/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include #include #include "vp9/encoder/vp9_onyx_int.h" #include "vp9/encoder/vp9_tokenize.h" #include "vpx_mem/vpx_mem.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/common/vp9_entropy.h" /* Global event counters used for accumulating statistics across several compressions, then generating vp9_context.c = initial stats. */ #ifdef ENTROPY_STATS vp9_coeff_accum context_counters[TX_SIZES][BLOCK_TYPES]; extern vp9_coeff_stats tree_update_hist[TX_SIZES][BLOCK_TYPES]; #endif /* ENTROPY_STATS */ DECLARE_ALIGNED(16, extern const uint8_t, vp9_pt_energy_class[MAX_ENTROPY_TOKENS]); static TOKENVALUE dct_value_tokens[DCT_MAX_VALUE * 2]; const TOKENVALUE *vp9_dct_value_tokens_ptr; static int dct_value_cost[DCT_MAX_VALUE * 2]; const int *vp9_dct_value_cost_ptr; static void fill_value_tokens() { TOKENVALUE *const t = dct_value_tokens + DCT_MAX_VALUE; const vp9_extra_bit *const e = vp9_extra_bits; int i = -DCT_MAX_VALUE; int sign = 1; do { if (!i) sign = 0; { const int a = sign ? -i : i; int eb = sign; if (a > 4) { int j = 4; while (++j < 11 && e[j].base_val <= a) {} t[i].token = --j; eb |= (a - e[j].base_val) << 1; } else t[i].token = a; t[i].extra = eb; } // initialize the cost for extra bits for all possible coefficient value. { int cost = 0; const vp9_extra_bit *p = vp9_extra_bits + t[i].token; if (p->base_val) { const int extra = t[i].extra; const int length = p->len; if (length) cost += treed_cost(p->tree, p->prob, extra >> 1, length); cost += vp9_cost_bit(vp9_prob_half, extra & 1); /* sign */ dct_value_cost[i + DCT_MAX_VALUE] = cost; } } } while (++i < DCT_MAX_VALUE); vp9_dct_value_tokens_ptr = dct_value_tokens + DCT_MAX_VALUE; vp9_dct_value_cost_ptr = dct_value_cost + DCT_MAX_VALUE; } struct tokenize_b_args { VP9_COMP *cpi; MACROBLOCKD *xd; TOKENEXTRA **tp; TX_SIZE tx_size; }; static void set_entropy_context_b(int plane, int block, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args* const args = arg; MACROBLOCKD *const xd = args->xd; const int bwl = b_width_log2(bsize); const int off = block >> (2 * tx_size); const int mod = bwl - tx_size - xd->plane[plane].subsampling_x; const int aoff = (off & ((1 << mod) - 1)) << tx_size; const int loff = (off >> mod) << tx_size; ENTROPY_CONTEXT *A = xd->plane[plane].above_context + aoff; ENTROPY_CONTEXT *L = xd->plane[plane].left_context + loff; const int eob = xd->plane[plane].eobs[block]; const int tx_size_in_blocks = 1 << tx_size; if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) { set_contexts_on_border(xd, bsize, plane, tx_size_in_blocks, eob, aoff, loff, A, L); } else { vpx_memset(A, eob > 0, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); vpx_memset(L, eob > 0, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); } } static void tokenize_b(int plane, int block, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size, void *arg) { struct tokenize_b_args* const args = arg; VP9_COMP *cpi = args->cpi; MACROBLOCKD *xd = args->xd; TOKENEXTRA **tp = args->tp; const int tx_size_in_blocks = 1 << tx_size; MB_MODE_INFO *mbmi = &xd->mode_info_context->mbmi; int pt; /* near block/prev token context index */ int c = 0, rc = 0; TOKENEXTRA *t = *tp; /* store tokens starting here */ const int eob = xd->plane[plane].eobs[block]; const PLANE_TYPE type = xd->plane[plane].plane_type; const int16_t *qcoeff_ptr = BLOCK_OFFSET(xd->plane[plane].qcoeff, block); const int bwl = b_width_log2(bsize); const int off = block >> (2 * tx_size); const int mod = bwl - tx_size - xd->plane[plane].subsampling_x; const int aoff = (off & ((1 << mod) - 1)) << tx_size; const int loff = (off >> mod) << tx_size; ENTROPY_CONTEXT *A = xd->plane[plane].above_context + aoff; ENTROPY_CONTEXT *L = xd->plane[plane].left_context + loff; int seg_eob; const int segment_id = mbmi->segment_id; const int16_t *scan, *nb; vp9_coeff_count *counts; vp9_coeff_probs_model *coef_probs; const int ref = is_inter_block(mbmi); ENTROPY_CONTEXT above_ec, left_ec; uint8_t token_cache[1024]; const uint8_t *band_translate; assert((!type && !plane) || (type && plane)); counts = cpi->coef_counts[tx_size]; coef_probs = cpi->common.fc.coef_probs[tx_size]; switch (tx_size) { default: case TX_4X4: above_ec = A[0] != 0; left_ec = L[0] != 0; seg_eob = 16; scan = get_scan_4x4(get_tx_type_4x4(type, xd, block)); band_translate = vp9_coefband_trans_4x4; break; case TX_8X8: above_ec = !!