/* Copyright (c) 2010 The WebM project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include "vp9/common/vp9_common.h" #include "vp9/common/vp9_entropy.h" #include "vp9/common/vp9_entropymode.h" #include "vp9/common/vp9_entropymv.h" #include "vp9/common/vp9_findnearmv.h" #include "vp9/common/vp9_mvref_common.h" #include "vp9/common/vp9_pred_common.h" #include "vp9/common/vp9_reconinter.h" #include "vp9/common/vp9_seg_common.h" #include "vp9/decoder/vp9_decodemv.h" #include "vp9/decoder/vp9_decodframe.h" #include "vp9/decoder/vp9_onyxd_int.h" #include "vp9/decoder/vp9_dsubexp.h" #include "vp9/decoder/vp9_treereader.h" static MB_PREDICTION_MODE read_intra_mode(vp9_reader *r, const vp9_prob *p) { return (MB_PREDICTION_MODE)treed_read(r, vp9_intra_mode_tree, p); } static MB_PREDICTION_MODE read_intra_mode_y(VP9_COMMON *cm, vp9_reader *r, int size_group) { const MB_PREDICTION_MODE y_mode = read_intra_mode(r, cm->fc.y_mode_prob[size_group]); ++cm->counts.y_mode[size_group][y_mode]; return y_mode; } static MB_PREDICTION_MODE read_intra_mode_uv(VP9_COMMON *cm, vp9_reader *r, MB_PREDICTION_MODE y_mode) { const MB_PREDICTION_MODE uv_mode = read_intra_mode(r, cm->fc.uv_mode_prob[y_mode]); ++cm->counts.uv_mode[y_mode][uv_mode]; return uv_mode; } static MB_PREDICTION_MODE read_inter_mode(VP9_COMMON *cm, vp9_reader *r, uint8_t context) { const MB_PREDICTION_MODE mode = treed_read(r, vp9_inter_mode_tree, cm->fc.inter_mode_probs[context]); ++cm->counts.inter_mode[context][inter_mode_offset(mode)]; return mode; } static int read_segment_id(vp9_reader *r, const struct segmentation *seg) { return treed_read(r, vp9_segment_tree, seg->tree_probs); } static TX_SIZE read_selected_tx_size(VP9_COMMON *cm, MACROBLOCKD *xd, BLOCK_SIZE bsize, vp9_reader *r) { const uint8_t context = vp9_get_pred_context_tx_size(xd); const vp9_prob *tx_probs = get_tx_probs(bsize, context, &cm->fc.tx_probs); TX_SIZE tx_size = vp9_read(r, tx_probs[0]); if (tx_size != TX_4X4 && bsize >= BLOCK_16X16) { tx_size += vp9_read(r, tx_probs[1]); if (tx_size != TX_8X8 && bsize >= BLOCK_32X32) tx_size += vp9_read(r, tx_probs[2]); } update_tx_counts(bsize, context, tx_size, &cm->counts.tx); return tx_size; } static TX_SIZE read_tx_size(VP9D_COMP *pbi, TX_MODE tx_mode, BLOCK_SIZE bsize, int allow_select, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (allow_select && tx_mode == TX_MODE_SELECT && bsize >= BLOCK_8X8) return read_selected_tx_size(cm, xd, bsize, r); else if (tx_mode >= ALLOW_32X32 && bsize >= BLOCK_32X32) return TX_32X32; else if (tx_mode >= ALLOW_16X16 && bsize >= BLOCK_16X16) return TX_16X16; else if (tx_mode >= ALLOW_8X8 && bsize >= BLOCK_8X8) return TX_8X8; else return TX_4X4; } static void set_segment_id(VP9_COMMON *cm, BLOCK_SIZE bsize, int mi_row, int mi_col, int segment_id) { const int mi_offset = mi_row * cm->mi_cols + mi_col; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int xmis = MIN(cm->mi_cols - mi_col, bw); const int ymis = MIN(cm->mi_rows - mi_row, bh); int x, y; assert(segment_id >= 0 && segment_id < MAX_SEGMENTS); for (y = 0; y < ymis; y++) for (x = 0; x < xmis; x++) cm->last_frame_seg_map[mi_offset + y * cm->mi_cols + x] = segment_id; } static int read_intra_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { MACROBLOCKD *const xd = &pbi->mb; struct segmentation *const seg = &pbi->common.seg; const BLOCK_SIZE bsize = xd->this_mi->mbmi.sb_type; int segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation if (!seg->update_map) return 0; segment_id = read_segment_id(r, seg); set_segment_id(&pbi->common, bsize, mi_row, mi_col, segment_id); return segment_id; } static int read_inter_segment_id(VP9D_COMP *pbi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; struct segmentation *const seg = &cm->seg; const BLOCK_SIZE bsize = xd->this_mi->mbmi.sb_type; int pred_segment_id, segment_id; if (!seg->enabled) return 0; // Default for disabled segmentation pred_segment_id = vp9_get_segment_id(cm, cm->last_frame_seg_map, bsize, mi_row, mi_col); if (!seg->update_map) return pred_segment_id; if (seg->temporal_update) { const vp9_prob pred_prob = vp9_get_pred_prob_seg_id(seg, xd); const int pred_flag = vp9_read(r, pred_prob); vp9_set_pred_flag_seg_id(xd, pred_flag); segment_id = pred_flag ? pred_segment_id : read_segment_id(r, seg); } else { segment_id = read_segment_id(r, seg); } set_segment_id(cm, bsize, mi_row, mi_col, segment_id); return segment_id; } static uint8_t read_skip_coeff(VP9D_COMP *pbi, int segment_id, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; int skip_coeff = vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP); if (!skip_coeff) { const int ctx = vp9_get_pred_context_mbskip(xd); skip_coeff = vp9_read(r, vp9_get_pred_prob_mbskip(cm, xd)); cm->counts.mbskip[ctx][skip_coeff]++; } return skip_coeff; } static void read_intra_frame_mode_info(VP9D_COMP *pbi, MODE_INFO *m, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &m->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; const MODE_INFO *above_mi = xd->mi_8x8[-cm->mode_info_stride]; const MODE_INFO *left_mi = xd->mi_8x8[-1]; mbmi->segment_id = read_intra_segment_id(pbi, mi_row, mi_col, r); mbmi->skip_coeff = read_skip_coeff(pbi, mbmi->segment_id, r); mbmi->tx_size = read_tx_size(pbi, cm->tx_mode, bsize, 1, r); mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; if (bsize >= BLOCK_8X8) { const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, 0); const MB_PREDICTION_MODE L = xd->left_available ? left_block_mode(m, left_mi, 0) : DC_PRED; mbmi->mode = read_intra_mode(r, vp9_kf_y_mode_prob[A][L]); } else { // Only 4x4, 4x8, 8x4 blocks const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2 int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int ib = idy * 2 + idx; const MB_PREDICTION_MODE A = above_block_mode(m, above_mi, ib); const MB_PREDICTION_MODE L = (xd->left_available || idx) ? left_block_mode(m, left_mi, ib) : DC_PRED; const MB_PREDICTION_MODE b_mode = read_intra_mode(r, vp9_kf_y_mode_prob[A][L]); m->bmi[ib].as_mode = b_mode; if (num_4x4_h == 2) m->bmi[ib + 2].as_mode = b_mode; if (num_4x4_w == 2) m->bmi[ib + 1].as_mode = b_mode; } } mbmi->mode = m->bmi[3].as_mode; } mbmi->uv_mode = read_intra_mode(r, vp9_kf_uv_mode_prob[mbmi->mode]); } static int read_mv_component(vp9_reader *r, const