/* * Copyright (c) 2013 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_convolve.h" #include #include "./vpx_config.h" #include "./vp9_rtcd.h" #include "vp9/common/vp9_common.h" #include "vpx/vpx_integer.h" #include "vpx_ports/mem.h" #define VP9_FILTER_WEIGHT 128 #define VP9_FILTER_SHIFT 7 #define ALIGN_FILTERS_256 0 /* Assume a bank of 16 filters to choose from. There are two implementations * for filter wrapping behavior, since we want to be able to pick which filter * to start with. We could either: * * 1) make filter_ a pointer to the base of the filter array, and then add an * additional offset parameter, to choose the starting filter. * 2) use a pointer to 2 periods worth of filters, so that even if the original * phase offset is at 15/16, we'll have valid data to read. The filter * tables become [32][8], and the second half is duplicated. * 3) fix the alignment of the filter tables, so that we know the 0/16 is * always 256 byte aligned. * * Implementations 2 and 3 are likely preferable, as they avoid an extra 2 * parameters, and switching between them is trivial. */ static void convolve_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x0, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, int taps) { int x, y, k, sum; const int16_t *filter_x_base = filter_x0; #if ALIGN_FILTERS_256 filter_x_base = (const int16_t *)(((intptr_t)filter_x0) & ~(intptr_t)0xff); #endif /* Adjust base pointer address for this source line */ src -= taps / 2 - 1; for (y = 0; y < h; ++y) { /* Pointer to filter to use */ const int16_t *filter_x = filter_x0; /* Initial phase offset */ int x_q4 = (filter_x - filter_x_base) / taps; for (x = 0; x < w; ++x) { /* Per-pixel src offset */ int src_x = x_q4 >> 4; for (sum = 0, k = 0; k < taps; ++k) { sum += src[src_x + k] * filter_x[k]; } sum += (VP9_FILTER_WEIGHT >> 1); dst[x] = clip_pixel(sum >> VP9_FILTER_SHIFT); /* Adjust source and filter to use for the next pixel */ x_q4 += x_step_q4; filter_x = filter_x_base + (x_q4 & 0xf) * taps; } src += src_stride; dst += dst_stride; } } static void convolve_avg_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x0, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, int taps) { int x, y, k, sum; const int16_t *filter_x_base = filter_x0; #if ALIGN_FILTERS_256 filter_x_base = (const int16_t *)(((intptr_t)filter_x0) & ~(intptr_t)0xff); #endif /* Adjust base pointer address for this source line */ src -= taps / 2 - 1; for (y = 0; y < h; ++y) { /* Pointer to filter to use */ const int16_t *filter_x = filter_x0; /* Initial phase offset */ int x_q4 = (filter_x - filter_x_base) / taps; for (x = 0; x < w; ++x) { /* Per-pixel src offset */ int src_x = x_q4 >> 4; for (sum = 0, k = 0; k < taps; ++k) { sum += src[src_x + k] * filter_x[k]; } sum += (VP9_FILTER_WEIGHT >> 1); dst[x] = (dst[x] + clip_pixel(sum >> VP9_FILTER_SHIFT) + 1) >> 1; /* Adjust source and filter to use for the next pixel */ x_q4 += x_step_q4; filter_x = filter_x_base + (x_q4 & 0xf) * taps; } src += src_stride; dst += dst_stride; } } static void convolve_vert_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y0, int y_step_q4, int w, int h, int taps) { int x, y, k, sum; const int16_t *filter_y_base = filter_y0; #if ALIGN_FILTERS_256 filter_y_base = (const int16_t *)(((intptr_t)filter_y0) & ~(intptr_t)0xff); #endif /* Adjust base pointer address for this source column */ src -= src_stride * (taps / 2 - 1); for (x = 0; x < w; ++x) { /* Pointer to filter to use */ const int16_t *filter_y = filter_y0; /* Initial phase offset */ int y_q4 = (filter_y - filter_y_base) / taps; for (y = 0; y < h; ++y) { /* Per-pixel src offset */ int src_y = y_q4 >> 4; for (sum = 0, k = 0; k < taps; ++k) { sum += src[(src_y + k) * src_stride] * filter_y[k]; } sum += (VP9_FILTER_WEIGHT >> 1); dst[y * dst_stride] = clip_pixel(sum >> VP9_FILTER_SHIFT); /* Adjust source and filter to use for the next pixel */ y_q4 += y_step_q4; filter_y = filter_y_base + (y_q4 & 0xf) * taps; } ++src; ++dst; } } static void convolve_avg_vert_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y0, int