*(uint16_t *)A; left_ec = !!*(uint16_t *)L; seg_eob = 64; scan = get_scan_8x8(get_tx_type_8x8(type, xd)); band_translate = vp9_coefband_trans_8x8plus; break; case TX_16X16: above_ec = !!*(uint32_t *)A; left_ec = !!*(uint32_t *)L; seg_eob = 256; scan = get_scan_16x16(get_tx_type_16x16(type, xd)); band_translate = vp9_coefband_trans_8x8plus; break; case TX_32X32: above_ec = !!*(uint64_t *)A; left_ec = !!*(uint64_t *)L; seg_eob = 1024; scan = vp9_default_scan_32x32; band_translate = vp9_coefband_trans_8x8plus; break; } pt = combine_entropy_contexts(above_ec, left_ec); nb = vp9_get_coef_neighbors_handle(scan); if (vp9_segfeature_active(&cpi->common.seg, segment_id, SEG_LVL_SKIP)) seg_eob = 0; c = 0; do { const int band = get_coef_band(band_translate, c); int token; int v = 0; rc = scan[c]; if (c) pt = get_coef_context(nb, token_cache, c); if (c < eob) { v = qcoeff_ptr[rc]; assert(-DCT_MAX_VALUE <= v && v < DCT_MAX_VALUE); t->extra = vp9_dct_value_tokens_ptr[v].extra; token = vp9_dct_value_tokens_ptr[v].token; } else { token = DCT_EOB_TOKEN; } t->token = token; t->context_tree = coef_probs[type][ref][band][pt]; t->skip_eob_node = (c > 0) && (token_cache[scan[c - 1]] == 0); assert(vp9_coef_encodings[t->token].len - t->skip_eob_node > 0); ++counts[type][ref][band][pt][token]; if (!t->skip_eob_node) ++cpi->common.counts.eob_branch[tx_size][type][ref][band][pt]; token_cache[rc] = vp9_pt_energy_class[token]; ++t; } while (c < eob && ++c < seg_eob); *tp = t; if (xd->mb_to_right_edge < 0 || xd->mb_to_bottom_edge < 0) { set_contexts_on_border(xd, bsize, plane, tx_size_in_blocks, c, aoff, loff, A, L); } else { vpx_memset(A, c > 0, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); vpx_memset(L, c > 0, sizeof(ENTROPY_CONTEXT) * tx_size_in_blocks); } } struct is_skippable_args { MACROBLOCKD *xd; int *skippable; }; static void is_skippable(int plane, int block, BLOCK_SIZE_TYPE bsize, TX_SIZE tx_size, void *argv) { struct is_skippable_args *args = argv; args->skippable[0] &= (!args->xd->plane[plane].eobs[block]); } int vp9_sb_is_skippable(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize) { int result = 1; struct is_skippable_args args = {xd, &result}; foreach_transformed_block(xd, bsize, is_skippable, &args); return result; } int vp9_is_skippable_in_plane(MACROBLOCKD *xd, BLOCK_SIZE_TYPE bsize, int plane) { int result = 1; struct is_skippable_args args = {xd, &result}; foreach_transformed_block_in_plane(xd, bsize, plane, is_skippable, &args); return result; } void vp9_tokenize_sb(VP9_COMP *cpi, TOKENEXTRA **t, int dry_run, BLOCK_SIZE_TYPE bsize) { VP9_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->mb.e_mbd; MB_MODE_INFO *const mbmi = &xd->mode_info_context->mbmi; TOKENEXTRA *t_backup = *t; const int mb_skip_context = vp9_get_pred_context_mbskip(xd); const int skip_inc = !vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); struct tokenize_b_args arg = {cpi, xd, t, mbmi->txfm_size}; mbmi->skip_coeff = vp9_sb_is_skippable(xd, bsize); if (mbmi->skip_coeff) { if (!dry_run) cm->counts.mbskip[mb_skip_context][1] += skip_inc; reset_skip_context(xd, bsize); if (dry_run) *t = t_backup; return; } if (!dry_run) { cm->counts.mbskip[mb_skip_context][0] += skip_inc; foreach_transformed_block(xd, bsize, tokenize_b, &arg); } else { foreach_transformed_block(xd, bsize, set_entropy_context_b, &arg); *t = t_backup; } } #ifdef