/* * Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef VP9_COMMON_VP9_BLOCKD_H_ #define VP9_COMMON_VP9_BLOCKD_H_ void vpx_log(const char *format, ...); #include "vpx_ports/config.h" #include "vpx_scale/yv12config.h" #include "vp9/common/vp9_mv.h" #include "vp9/common/vp9_treecoder.h" #include "vp9/common/vp9_subpixel.h" #include "vpx_ports/mem.h" #include "vp9/common/vp9_common.h" #define TRUE 1 #define FALSE 0 // #define MODE_STATS /*#define DCPRED 1*/ #define DCPREDSIMTHRESH 0 #define DCPREDCNTTHRESH 3 #define MB_FEATURE_TREE_PROBS 3 #define PREDICTION_PROBS 3 #define MBSKIP_CONTEXTS 3 #define MAX_MB_SEGMENTS 4 #define MAX_REF_LF_DELTAS 4 #define MAX_MODE_LF_DELTAS 4 /* Segment Feature Masks */ #define SEGMENT_DELTADATA 0 #define SEGMENT_ABSDATA 1 #define MAX_MV_REFS 9 #define MAX_MV_REF_CANDIDATES 4 typedef struct { int r, c; } POS; typedef enum PlaneType { PLANE_TYPE_Y_NO_DC = 0, PLANE_TYPE_Y2, PLANE_TYPE_UV, PLANE_TYPE_Y_WITH_DC, } PLANE_TYPE; typedef char ENTROPY_CONTEXT; typedef struct { ENTROPY_CONTEXT y1[4]; ENTROPY_CONTEXT u[2]; ENTROPY_CONTEXT v[2]; ENTROPY_CONTEXT y2; } ENTROPY_CONTEXT_PLANES; #define VP9_COMBINEENTROPYCONTEXTS( Dest, A, B) \ Dest = ((A)!=0) + ((B)!=0); typedef enum { KEY_FRAME = 0, INTER_FRAME = 1 } FRAME_TYPE; typedef enum { SIXTAP = 0, BILINEAR = 1, EIGHTTAP = 2, EIGHTTAP_SHARP = 3, SWITCHABLE /* should be the last one */ } INTERPOLATIONFILTERTYPE; typedef enum { DC_PRED, /* average of above and left pixels */ V_PRED, /* vertical prediction */ H_PRED, /* horizontal prediction */ D45_PRED, /* Directional 45 deg prediction [anti-clockwise from 0 deg hor] */ D135_PRED, /* Directional 135 deg prediction [anti-clockwise from 0 deg hor] */ D117_PRED, /* Directional 112 deg prediction [anti-clockwise from 0 deg hor] */ D153_PRED, /* Directional 157 deg prediction [anti-clockwise from 0 deg hor] */ D27_PRED, /* Directional 22 deg prediction [anti-clockwise from 0 deg hor] */ D63_PRED, /* Directional 67 deg prediction [anti-clockwise from 0 deg hor] */ TM_PRED, /* Truemotion prediction */ I8X8_PRED, /* 8x8 based prediction, each 8x8 has its own prediction mode */ B_PRED, /* block based prediction, each block has its own prediction mode */ NEARESTMV, NEARMV, ZEROMV, NEWMV, SPLITMV, MB_MODE_COUNT } MB_PREDICTION_MODE; // Segment level features. typedef enum { SEG_LVL_ALT_Q = 0, // Use alternate Quantizer .... SEG_LVL_ALT_LF = 1, // Use alternate loop filter value... SEG_LVL_REF_FRAME = 2, // Optional Segment reference frame SEG_LVL_MODE = 3, // Optional Segment mode SEG_LVL_EOB = 4, // EOB end stop marker. SEG_LVL_TRANSFORM = 5, // Block transform size. SEG_LVL_MAX = 6 // Number of MB level features supported } SEG_LVL_FEATURES; // Segment level features. typedef enum { TX_4X4 = 0, // 4x4 dct transform TX_8X8 = 1, // 8x8 dct transform TX_16X16 = 2, // 16x16 dct transform TX_SIZE_MAX_MB = 3, // Number of different transforms available #if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS TX_32X32 = TX_SIZE_MAX_MB, // 32x32 dct transform TX_SIZE_MAX_SB, // Number of transforms available to SBs #else TX_SIZE_MAX_SB = TX_SIZE_MAX_MB, #endif } TX_SIZE; typedef enum { DCT_DCT = 0, // DCT in both horizontal and vertical ADST_DCT = 1, // ADST in vertical, DCT in horizontal DCT_ADST = 2, // DCT in vertical, ADST in horizontal ADST_ADST = 3 // ADST in both directions } TX_TYPE; #define VP9_YMODES (B_PRED + 1) #define VP9_UV_MODES (TM_PRED + 1) #define