/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "onyxc_int.h" #include "onyx_int.h" #include "systemdependent.h" #include "quantize.h" #include "alloccommon.h" #include "mcomp.h" #include "firstpass.h" #include "psnr.h" #include "vpx_scale/vpxscale.h" #include "extend.h" #include "ratectrl.h" #include "quant_common.h" #include "segmentation.h" #include "g_common.h" #include "vpx_scale/yv12extend.h" #include "postproc.h" #include "vpx_mem/vpx_mem.h" #include "swapyv12buffer.h" #include "threading.h" #include "vpx_ports/vpx_timer.h" #include "vpxerrors.h" #include #include #include #if CONFIG_RUNTIME_CPU_DETECT #define IF_RTCD(x) (x) #define RTCD(x) &cpi->common.rtcd.x #else #define IF_RTCD(x) NULL #define RTCD(x) NULL #endif extern void vp8cx_init_mv_bits_sadcost(); extern void vp8cx_pick_filter_level_fast(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi); extern void vp8cx_set_alt_lf_level(VP8_COMP *cpi, int filt_val); extern void vp8cx_pick_filter_level(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi); extern void vp8_init_loop_filter(VP8_COMMON *cm); extern void vp8_loop_filter_frame(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val); extern void vp8_loop_filter_frame_yonly(VP8_COMMON *cm, MACROBLOCKD *mbd, int filt_val, int sharpness_lvl); extern void vp8_dmachine_specific_config(VP8_COMP *cpi); extern void vp8_cmachine_specific_config(VP8_COMP *cpi); extern void vp8_calc_auto_iframe_target_size(VP8_COMP *cpi); extern void vp8_deblock_frame(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *post, int filt_lvl, int low_var_thresh, int flag); extern void print_parms(VP8_CONFIG *ocf, char *filenam); extern unsigned int vp8_get_processor_freq(); extern void print_tree_update_probs(); extern void vp8cx_create_encoder_threads(VP8_COMP *cpi); extern void vp8cx_remove_encoder_threads(VP8_COMP *cpi); #if HAVE_ARMV7 extern void vp8_yv12_copy_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc); extern void vp8_yv12_copy_src_frame_func_neon(YV12_BUFFER_CONFIG *src_ybc, YV12_BUFFER_CONFIG *dst_ybc); #endif int vp8_estimate_entropy_savings(VP8_COMP *cpi); int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd); int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd); static void mode_ref_lf_test_function(VP8_COMP *cpi); extern const int vp8_gf_interval_table[101]; #if CONFIG_PSNR #include "math.h" extern double vp8_calc_ssim ( YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, int lumamask, double *weight ); extern double vp8_calc_ssimg ( YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, double *ssim_y, double *ssim_u, double *ssim_v ); #endif #ifdef OUTPUT_YUV_SRC FILE *yuv_file; #endif #if 0 FILE *framepsnr; FILE *kf_list; FILE *keyfile; #endif #if 0 extern int skip_true_count; extern int skip_false_count; #endif #ifdef ENTROPY_STATS extern int intra_mode_stats[10][10][10]; #endif #ifdef SPEEDSTATS unsigned int frames_at_speed[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; unsigned int tot_pm = 0; unsigned int cnt_pm = 0; unsigned int tot_ef = 0; unsigned int cnt_ef = 0; #endif #ifdef MODE_STATS extern unsigned __int64 Sectionbits[50]; extern int y_modes[5] ; extern int uv_modes[4] ; extern int b_modes[10] ; extern int inter_y_modes[10] ; extern int inter_uv_modes[4] ; extern unsigned int inter_b_modes[15]; #endif extern void (*vp8_short_fdct4x4)(short *input, short *output, int pitch); extern void (*vp8_short_fdct8x4)(short *input, short *output, int pitch); extern const int vp8_bits_per_mb[2][QINDEX_RANGE]; extern const int qrounding_factors[129]; extern const int qzbin_factors[129]; extern void vp8cx_init_quantizer(VP8_COMP *cpi); extern const int vp8cx_base_skip_false_prob[128]; void vp8_initialize() { static int init_done = 0; if (!init_done) { vp8_scale_machine_specific_config(); vp8_initialize_common(); //vp8_dmachine_specific_config(); vp8_tokenize_initialize(); vp8cx_init_mv_bits_sadcost(); init_done = 1; } } #ifdef PACKET_TESTING extern FILE *vpxlogc; #endif static void setup_features(VP8_COMP *cpi) { // Set up default state for MB feature flags cpi->mb.e_mbd.segmentation_enabled = 0; cpi->mb.e_mbd.update_mb_segmentation_map = 0; cpi->mb.e_mbd.update_mb_segmentation_data = 0; vpx_memset(cpi->mb.e_mbd.mb_segment_tree_probs, 255, sizeof(cpi->mb.e_mbd.mb_segment_tree_probs)); vpx_memset(cpi->mb.e_mbd.segment_feature_data, 0, sizeof(cpi->mb.e_mbd.segment_feature_data)); cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 0; cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); // jbb trial ! mode_ref_lf_test_function(cpi); } void vp8_dealloc_compressor_data(VP8_COMP *cpi) { // Delete sementation map if (cpi->segmentation_map != 0) vpx_free(cpi->segmentation_map); cpi->segmentation_map = 0; if (cpi->active_map != 0) vpx_free(cpi->active_map); cpi->active_map = 0; // Delete first pass motion map if (cpi->fp_motion_map != 0) vpx_free(cpi->fp_motion_map); cpi->fp_motion_map = 0; vp8_de_alloc_frame_buffers(&cpi->common); vp8_yv12_de_alloc_frame_buffer(&cpi->last_frame_uf); vp8_yv12_de_alloc_frame_buffer(&cpi->scaled_source); #if VP8_TEMPORAL_ALT_REF vp8_yv12_de_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer); #endif { int i; for (i = 0; i < MAX_LAG_BUFFERS; i++) vp8_yv12_de_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer); cpi->source_buffer_count = 0; } vpx_free(cpi->tok); cpi->tok = 0; // Structure used to minitor GF useage if (cpi->gf_active_flags != 0) vpx_free(cpi->gf_active_flags); cpi->gf_active_flags = 0; if(cpi->mb.pip) vpx_free(cpi->mb.pip); cpi->mb.pip = 0; } static void enable_segmentation(VP8_PTR ptr) { VP8_COMP *cpi = (VP8_COMP *)(ptr); // Set the appropriate feature bit cpi->mb.e_mbd.segmentation_enabled = 1; cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } static void disable_segmentation(VP8_PTR ptr) { VP8_COMP *cpi = (VP8_COMP *)(ptr); // Clear the appropriate feature