nmv_component *mvcomp, int usehp) { int mag, d, fr, hp; const int sign = vp9_read(r, mvcomp->sign); const int mv_class = treed_read(r, vp9_mv_class_tree, mvcomp->classes); const int class0 = mv_class == MV_CLASS_0; // Integer part if (class0) { d = treed_read(r, vp9_mv_class0_tree, mvcomp->class0); } else { int i; const int n = mv_class + CLASS0_BITS - 1; // number of bits d = 0; for (i = 0; i < n; ++i) d |= vp9_read(r, mvcomp->bits[i]) << i; } // Fractional part fr = treed_read(r, vp9_mv_fp_tree, class0 ? mvcomp->class0_fp[d] : mvcomp->fp); // High precision part (if hp is not used, the default value of the hp is 1) hp = usehp ? vp9_read(r, class0 ? mvcomp->class0_hp : mvcomp->hp) : 1; // Result mag = vp9_get_mv_mag(mv_class, (d << 3) | (fr << 1) | hp) + 1; return sign ? -mag : mag; } static INLINE void read_mv(vp9_reader *r, MV *mv, const MV *ref, const nmv_context *ctx, nmv_context_counts *counts, int allow_hp) { const MV_JOINT_TYPE j = treed_read(r, vp9_mv_joint_tree, ctx->joints); const int use_hp = allow_hp && vp9_use_mv_hp(ref); MV diff = {0, 0}; if (mv_joint_vertical(j)) diff.row = read_mv_component(r, &ctx->comps[0], use_hp); if (mv_joint_horizontal(j)) diff.col = read_mv_component(r, &ctx->comps[1], use_hp); vp9_inc_mv(&diff, counts); mv->row = ref->row + diff.row; mv->col = ref->col + diff.col; } static void update_mv(vp9_reader *r, vp9_prob *p) { if (vp9_read(r, NMV_UPDATE_PROB)) *p = (vp9_read_literal(r, 7) << 1) | 1; } static void read_mv_probs(vp9_reader *r, nmv_context *mvc, int allow_hp) { int i, j, k; for (j = 0; j < MV_JOINTS - 1; ++j) update_mv(r, &mvc->joints[j]); for (i = 0; i < 2; ++i) { nmv_component *const comp = &mvc->comps[i]; update_mv(r, &comp->sign); for (j = 0; j < MV_CLASSES - 1; ++j) update_mv(r, &comp->classes[j]); for (j = 0; j < CLASS0_SIZE - 1; ++j) update_mv(r, &comp->class0[j]); for (j = 0; j < MV_OFFSET_BITS; ++j) update_mv(r, &comp->bits[j]); } for (i = 0; i < 2; ++i) { nmv_component *const comp = &mvc->comps[i]; for (j = 0; j < CLASS0_SIZE; ++j) for (k = 0; k < 3; ++k) update_mv(r, &comp->class0_fp[j][k]); for (j = 0; j < 3; ++j) update_mv(r, &comp->fp[j]); } if (allow_hp) { for (i = 0; i < 2; ++i) { update_mv(r, &mvc->comps[i].class0_hp); update_mv(r, &mvc->comps[i].hp); } } } // Read the referncence frame static void read_ref_frames(VP9D_COMP *pbi, vp9_reader *r, int segment_id, MV_REFERENCE_FRAME ref_frame[2]) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; FRAME_CONTEXT *const fc = &cm->fc; FRAME_COUNTS *const counts = &cm->counts; if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { ref_frame[0] = vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); ref_frame[1] = NONE; } else { const int comp_ctx = vp9_get_pred_context_comp_inter_inter(cm, xd); int is_comp; if (cm->comp_pred_mode == HYBRID_PREDICTION) { is_comp = vp9_read(r, fc->comp_inter_prob[comp_ctx]); counts->comp_inter[comp_ctx][is_comp]++; } else { is_comp = cm->comp_pred_mode == COMP_PREDICTION_ONLY; } // FIXME(rbultje) I'm pretty sure this breaks segmentation ref frame coding if (is_comp) { const int fix_ref_idx = cm->ref_frame_sign_bias[cm->comp_fixed_ref]; const