/* * Copyright (c) 2012 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "vp9/common/vp9_mvref_common.h" #define MVREF_NEIGHBOURS 8 static int mb_mv_ref_search[MVREF_NEIGHBOURS][2] = { {0, -1}, {-1, 0}, {-1, -1}, {0, -2}, {-2, 0}, {-1, -2}, {-2, -1}, {-2, -2} }; static int mb_ref_distance_weight[MVREF_NEIGHBOURS] = { 3, 3, 2, 1, 1, 1, 1, 1 }; #if CONFIG_SUPERBLOCKS static int sb_mv_ref_search[MVREF_NEIGHBOURS][2] = { {0, -1}, {-1, 0}, {1, -1}, {-1, 1}, {-1, -1}, {0, -2}, {-2, 0}, {-1, -2} }; static int sb_ref_distance_weight[MVREF_NEIGHBOURS] = { 3, 3, 2, 2, 2, 1, 1, 1 }; #endif // clamp_mv #define MV_BORDER (16 << 3) // Allow 16 pels in 1/8th pel units static void clamp_mv(const MACROBLOCKD *xd, int_mv *mv) { if (mv->as_mv.col < (xd->mb_to_left_edge - MV_BORDER)) mv->as_mv.col = xd->mb_to_left_edge - MV_BORDER; else if (mv->as_mv.col > xd->mb_to_right_edge + MV_BORDER) mv->as_mv.col = xd->mb_to_right_edge + MV_BORDER; if (mv->as_mv.row < (xd->mb_to_top_edge - MV_BORDER)) mv->as_mv.row = xd->mb_to_top_edge - MV_BORDER; else if (mv->as_mv.row > xd->mb_to_bottom_edge + MV_BORDER) mv->as_mv.row = xd->mb_to_bottom_edge + MV_BORDER; } // Gets a candidate refenence motion vector from the given mode info // structure if one exists that matches the given reference frame. static int get_matching_candidate( const MODE_INFO *candidate_mi, MV_REFERENCE_FRAME ref_frame, int_mv *c_mv ) { int ret_val = TRUE; if (ref_frame == candidate_mi->mbmi.ref_frame) { c_mv->as_int = candidate_mi->mbmi.mv[0].as_int; } else if (ref_frame == candidate_mi->mbmi.second_ref_frame) { c_mv->as_int = candidate_mi->mbmi.mv[1].as_int; } else { ret_val = FALSE; } return ret_val; } // Gets candidate refenence motion vector(s) from the given mode info // structure if they exists and do NOT match the given reference frame. static void get_non_matching_candidates( const MODE_INFO *candidate_mi, MV_REFERENCE_FRAME ref_frame, MV_REFERENCE_FRAME *c_ref_frame, int_mv *c_mv, MV_REFERENCE_FRAME *c2_ref_frame, int_mv *c2_mv ) { c_mv->as_int = 0; c2_mv->as_int = 0; *c_ref_frame = INTRA_FRAME; *c2_ref_frame = INTRA_FRAME; // If first candidate not valid neither will be. if (candidate_mi->mbmi.ref_frame > INTRA_FRAME) { // First candidate if (candidate_mi->mbmi.ref_frame != ref_frame) { *c_ref_frame = candidate_mi->mbmi.ref_frame; c_mv->as_int = candidate_mi->mbmi.mv[0].as_int; } // Second candidate if ((candidate_mi->mbmi.second_ref_frame > INTRA_FRAME) && (candidate_mi->mbmi.second_ref_frame != ref_frame)) { // && // (candidate_mi->mbmi.mv[1].as_int != 0) && // (candidate_mi->mbmi.mv[1].as_int != // candidate_mi->mbmi.mv[0].as_int)) { *c2_ref_frame = candidate_mi->mbmi.second_ref_frame; c2_mv->as_int = candidate_mi->mbmi.mv[1].as_int; } } } // Performs mv adjustment based on reference frame and clamps the MV // if it goes off the edge of the buffer. static void scale_mv( MACROBLOCKD *xd, MV_REFERENCE_FRAME this_ref_frame, MV_REFERENCE_FRAME candidate_ref_frame, int_mv *candidate_mv, int *ref_sign_bias ) { if (candidate_ref_frame != this_ref_frame) { //int frame_distances[MAX_REF_FRAMES]; //int last_distance = 1; //int gf_distance = xd->frames_since_golden; //int arf_distance = xd->frames_till_alt_ref_frame; // Sign inversion where appropriate. if (ref_sign_bias[candidate_ref_frame] != ref_sign_bias[this_ref_frame]) { candidate_mv->as_mv.row = -candidate_mv->as_mv.row; candidate_mv->as_mv.col = -candidate_mv->as_mv.col; } // Scale based on frame distance if the reference frames not the same. /*frame_distances[INTRA_FRAME] = 1; // should never be used frame_distances[LAST_FRAME] = 1; frame_distances[GOLDEN_FRAME] = (xd->frames_since_golden) ? xd->frames_since_golden : 1; frame_distances[ALTREF_FRAME] = (xd->frames_till_alt_ref_frame) ? xd->frames_till_alt_ref_frame : 1; if (frame_distances[this_ref_frame] && frame_distances[candidate_ref_frame]) { candidate_mv->as_mv.row = (short)(((int)(candidate_mv->as_mv.row) * frame_distances[this_ref_frame]) / frame_distances[candidate_ref_frame]); candidate_mv->as_mv.col = (short)(((int)(candidate_mv->as_mv.col) * frame_distances[this_ref_frame]) / frame_distances[candidate_ref_frame]); } */ } // Clamp the MV so it does not point out of the frame buffer clamp_mv(xd, candidate_mv); } // Adds a new candidate reference vector to the list if indeed it is new. // If it is not new then the score of the existing candidate that it matches // is increased and the list is resorted. static void addmv_and_shuffle( int_mv *mv_list, int *mv_scores, int *index, int_mv candidate_mv, int weight ) { int i; int insert_point; int duplicate_found = FALSE; // Check for duplicates. If there is one increase its score. // We only compare vs the current top candidates. insert_point = (*index < (MAX_MV_REF_CANDIDATES - 1)) ? *index : (MAX_MV_REF_CANDIDATES - 1); i = insert_point; if (*index > i) i++; while (i > 0) { i--; if (candidate_mv.as_int == mv_list[i].as_int) { duplicate_found = TRUE; mv_scores[i] += weight; break; } } // If no duplicate and the new candidate is good enough then add it. if (!duplicate_found ) { if (weight > mv_scores[insert_point]) { mv_list[insert_point].as_int = candidate_mv.as_int; mv_scores[insert_point] = weight; i = insert_point; } (*index)++; } // Reshuffle the list so that highest scoring mvs at the top. while (i > 0) { if (mv_scores[i] > mv_scores[i-1]) { int tmp_score = mv_scores[i-1]; int_mv tmp_mv = mv_list[i-1]; mv_scores[i-1] = mv_scores[i]; mv_list[i-1] = mv_list[i]; mv_scores[i] = tmp_score; mv_list[i] = tmp_mv; i--; } else break; } } // This function searches the neighbourhood of a given MB/SB and populates a // list of candidate reference vectors. // void vp9_find_mv_refs( MACROBLOCKD *xd, MODE_INFO *here, MODE_INFO *lf_here, MV_REFERENCE_FRAME ref_frame, int_mv *mv_ref_list, int *ref_sign_bias ) { int i; MODE_INFO *candidate_mi; MB_MODE_INFO * mbmi = &xd->mode_info_context->mbmi; int_mv candidate_mvs[MAX_MV_REF_CANDIDATES]; int_mv c_refmv; int_mv c2_refmv; MV_REFERENCE_FRAME c_ref_frame; MV_REFERENCE_FRAME c2_ref_frame; int candidate_scores[MAX_MV_REF_CANDIDATES]; int index = 0; int split_count = 0; int (*mv_ref_search)[2]; int *ref_distance_weight; // Blank the reference vector lists and other local structures. vpx_memset(mv_ref_list, 0, sizeof(int_mv) * MAX_MV_REF_CANDIDATES); vpx_memset(candidate_mvs, 0, sizeof(int_mv) * MAX_MV_REF_CANDIDATES); vpx_memset(candidate_scores, 0, sizeof(candidate_scores)); #if CONFIG_SUPERBLOCKS if (mbmi->encoded_as_sb) { mv_ref_search = sb_mv_ref_search; ref_distance_weight = sb_ref_distance_weight; } else { mv_ref_search = mb_mv_ref_search; ref_distance_weight = mb_ref_distance_weight; } #else mv_ref_search = mb_mv_ref_search; ref_distance_weight = mb_ref_distance_weight; #endif // We