bit cpi->mb.e_mbd.segmentation_enabled = 0; } // Valid values for a segment are 0 to 3 // Segmentation map is arrange as [Rows][Columns] static void set_segmentation_map(VP8_PTR ptr, unsigned char *segmentation_map) { VP8_COMP *cpi = (VP8_COMP *)(ptr); // Copy in the new segmentation map vpx_memcpy(cpi->segmentation_map, segmentation_map, (cpi->common.mb_rows * cpi->common.mb_cols)); // Signal that the map should be updated. cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } // The values given for each segment can be either deltas (from the default value chosen for the frame) or absolute values. // // Valid range for abs values is (0-127 for MB_LVL_ALT_Q) , (0-63 for SEGMENT_ALT_LF) // Valid range for delta values are (+/-127 for MB_LVL_ALT_Q) , (+/-63 for SEGMENT_ALT_LF) // // abs_delta = SEGMENT_DELTADATA (deltas) abs_delta = SEGMENT_ABSDATA (use the absolute values given). // // static void set_segment_data(VP8_PTR ptr, signed char *feature_data, unsigned char abs_delta) { VP8_COMP *cpi = (VP8_COMP *)(ptr); cpi->mb.e_mbd.mb_segement_abs_delta = abs_delta; vpx_memcpy(cpi->segment_feature_data, feature_data, sizeof(cpi->segment_feature_data)); } static void segmentation_test_function(VP8_PTR ptr) { VP8_COMP *cpi = (VP8_COMP *)(ptr); unsigned char *seg_map; signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; // Create a temporary map for segmentation data. CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); // MB loop to set local segmentation map /*for ( i = 0; i < cpi->common.mb_rows; i++ ) { for ( j = 0; j < cpi->common.mb_cols; j++ ) { //seg_map[(i*cpi->common.mb_cols) + j] = (j % 2) + ((i%2)* 2); //if ( j < cpi->common.mb_cols/2 ) // Segment 1 around the edge else 0 if ( (i == 0) || (j == 0) || (i == (cpi->common.mb_rows-1)) || (j == (cpi->common.mb_cols-1)) ) seg_map[(i*cpi->common.mb_cols) + j] = 1; //else if ( (i < 2) || (j < 2) || (i > (cpi->common.mb_rows-3)) || (j > (cpi->common.mb_cols-3)) ) // seg_map[(i*cpi->common.mb_cols) + j] = 2; //else if ( (i < 5) || (j < 5) || (i > (cpi->common.mb_rows-6)) || (j > (cpi->common.mb_cols-6)) ) // seg_map[(i*cpi->common.mb_cols) + j] = 3; else seg_map[(i*cpi->common.mb_cols) + j] = 0; } }*/ // Set the segmentation Map set_segmentation_map(ptr, seg_map); // Activate segmentation. enable_segmentation(ptr); // Set up the quant segment data feature_data[MB_LVL_ALT_Q][0] = 0; feature_data[MB_LVL_ALT_Q][1] = 4; feature_data[MB_LVL_ALT_Q][2] = 0; feature_data[MB_LVL_ALT_Q][3] = 0; // Set up the loop segment data feature_data[MB_LVL_ALT_LF][0] = 0; feature_data[MB_LVL_ALT_LF][1] = 0; feature_data[MB_LVL_ALT_LF][2] = 0; feature_data[MB_LVL_ALT_LF][3] = 0; // Initialise the feature data structure // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 set_segment_data(ptr, &feature_data[0][0], SEGMENT_DELTADATA); // Delete sementation map if (seg_map != 0) vpx_free(seg_map); seg_map = 0; } // A simple function to cyclically refresh the background at a lower Q static void cyclic_background_refresh(VP8_COMP *cpi, int Q, int lf_adjustment) { unsigned char *seg_map; signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; int i; int block_count = cpi->cyclic_refresh_mode_max_mbs_perframe; int mbs_in_frame = cpi->common.mb_rows * cpi->common.mb_cols; // Create a temporary map for segmentation data. CHECK_MEM_ERROR(seg_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); cpi->cyclic_refresh_q = Q; for (i = Q; i > 0; i--) { if (vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*(Q + 128)) / 64)) //if ( vp8_bits_per_mb[cpi->common.frame_type][i] >= ((vp8_bits_per_mb[cpi->common.frame_type][Q]*((2*Q)+96))/64) ) { break; } } cpi->cyclic_refresh_q = i; // Only update for inter frames if (cpi->common.frame_type != KEY_FRAME) { // Cycle through the macro_block rows // MB loop to set local segmentation map for (i = cpi->cyclic_refresh_mode_index; i < mbs_in_frame; i++) { // If the MB is as a candidate for clean up then mark it for possible boost/refresh (segment 1) // The segment id may get reset to 0 later if the MB gets coded anything other than last frame 0,0 // as only (last frame 0,0) MBs are eligable for refresh : that is to say Mbs likely to be background blocks. if (cpi->cyclic_refresh_map[i] == 0) { seg_map[i] = 1; } else { seg_map[i] = 0; // Skip blocks that have been refreshed recently anyway. if (cpi->cyclic_refresh_map[i] < 0) //cpi->cyclic_refresh_map[i] = cpi->cyclic_refresh_map[i] / 16; cpi->cyclic_refresh_map[i]++; } if (block_count > 0) block_count--; else break; } // If we have gone through the frame reset to the start cpi->cyclic_refresh_mode_index = i; if (cpi->cyclic_refresh_mode_index >= mbs_in_frame) cpi->cyclic_refresh_mode_index = 0; } // Set the segmentation Map set_segmentation_map((VP8_PTR)cpi, seg_map); // Activate segmentation. enable_segmentation((VP8_PTR)cpi); // Set up the quant segment data feature_data[MB_LVL_ALT_Q][0] = 0; feature_data[MB_LVL_ALT_Q][1] = (cpi->cyclic_refresh_q - Q); feature_data[MB_LVL_ALT_Q][2] = 0; feature_data[MB_LVL_ALT_Q][3] = 0; // Set up the loop segment data feature_data[MB_LVL_ALT_LF][0] = 0; feature_data[MB_LVL_ALT_LF][1] = lf_adjustment; feature_data[MB_LVL_ALT_LF][2] = 0; feature_data[MB_LVL_ALT_LF][3] = 0; // Initialise the feature data structure // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); // Delete sementation map if (seg_map != 0) vpx_free(seg_map); seg_map = 0; } static void mode_ref_lf_test_function(VP8_COMP *cpi) { cpi->mb.e_mbd.mode_ref_lf_delta_enabled = 1; cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; vpx_memset(cpi->mb.e_mbd.ref_lf_deltas, 0, sizeof(cpi->mb.e_mbd.ref_lf_deltas)); vpx_memset(cpi->mb.e_mbd.mode_lf_deltas, 0, sizeof(cpi->mb.e_mbd.mode_lf_deltas)); // Test of ref frame deltas cpi->mb.e_mbd.ref_lf_deltas[INTRA_FRAME] = 2; cpi->mb.e_mbd.ref_lf_deltas[LAST_FRAME] = 