int ref_ctx = vp9_get_pred_context_comp_ref_p(cm, xd); const int b = vp9_read(r, fc->comp_ref_prob[ref_ctx]); counts->comp_ref[ref_ctx][b]++; ref_frame[fix_ref_idx] = cm->comp_fixed_ref; ref_frame[!fix_ref_idx] = cm->comp_var_ref[b]; } else { const int ctx0 = vp9_get_pred_context_single_ref_p1(xd); const int bit0 = vp9_read(r, fc->single_ref_prob[ctx0][0]); ++counts->single_ref[ctx0][0][bit0]; if (bit0) { const int ctx1 = vp9_get_pred_context_single_ref_p2(xd); const int bit1 = vp9_read(r, fc->single_ref_prob[ctx1][1]); ref_frame[0] = bit1 ? ALTREF_FRAME : GOLDEN_FRAME; ++counts->single_ref[ctx1][1][bit1]; } else { ref_frame[0] = LAST_FRAME; } ref_frame[1] = NONE; } } } static void read_switchable_interp_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (j = 0; j < SWITCHABLE_FILTERS + 1; ++j) for (i = 0; i < SWITCHABLE_FILTERS - 1; ++i) vp9_diff_update_prob(r, &fc->switchable_interp_prob[j][i]); } static void read_inter_mode_probs(FRAME_CONTEXT *fc, vp9_reader *r) { int i, j; for (i = 0; i < INTER_MODE_CONTEXTS; ++i) for (j = 0; j < INTER_MODES - 1; ++j) vp9_diff_update_prob(r, &fc->inter_mode_probs[i][j]); } static INLINE COMPPREDMODE_TYPE read_comp_pred_mode(vp9_reader *r) { COMPPREDMODE_TYPE mode = vp9_read_bit(r); if (mode) mode += vp9_read_bit(r); return mode; } static INLINE INTERPOLATIONFILTERTYPE read_switchable_filter_type( VP9D_COMP *pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; const int ctx = vp9_get_pred_context_switchable_interp(xd); const int type = treed_read(r, vp9_switchable_interp_tree, cm->fc.switchable_interp_prob[ctx]); ++cm->counts.switchable_interp[ctx][type]; return type; } static void read_intra_block_mode_info(VP9D_COMP *pbi, MODE_INFO *mi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mi->mbmi.sb_type; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE; if (bsize >= BLOCK_8X8) { mbmi->mode = read_intra_mode_y(cm, r, size_group_lookup[bsize]); } else { // Only 4x4, 4x8, 8x4 blocks const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2 int idx, idy; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { const int ib = idy * 2 + idx; const int b_mode = read_intra_mode_y(cm, r, 0); mi->bmi[ib].as_mode = b_mode; if (num_4x4_h == 2) mi->bmi[ib + 2].as_mode = b_mode; if (num_4x4_w == 2) mi->bmi[ib + 1].as_mode = b_mode; } } mbmi->mode = mi->bmi[3].as_mode; } mbmi->uv_mode = read_intra_mode_uv(cm, r, mbmi->mode); } static INLINE void assign_mv(VP9_COMMON *cm, MB_PREDICTION_MODE mode, int_mv mv[2], int_mv best_mv[2], int_mv nearest_mv[2], int_mv near_mv[2], int is_compound, int allow_hp, vp9_reader *r) { int i; switch (mode) { case NEWMV: read_mv(r, &mv[0].as_mv, &best_mv[0].as_mv, &cm->fc.nmvc, &cm->counts.mv, allow_hp); if (is_compound) read_mv(r, &mv[1].as_mv, &best_mv[1].as_mv, &cm->fc.nmvc, &cm->counts.mv, allow_hp); break; case NEARESTMV: mv[0].as_int = nearest_mv[0].as_int; if (is_compound) mv[1].as_int = nearest_mv[1].as_int; break; case NEARMV: mv[0].as_int = near_mv[0].as_int; if (is_compound) mv[1].as_int = near_mv[1].as_int; break; case ZEROMV: mv[0].as_int = 0; if (is_compound) mv[1].as_int = 0; break; default: assert(!"Invalid