsize] == tx_size) { int blk_index = (block >> (tx_size << 1)); if (x->skip_txfm[plane][blk_index] == SKIP_TXFM_NONE) { // full forward transform and quantization vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_B); } else if (x->skip_txfm[plane][blk_index] == SKIP_TXFM_AC_ONLY) { // fast path forward transform and quantization vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_DC); } else { // skip forward transform p->eobs[block] = 0; *a = *l = 0; #if !CONFIG_VAR_TX return; #endif } } else { vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_B); } } } #if CONFIG_VAR_TX else { if (!x->skip_recode) p->eobs[block] = 0; } #endif if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { int ctx; #if CONFIG_VAR_TX switch (tx_size) { case TX_4X4: break; case TX_8X8: a[0] = !!*(const uint16_t *)&a[0]; l[0] = !!*(const uint16_t *)&l[0]; break; case TX_16X16: a[0] = !!*(const uint32_t *)&a[0]; l[0] = !!*(const uint32_t *)&l[0]; break; case TX_32X32: a[0] = !!*(const uint64_t *)&a[0]; l[0] = !!*(const uint64_t *)&l[0]; break; default: assert(0 && "Invalid transform size."); break; } #endif ctx = combine_entropy_contexts(*a, *l); *a = *l = optimize_b(x, plane, block, tx_size, ctx) > 0; } else { *a = *l = p->eobs[block] > 0; } #if CONFIG_VAR_TX for (i = 0; i < (1 << tx_size); ++i) { a[i] = a[0]; l[i] = l[0]; } #endif if (p->eobs[block]) *(args->skip) = 0; if (p->eobs[block] == 0) return; // inverse transform parameters inv_txfm_param.tx_type = get_tx_type(pd->plane_type, xd, block, tx_size); inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = p->eobs[block]; inv_txfm_param.lossless = xd->lossless[xd->mi[0]->mbmi.segment_id]; #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { inv_txfm_param.bd = xd->bd; highbd_inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param); return; } #endif // CONFIG_VP9_HIGHBITDEPTH inv_txfm_add(dqcoeff, dst, pd->dst.stride, &inv_txfm_param); } #if CONFIG_VAR_TX static void encode_block_inter(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args *const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; const BLOCK_SIZE bsize = txsize_to_bsize[tx_size]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int tx_row = blk_row >> (1 - pd->subsampling_y); const int tx_col = blk_col >> (1 - pd->subsampling_x); const TX_SIZE plane_tx_size = plane ? get_uv_tx_size_impl(mbmi->inter_tx_size[tx_row][tx_col], bsize, 0, 0) : mbmi->inter_tx_size[tx_row][tx_col]; int max_blocks_high = num_4x4_blocks_high_lookup[plane_bsize]; int max_blocks_wide = num_4x4_blocks_wide_lookup[plane_bsize]; if (xd->mb_to_bottom_edge < 0) max_blocks_high += xd->mb_to_bottom_edge >> (5 + pd->subsampling_y); if (xd->mb_to_right_edge < 0) max_blocks_wide += xd->mb_to_right_edge >> (5 + pd->subsampling_x); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { encode_block(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); } else { int bsl = b_width_log2_lookup[bsize]; int i; assert(bsl > 0); --bsl; for (i = 0; i < 4; ++i) { const int offsetr = blk_row + ((i >> 1) << bsl); const int offsetc = blk_col + ((i & 0x01) << bsl); int step = 1 << (2 * (tx_size - 1)); if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; encode_block_inter(plane, block + i * step, offsetr, offsetc, plane_bsize, tx_size - 1, arg); } } } #endif static void encode_block_pass1(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { MACROBLOCK *const x = (MACROBLOCK *)arg; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); uint8_t *dst; dst = &pd->dst.buf[4 * blk_row * pd->dst.stride + 4 * blk_col]; vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_B); if (p->eobs[block] > 0) { #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { vp10_highbd_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } else { vp10_highbd_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block], xd->bd); } return; } #endif // CONFIG_VP9_HIGHBITDEPTH if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { vp10_iwht4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } else { vp10_idct4x4_add(dqcoeff, dst, pd->dst.stride, p->eobs[block]); } } } void vp10_encode_sby_pass1(MACROBLOCK *x, BLOCK_SIZE bsize) { vp10_subtract_plane(x, bsize, 0); vp10_foreach_transformed_block_in_plane(&x->e_mbd, bsize, 0, encode_block_pass1, x); } void vp10_encode_sb(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = {x, &ctx, &mbmi->skip}; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { #if CONFIG_VAR_TX // TODO(jingning): Clean this up. const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); const int mi_width = num_4x4_blocks_wide_lookup[plane_bsize]; const int mi_height = num_4x4_blocks_high_lookup[plane_bsize]; const TX_SIZE max_tx_size = max_txsize_lookup[plane_bsize]; const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bh = num_4x4_blocks_wide_lookup[txb_size]; int idx, idy; int block = 0; int step = 1 << (max_tx_size * 2); #endif if (!x->skip_recode) vp10_subtract_plane(x, bsize, plane); if (x->optimize && (!x->skip_recode || !x->skip_optimize)) { #if CONFIG_VAR_TX vp10_get_entropy_contexts(bsize, TX_4X4, pd, ctx.ta[plane], ctx.tl[plane]); #else const struct macroblockd_plane* const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; vp10_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); #endif } #if CONFIG_VAR_TX for (idy = 0; idy < mi_height; idy += bh) { for (idx = 0; idx < mi_width; idx += bh) { encode_block_inter(plane, block, idy, idx, plane_bsize, max_tx_size, &arg); block += step; } } #else vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); #endif } } #if CONFIG_SUPERTX void vp10_encode_sb_supertx(MACROBLOCK *x, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; struct optimize_ctx ctx; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct encode_b_args arg = {x, &ctx, &mbmi->skip}; int plane; mbmi->skip = 1; if (x->skip) return; for (plane = 0; plane < MAX_MB_PLANE; ++plane) { const struct macroblockd_plane* const pd = &xd->plane[plane]; const TX_SIZE tx_size = plane ? get_uv_tx_size(mbmi, pd) : mbmi->tx_size; vp10_subtract_plane(x, bsize, plane); vp10_get_entropy_contexts(bsize, tx_size, pd, ctx.ta[plane], ctx.tl[plane]); vp10_foreach_transformed_block_in_plane(xd, bsize, plane, encode_block, &arg); } } #endif // CONFIG_SUPERTX void vp10_encode_block_intra(int plane, int block, int blk_row, int blk_col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct encode_b_args* const args = arg; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); PLANE_TYPE plane_type = (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV; const TX_TYPE tx_type = get_tx_type(plane_type, xd, block, tx_size); PREDICTION_MODE mode; const int bwl = b_width_log2_lookup[plane_bsize]; const int bhl = b_height_log2_lookup[plane_bsize]; const int diff_stride = 4 * (1 << bwl); uint8_t *src, *dst; int16_t *src_diff; uint16_t *eob = &p->eobs[block]; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; const int tx1d_size = get_tx1d_size(tx_size); INV_TXFM_PARAM inv_txfm_param; dst = &pd->dst.buf[4 * (blk_row * dst_stride + blk_col)]; src = &p->src.buf[4 * (blk_row * src_stride + blk_col)]; src_diff = &p->src_diff[4 * (blk_row * diff_stride + blk_col)]; mode = plane == 0 ? get_y_mode(xd->mi[0], block) : mbmi->uv_mode; vp10_predict_intra_block(xd, bwl, bhl, tx_size, mode, dst, dst_stride, dst, dst_stride, blk_col, blk_row, plane); #if CONFIG_VP9_HIGHBITDEPTH if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { vpx_highbd_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src, src_stride, dst, dst_stride, xd->bd); } else { vpx_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src, src_stride, dst, dst_stride); } #else vpx_subtract_block(tx1d_size, tx1d_size, src_diff, diff_stride, src, src_stride, dst, dst_stride); #endif // CONFIG_VP9_HIGHBITDEPTH #if CONFIG_EXT_INTRA vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_B); #else if (!x->skip_recode) vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_B); else vp10_xform_quant(x, plane, block, blk_row, blk_col, plane_bsize, tx_size, VP10_XFORM_QUANT_SKIP_QUANT); #endif // CONFIG_EXT_INTRA if (*eob) { // inverse transform inv_txfm_param.tx_type = tx_type; inv_txfm_param.tx_size = tx_size; inv_txfm_param.eob = *eob; inv_txfm_param.lossless = xd->lossless[mbmi->segment_id]; #if CONFIG_VP9_HIGHBITDEPTH inv_txfm_param.bd = xd->bd; if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { highbd_inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param); } else { inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param); } #else inv_txfm_add(dqcoeff, dst, dst_stride, &inv_txfm_param); #endif // CONFIG_VP9_HIGHBITDEPTH *(args->skip) = 0; } } void vp10_encode_intra_block_plane(MACROBLOCK *x, BLOCK_SIZE bsize, int plane) { const MACROBLOCKD *const xd = &x->e_mbd; struct encode_b_args arg = {x, NULL, &xd->mi[0]->mbmi.skip}; vp10_foreach_transformed_block_in_plane(xd, bsize, plane, vp10_encode_block_intra, &arg); }