0; cpi->mb.e_mbd.ref_lf_deltas[GOLDEN_FRAME] = -2; cpi->mb.e_mbd.ref_lf_deltas[ALTREF_FRAME] = -2; cpi->mb.e_mbd.mode_lf_deltas[0] = 4; // BPRED cpi->mb.e_mbd.mode_lf_deltas[1] = -2; // Zero cpi->mb.e_mbd.mode_lf_deltas[2] = 2; // New mv cpi->mb.e_mbd.mode_lf_deltas[3] = 4; // Split mv } void vp8_set_speed_features(VP8_COMP *cpi) { SPEED_FEATURES *sf = &cpi->sf; int Mode = cpi->compressor_speed; int Speed = cpi->Speed; int i; VP8_COMMON *cm = &cpi->common; // Initialise default mode frequency sampling variables for (i = 0; i < MAX_MODES; i ++) { cpi->mode_check_freq[i] = 0; cpi->mode_test_hit_counts[i] = 0; cpi->mode_chosen_counts[i] = 0; } cpi->mbs_tested_so_far = 0; // best quality sf->RD = 1; sf->search_method = NSTEP; sf->improved_quant = 1; sf->improved_dct = 1; sf->auto_filter = 1; sf->recode_loop = 1; sf->quarter_pixel_search = 1; sf->half_pixel_search = 1; sf->full_freq[0] = 7; sf->full_freq[1] = 7; sf->min_fs_radius = 8; sf->max_fs_radius = 32; sf->iterative_sub_pixel = 1; sf->optimize_coefficients = 1; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; cpi->do_full[0] = 0; cpi->do_full[1] = 0; // default thresholds to 0 for (i = 0; i < MAX_MODES; i++) sf->thresh_mult[i] = 0; switch (Mode) { #if !(CONFIG_REALTIME_ONLY) case 0: // best quality mode sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_ZEROG ] = 0; sf->thresh_mult[THR_ZEROA ] = 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_NEARESTG ] = 0; sf->thresh_mult[THR_NEARESTA ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEARG ] = 0; sf->thresh_mult[THR_NEARA ] = 0; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2000; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_NEWMV ] = 1000; sf->thresh_mult[THR_NEWG ] = 1000; sf->thresh_mult[THR_NEWA ] = 1000; sf->thresh_mult[THR_SPLITMV ] = 2500; sf->thresh_mult[THR_SPLITG ] = 5000; sf->thresh_mult[THR_SPLITA ] = 5000; sf->full_freq[0] = 7; sf->full_freq[1] = 15; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; if (!(cpi->ref_frame_flags & VP8_LAST_FLAG)) { sf->thresh_mult[THR_NEWMV ] = INT_MAX; sf->thresh_mult[THR_NEARESTMV] = INT_MAX; sf->thresh_mult[THR_ZEROMV ] = INT_MAX; sf->thresh_mult[THR_NEARMV ] = INT_MAX; sf->thresh_mult[THR_SPLITMV ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG)) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; sf->thresh_mult[THR_SPLITG ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_ALT_FLAG)) { sf->thresh_mult[THR_NEARESTA ] = INT_MAX; sf->thresh_mult[THR_ZEROA ] = INT_MAX; sf->thresh_mult[THR_NEARA ] = INT_MAX; sf->thresh_mult[THR_NEWA ] = INT_MAX; sf->thresh_mult[THR_SPLITA ] = INT_MAX; } break; case 1: case 3: sf->optimize_coefficients = 0; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2500; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_NEARESTG ] = 1000; sf->thresh_mult[THR_NEARESTA ] = 1000; sf->thresh_mult[THR_ZEROG ] = 1000; sf->thresh_mult[THR_ZEROA ] = 1000; sf->thresh_mult[THR_NEARG ] = 1000; sf->thresh_mult[THR_NEARA ] = 1000; sf->thresh_mult[THR_NEWMV ] = 1500; sf->thresh_mult[THR_NEWG ] = 1500; sf->thresh_mult[THR_NEWA ] = 1500; sf->thresh_mult[THR_SPLITMV ] = 5000; sf->thresh_mult[THR_SPLITG ] = 10000; sf->thresh_mult[THR_SPLITA ] = 10000; sf->full_freq[0] = 15; sf->full_freq[1] = 31; sf->first_step = 0; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; if (!(cpi->ref_frame_flags & VP8_LAST_FLAG)) { sf->thresh_mult[THR_NEWMV ] = INT_MAX; sf->thresh_mult[THR_NEARESTMV] = INT_MAX; sf->thresh_mult[THR_ZEROMV ] = INT_MAX; sf->thresh_mult[THR_NEARMV ] = INT_MAX; sf->thresh_mult[THR_SPLITMV ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG)) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; sf->thresh_mult[THR_SPLITG ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_ALT_FLAG)) { sf->thresh_mult[THR_NEARESTA ] = INT_MAX; sf->thresh_mult[THR_ZEROA ] = INT_MAX; sf->thresh_mult[THR_NEARA ] = INT_MAX; sf->thresh_mult[THR_NEWA ] = INT_MAX; sf->thresh_mult[THR_SPLITA ] = INT_MAX; } if (Speed > 0) { cpi->mode_check_freq[THR_SPLITG] = 4; cpi->mode_check_freq[THR_SPLITA] = 4; cpi->mode_check_freq[THR_SPLITMV] = 2; sf->thresh_mult[THR_TM ] = 1500; sf->thresh_mult[THR_V_PRED ] = 1500; sf->thresh_mult[THR_H_PRED ] = 1500; sf->thresh_mult[THR_B_PRED ] = 5000; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEWMV ] = 2000; sf->thresh_mult[THR_SPLITMV ] = 10000; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 1500; sf->thresh_mult[THR_ZEROG ] = 1500; sf->thresh_mult[THR_NEARG ] = 1500; sf->thresh_mult[THR_NEWG ] = 2000; sf->thresh_mult[THR_SPLITG ] = 20000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 1500; sf->thresh_mult[THR_ZEROA ] = 1500; sf->thresh_mult[THR_NEARA ] = 1500; sf->thresh_mult[THR_NEWA ] = 2000; sf->thresh_mult[THR_SPLITA ] = 20000; } sf->improved_quant = 0; sf->improved_dct = 0; sf->first_step = 1; sf->max_step_search_steps = MAX_MVSEARCH_STEPS; } if (Speed > 1) { cpi->mode_check_freq[THR_SPLITG] = 15; cpi->mode_check_freq[THR_SPLITA] = 15; cpi->mode_check_freq[THR_SPLITMV] = 7; sf->thresh_mult[THR_TM ] = 2000; sf->thresh_mult[THR_V_PRED ] = 2000; sf->thresh_mult[THR_H_PRED ] = 2000; sf->thresh_mult[THR_B_PRED ] = 7500; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEWMV ] = 2000; sf->thresh_mult[THR_SPLITMV ] = 25000; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 2000; sf->thresh_mult[THR_ZEROG ] = 2000; sf->thresh_mult[THR_NEARG ] = 2000; sf->thresh_mult[THR_NEWG ] = 2500; sf->thresh_mult[THR_SPLITG ] = 50000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 2000; sf->thresh_mult[THR_ZEROA ] = 2000; sf->thresh_mult[THR_NEARA ] = 2000; sf->thresh_mult[THR_NEWA ] = 2500; sf->thresh_mult[THR_SPLITA ] = 50000; } // Only do recode loop on key frames and golden frames sf->recode_loop = 2; sf->full_freq[0] = 31; sf->full_freq[1] = 63; } if (Speed > 2) { sf->auto_filter = 0; // Faster selection of loop filter cpi->mode_check_freq[THR_V_PRED] = 