VP9_I8X8_MODES (TM_PRED + 1) #define VP9_I32X32_MODES (TM_PRED + 1) #define VP9_MVREFS (1 + SPLITMV - NEARESTMV) #if CONFIG_LOSSLESS #define WHT_UPSCALE_FACTOR 3 #define Y2_WHT_UPSCALE_FACTOR 2 #endif typedef enum { B_DC_PRED, /* average of above and left pixels */ B_TM_PRED, B_VE_PRED, /* vertical prediction */ B_HE_PRED, /* horizontal prediction */ B_LD_PRED, B_RD_PRED, B_VR_PRED, B_VL_PRED, B_HD_PRED, B_HU_PRED, #if CONFIG_NEWBINTRAMODES B_CONTEXT_PRED, #endif LEFT4X4, ABOVE4X4, ZERO4X4, NEW4X4, B_MODE_COUNT } B_PREDICTION_MODE; #define VP9_BINTRAMODES (LEFT4X4) #define VP9_SUBMVREFS (1 + NEW4X4 - LEFT4X4) #if CONFIG_NEWBINTRAMODES /* The number of B_PRED intra modes that are replaced by B_CONTEXT_PRED */ #define CONTEXT_PRED_REPLACEMENTS 0 #define VP9_KF_BINTRAMODES (VP9_BINTRAMODES - 1) #define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES - CONTEXT_PRED_REPLACEMENTS) #else #define VP9_KF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */ #define VP9_NKF_BINTRAMODES (VP9_BINTRAMODES) /* 10 */ #endif typedef enum { PARTITIONING_16X8 = 0, PARTITIONING_8X16, PARTITIONING_8X8, PARTITIONING_4X4, NB_PARTITIONINGS, } SPLITMV_PARTITIONING_TYPE; /* For keyframes, intra block modes are predicted by the (already decoded) modes for the Y blocks to the left and above us; for interframes, there is a single probability table. */ union b_mode_info { struct { B_PREDICTION_MODE first; TX_TYPE tx_type; #if CONFIG_COMP_INTRA_PRED B_PREDICTION_MODE second; #endif #if CONFIG_NEWBINTRAMODES B_PREDICTION_MODE context; #endif } as_mode; struct { int_mv first; int_mv second; } as_mv; }; typedef enum { NONE = -1, INTRA_FRAME = 0, LAST_FRAME = 1, GOLDEN_FRAME = 2, ALTREF_FRAME = 3, MAX_REF_FRAMES = 4 } MV_REFERENCE_FRAME; #if CONFIG_SUPERBLOCKS typedef enum { BLOCK_SIZE_MB16X16 = 0, BLOCK_SIZE_SB32X32 = 1, #if CONFIG_SUPERBLOCKS64 BLOCK_SIZE_SB64X64 = 2, #endif } BLOCK_SIZE_TYPE; #endif typedef struct { MB_PREDICTION_MODE mode, uv_mode; #if CONFIG_COMP_INTRA_PRED MB_PREDICTION_MODE second_mode, second_uv_mode; #endif #if CONFIG_COMP_INTERINTRA_PRED MB_PREDICTION_MODE interintra_mode, interintra_uv_mode; #endif MV_REFERENCE_FRAME ref_frame, second_ref_frame; TX_SIZE txfm_size; int_mv mv[2]; // for each reference frame used int_mv ref_mvs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES]; int_mv best_mv, best_second_mv; #if CONFIG_NEW_MVREF int best_index, best_second_index; #endif int mb_mode_context[MAX_REF_FRAMES]; SPLITMV_PARTITIONING_TYPE partitioning; unsigned char mb_skip_coeff; /* does this mb has coefficients at all, 1=no coefficients, 0=need decode tokens */ unsigned char need_to_clamp_mvs; unsigned char need_to_clamp_secondmv; unsigned char segment_id; /* Which set of segmentation parameters should be used for this MB */ // Flags used for prediction status of various bistream signals unsigned char seg_id_predicted; unsigned char ref_predicted; // Indicates if the mb is part of the image (1) vs border (0) // This can be useful in determining whether the MB provides // a valid predictor unsigned char mb_in_image; #if CONFIG_PRED_FILTER // Flag to turn prediction signal filter on(1)/off(0 ) at the MB level unsigned int pred_filter_enabled; #endif INTERPOLATIONFILTERTYPE interp_filter; #if CONFIG_SUPERBLOCKS // FIXME need a SB array of 4 MB_MODE_INFOs that // only needs one sb_type. BLOCK_SIZE_TYPE sb_type; #endif } MB_MODE_INFO; typedef struct { MB_MODE_INFO mbmi; union