/* * Copyright (c) 2015 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be * found in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include #include "av1/common/warped_motion.h" static ProjectPointsType get_project_points_type(TransformationType type) { switch (type) { case HOMOGRAPHY: return projectPointsHomography; case AFFINE: return projectPointsAffine; case ROTZOOM: return projectPointsRotZoom; case TRANSLATION: return projectPointsTranslation; default: assert(0); return NULL; } } void projectPointsTranslation(int16_t *mat, int *points, int *proj, const int n, const int stride_points, const int stride_proj, const int subsampling_x, const int subsampling_y) { int i; for (i = 0; i < n; ++i) { const int x = *(points++), y = *(points++); if (subsampling_x) *(proj++) = ROUND_POWER_OF_TWO_SIGNED( ((x << (WARPEDMODEL_PREC_BITS + 1)) + mat[1]), WARPEDDIFF_PREC_BITS + 1); else *(proj++) = ROUND_POWER_OF_TWO_SIGNED( ((x << WARPEDMODEL_PREC_BITS) + mat[1]), WARPEDDIFF_PREC_BITS); if (subsampling_y) *(proj++) = ROUND_POWER_OF_TWO_SIGNED( ((y << (WARPEDMODEL_PREC_BITS + 1)) + mat[0]), WARPEDDIFF_PREC_BITS + 1); else *(proj++) = ROUND_POWER_OF_TWO_SIGNED( ((y << WARPEDMODEL_PREC_BITS)) + mat[0], WARPEDDIFF_PREC_BITS); points += stride_points - 2; proj += stride_proj - 2; } } void projectPointsRotZoom(int16_t *mat, int *points, int *proj, const int n, const int stride_points, const int stride_proj, const int subsampling_x, const int subsampling_y) { int i; for (i = 0; i < n; ++i) { const int x = *(points++), y = *(points++); if (subsampling_x) *(proj++) = ROUND_POWER_OF_TWO_SIGNED( mat[3] * 2 * x + mat[2] * 2 * y + mat[1] + (mat[3] + mat[2] - (1 << WARPEDMODEL_PREC_BITS)) / 2, WARPEDDIFF_PREC_BITS + 1); else *(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[3] * x + mat[2] * y + mat[1], WARPEDDIFF_PREC_BITS); if (subsampling_y) *(proj++) = ROUND_POWER_OF_TWO_SIGNED( -mat[2] * 2 * x + mat[3] * 2 * y + mat[0] + (-mat[2] + mat[3] - (1 << WARPEDMODEL_PREC_BITS)) / 2, WARPEDDIFF_PREC_BITS + 1); else *(proj++) = ROUND_POWER_OF_TWO_SIGNED(-mat[2] * x + mat[3] * y + mat[0], WARPEDDIFF_PREC_BITS); points += stride_points - 2; proj += stride_proj - 2; } } void projectPointsAffine(int16_t *mat, int *points, int *proj, const int n, const int stride_points, const int stride_proj, const int subsampling_x, const int subsampling_y) { int i; for (i = 0; i < n; ++i) { const int x = *(points++), y = *(points++); if (subsampling_x) *(proj++) = ROUND_POWER_OF_TWO_SIGNED( mat[3] * 2 * x + mat[2] * 2 * y + mat[1] + (mat[3] + mat[2] - (1 << WARPEDMODEL_PREC_BITS)) / 2, WARPEDDIFF_PREC_BITS + 1); else *(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[3] * x + mat[2] * y + mat[1], WARPEDDIFF_PREC_BITS); if (subsampling_y) *(proj++) = ROUND_POWER_OF_TWO_SIGNED( mat[5] * 2 * x + mat[4] * 2 * y + mat[0] + (mat[5] + mat[4] - (1 << WARPEDMODEL_PREC_BITS)) / 2, WARPEDDIFF_PREC_BITS + 1); else *(proj++) = ROUND_POWER_OF_TWO_SIGNED(mat[5] * x + mat[4] * y + mat[0], WARPEDDIFF_PREC_BITS); points += stride_points - 2; proj += stride_proj - 2; } } void projectPointsHomography(int16_t *mat, int *points, int *proj, const int n, const int stride_points, const int stride_proj, const int subsampling_x, const int subsampling_y) { int i; int64_t x, y, Z; int64_t xp, yp; for (i = 0; i < n; ++i) { x = *(points++), y = *(points++); x = (subsampling_x ? 