2; cpi->mode_check_freq[THR_H_PRED] = 2; cpi->mode_check_freq[THR_B_PRED] = 2; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { cpi->mode_check_freq[THR_NEARG] = 2; cpi->mode_check_freq[THR_NEWG] = 4; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { cpi->mode_check_freq[THR_NEARA] = 2; cpi->mode_check_freq[THR_NEWA] = 4; } sf->thresh_mult[THR_SPLITA ] = INT_MAX; sf->thresh_mult[THR_SPLITG ] = INT_MAX; sf->thresh_mult[THR_SPLITMV ] = INT_MAX; sf->full_freq[0] = 63; sf->full_freq[1] = 127; } if (Speed > 3) { cpi->mode_check_freq[THR_V_PRED] = 0; cpi->mode_check_freq[THR_H_PRED] = 0; cpi->mode_check_freq[THR_B_PRED] = 0; cpi->mode_check_freq[THR_NEARG] = 0; cpi->mode_check_freq[THR_NEWG] = 0; cpi->mode_check_freq[THR_NEARA] = 0; cpi->mode_check_freq[THR_NEWA] = 0; sf->auto_filter = 1; sf->recode_loop = 0; // recode loop off sf->RD = 0; // Turn rd off sf->full_freq[0] = INT_MAX; sf->full_freq[1] = INT_MAX; } if (Speed > 4) { sf->auto_filter = 0; // Faster selection of loop filter cpi->mode_check_freq[THR_V_PRED] = 2; cpi->mode_check_freq[THR_H_PRED] = 2; cpi->mode_check_freq[THR_B_PRED] = 2; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { cpi->mode_check_freq[THR_NEARG] = 2; cpi->mode_check_freq[THR_NEWG] = 4; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { cpi->mode_check_freq[THR_NEARA] = 2; cpi->mode_check_freq[THR_NEWA] = 4; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 2000; sf->thresh_mult[THR_ZEROG ] = 2000; sf->thresh_mult[THR_NEARG ] = 2000; sf->thresh_mult[THR_NEWG ] = 4000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 2000; sf->thresh_mult[THR_ZEROA ] = 2000; sf->thresh_mult[THR_NEARA ] = 2000; sf->thresh_mult[THR_NEWA ] = 4000; } } break; #endif case 2: sf->optimize_coefficients = 0; sf->recode_loop = 0; sf->auto_filter = 1; sf->iterative_sub_pixel = 1; sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_TM ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_V_PRED ] = 1000; sf->thresh_mult[THR_H_PRED ] = 1000; sf->thresh_mult[THR_B_PRED ] = 2500; sf->thresh_mult[THR_NEARESTG ] = 1000; sf->thresh_mult[THR_ZEROG ] = 1000; sf->thresh_mult[THR_NEARG ] = 1000; sf->thresh_mult[THR_NEARESTA ] = 1000; sf->thresh_mult[THR_ZEROA ] = 1000; sf->thresh_mult[THR_NEARA ] = 1000; sf->thresh_mult[THR_NEWMV ] = 2000; sf->thresh_mult[THR_NEWG ] = 2000; sf->thresh_mult[THR_NEWA ] = 2000; sf->thresh_mult[THR_SPLITMV ] = 5000; sf->thresh_mult[THR_SPLITG ] = 10000; sf->thresh_mult[THR_SPLITA ] = 10000; sf->full_freq[0] = 15; sf->full_freq[1] = 31; sf->search_method = NSTEP; if (!(cpi->ref_frame_flags & VP8_LAST_FLAG)) { sf->thresh_mult[THR_NEWMV ] = INT_MAX; sf->thresh_mult[THR_NEARESTMV] = INT_MAX; sf->thresh_mult[THR_ZEROMV ] = INT_MAX; sf->thresh_mult[THR_NEARMV ] = INT_MAX; sf->thresh_mult[THR_SPLITMV ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_GOLD_FLAG)) { sf->thresh_mult[THR_NEARESTG ] = INT_MAX; sf->thresh_mult[THR_ZEROG ] = INT_MAX; sf->thresh_mult[THR_NEARG ] = INT_MAX; sf->thresh_mult[THR_NEWG ] = INT_MAX; sf->thresh_mult[THR_SPLITG ] = INT_MAX; } if (!(cpi->ref_frame_flags & VP8_ALT_FLAG)) { sf->thresh_mult[THR_NEARESTA ] = INT_MAX; sf->thresh_mult[THR_ZEROA ] = INT_MAX; sf->thresh_mult[THR_NEARA ] = INT_MAX; sf->thresh_mult[THR_NEWA ] = INT_MAX; sf->thresh_mult[THR_SPLITA ] = INT_MAX; } if (Speed > 0) { cpi->mode_check_freq[THR_SPLITG] = 4; cpi->mode_check_freq[THR_SPLITA] = 4; cpi->mode_check_freq[THR_SPLITMV] = 2; sf->thresh_mult[THR_DC ] = 0; sf->thresh_mult[THR_TM ] = 1000; sf->thresh_mult[THR_V_PRED ] = 2000; sf->thresh_mult[THR_H_PRED ] = 2000; sf->thresh_mult[THR_B_PRED ] = 5000; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEARESTMV] = 0; sf->thresh_mult[THR_ZEROMV ] = 0; sf->thresh_mult[THR_NEARMV ] = 0; sf->thresh_mult[THR_NEWMV ] = 2000; sf->thresh_mult[THR_SPLITMV ] = 10000; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 1000; sf->thresh_mult[THR_ZEROG ] = 1000; sf->thresh_mult[THR_NEARG ] = 1000; sf->thresh_mult[THR_NEWG ] = 2000; sf->thresh_mult[THR_SPLITG ] = 20000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 1000; sf->thresh_mult[THR_ZEROA ] = 1000; sf->thresh_mult[THR_NEARA ] = 1000; sf->thresh_mult[THR_NEWA ] = 2000; sf->thresh_mult[THR_SPLITA ] = 20000; } sf->improved_quant = 0; sf->improved_dct = 0; } if (Speed > 1) { cpi->mode_check_freq[THR_SPLITMV] = 7; cpi->mode_check_freq[THR_SPLITG] = 15; cpi->mode_check_freq[THR_SPLITA] = 15; sf->thresh_mult[THR_TM ] = 2000; sf->thresh_mult[THR_V_PRED ] = 2000; sf->thresh_mult[THR_H_PRED ] = 2000; sf->thresh_mult[THR_B_PRED ] = 5000; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEWMV ] = 2000; sf->thresh_mult[THR_SPLITMV ] = 25000; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 2000; sf->thresh_mult[THR_ZEROG ] = 2000; sf->thresh_mult[THR_NEARG ] = 2000; sf->thresh_mult[THR_NEWG ] = 2500; sf->thresh_mult[THR_SPLITG ] = 50000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 2000; sf->thresh_mult[THR_ZEROA ] = 2000; sf->thresh_mult[THR_NEARA ] = 2000; sf->thresh_mult[THR_NEWA ] = 2500; sf->thresh_mult[THR_SPLITA ] = 50000; } sf->full_freq[0] = 31; sf->full_freq[1] = 63; } if (Speed > 2) { sf->auto_filter = 0; // Faster selection of loop filter cpi->mode_check_freq[THR_V_PRED] = 2; cpi->mode_check_freq[THR_H_PRED] = 2; cpi->mode_check_freq[THR_B_PRED] = 2; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { cpi->mode_check_freq[THR_NEARG] = 2; cpi->mode_check_freq[THR_NEWG] = 4; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { cpi->mode_check_freq[THR_NEARA] = 2; cpi->mode_check_freq[THR_NEWA] = 4; } sf->thresh_mult[THR_SPLITMV ] = INT_MAX; sf->thresh_mult[THR_SPLITG ] = INT_MAX; sf->thresh_mult[THR_SPLITA ] = INT_MAX; sf->full_freq[0] = 63; sf->full_freq[1] = 127; } if (Speed > 3) { sf->RD = 0; sf->full_freq[0] = INT_MAX; sf->full_freq[1] = INT_MAX; sf->auto_filter = 1; } if (Speed > 4) { sf->auto_filter = 