inter mode value."); } for (i = 0; i < 1 + is_compound; ++i) { assert(mv[i].as_mv.row < MV_UPP && mv[i].as_mv.row > MV_LOW); assert(mv[i].as_mv.col < MV_UPP && mv[i].as_mv.col > MV_LOW); } } static int read_is_inter_block(VP9D_COMP *pbi, int segment_id, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; if (vp9_segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { return vp9_get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME) != INTRA_FRAME; } else { const int ctx = vp9_get_pred_context_intra_inter(xd); const int is_inter = vp9_read(r, vp9_get_pred_prob_intra_inter(cm, xd)); ++cm->counts.intra_inter[ctx][is_inter]; return is_inter; } } static void read_inter_block_mode_info(VP9D_COMP *pbi, MODE_INFO *mi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MB_MODE_INFO *const mbmi = &mi->mbmi; const BLOCK_SIZE bsize = mbmi->sb_type; const int allow_hp = xd->allow_high_precision_mv; int_mv nearest[2], nearmv[2], best[2]; uint8_t inter_mode_ctx; MV_REFERENCE_FRAME ref0; int is_compound; mbmi->uv_mode = DC_PRED; read_ref_frames(pbi, r, mbmi->segment_id, mbmi->ref_frame); ref0 = mbmi->ref_frame[0]; is_compound = has_second_ref(mbmi); vp9_find_mv_refs(cm, xd, mi, xd->last_mi, ref0, mbmi->ref_mvs[ref0], mi_row, mi_col); inter_mode_ctx = mbmi->mode_context[ref0]; if (vp9_segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { mbmi->mode = ZEROMV; assert(bsize >= BLOCK_8X8); } else { if (bsize >= BLOCK_8X8) mbmi->mode = read_inter_mode(cm, r, inter_mode_ctx); } // nearest, nearby if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref0], &nearest[0], &nearmv[0]); best[0].as_int = nearest[0].as_int; } if (is_compound) { const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; vp9_find_mv_refs(cm, xd, mi, xd->last_mi, ref1, mbmi->ref_mvs[ref1], mi_row, mi_col); if (bsize < BLOCK_8X8 || mbmi->mode != ZEROMV) { vp9_find_best_ref_mvs(xd, mbmi->ref_mvs[ref1], &nearest[1], &nearmv[1]); best[1].as_int = nearest[1].as_int; } } mbmi->interp_filter = cm->mcomp_filter_type == SWITCHABLE ? read_switchable_filter_type(pbi, r) : cm->mcomp_filter_type; if (bsize < BLOCK_8X8) { const int num_4x4_w = num_4x4_blocks_wide_lookup[bsize]; // 1 or 2 const int num_4x4_h = num_4x4_blocks_high_lookup[bsize]; // 1 or 2 int idx, idy; int b_mode; for (idy = 0; idy < 2; idy += num_4x4_h) { for (idx = 0; idx < 2; idx += num_4x4_w) { int_mv block[2]; const int j = idy * 2 + idx; b_mode = read_inter_mode(cm, r, inter_mode_ctx); if (b_mode == NEARESTMV || b_mode == NEARMV) { vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest[0], &nearmv[0], j, 0, mi_row, mi_col); if (is_compound) vp9_append_sub8x8_mvs_for_idx(cm, xd, &nearest[1], &nearmv[1], j, 1, mi_row, mi_col); } assign_mv(cm, b_mode, block, best, nearest, nearmv, is_compound, allow_hp, r); mi->bmi[j].as_mv[0].as_int = block[0].as_int; if (is_compound) mi->bmi[j].as_mv[1].as_int = block[1].as_int; if (num_4x4_h == 2) mi->bmi[j + 2] = mi->bmi[j]; if (num_4x4_w == 2) mi->bmi[j + 1] = mi->bmi[j]; } } mi->mbmi.mode = b_mode; mbmi->mv[0].as_int = mi->bmi[3].as_mv[0].as_int; mbmi->mv[1].as_int = mi->bmi[3].as_mv[1].as_int; } else { assign_mv(cm, mbmi->mode, mbmi->mv, best, nearest, nearmv, is_compound, allow_hp, r); } } static void read_inter_frame_mode_info(VP9D_COMP *pbi, MODE_INFO *mi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MB_MODE_INFO *const mbmi = &mi->mbmi; int inter_block; mbmi->mv[0].as_int = 0; mbmi->mv[1].as_int = 0; mbmi->segment_id = read_inter_segment_id(pbi, mi_row, mi_col, r); mbmi->skip_coeff = read_skip_coeff(pbi, mbmi->segment_id, r); inter_block = read_is_inter_block(pbi, mbmi->segment_id, r); mbmi->tx_size = read_tx_size(pbi, cm->tx_mode, mbmi->sb_type, !mbmi->skip_coeff || !inter_block, r); if (inter_block) read_inter_block_mode_info(pbi, mi, mi_row, mi_col, r); else read_intra_block_mode_info(pbi, mi, r); } static void read_comp_pred(VP9_COMMON *cm, vp9_reader *r) { int i; cm->comp_pred_mode = cm->allow_comp_inter_inter ? read_comp_pred_mode(r) : SINGLE_PREDICTION_ONLY; if (cm->comp_pred_mode == HYBRID_PREDICTION) for (i = 0; i < COMP_INTER_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.comp_inter_prob[i]); if (cm->comp_pred_mode != COMP_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) { vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][0]); vp9_diff_update_prob(r, &cm->fc.single_ref_prob[i][1]); } if (cm->comp_pred_mode != SINGLE_PREDICTION_ONLY) for (i = 0; i < REF_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.comp_ref_prob[i]); } void vp9_prepare_read_mode_info(VP9D_COMP* pbi, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; int k; // TODO(jkoleszar): does this clear more than MBSKIP_CONTEXTS? Maybe remove. // vpx_memset(cm->fc.mbskip_probs, 0, sizeof(cm->fc.mbskip_probs)); for (k = 0; k < MBSKIP_CONTEXTS; ++k) vp9_diff_update_prob(r, &cm->fc.mbskip_probs[k]); if (cm->frame_type != KEY_FRAME && !cm->intra_only) { nmv_context *const nmvc = &pbi->common.fc.nmvc; MACROBLOCKD *const xd = &pbi->mb; int i, j; read_inter_mode_probs(&cm->fc, r); if (cm->mcomp_filter_type == SWITCHABLE) read_switchable_interp_probs(&cm->fc, r); for (i = 0; i < INTRA_INTER_CONTEXTS; i++) vp9_diff_update_prob(r, &cm->fc.intra_inter_prob[i]); read_comp_pred(cm, r); for (j = 0; j < BLOCK_SIZE_GROUPS; j++) for (i = 0; i < INTRA_MODES - 1; ++i) vp9_diff_update_prob(r, &cm->fc.y_mode_prob[j][i]); for (j = 0; j < NUM_PARTITION_CONTEXTS; ++j) for (i = 0; i < PARTITION_TYPES - 1; ++i) vp9_diff_update_prob(r, &cm->fc.partition_prob[INTER_FRAME][j][i]); read_mv_probs(r, nmvc, xd->allow_high_precision_mv); } } void vp9_read_mode_info(VP9D_COMP* pbi, int mi_row, int mi_col, vp9_reader *r) { VP9_COMMON *const cm = &pbi->common; MACROBLOCKD *const xd = &pbi->mb; MODE_INFO *mi = xd->this_mi; const BLOCK_SIZE bsize = mi->mbmi.sb_type; const int bw = 1 << mi_width_log2(bsize); const int bh = 1 << mi_height_log2(bsize); const int y_mis = MIN(bh, cm->mi_rows - mi_row); const int x_mis = MIN(bw, cm->mi_cols - mi_col); int x, y, z; if (cm->frame_type == KEY_FRAME || cm->intra_only) read_intra_frame_mode_info(pbi, mi, mi_row, mi_col, r); else read_inter_frame_mode_info(pbi, mi, mi_row, mi_col, r); for (y = 0, z = 0; y < y_mis; y++, z += cm->mode_info_stride) for (x = !y; x < x_mis; x++) { xd->mi_8x8[z + x] = mi; } }