4 * x + 1 : 2 * x); y = (subsampling_y ? 4 * y + 1 : 2 * y); Z = (mat[7] * x + mat[6] * y + (1 << (WARPEDMODEL_ROW3HOMO_PREC_BITS + 1))); xp = (mat[1] * x + mat[0] * y + 2 * mat[3]) << (WARPEDPIXEL_PREC_BITS + WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS); yp = (mat[2] * x + mat[5] * y + 2 * mat[4]) << (WARPEDPIXEL_PREC_BITS + WARPEDMODEL_ROW3HOMO_PREC_BITS - WARPEDMODEL_PREC_BITS); xp = xp > 0 ? (xp + Z / 2) / Z : (xp - Z / 2) / Z; yp = yp > 0 ? (yp + Z / 2) / Z : (yp - Z / 2) / Z; if (subsampling_x) xp = (xp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2; if (subsampling_y) yp = (yp - (1 << (WARPEDPIXEL_PREC_BITS - 1))) / 2; *(proj++) = xp; *(proj++) = yp; points += stride_points - 2; proj += stride_proj - 2; } } static const int16_t filter_4tap[WARPEDPIXEL_PREC_SHIFTS][4] = { { 0, 128, 0, 0 }, { -1, 127, 2, 0 }, { -2, 127, 4, -1 }, { -3, 126, 6, -1 }, { -3, 125, 8, -2 }, { -4, 124, 11, -3 }, { -5, 123, 13, -3 }, { -5, 121, 15, -3 }, { -6, 120, 18, -4 }, { -7, 119, 20, -4 }, { -7, 118, 22, -5 }, { -8, 116, 25, -5 }, { -8, 115, 27, -6 }, { -9, 113, 30, -6 }, { -9, 112, 32, -7 }, { -9, 110, 34, -7 }, { -10, 108, 37, -7 }, { -10, 107, 39, -8 }, { -10, 105, 41, -8 }, { -11, 103, 44, -8 }, { -11, 101, 47, -9 }, { -11, 99, 49, -9 }, { -11, 97, 51, -9 }, { -11, 95, 54, -10 }, { -11, 93, 56, -10 }, { -12, 91, 59, -10 }, { -12, 89, 61, -10 }, { -12, 87, 64, -11 }, { -12, 85, 66, -11 }, { -12, 82, 69, -11 }, { -12, 80, 71, -11 }, { -12, 78, 73, -11 }, { -11, 75, 75, -11 }, { -11, 73, 78, -12 }, { -11, 71, 80, -12 }, { -11, 69, 82, -12 }, { -11, 66, 85, -12 }, { -11, 64, 87, -12 }, { -10, 61, 89, -12 }, { -10, 59, 91, -12 }, { -10, 56, 93, -11 }, { -10, 54, 95, -11 }, { -9, 51, 97, -11 }, { -9, 49, 99, -11 }, { -9, 47, 101, -11 }, { -8, 44, 103, -11 }, { -8, 41, 105, -10 }, { -8, 39, 107, -10 }, { -7, 37, 108, -10 }, { -7, 34, 110, -9 }, { -7, 32, 112, -9 }, { -6, 30, 113, -9 }, { -6, 27, 115, -8 }, { -5, 25, 116, -8 }, { -5, 22, 118, -7 }, { -4, 20, 119, -7 }, { -4, 18, 120, -6 }, { -3, 15, 121, -5 }, { -3, 13, 123, -5 }, { -3, 11, 124, -4 }, { -2, 8, 125, -3 }, { -1, 6, 126, -3 }, { -1, 4, 127, -2 }, { 0, 2, 127, -1 }, }; static const int16_t filter_ntap[WARPEDPIXEL_PREC_SHIFTS][WARPEDPIXEL_FILTER_TAPS] = { { 0, 0, 128, 0, 0, 0 }, { 0, -1, 128, 2, -1, 0 }, { 1, -3, 127, 4, -1, 0 }, { 1, -4, 126, 6, -2, 1 }, { 1, -5, 126, 8, -3, 1 }, { 1, -6, 125, 11, -4, 1 }, { 1, -7, 124, 13, -4, 1 }, { 2, -8, 123, 15, -5, 1 }, { 2, -9, 122, 18, -6, 1 }, { 2, -10, 121, 20, -6, 1 }, { 2, -11, 120, 22, -7, 2 }, { 2, -12, 119, 25, -8, 2 }, { 3, -13, 117, 27, -8, 2 }, { 3, -13, 116, 29, -9, 2 }, { 3, -14, 114, 32, -10, 3 }, { 3, -15, 113, 35, -10, 2 }, { 3, -15, 111, 37, -11, 3 }, { 3, -16, 109, 40, -11, 3 }, { 3, -16, 108, 42, -12, 3 }, { 4, -17, 106, 45, -13, 3 }, { 4, -17, 104, 47, -13, 3 }, { 4, -17, 102, 50, -14, 3 }, { 4, -17, 100, 52, -14, 3 }, { 4, -18, 98, 