first scan for candidate vectors that match the current reference frame // Look at nearest neigbours for (i = 0; i < 2; ++i) { if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) && ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv)) { clamp_mv(xd, &c_refmv); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, ref_distance_weight[i] + 16); } split_count += (candidate_mi->mbmi.mode == SPLITMV); } } // Look in the last frame candidate_mi = lf_here; if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv)) { clamp_mv(xd, &c_refmv); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, 18); } // More distant neigbours for (i = 2; (i < MVREF_NEIGHBOURS) && (index < (MAX_MV_REF_CANDIDATES - 1)); ++i) { if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) && ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); if (get_matching_candidate(candidate_mi, ref_frame, &c_refmv)) { clamp_mv(xd, &c_refmv); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, ref_distance_weight[i] + 16); } } } // If we have not found enough candidates consider ones where the // reference frame does not match. Break out when we have // MAX_MV_REF_CANDIDATES candidates. // Look first at spatial neighbours if (index < (MAX_MV_REF_CANDIDATES - 1)) { for (i = 0; i < MVREF_NEIGHBOURS; ++i) { if (((mv_ref_search[i][0] << 7) >= xd->mb_to_left_edge) && ((mv_ref_search[i][1] << 7) >= xd->mb_to_top_edge)) { candidate_mi = here + mv_ref_search[i][0] + (mv_ref_search[i][1] * xd->mode_info_stride); get_non_matching_candidates(candidate_mi, ref_frame, &c_ref_frame, &c_refmv, &c2_ref_frame, &c2_refmv); if (c_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, ref_distance_weight[i]); } if (c2_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c2_refmv, ref_distance_weight[i]); } } if (index >= (MAX_MV_REF_CANDIDATES - 1)) { break; } } } // Look at the last frame if (index < (MAX_MV_REF_CANDIDATES - 1)) { candidate_mi = lf_here; get_non_matching_candidates(candidate_mi, ref_frame, &c_ref_frame, &c_refmv, &c2_ref_frame, &c2_refmv); if (c_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c_ref_frame, &c_refmv, ref_sign_bias); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c_refmv, 2); } if (c2_ref_frame != INTRA_FRAME) { scale_mv(xd, ref_frame, c2_ref_frame, &c2_refmv, ref_sign_bias); addmv_and_shuffle(candidate_mvs, candidate_scores, &index, c2_refmv, 2); } } // Define inter mode coding context. // 0,0 was best if (candidate_mvs[0].as_int == 0) { // 0,0 is only candidate if (index <= 1) { mbmi->mb_mode_context[ref_frame] = 0; // non zero candidates candidates available } else if (split_count == 0) { mbmi->mb_mode_context[ref_frame] = 1; } else { mbmi->mb_mode_context[ref_frame] = 2; } // Non zero best, No Split MV cases } else if (split_count == 0) { if (candidate_scores[0] >= 32) { mbmi->mb_mode_context[ref_frame] = 3; } else { mbmi->mb_mode_context[ref_frame] = 4; } // Non zero best, some split mv } else { if (candidate_scores[0] >= 32) { mbmi->mb_mode_context[ref_frame] = 5; } else { mbmi->mb_mode_context[ref_frame] = 6; } } // 0,0 is always a valid reference. for (i = 0; i < MAX_MV_REF_CANDIDATES; ++i) { if (candidate_mvs[i].as_int == 0) break; } if (i == MAX_MV_REF_CANDIDATES) { candidate_mvs[MAX_MV_REF_CANDIDATES-1].as_int = 0; } // Copy over the candidate list. vpx_memcpy(mv_ref_list, candidate_mvs, sizeof(candidate_mvs)); }