b_mode_info bmi[16]; } MODE_INFO; typedef struct blockd { int16_t *qcoeff; int16_t *dqcoeff; uint8_t *predictor; int16_t *diff; int16_t *dequant; /* 16 Y blocks, 4 U blocks, 4 V blocks each with 16 entries */ uint8_t **base_pre; uint8_t **base_second_pre; int pre; int pre_stride; uint8_t **base_dst; int dst; int dst_stride; int eob; union b_mode_info bmi; } BLOCKD; #if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS typedef struct superblockd { /* 32x32 Y and 16x16 U/V. No 2nd order transform yet. */ DECLARE_ALIGNED(16, int16_t, diff[32*32+16*16*2]); DECLARE_ALIGNED(16, int16_t, qcoeff[32*32+16*16*2]); DECLARE_ALIGNED(16, int16_t, dqcoeff[32*32+16*16*2]); } SUPERBLOCKD; #endif typedef struct macroblockd { DECLARE_ALIGNED(16, int16_t, diff[400]); /* from idct diff */ DECLARE_ALIGNED(16, uint8_t, predictor[384]); DECLARE_ALIGNED(16, int16_t, qcoeff[400]); DECLARE_ALIGNED(16, int16_t, dqcoeff[400]); DECLARE_ALIGNED(16, uint16_t, eobs[25]); #if CONFIG_TX32X32 && CONFIG_SUPERBLOCKS SUPERBLOCKD sb_coeff_data; #endif /* 16 Y blocks, 4 U, 4 V, 1 DC 2nd order block, each with 16 entries. */ BLOCKD block[25]; int fullpixel_mask; YV12_BUFFER_CONFIG pre; /* Filtered copy of previous frame reconstruction */ struct { uint8_t *y_buffer, *u_buffer, *v_buffer; } second_pre; YV12_BUFFER_CONFIG dst; MODE_INFO *prev_mode_info_context; MODE_INFO *mode_info_context; int mode_info_stride; FRAME_TYPE frame_type; int up_available; int left_available; /* Y,U,V,Y2 */ ENTROPY_CONTEXT_PLANES *above_context; ENTROPY_CONTEXT_PLANES *left_context; /* 0 indicates segmentation at MB level is not enabled. Otherwise the individual bits indicate which features are active. */ unsigned char segmentation_enabled; /* 0 (do not update) 1 (update) the macroblock segmentation map. */ unsigned char update_mb_segmentation_map; /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ unsigned char update_mb_segmentation_data; /* 0 (do not update) 1 (update) the macroblock segmentation feature data. */ unsigned char mb_segment_abs_delta; /* Per frame flags that define which MB level features (such as quantizer or loop filter level) */ /* are enabled and when enabled the proabilities used to decode the per MB flags in MB_MODE_INFO */ // Probability Tree used to code Segment number vp9_prob mb_segment_tree_probs[MB_FEATURE_TREE_PROBS]; #if CONFIG_NEW_MVREF vp9_prob mb_mv_ref_probs[MAX_REF_FRAMES][MAX_MV_REF_CANDIDATES-1]; #endif // Segment features signed char segment_feature_data[MAX_MB_SEGMENTS][SEG_LVL_MAX]; unsigned int segment_feature_mask[MAX_MB_SEGMENTS]; /* mode_based Loop filter adjustment */ unsigned char mode_ref_lf_delta_enabled; unsigned char mode_ref_lf_delta_update; /* Delta values have the range +/- MAX_LOOP_FILTER */ signed char last_ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */ signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; /* 0 = Intra, Last, GF, ARF */ signed char last_mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = BPRED, ZERO_MV, MV, SPLIT */ signed char mode_lf_deltas[MAX_MODE_LF_DELTAS]; /* 0 = BPRED, ZERO_MV, MV, SPLIT */ /* Distance of MB away from frame edges */ int mb_to_left_edge; int mb_to_right_edge; int mb_to_top_edge; int mb_to_bottom_edge; unsigned int frames_since_golden; unsigned int frames_till_alt_ref_frame; /* Inverse transform function pointers. */ void (*inv_xform4x4_1_x8)(int16_t *input, int16_t *output, int pitch); void (*inv_xform4x4_x8)(int16_t *input, int16_t *output, int pitch); void (*inv_walsh4x4_1)(int16_t *in, int16_t *out); void (*inv_walsh4x4_lossless)(int16_t *in, int16_t *out); vp9_subpix_fn_t subpixel_predict; vp9_subpix_fn_t subpixel_predict8x4; vp9_subpix_fn_t subpixel_predict8x8; vp9_subpix_fn_t subpixel_predict16x16; vp9_subpix_fn_t subpixel_predict_avg; vp9_subpix_fn_t subpixel_predict_avg8x4; vp9_subpix_fn_t subpixel_predict_avg8x8; vp9_subpix_fn_t subpixel_predict_avg16x16; int allow_high_precision_mv; int corrupted; #if !CONFIG_SUPERBLOCKS && (ARCH_X86 || ARCH_X86_64) /* This is an intermediate buffer currently used in sub-pixel motion search * to keep a copy of the reference area. This buffer can be used for other * purpose. */ DECLARE_ALIGNED(32, uint8_t, y_buf[22 * 32]); #endif int sb_index; int mb_index; // Index of the MB in the SB (0..3) int q_index; } MACROBLOCKD; #define ACTIVE_HT 110 // quantization stepsize threshold #define ACTIVE_HT8 300 #define ACTIVE_HT16 300 // convert MB_PREDICTION_MODE to B_PREDICTION_MODE static B_PREDICTION_MODE pred_mode_conv(MB_PREDICTION_MODE mode) { B_PREDICTION_MODE b_mode; switch (mode) { case DC_PRED: b_mode = B_DC_PRED; break; case V_PRED: b_mode = B_VE_PRED; break; case H_PRED: b_mode = B_HE_PRED; break; case TM_PRED: b_mode = B_TM_PRED; break; case D45_PRED: b_mode = B_LD_PRED; break; case D135_PRED: b_mode = B_RD_PRED; break; case D117_PRED: b_mode = B_VR_PRED; break; case D153_PRED: b_mode = B_HD_PRED; break; case D27_PRED: b_mode = B_HU_PRED; break; case D63_PRED: b_mode = B_VL_PRED; break; default : // for debug purpose, to be removed after full testing assert(0); break; } return b_mode; } // transform mapping static TX_TYPE txfm_map(B_PREDICTION_MODE bmode) { // map transform type TX_TYPE tx_type; switch (bmode) { case B_TM_PRED : case B_RD_PRED : tx_type = ADST_ADST; break; case B_VE_PRED : case B_VR_PRED : tx_type = ADST_DCT; break; case B_HE_PRED : case B_HD_PRED : case B_HU_PRED : tx_type = DCT_ADST; break; #if CONFIG_NEWBINTRAMODES case B_CONTEXT_PRED: assert(0); break; #endif default : tx_type = DCT_DCT; break; } return tx_type; } extern const uint8_t vp9_block2left[TX_SIZE_MAX_SB][25]; extern const uint8_t vp9_block2above[TX_SIZE_MAX_SB][25]; #define USE_ADST_FOR_I16X16_8X8 0 #define USE_ADST_FOR_I16X16_4X4 0 #define USE_ADST_FOR_I8X8_4X4 1 #define USE_ADST_PERIPHERY_ONLY 1 static TX_TYPE get_tx_type_4x4(const MACROBLOCKD *xd, const BLOCKD *b) { // TODO(debargha): explore different patterns for ADST usage when blocksize // is smaller than the prediction size TX_TYPE tx_type = DCT_DCT; int ib = (int)(b - xd->block); if (ib >= 16) return tx_type; #if CONFIG_SUPERBLOCKS // TODO(rbultje, debargha): Explore ADST usage for superblocks if (xd->mode_info_context->mbmi.sb_type) return tx_type; #endif if (xd->mode_info_context->mbmi.mode == B_PRED && xd->q_index < ACTIVE_HT) { tx_type = txfm_map( #if CONFIG_NEWBINTRAMODES b->bmi.as_mode.first == B_CONTEXT_PRED ? b->bmi.as_mode.context : #endif b->bmi.as_mode.first); } else if (xd->mode_info_context->mbmi.mode == I8X8_PRED && xd->q_index < ACTIVE_HT) { #if USE_ADST_FOR_I8X8_4X4 #if USE_ADST_PERIPHERY_ONLY // Use ADST for periphery blocks only int ic = (ib & 10); b += ic - ib; tx_type = (ic != 10) ? txfm_map(pred_mode_conv((MB_PREDICTION_MODE)b->bmi.as_mode.first)) : DCT_DCT; #else // Use ADST tx_type = txfm_map(pred_mode_conv( (MB_PREDICTION_MODE)b->bmi.as_mode.first)); #endif #else // Use 2D