55, -15, 4 }, { 4, -18, 96, 58, -15, 3 }, { 4, -18, 94, 60, -16, 4 }, { 4, -18, 91, 63, -16, 4 }, { 4, -18, 89, 65, -16, 4 }, { 4, -18, 87, 68, -17, 4 }, { 4, -18, 85, 70, -17, 4 }, { 4, -18, 82, 73, -17, 4 }, { 4, -18, 80, 75, -17, 4 }, { 4, -18, 78, 78, -18, 4 }, { 4, -17, 75, 80, -18, 4 }, { 4, -17, 73, 82, -18, 4 }, { 4, -17, 70, 85, -18, 4 }, { 4, -17, 68, 87, -18, 4 }, { 4, -16, 65, 89, -18, 4 }, { 4, -16, 63, 91, -18, 4 }, { 4, -16, 60, 94, -18, 4 }, { 3, -15, 58, 96, -18, 4 }, { 4, -15, 55, 98, -18, 4 }, { 3, -14, 52, 100, -17, 4 }, { 3, -14, 50, 102, -17, 4 }, { 3, -13, 47, 104, -17, 4 }, { 3, -13, 45, 106, -17, 4 }, { 3, -12, 42, 108, -16, 3 }, { 3, -11, 40, 109, -16, 3 }, { 3, -11, 37, 111, -15, 3 }, { 2, -10, 35, 113, -15, 3 }, { 3, -10, 32, 114, -14, 3 }, { 2, -9, 29, 116, -13, 3 }, { 2, -8, 27, 117, -13, 3 }, { 2, -8, 25, 119, -12, 2 }, { 2, -7, 22, 120, -11, 2 }, { 1, -6, 20, 121, -10, 2 }, { 1, -6, 18, 122, -9, 2 }, { 1, -5, 15, 123, -8, 2 }, { 1, -4, 13, 124, -7, 1 }, { 1, -4, 11, 125, -6, 1 }, { 1, -3, 8, 126, -5, 1 }, { 1, -2, 6, 126, -4, 1 }, { 0, -1, 4, 127, -3, 1 }, { 0, -1, 2, 128, -1, 0 }, }; static int32_t do_ntap_filter(int32_t *p, int x) { int i; int32_t sum = 0; for (i = 0; i < WARPEDPIXEL_FILTER_TAPS; ++i) { sum += p[i - WARPEDPIXEL_FILTER_TAPS / 2 + 1] * filter_ntap[x][i]; } return sum; } static int32_t do_cubic_filter(int32_t *p, int x) { if (x == 0) { return p[0]; } else if (x == (1 << WARPEDPIXEL_PREC_BITS)) { return p[1]; } else { const int64_t v1 = x * x * x * (3 * (p[0] - p[1]) + p[2] - p[-1]); const int64_t v2 = x * x * (2 * p[-1] - 5 * p[0] + 4 * p[1] - p[2]); const int64_t v3 = x * (p[1] - p[-1]); const int64_t v4 = 2 * p[0]; return (int32_t)ROUND_POWER_OF_TWO_SIGNED( (v4 << (3 * WARPEDPIXEL_PREC_BITS)) + (v3 << (2 * WARPEDPIXEL_PREC_BITS)) + (v2 << WARPEDPIXEL_PREC_BITS) + v1, 3 * WARPEDPIXEL_PREC_BITS + 1 - WARPEDPIXEL_FILTER_BITS); } } /* static int32_t do_linear_filter(int32_t *p, int x) { int32_t sum = 0; sum = p[0] * (WARPEDPIXEL_PREC_SHIFTS - x) + p[1] * x; sum <<= (WARPEDPIXEL_FILTER_BITS - WARPEDPIXEL_PREC_BITS); return sum; } static int32_t do_4tap_filter(int32_t *p, int x) { int i; int32_t sum = 0; for (i = 0; i < 4; ++i) { sum += p[i - 1] * filter_4tap[x][i]; } return sum; } */ static INLINE void get_subcolumn(int taps, uint8_t *ref, int32_t *col, int stride, int x, int y_start) { int i; for (i = 0; i < taps; ++i) { col[i] = ref[(i + y_start) * stride + x]; } } static uint8_t bi_ntap_filter(uint8_t *ref, int x, int y, int stride) { int32_t val, arr[WARPEDPIXEL_FILTER_TAPS]; int k; int i = (int)x >> WARPEDPIXEL_PREC_BITS; int j = (int)y >> WARPEDPIXEL_PREC_BITS; for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) { int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS]; get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride, i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2, j + 1 - WARPEDPIXEL_FILTER_TAPS / 2); arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1, y - (j << WARPEDPIXEL_PREC_BITS)); } val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1, x - (i << WARPEDPIXEL_PREC_BITS)); val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); return (uint8_t)clip_pixel(val); } static uint8_t bi_cubic_filter(uint8_t *ref, int x, int y, int stride) { int32_t val, arr[4]; int k; int i = (int)x >> WARPEDPIXEL_PREC_BITS; int j = (int)y >> WARPEDPIXEL_PREC_BITS; for (k = 0; k < 4; ++k) { int32_t arr_temp[4]; get_subcolumn(4, ref, arr_temp, stride, i + k - 1, j - 1); arr[k] = do_cubic_filter(arr_temp + 1, y - (j << WARPEDPIXEL_PREC_BITS)); } val = do_cubic_filter(arr + 1, x - (i << WARPEDPIXEL_PREC_BITS)); val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); return (uint8_t)clip_pixel(val); } static uint8_t bi_linear_filter(uint8_t *ref, int x, int y, int stride) { const int ix = x >> WARPEDPIXEL_PREC_BITS; const int iy = y >> WARPEDPIXEL_PREC_BITS; const int sx = x - (ix << WARPEDPIXEL_PREC_BITS); const int sy = y - (iy << WARPEDPIXEL_PREC_BITS); int32_t val; val = ROUND_POWER_OF_TWO_SIGNED( ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx + ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[(iy + 1) * stride + ix + 1] * sy * sx, WARPEDPIXEL_PREC_BITS * 2); return (uint8_t)clip_pixel(val); } static uint8_t warp_interpolate(uint8_t *ref, int x, int y, int width, int height, int stride) { int ix = x >> WARPEDPIXEL_PREC_BITS; int iy = y >> WARPEDPIXEL_PREC_BITS; int sx = x - (ix << WARPEDPIXEL_PREC_BITS); int sy = y - (iy << WARPEDPIXEL_PREC_BITS); int32_t v; if (ix < 0 && iy < 0) return ref[0]; else if (ix < 0 && iy > height - 1) return ref[(height - 1) * stride]; else if (ix > width - 1 && iy < 0) return ref[width - 1]; else if (ix > width - 1 && iy > height - 1) return ref[(height - 1) * stride + (width - 1)]; else if (ix < 0) { v = ROUND_POWER_OF_TWO_SIGNED( ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) + ref[(iy + 1) * stride] * sy, WARPEDPIXEL_PREC_BITS); return clip_pixel(v); } else if (iy < 0) { v = ROUND_POWER_OF_TWO_SIGNED( ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[ix + 1] * sx, WARPEDPIXEL_PREC_BITS); return clip_pixel(v); } else if (ix > width - 1) { v = ROUND_POWER_OF_TWO_SIGNED( ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) + ref[(iy + 1) * stride + width - 1] * sy, WARPEDPIXEL_PREC_BITS); return clip_pixel(v); } else if (iy > height - 1) { v = ROUND_POWER_OF_TWO_SIGNED( ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[(height - 1) * stride + ix + 1] * sx, WARPEDPIXEL_PREC_BITS); return clip_pixel(v); } else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && ix < width - WARPEDPIXEL_FILTER_TAPS / 2 && iy < height - WARPEDPIXEL_FILTER_TAPS / 2) { return bi_ntap_filter(ref, x, y, stride); } else if (ix >= 1 && iy >= 1 && ix < width - 2 && iy < height - 2) { return bi_cubic_filter(ref, x, y, stride); } else { return bi_linear_filter(ref, x, y, stride); } } #if CONFIG_AOM_HIGHBITDEPTH static INLINE void highbd_get_subcolumn(int taps, uint16_t *ref, int32_t *col, int stride, int x, int y_start) { int i; for (i = 0; i < taps; ++i) { col[i] = ref[(i + y_start) * stride + x]; } } static uint16_t highbd_bi_ntap_filter(uint16_t *ref, int x, int y, int stride, int bd) { int32_t val, arr[WARPEDPIXEL_FILTER_TAPS]; int k; int i = (int)x >> WARPEDPIXEL_PREC_BITS; int j = (int)y >> WARPEDPIXEL_PREC_BITS; for (k = 0; k < WARPEDPIXEL_FILTER_TAPS; ++k) { int32_t arr_temp[WARPEDPIXEL_FILTER_TAPS]; highbd_get_subcolumn(WARPEDPIXEL_FILTER_TAPS, ref, arr_temp, stride, i + k + 1 - WARPEDPIXEL_FILTER_TAPS / 2, j + 1 - WARPEDPIXEL_FILTER_TAPS / 2); arr[k] = do_ntap_filter(arr_temp + WARPEDPIXEL_FILTER_TAPS / 2 - 1, y - (j << WARPEDPIXEL_PREC_BITS)); } val = do_ntap_filter(arr + WARPEDPIXEL_FILTER_TAPS / 2 - 1, x - (i << WARPEDPIXEL_PREC_BITS)); val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); return (uint16_t)clip_pixel_highbd(val, bd); } static uint16_t highbd_bi_cubic_filter(uint16_t *ref, int x, int y, int stride, int bd) { int32_t val, arr[4]; int k; int i = (int)x >> WARPEDPIXEL_PREC_BITS; int j = (int)y >> WARPEDPIXEL_PREC_BITS; for (k = 0; k < 4; ++k) { int32_t arr_temp[4]; highbd_get_subcolumn(4, ref, arr_temp, stride, i + k - 1, j - 1); arr[k] = do_cubic_filter(arr_temp + 1, y - (j << WARPEDPIXEL_PREC_BITS)); } val = do_cubic_filter(arr + 1, x - (i << WARPEDPIXEL_PREC_BITS)); val = ROUND_POWER_OF_TWO_SIGNED(val, WARPEDPIXEL_FILTER_BITS * 2); return (uint16_t)clip_pixel_highbd(val, bd); } static uint16_t highbd_bi_linear_filter(uint16_t *ref, int x, int y, int stride, int bd) { const int ix = x >> WARPEDPIXEL_PREC_BITS; const int iy = y >> WARPEDPIXEL_PREC_BITS; const int sx = x - (ix << WARPEDPIXEL_PREC_BITS); const int sy = y - (iy << WARPEDPIXEL_PREC_BITS); int32_t val; val = ROUND_POWER_OF_TWO_SIGNED( ref[iy * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sy) * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[iy * stride + ix + 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) * sx + ref[(iy + 1) * stride + ix] * sy * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[(iy + 1) * stride + ix + 1] * sy * sx, WARPEDPIXEL_PREC_BITS * 2); return (uint16_t)clip_pixel_highbd(val, bd); } static uint16_t highbd_warp_interpolate(uint16_t *ref, int x, int y, int width, int height, int stride, int bd) { int ix = x >> WARPEDPIXEL_PREC_BITS; int iy = y >> WARPEDPIXEL_PREC_BITS; int sx = x - (ix << WARPEDPIXEL_PREC_BITS); int sy = y - (iy << WARPEDPIXEL_PREC_BITS); int32_t v; if (ix < 0 && iy < 0) return ref[0]; else if (ix < 0 && iy > height - 1) return ref[(height - 1) * stride]; else if (ix > width - 1 && iy < 0) return ref[width - 1]; else if (ix > width - 1 && iy > height - 1) return ref[(height - 1) * stride + (width - 1)]; else if (ix < 0) { v = ROUND_POWER_OF_TWO_SIGNED( ref[iy * stride] * (WARPEDPIXEL_PREC_SHIFTS - sy) + ref[(iy + 1) * stride] * sy, WARPEDPIXEL_PREC_BITS); return clip_pixel_highbd(v, bd); } else if (iy < 0) { v = ROUND_POWER_OF_TWO_SIGNED( ref[ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[ix + 1] * sx, WARPEDPIXEL_PREC_BITS); return clip_pixel_highbd(v, bd); } else if (ix > width - 1) { v = ROUND_POWER_OF_TWO_SIGNED( ref[iy * stride + width - 1] * (WARPEDPIXEL_PREC_SHIFTS - sy) + ref[(iy + 1) * stride + width - 1] * sy, WARPEDPIXEL_PREC_BITS); return clip_pixel_highbd(v, bd); } else if (iy > height - 1) { v = ROUND_POWER_OF_TWO_SIGNED( ref[(height - 1) * stride + ix] * (WARPEDPIXEL_PREC_SHIFTS - sx) + ref[(height - 1) * stride + ix + 1] * sx, WARPEDPIXEL_PREC_BITS); return clip_pixel_highbd(v, bd); } else if (ix >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && iy >= WARPEDPIXEL_FILTER_TAPS / 2 - 1 && ix < width - WARPEDPIXEL_FILTER_TAPS / 2 && iy < height - WARPEDPIXEL_FILTER_TAPS / 2) { return highbd_bi_ntap_filter(ref, x, y, stride, bd); } else if (ix >= 1 && iy >= 1 && ix < width - 2 && iy < height - 2) { return highbd_bi_cubic_filter(ref, x, y, stride, bd); } else { return highbd_bi_linear_filter(ref, x, y, stride, bd); } } static double highbd_warp_erroradv(WarpedMotionParams *wm, uint8_t *ref8, int width, int height, int stride, uint8_t *dst8, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int x_scale, int y_scale, int bd) { int i, j; ProjectPointsType projectpoints = get_project_points_type(wm->wmtype); uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); int gm_err = 0, no_gm_err = 0; int64_t gm_sumerr = 0, no_gm_sumerr = 0; for (i = p_row; i < p_row + p_height; ++i) { for (j = p_col; j < p_col + p_width; ++j) { int in[2], out[2]; in[0] = j; in[1] = i; projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); gm_err = dst[(j - p_col) + (i - p_row) * p_stride] - highbd_warp_interpolate(ref, out[0], out[1], width, height, stride, bd); no_gm_err = dst[(j - p_col) + (i - p_row) * p_stride] - ref[(j - p_col) + (i - p_row) * stride]; gm_sumerr += (int64_t)gm_err * gm_err; no_gm_sumerr += (int64_t)no_gm_err * no_gm_err; } } return (double)gm_sumerr / no_gm_sumerr; } static void highbd_warp_plane(WarpedMotionParams *wm, uint8_t *ref8, int width, int height, int stride, uint8_t *pred8, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int x_scale, int y_scale, int bd) { int i, j; ProjectPointsType projectpoints = get_project_points_type(wm->wmtype); uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); if (projectpoints == NULL) return; for (i = p_row; i < p_row + p_height; ++i) { for (j = p_col; j < p_col + p_width; ++j) { int in[2], out[2]; in[0] = j; in[1] = i; projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); pred[(j - p_col) + (i - p_row) * p_stride] = highbd_warp_interpolate( ref, out[0], out[1], width, height, stride, bd); } } } #endif // CONFIG_AOM_HIGHBITDEPTH static double warp_erroradv(WarpedMotionParams *wm, uint8_t *ref, int width, int height, int stride, uint8_t *dst, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int x_scale, int y_scale) { int gm_err = 0, no_gm_err = 0; int gm_sumerr = 0, no_gm_sumerr = 0; int i, j; ProjectPointsType projectpoints = get_project_points_type(wm->wmtype); for (i = p_row; i < p_row + p_height; ++i) { for (j = p_col; j < p_col + p_width; ++j) { int in[2], out[2]; in[0] = j; in[1] = i; projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); gm_err = dst[(j - p_col) + (i - p_row) * p_stride] - warp_interpolate(ref, out[0], out[1], width, height, stride); no_gm_err = dst[(j - p_col) + (i - p_row) * p_stride] - ref[(j - p_col) + (i - p_row) * stride]; gm_sumerr += gm_err * gm_err; no_gm_sumerr += no_gm_err * no_gm_err; } } return (double)gm_sumerr / no_gm_sumerr; } static void warp_plane(WarpedMotionParams *wm, uint8_t *ref, int width, int height, int stride, uint8_t *pred, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int x_scale, int y_scale) { int i, j; ProjectPointsType projectpoints = get_project_points_type(wm->wmtype); if (projectpoints == NULL) return; for (i = p_row; i < p_row + p_height; ++i) { for (j = p_col; j < p_col + p_width; ++j) { int in[2], out[2]; in[0] = j; in[1] = i; projectpoints((int16_t *)wm->wmmat, in, out, 1, 2, 2, subsampling_x, subsampling_y); out[0] = ROUND_POWER_OF_TWO_SIGNED(out[0] * x_scale, 4); out[1] = ROUND_POWER_OF_TWO_SIGNED(out[1] * y_scale, 4); pred[(j - p_col) + (i - p_row) * p_stride] = warp_interpolate(ref, out[0], out[1], width, height, stride); } } } double av1_warp_erroradv(WarpedMotionParams *wm, #if CONFIG_AOM_HIGHBITDEPTH int use_hbd, int bd, #endif // CONFIG_AOM_HIGHBITDEPTH uint8_t *ref, int width, int height, int stride, uint8_t *dst, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int x_scale, int y_scale) { #if CONFIG_AOM_HIGHBITDEPTH if (use_hbd) return highbd_warp_erroradv( wm, ref, width, height, stride, dst, p_col, p_row, p_width, p_height, p_stride, subsampling_x, subsampling_y, x_scale, y_scale, bd); else #endif // CONFIG_AOM_HIGHBITDEPTH return warp_erroradv(wm, ref, width, height, stride, dst, p_col, p_row, p_width, p_height, p_stride, subsampling_x, subsampling_y, x_scale, y_scale); } void av1_warp_plane(WarpedMotionParams *wm, #if CONFIG_AOM_HIGHBITDEPTH int use_hbd, int bd, #endif // CONFIG_AOM_HIGHBITDEPTH uint8_t *ref, int width, int height, int stride, uint8_t *pred, int p_col, int p_row, int p_width, int p_height, int p_stride, int subsampling_x, int subsampling_y, int x_scale, int y_scale) { #if CONFIG_AOM_HIGHBITDEPTH if (use_hbd) highbd_warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width, p_height, p_stride, subsampling_x, subsampling_y, x_scale, y_scale, bd); else #endif // CONFIG_AOM_HIGHBITDEPTH warp_plane(wm, ref, width, height, stride, pred, p_col, p_row, p_width, p_height, p_stride, subsampling_x, subsampling_y, x_scale, y_scale); } void av1_integerize_model(const double *model, TransformationType wmtype, WarpedMotionParams *wm) { wm->wmtype = wmtype; switch (wmtype) { case HOMOGRAPHY: assert(fabs(model[8] - 1.0) < 1e-12); wm->wmmat[3].as_mv.row = (int16_t)lrint(model[6] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS)); wm->wmmat[3].as_mv.col = (int16_t)lrint(model[7] * (1 << WARPEDMODEL_ROW3HOMO_PREC_BITS)); /* fallthrough intended */ case AFFINE: wm->wmmat[2].as_mv.row = (int16_t)lrint(model[4] * (1 << WARPEDMODEL_PREC_BITS)); wm->wmmat[2].as_mv.col = (int16_t)lrint(model[5] * (1 << WARPEDMODEL_PREC_BITS)); /* fallthrough intended */ case ROTZOOM: wm->wmmat[1].as_mv.row = (int16_t)lrint(model[2] * (1 << WARPEDMODEL_PREC_BITS)); wm->wmmat[1].as_mv.col = (int16_t)lrint(model[3] * (1 << WARPEDMODEL_PREC_BITS)); /* fallthrough intended */ case TRANSLATION: wm->wmmat[0].as_mv.row = (int16_t)lrint(model[0] * (1 << WARPEDMODEL_PREC_BITS)); wm->wmmat[0].as_mv.col = (int16_t)lrint(model[1] * (1 << WARPEDMODEL_PREC_BITS)); break; default: assert(0 && "Invalid TransformationType"); } }