y_step_q4, int w, int h, int taps) { int x, y, k, sum; const int16_t *filter_y_base = filter_y0; #if ALIGN_FILTERS_256 filter_y_base = (const int16_t *)(((intptr_t)filter_y0) & ~(intptr_t)0xff); #endif /* Adjust base pointer address for this source column */ src -= src_stride * (taps / 2 - 1); for (x = 0; x < w; ++x) { /* Pointer to filter to use */ const int16_t *filter_y = filter_y0; /* Initial phase offset */ int y_q4 = (filter_y - filter_y_base) / taps; for (y = 0; y < h; ++y) { /* Per-pixel src offset */ int src_y = y_q4 >> 4; for (sum = 0, k = 0; k < taps; ++k) { sum += src[(src_y + k) * src_stride] * filter_y[k]; } sum += (VP9_FILTER_WEIGHT >> 1); dst[y * dst_stride] = (dst[y * dst_stride] + clip_pixel(sum >> VP9_FILTER_SHIFT) + 1) >> 1; /* Adjust source and filter to use for the next pixel */ y_q4 += y_step_q4; filter_y = filter_y_base + (y_q4 & 0xf) * taps; } ++src; ++dst; } } static void convolve_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, int taps) { /* Fixed size intermediate buffer places limits on parameters. */ uint8_t temp[16 * 23]; assert(w <= 16); assert(h <= 16); assert(taps <= 8); convolve_horiz_c(src - src_stride * (taps / 2 - 1), src_stride, temp, 16, filter_x, x_step_q4, filter_y, y_step_q4, w, h + taps - 1, taps); convolve_vert_c(temp + 16 * (taps / 2 - 1), 16, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, taps); } static void convolve_avg_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h, int taps) { /* Fixed size intermediate buffer places limits on parameters. */ uint8_t temp[16 * 23]; assert(w <= 16); assert(h <= 16); assert(taps <= 8); convolve_horiz_c(src - src_stride * (taps / 2 - 1), src_stride, temp, 16, filter_x, x_step_q4, filter_y, y_step_q4, w, h + taps - 1, taps); convolve_avg_vert_c(temp + 16 * (taps / 2 - 1), 16, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, taps); } void vp9_convolve8_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { convolve_horiz_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8); } void vp9_convolve8_avg_horiz_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { convolve_avg_horiz_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8); } void vp9_convolve8_vert_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { convolve_vert_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8); } void vp9_convolve8_avg_vert_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { convolve_avg_vert_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8); } void vp9_convolve8_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { convolve_c(src, src_stride, dst, dst_stride, filter_x, x_step_q4, filter_y, y_step_q4, w, h, 8); } void vp9_convolve8_avg_c(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int x_step_q4, const int16_t *filter_y, int y_step_q4, int w, int h) { /* Fixed size intermediate buffer places limits on parameters. */ DECLARE_ALIGNED_ARRAY(16, uint8_t, temp, 16 * 16); assert(w <= 16); assert(h <= 16); vp9_convolve8(src, src_stride, temp, 16, filter_x, x_step_q4, filter_y, y_step_q4, w, h); vp9_convolve_avg(temp, 16, dst, dst_stride, NULL, 0, /* These unused parameter should be removed! */ NULL, 0, /* These unused parameter should be removed! */ w, h); } void vp9_convolve_copy(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int filter_x_stride, const int16_t *filter_y, int filter_y_stride, int w, int h) { if (w == 16 && h == 16) { vp9_copy_mem16x16(src, src_stride, dst, dst_stride); } else if (w == 8 && h == 8) { vp9_copy_mem8x8(src, src_stride, dst, dst_stride); } else if (w == 8 && h == 4) { vp9_copy_mem8x4(src, src_stride, dst, dst_stride); } else { int r; for (r = h; r > 0; --r) { memcpy(dst, src, w); src += src_stride; dst += dst_stride; } } } void vp9_convolve_avg(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, const int16_t *filter_x, int filter_x_stride, const int16_t *filter_y, int filter_y_stride, int w, int h) { int x, y; for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { dst[x] = (dst[x] + src[x] + 1) >> 1; } src += src_stride; dst += dst_stride; } }