DCT tx_type = DCT_DCT; #endif } else if (xd->mode_info_context->mbmi.mode < I8X8_PRED && xd->q_index < ACTIVE_HT) { #if USE_ADST_FOR_I16X16_4X4 #if USE_ADST_PERIPHERY_ONLY // Use ADST for periphery blocks only tx_type = (ib < 4 || ((ib & 3) == 0)) ? txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)) : DCT_DCT; #else // Use ADST tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #endif #else // Use 2D DCT tx_type = DCT_DCT; #endif } return tx_type; } static TX_TYPE get_tx_type_8x8(const MACROBLOCKD *xd, const BLOCKD *b) { // TODO(debargha): explore different patterns for ADST usage when blocksize // is smaller than the prediction size TX_TYPE tx_type = DCT_DCT; int ib = (int)(b - xd->block); if (ib >= 16) return tx_type; #if CONFIG_SUPERBLOCKS // TODO(rbultje, debargha): Explore ADST usage for superblocks if (xd->mode_info_context->mbmi.sb_type) return tx_type; #endif if (xd->mode_info_context->mbmi.mode == I8X8_PRED && xd->q_index < ACTIVE_HT8) { // TODO(rbultje): MB_PREDICTION_MODE / B_PREDICTION_MODE should be merged // or the relationship otherwise modified to address this type conversion. tx_type = txfm_map(pred_mode_conv( (MB_PREDICTION_MODE)b->bmi.as_mode.first)); } else if (xd->mode_info_context->mbmi.mode < I8X8_PRED && xd->q_index < ACTIVE_HT8) { #if USE_ADST_FOR_I8X8_4X4 #if USE_ADST_PERIPHERY_ONLY // Use ADST for periphery blocks only tx_type = (ib != 10) ? txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)) : DCT_DCT; #else // Use ADST tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); #endif #else // Use 2D DCT tx_type = DCT_DCT; #endif } return tx_type; } static TX_TYPE get_tx_type_16x16(const MACROBLOCKD *xd, const BLOCKD *b) { TX_TYPE tx_type = DCT_DCT; int ib = (int)(b - xd->block); if (ib >= 16) return tx_type; #if CONFIG_SUPERBLOCKS // TODO(rbultje, debargha): Explore ADST usage for superblocks if (xd->mode_info_context->mbmi.sb_type) return tx_type; #endif if (xd->mode_info_context->mbmi.mode < I8X8_PRED && xd->q_index < ACTIVE_HT16) { tx_type = txfm_map(pred_mode_conv(xd->mode_info_context->mbmi.mode)); } return tx_type; } static TX_TYPE get_tx_type(const MACROBLOCKD *xd, const BLOCKD *b) { TX_TYPE tx_type = DCT_DCT; int ib = (int)(b - xd->block); if (ib >= 16) return tx_type; if (xd->mode_info_context->mbmi.txfm_size == TX_16X16) { tx_type = get_tx_type_16x16(xd, b); } if (xd->mode_info_context->mbmi.txfm_size == TX_8X8) { ib = (ib & 8) + ((ib & 4) >> 1); tx_type = get_tx_type_8x8(xd, &xd->block[ib]); } if (xd->mode_info_context->mbmi.txfm_size == TX_4X4) { tx_type = get_tx_type_4x4(xd, b); } return tx_type; } static int get_2nd_order_usage(const MACROBLOCKD *xd) { int has_2nd_order = (xd->mode_info_context->mbmi.mode != SPLITMV && xd->mode_info_context->mbmi.mode != I8X8_PRED && xd->mode_info_context->mbmi.mode != B_PRED && xd->mode_info_context->mbmi.txfm_size != TX_16X16); if (has_2nd_order) has_2nd_order = (get_tx_type(xd, xd->block) == DCT_DCT); return has_2nd_order; } extern void vp9_build_block_doffsets(MACROBLOCKD *xd); extern void vp9_setup_block_dptrs(MACROBLOCKD *xd); static void update_blockd_bmi(MACROBLOCKD *xd) { int i; int is_4x4; is_4x4 = (xd->mode_info_context->mbmi.mode == SPLITMV) || (xd->mode_info_context->mbmi.mode == I8X8_PRED) || (xd->mode_info_context->mbmi.mode == B_PRED); if (is_4x4) { for (i = 0; i < 16; i++) { xd->block[i].bmi = xd->mode_info_context->bmi[i]; } } } #endif // VP9_COMMON_VP9_BLOCKD_H_