ENTROPY_STATS void init_context_counters(void) { FILE *f = fopen("context.bin", "rb"); if (!f) { vp9_zero(context_counters); } else { fread(context_counters, sizeof(context_counters), 1, f); fclose(f); } f = fopen("treeupdate.bin", "rb"); if (!f) { vpx_memset(tree_update_hist, 0, sizeof(tree_update_hist)); } else { fread(tree_update_hist, sizeof(tree_update_hist), 1, f); fclose(f); } } static void print_counter(FILE *f, vp9_coeff_accum *context_counters, int block_types, const char *header) { int type, ref, band, pt, t; fprintf(f, "static const vp9_coeff_count %s = {\n", header); #define Comma(X) (X ? "," : "") type = 0; do { ref = 0; fprintf(f, "%s\n { /* block Type %d */", Comma(type), type); do { fprintf(f, "%s\n { /* %s */", Comma(type), ref ? "Inter" : "Intra"); band = 0; do { fprintf(f, "%s\n { /* Coeff Band %d */", Comma(band), band); pt = 0; do { fprintf(f, "%s\n {", Comma(pt)); t = 0; do { const int64_t x = context_counters[type][ref][band][pt][t]; const int y = (int) x; assert(x == (int64_t) y); /* no overflow handling yet */ fprintf(f, "%s %d", Comma(t), y); } while (++t < 1 + MAX_ENTROPY_TOKENS); fprintf(f, "}"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++ref < REF_TYPES); fprintf(f, "\n }"); } while (++type < block_types); fprintf(f, "\n};\n"); } static void print_probs(FILE *f, vp9_coeff_accum *context_counters, int block_types, const char *header) { int type, ref, band, pt, t; fprintf(f, "static const vp9_coeff_probs %s = {", header); type = 0; #define Newline(x, spaces) (x ? " " : "\n" spaces) do { fprintf(f, "%s%s{ /* block Type %d */", Comma(type), Newline(type, " "), type); ref = 0; do { fprintf(f, "%s%s{ /* %s */", Comma(band), Newline(band, " "), ref ? "Inter" : "Intra"); band = 0; do { fprintf(f, "%s%s{ /* Coeff Band %d */", Comma(band), Newline(band, " "), band); pt = 0; do { unsigned int branch_ct[ENTROPY_NODES][2]; unsigned int coef_counts[MAX_ENTROPY_TOKENS + 1]; vp9_prob coef_probs[ENTROPY_NODES]; if (pt >= 3 && band == 0) break; for (t = 0; t < MAX_ENTROPY_TOKENS + 1; ++t) coef_counts[t] = context_counters[type][ref][band][pt][t]; vp9_tree_probs_from_distribution(vp9_coef_tree, coef_probs, branch_ct, coef_counts, 0); branch_ct[0][1] = coef_counts[MAX_ENTROPY_TOKENS] - branch_ct[0][0]; coef_probs[0] = get_binary_prob(branch_ct[0][0], branch_ct[0][1]); fprintf(f, "%s\n {", Comma(pt)); t = 0; do { fprintf(f, "%s %3d", Comma(t), coef_probs[t]); } while (++t < ENTROPY_NODES); fprintf(f, " }"); } while (++pt < PREV_COEF_CONTEXTS); fprintf(f, "\n }"); } while (++band < COEF_BANDS); fprintf(f, "\n }"); } while (++ref < REF_TYPES); fprintf(f, "\n }"); } while (++type < block_types); fprintf(f, "\n};\n"); } void print_context_counters() { FILE *f = fopen("vp9_context.c", "w"); fprintf(f, "#include \"vp9_entropy.h\"\n"); fprintf(f, "\n/* *** GENERATED FILE: DO NOT EDIT *** */\n\n"); /* print counts */ print_counter(f, context_counters[TX_4X4], BLOCK_TYPES, "vp9_default_coef_counts_4x4[BLOCK_TYPES]"); print_counter(f, context_counters[TX_8X8], BLOCK_TYPES, "vp9_default_coef_counts_8x8[BLOCK_TYPES]"); print_counter(f, context_counters[TX_16X16], BLOCK_TYPES, "vp9_default_coef_counts_16x16[BLOCK_TYPES]"); print_counter(f, context_counters[TX_32X32], BLOCK_TYPES, "vp9_default_coef_counts_32x32[BLOCK_TYPES]"); /* print coefficient probabilities */ print_probs(f, context_counters[TX_4X4], BLOCK_TYPES, "default_coef_probs_4x4[BLOCK_TYPES]"); print_probs(f, context_counters[TX_8X8], BLOCK_TYPES, "default_coef_probs_8x8[BLOCK_TYPES]"); print_probs(f, context_counters[TX_16X16], BLOCK_TYPES, "default_coef_probs_16x16[BLOCK_TYPES]"); print_probs(f, context_counters[TX_32X32], BLOCK_TYPES, "default_coef_probs_32x32[BLOCK_TYPES]"); fclose(f); f = fopen("context.bin", "wb"); fwrite(context_counters, sizeof(context_counters), 1, f); fclose(f); } #endif void vp9_tokenize_initialize() { fill_value_tokens(); }