0; // Faster selection of loop filter #if CONFIG_REALTIME_ONLY sf->search_method = HEX; #else sf->search_method = DIAMOND; #endif cpi->mode_check_freq[THR_V_PRED] = 4; cpi->mode_check_freq[THR_H_PRED] = 4; cpi->mode_check_freq[THR_B_PRED] = 4; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { cpi->mode_check_freq[THR_NEARG] = 2; cpi->mode_check_freq[THR_NEWG] = 4; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { cpi->mode_check_freq[THR_NEARA] = 2; cpi->mode_check_freq[THR_NEWA] = 4; } sf->thresh_mult[THR_TM ] = 2000; sf->thresh_mult[THR_B_PRED ] = 5000; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEARESTG ] = 2000; sf->thresh_mult[THR_ZEROG ] = 2000; sf->thresh_mult[THR_NEARG ] = 2000; sf->thresh_mult[THR_NEWG ] = 4000; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEARESTA ] = 2000; sf->thresh_mult[THR_ZEROA ] = 2000; sf->thresh_mult[THR_NEARA ] = 2000; sf->thresh_mult[THR_NEWA ] = 4000; } } if (Speed > 5) { // Disable split MB intra prediction mode sf->thresh_mult[THR_B_PRED] = INT_MAX; } if (Speed > 6) { unsigned int i, sum = 0; unsigned int total_mbs = cm->MBs; int thresh; int total_skip; int min = 2000; sf->iterative_sub_pixel = 0; if (cpi->oxcf.encode_breakout > 2000) min = cpi->oxcf.encode_breakout; min >>= 7; for (i = 0; i < min; i++) { sum += cpi->error_bins[i]; } total_skip = sum; sum = 0; // i starts from 2 to make sure thresh started from 2048 for (; i < 1024; i++) { sum += cpi->error_bins[i]; if (10 * sum >= (unsigned int)(cpi->Speed - 6)*(total_mbs - total_skip)) break; } i--; thresh = (i << 7); if (thresh < 2000) thresh = 2000; if (cpi->ref_frame_flags & VP8_LAST_FLAG) { sf->thresh_mult[THR_NEWMV] = thresh; sf->thresh_mult[THR_NEARESTMV ] = thresh >> 1; sf->thresh_mult[THR_NEARMV ] = thresh >> 1; } if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { sf->thresh_mult[THR_NEWG] = thresh << 1; sf->thresh_mult[THR_NEARESTG ] = thresh; sf->thresh_mult[THR_NEARG ] = thresh; } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { sf->thresh_mult[THR_NEWA] = thresh << 1; sf->thresh_mult[THR_NEARESTA ] = thresh; sf->thresh_mult[THR_NEARA ] = thresh; } // Disable other intra prediction modes sf->thresh_mult[THR_TM] = INT_MAX; sf->thresh_mult[THR_V_PRED] = INT_MAX; sf->thresh_mult[THR_H_PRED] = INT_MAX; } if (Speed > 8) { sf->quarter_pixel_search = 0; } if (Speed > 9) { int Tmp = cpi->Speed - 8; if (Tmp > 4) Tmp = 4; if (cpi->ref_frame_flags & VP8_GOLD_FLAG) { cpi->mode_check_freq[THR_ZEROG] = 1 << (Tmp - 1); cpi->mode_check_freq[THR_NEARESTG] = 1 << (Tmp - 1); cpi->mode_check_freq[THR_NEARG] = 1 << Tmp; cpi->mode_check_freq[THR_NEWG] = 1 << (Tmp + 1); } if (cpi->ref_frame_flags & VP8_ALT_FLAG) { cpi->mode_check_freq[THR_ZEROA] = 1 << (Tmp - 1); cpi->mode_check_freq[THR_NEARESTA] = 1 << (Tmp - 1); cpi->mode_check_freq[THR_NEARA] = 1 << Tmp; cpi->mode_check_freq[THR_NEWA] = 1 << (Tmp + 1); } cpi->mode_check_freq[THR_NEWMV] = 1 << (Tmp - 1); } cm->filter_type = NORMAL_LOOPFILTER; if (Speed >= 14) cm->filter_type = SIMPLE_LOOPFILTER; if (Speed >= 15) { sf->half_pixel_search = 0; // This has a big hit on quality. Last resort } vpx_memset(cpi->error_bins, 0, sizeof(cpi->error_bins)); }; if (cpi->sf.search_method == NSTEP) { vp8_init3smotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); } else if (cpi->sf.search_method == DIAMOND) { vp8_init_dsmotion_compensation(&cpi->mb, cm->yv12_fb[cm->lst_fb_idx].y_stride); } if (cpi->sf.improved_dct) { cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short8x4); cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, short4x4); } else { cpi->mb.vp8_short_fdct8x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast8x4); cpi->mb.vp8_short_fdct4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, fast4x4); } cpi->mb.short_walsh4x4 = FDCT_INVOKE(&cpi->rtcd.fdct, walsh_short4x4); if (cpi->sf.improved_quant) { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, quantb); } else { cpi->mb.quantize_b = QUANTIZE_INVOKE(&cpi->rtcd.quantize, fastquantb); } #if CONFIG_RUNTIME_CPU_DETECT cpi->mb.e_mbd.rtcd = &cpi->common.rtcd; #endif if (cpi->sf.iterative_sub_pixel == 1) { cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step_iteratively; } else if (cpi->sf.quarter_pixel_search) { cpi->find_fractional_mv_step = vp8_find_best_sub_pixel_step; } else if (cpi->sf.half_pixel_search) { cpi->find_fractional_mv_step = vp8_find_best_half_pixel_step; } else { cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; } if (cpi->sf.optimize_coefficients == 1) cpi->mb.optimize = 1; else cpi->mb.optimize = 0; if (cpi->common.full_pixel) cpi->find_fractional_mv_step = vp8_skip_fractional_mv_step; #ifdef SPEEDSTATS frames_at_speed[cpi->Speed]++; #endif } static void alloc_raw_frame_buffers(VP8_COMP *cpi) { int i, buffers; buffers = cpi->oxcf.lag_in_frames; if (buffers > MAX_LAG_BUFFERS) buffers = MAX_LAG_BUFFERS; if (buffers < 1) buffers = 1; for (i = 0; i < buffers; i++) if (vp8_yv12_alloc_frame_buffer(&cpi->src_buffer[i].source_buffer, cpi->oxcf.Width, cpi->oxcf.Height, 16)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate lag buffer"); #if VP8_TEMPORAL_ALT_REF if (vp8_yv12_alloc_frame_buffer(&cpi->alt_ref_buffer.source_buffer, cpi->oxcf.Width, cpi->oxcf.Height, 16)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate altref buffer"); #endif cpi->source_buffer_count = 0; } static int vp8_alloc_partition_data(VP8_COMP *cpi) { cpi->mb.pip = vpx_calloc((cpi->common.mb_cols + 1) * (cpi->common.mb_rows + 1), sizeof(PARTITION_INFO)); if(!cpi->mb.pip) return ALLOC_FAILURE; cpi->mb.pi = cpi->mb.pip + cpi->common.mode_info_stride + 1; return 0; } void vp8_alloc_compressor_data(VP8_COMP *cpi) { VP8_COMMON *cm = & cpi->common; int width = cm->Width; int height = cm->Height; if (vp8_alloc_frame_buffers(cm, width, height)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate frame buffers"); if (vp8_alloc_partition_data(cpi)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate partition data"); if ((width & 0xf) != 0) width += 16 - (width & 0xf); if ((height & 0xf) != 0) height += 16 - (height & 0xf); if (vp8_yv12_alloc_frame_buffer(&cpi->last_frame_uf, width, height, VP8BORDERINPIXELS)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); if (vp8_yv12_alloc_frame_buffer(&cpi->scaled_source, width, height, 16)) vpx_internal_error(&cpi->common.error, VPX_CODEC_MEM_ERROR, "Failed to allocate scaled source buffer"); if (cpi->tok != 0) vpx_free(cpi->tok); { unsigned int tokens = cm->mb_rows * cm->mb_cols * 24 * 16; CHECK_MEM_ERROR(cpi->tok, vpx_calloc(tokens, sizeof(*cpi->tok))); } // Data used for real time vc mode to see if gf needs refreshing cpi->inter_zz_count = 0; cpi->gf_bad_count = 0; cpi->gf_update_recommended = 0; // Structures used to minitor GF usage if (cpi->gf_active_flags != 0) vpx_free(cpi->gf_active_flags); CHECK_MEM_ERROR(cpi->gf_active_flags, vpx_calloc(1, cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; } // Quant MOD static const int q_trans[] = { 0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 15, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, }; int vp8_reverse_trans(int x) { int i; for (i = 0; i < 64; i++) if (q_trans[i] >= x) return i; return 63; }; void vp8_new_frame_rate(VP8_COMP *cpi, double framerate) { cpi->oxcf.frame_rate = framerate; cpi->output_frame_rate = cpi->oxcf.frame_rate; cpi->per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); cpi->av_per_frame_bandwidth = (int)(cpi->oxcf.target_bandwidth / cpi->output_frame_rate); cpi->min_frame_bandwidth = (int)(cpi->av_per_frame_bandwidth * cpi->oxcf.two_pass_vbrmin_section / 100); cpi->rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_target_bits = cpi->av_per_frame_bandwidth; cpi->long_rolling_actual_bits = cpi->av_per_frame_bandwidth; cpi->max_gf_interval = (int)(cpi->output_frame_rate / 2) + 2; //cpi->max_gf_interval = (int)(cpi->output_frame_rate * 2 / 3) + 1; //cpi->max_gf_interval = 24; if (cpi->max_gf_interval < 12) cpi->max_gf_interval = 12; // Special conditions when altr ref frame enabled if (cpi->oxcf.play_alternate) { if (cpi->max_gf_interval > cpi->oxcf.lag_in_frames - 1) cpi->max_gf_interval = cpi->oxcf.lag_in_frames - 1; } } static int rescale(int val, int num, int denom) { int64_t llnum = num; int64_t llden = denom; int64_t llval = val; return llval * llnum / llden; } void vp8_init_config(VP8_PTR ptr, VP8_CONFIG *oxcf) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; if (!cpi) return; cpi->auto_gold = 1; cpi->auto_adjust_gold_quantizer = 1; cpi->goldquantizer = 1; cpi->goldfreq = 7; cpi->auto_adjust_key_quantizer = 1; cpi->keyquantizer = 1; cm->version = oxcf->Version; vp8_setup_version(cm); if (oxcf == 0) { cpi->pass = 0; cpi->auto_worst_q = 0; cpi->oxcf.best_allowed_q = MINQ; cpi->oxcf.worst_allowed_q = MAXQ; cpi->oxcf.end_usage = USAGE_STREAM_FROM_SERVER; cpi->oxcf.starting_buffer_level = 4000; cpi->oxcf.optimal_buffer_level = 5000; cpi->oxcf.maximum_buffer_size = 6000; cpi->oxcf.under_shoot_pct = 90; cpi->oxcf.allow_df = 0; cpi->oxcf.drop_frames_water_mark = 20; cpi->oxcf.allow_spatial_resampling = 0; cpi->oxcf.resample_down_water_mark = 40; cpi->oxcf.resample_up_water_mark = 60; cpi->oxcf.fixed_q = cpi->interquantizer; cpi->filter_type = NORMAL_LOOPFILTER; if (cm->simpler_lpf) cpi->filter_type = SIMPLE_LOOPFILTER; cpi->compressor_speed = 1; cpi->horiz_scale = 0; cpi->vert_scale = 0; cpi->oxcf.two_pass_vbrbias = 50; cpi->oxcf.two_pass_vbrmax_section = 400; cpi->oxcf.two_pass_vbrmin_section = 0; cpi->oxcf.Sharpness = 0; cpi->oxcf.noise_sensitivity = 0; } else cpi->oxcf = *oxcf; switch (cpi->oxcf.Mode) { case MODE_REALTIME: cpi->pass = 0; cpi->compressor_speed = 2; if (cpi->oxcf.cpu_used < -16) { cpi->oxcf.cpu_used = -16; } if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16; break; #if !(CONFIG_REALTIME_ONLY) case MODE_GOODQUALITY: cpi->pass = 0; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_BESTQUALITY: cpi->pass = 0; cpi->compressor_speed = 0; break; case MODE_FIRSTPASS: cpi->pass = 1; cpi->compressor_speed = 1; break; case MODE_SECONDPASS: cpi->pass = 2; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_SECONDPASS_BEST: cpi->pass = 2; cpi->compressor_speed = 0; break; #endif } if (cpi->pass == 0) cpi->auto_worst_q = 1; cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; if (oxcf->fixed_q >= 0) { if (oxcf->worst_allowed_q < 0) cpi->oxcf.fixed_q = q_trans[0]; else cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; if (oxcf->alt_q < 0) cpi->oxcf.alt_q = q_trans[0]; else cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; if (oxcf->key_q < 0) cpi->oxcf.key_q = q_trans[0]; else cpi->oxcf.key_q = q_trans[oxcf->key_q]; if (oxcf->gold_q < 0) cpi->oxcf.gold_q = q_trans[0]; else cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; } cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; //cpi->use_golden_frame_only = 0; //cpi->use_last_frame_only = 0; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->refresh_entropy_probs = 1; if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions; setup_features(cpi); { int i; for (i = 0; i < MAX_MB_SEGMENTS; i++) cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } // At the moment the first order values may not be > MAXQ if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ; // local file playback mode == really big buffer if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { cpi->oxcf.starting_buffer_level = 60000; cpi->oxcf.optimal_buffer_level = 60000; cpi->oxcf.maximum_buffer_size = 240000; } // Convert target bandwidth from Kbit/s to Bit/s cpi->oxcf.target_bandwidth *= 1000; cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.optimal_buffer_level == 0) cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.maximum_buffer_size == 0) cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size, cpi->oxcf.target_bandwidth, 1000); cpi->buffer_level = cpi->oxcf.starting_buffer_level; cpi->bits_off_target = cpi->oxcf.starting_buffer_level; vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate); cpi->worst_quality = cpi->oxcf.worst_allowed_q; cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; cpi->best_quality = cpi->oxcf.best_allowed_q; cpi->active_best_quality = cpi->oxcf.best_allowed_q; cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE; cpi->total_actual_bits = 0; cpi->total_target_vs_actual = 0; // Only allow dropped frames in buffered mode cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type; if (!cm->use_bilinear_mc_filter) cm->mcomp_filter_type = SIXTAP; else cm->mcomp_filter_type = BILINEAR; cpi->target_bandwidth = cpi->oxcf.target_bandwidth; cm->Width = cpi->oxcf.Width ; cm->Height = cpi->oxcf.Height ; cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8 cm->horiz_scale = cpi->horiz_scale; cm->vert_scale = cpi->vert_scale ; // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7; cm->sharpness_level = cpi->oxcf.Sharpness; if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) { int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); // always go to the next whole number cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; } if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width || ((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height || cm->yv12_fb[cm->lst_fb_idx].y_width == 0) { alloc_raw_frame_buffers(cpi); vp8_alloc_compressor_data(cpi); } // Clamp KF frame size to quarter of data rate if (cpi->intra_frame_target > cpi->target_bandwidth >> 2) cpi->intra_frame_target = cpi->target_bandwidth >> 2; if (cpi->oxcf.fixed_q >= 0) { cpi->last_q[0] = cpi->oxcf.fixed_q; cpi->last_q[1] = cpi->oxcf.fixed_q; } cpi->Speed = cpi->oxcf.cpu_used; // force to allowlag to 0 if lag_in_frames is 0; if (cpi->oxcf.lag_in_frames == 0) { cpi->oxcf.allow_lag = 0; } // Limit on lag buffers as these are not currently dynamically allocated else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; // force play_alternate to 0 if allow_lag is 0, lag_in_frames is too small, Mode is real time or one pass compress enabled. if (cpi->oxcf.allow_lag == 0 || cpi->oxcf.lag_in_frames <= 5 || (cpi->oxcf.Mode < MODE_SECONDPASS)) { cpi->oxcf.play_alternate = 0; cpi->ref_frame_flags = cpi->ref_frame_flags & ~VP8_ALT_FLAG; } // YX Temp cpi->last_alt_ref_sei = -1; cpi->is_src_frame_alt_ref = 0; #if 0 // Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif #if VP8_TEMPORAL_ALT_REF { int i; cpi->fixed_divide[0] = 0; for (i = 1; i < 255; i++) cpi->fixed_divide[i] = 0x10000 / i; } #endif } /* * This function needs more clean up, i.e. be more tuned torwards * change_config rather than init_config !!!!!!!!!!!!!!!! * YX - 5/28/2009 * */ void vp8_change_config(VP8_PTR ptr, VP8_CONFIG *oxcf) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; if (!cpi) return; if (!oxcf) return; if (cm->version != oxcf->Version) { cm->version = oxcf->Version; vp8_setup_version(cm); } cpi->oxcf = *oxcf; switch (cpi->oxcf.Mode) { case MODE_REALTIME: cpi->pass = 0; cpi->compressor_speed = 2; if (cpi->oxcf.cpu_used < -16) { cpi->oxcf.cpu_used = -16; } if (cpi->oxcf.cpu_used > 16) cpi->oxcf.cpu_used = 16; break; #if !(CONFIG_REALTIME_ONLY) case MODE_GOODQUALITY: cpi->pass = 0; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_BESTQUALITY: cpi->pass = 0; cpi->compressor_speed = 0; break; case MODE_FIRSTPASS: cpi->pass = 1; cpi->compressor_speed = 1; break; case MODE_SECONDPASS: cpi->pass = 2; cpi->compressor_speed = 1; if (cpi->oxcf.cpu_used < -5) { cpi->oxcf.cpu_used = -5; } if (cpi->oxcf.cpu_used > 5) cpi->oxcf.cpu_used = 5; break; case MODE_SECONDPASS_BEST: cpi->pass = 2; cpi->compressor_speed = 0; break; #endif } if (cpi->pass == 0) cpi->auto_worst_q = 1; cpi->oxcf.worst_allowed_q = q_trans[oxcf->worst_allowed_q]; cpi->oxcf.best_allowed_q = q_trans[oxcf->best_allowed_q]; if (oxcf->fixed_q >= 0) { if (oxcf->worst_allowed_q < 0) cpi->oxcf.fixed_q = q_trans[0]; else cpi->oxcf.fixed_q = q_trans[oxcf->worst_allowed_q]; if (oxcf->alt_q < 0) cpi->oxcf.alt_q = q_trans[0]; else cpi->oxcf.alt_q = q_trans[oxcf->alt_q]; if (oxcf->key_q < 0) cpi->oxcf.key_q = q_trans[0]; else cpi->oxcf.key_q = q_trans[oxcf->key_q]; if (oxcf->gold_q < 0) cpi->oxcf.gold_q = q_trans[0]; else cpi->oxcf.gold_q = q_trans[oxcf->gold_q]; } cpi->baseline_gf_interval = cpi->oxcf.alt_freq ? cpi->oxcf.alt_freq : DEFAULT_GF_INTERVAL; cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; //cpi->use_golden_frame_only = 0; //cpi->use_last_frame_only = 0; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->refresh_entropy_probs = 1; if (cpi->oxcf.token_partitions >= 0 && cpi->oxcf.token_partitions <= 3) cm->multi_token_partition = (TOKEN_PARTITION) cpi->oxcf.token_partitions; setup_features(cpi); { int i; for (i = 0; i < MAX_MB_SEGMENTS; i++) cpi->segment_encode_breakout[i] = cpi->oxcf.encode_breakout; } // At the moment the first order values may not be > MAXQ if (cpi->oxcf.fixed_q > MAXQ) cpi->oxcf.fixed_q = MAXQ; // local file playback mode == really big buffer if (cpi->oxcf.end_usage == USAGE_LOCAL_FILE_PLAYBACK) { cpi->oxcf.starting_buffer_level = 60000; cpi->oxcf.optimal_buffer_level = 60000; cpi->oxcf.maximum_buffer_size = 240000; } // Convert target bandwidth from Kbit/s to Bit/s cpi->oxcf.target_bandwidth *= 1000; cpi->oxcf.starting_buffer_level = rescale(cpi->oxcf.starting_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.optimal_buffer_level == 0) cpi->oxcf.optimal_buffer_level = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.optimal_buffer_level = rescale(cpi->oxcf.optimal_buffer_level, cpi->oxcf.target_bandwidth, 1000); if (cpi->oxcf.maximum_buffer_size == 0) cpi->oxcf.maximum_buffer_size = cpi->oxcf.target_bandwidth / 8; else cpi->oxcf.maximum_buffer_size = rescale(cpi->oxcf.maximum_buffer_size, cpi->oxcf.target_bandwidth, 1000); cpi->buffer_level = cpi->oxcf.starting_buffer_level; cpi->bits_off_target = cpi->oxcf.starting_buffer_level; vp8_new_frame_rate(cpi, cpi->oxcf.frame_rate); cpi->worst_quality = cpi->oxcf.worst_allowed_q; cpi->active_worst_quality = cpi->oxcf.worst_allowed_q; cpi->avg_frame_qindex = cpi->oxcf.worst_allowed_q; cpi->best_quality = cpi->oxcf.best_allowed_q; cpi->active_best_quality = cpi->oxcf.best_allowed_q; cpi->buffered_mode = (cpi->oxcf.optimal_buffer_level > 0) ? TRUE : FALSE; cpi->total_actual_bits = 0; cpi->total_target_vs_actual = 0; // Only allow dropped frames in buffered mode cpi->drop_frames_allowed = cpi->oxcf.allow_df && cpi->buffered_mode; cm->filter_type = (LOOPFILTERTYPE) cpi->filter_type; if (!cm->use_bilinear_mc_filter) cm->mcomp_filter_type = SIXTAP; else cm->mcomp_filter_type = BILINEAR; cpi->target_bandwidth = cpi->oxcf.target_bandwidth; cm->Width = cpi->oxcf.Width ; cm->Height = cpi->oxcf.Height ; cm->horiz_scale = cpi->horiz_scale; cm->vert_scale = cpi->vert_scale ; cpi->intra_frame_target = (4 * (cm->Width + cm->Height) / 15) * 1000; // As per VP8 // VP8 sharpness level mapping 0-7 (vs 0-10 in general VPx dialogs) if (cpi->oxcf.Sharpness > 7) cpi->oxcf.Sharpness = 7; cm->sharpness_level = cpi->oxcf.Sharpness; if (cm->horiz_scale != NORMAL || cm->vert_scale != NORMAL) { int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); // always go to the next whole number cm->Width = (hs - 1 + cpi->oxcf.Width * hr) / hs; cm->Height = (vs - 1 + cpi->oxcf.Height * vr) / vs; } if (((cm->Width + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_width || ((cm->Height + 15) & 0xfffffff0) != cm->yv12_fb[cm->lst_fb_idx].y_height || cm->yv12_fb[cm->lst_fb_idx].y_width == 0) { alloc_raw_frame_buffers(cpi); vp8_alloc_compressor_data(cpi); } // Clamp KF frame size to quarter of data rate if (cpi->intra_frame_target > cpi->target_bandwidth >> 2) cpi->intra_frame_target = cpi->target_bandwidth >> 2; if (cpi->oxcf.fixed_q >= 0) { cpi->last_q[0] = cpi->oxcf.fixed_q; cpi->last_q[1] = cpi->oxcf.fixed_q; } cpi->Speed = cpi->oxcf.cpu_used; // force to allowlag to 0 if lag_in_frames is 0; if (cpi->oxcf.lag_in_frames == 0) { cpi->oxcf.allow_lag = 0; } // Limit on lag buffers as these are not currently dynamically allocated else if (cpi->oxcf.lag_in_frames > MAX_LAG_BUFFERS) cpi->oxcf.lag_in_frames = MAX_LAG_BUFFERS; // force play_alternate to 0 if allow_lag is 0, lag_in_frames is too small, Mode is real time or one pass compress enabled. if (cpi->oxcf.allow_lag == 0 || cpi->oxcf.lag_in_frames <= 5 || (cpi->oxcf.Mode < MODE_SECONDPASS)) { cpi->oxcf.play_alternate = 0; cpi->ref_frame_flags = cpi->ref_frame_flags & ~VP8_ALT_FLAG; } // YX Temp cpi->last_alt_ref_sei = -1; cpi->is_src_frame_alt_ref = 0; #if 0 // Experimental RD Code cpi->frame_distortion = 0; cpi->last_frame_distortion = 0; #endif } #define M_LOG2_E 0.693147180559945309417 #define log2f(x) (log (x) / (float) M_LOG2_E) static void cal_mvsadcosts(int *mvsadcost[2]) { int i = 1; mvsadcost [0] [0] = 300; mvsadcost [1] [0] = 300; do { double z = 256 * (2 * (log2f(2 * i) + .6)); mvsadcost [0][i] = (int) z; mvsadcost [1][i] = (int) z; mvsadcost [0][-i] = (int) z; mvsadcost [1][-i] = (int) z; } while (++i <= mv_max); } VP8_PTR vp8_create_compressor(VP8_CONFIG *oxcf) { int i; volatile union { VP8_COMP *cpi; VP8_PTR ptr; } ctx; VP8_COMP *cpi; VP8_COMMON *cm; cpi = ctx.cpi = vpx_memalign(32, sizeof(VP8_COMP)); // Check that the CPI instance is valid if (!cpi) return 0; cm = &cpi->common; vpx_memset(cpi, 0, sizeof(VP8_COMP)); if (setjmp(cm->error.jmp)) { VP8_PTR ptr = ctx.ptr; ctx.cpi->common.error.setjmp = 0; vp8_remove_compressor(&ptr); return 0; } cpi->common.error.setjmp = 1; CHECK_MEM_ERROR(cpi->rdtok, vpx_calloc(256 * 3 / 2, sizeof(TOKENEXTRA))); CHECK_MEM_ERROR(cpi->mb.ss, vpx_calloc(sizeof(search_site), (MAX_MVSEARCH_STEPS * 8) + 1)); vp8_cmachine_specific_config(cpi); vp8_create_common(&cpi->common); vp8_init_config((VP8_PTR)cpi, oxcf); memcpy(cpi->base_skip_false_prob, vp8cx_base_skip_false_prob, sizeof(vp8cx_base_skip_false_prob)); cpi->common.current_video_frame = 0; cpi->kf_overspend_bits = 0; cpi->kf_bitrate_adjustment = 0; cpi->frames_till_gf_update_due = 0; cpi->gf_overspend_bits = 0; cpi->non_gf_bitrate_adjustment = 0; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; cpi->prob_intra_coded = 63; // Prime the recent reference frame useage counters. // Hereafter they will be maintained as a sort of moving average cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; // Set reference frame sign bias for ALTREF frame to 1 (for now) cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; cpi->gf_decay_rate = 0; cpi->baseline_gf_interval = DEFAULT_GF_INTERVAL; cpi->gold_is_last = 0 ; cpi->alt_is_last = 0 ; cpi->gold_is_alt = 0 ; // Create the encoder segmentation map and set all entries to 0 CHECK_MEM_ERROR(cpi->segmentation_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); CHECK_MEM_ERROR(cpi->active_map, vpx_calloc(cpi->common.mb_rows * cpi->common.mb_cols, 1)); vpx_memset(cpi->active_map , 1, (cpi->common.mb_rows * cpi->common.mb_cols)); cpi->active_map_enabled = 0; // Create the first pass motion map structure and set to 0 CHECK_MEM_ERROR(cpi->fp_motion_map, vpx_calloc(cpi->common.MBs, 1)); #if 0 // Experimental code for lagged and one pass // Initialise one_pass GF frames stats // Update stats used for GF selection if (cpi->pass == 0) { cpi->one_pass_frame_index = 0; for (i = 0; i < MAX_LAG_BUFFERS; i++) { cpi->one_pass_frame_stats[i].frames_so_far = 0; cpi->one_pass_frame_stats[i].frame_intra_error = 0.0; cpi->one_pass_frame_stats[i].frame_coded_error = 0.0; cpi->one_pass_frame_stats[i].frame_pcnt_inter = 0.0; cpi->one_pass_frame_stats[i].frame_pcnt_motion = 0.0; cpi->one_pass_frame_stats[i].frame_mvr = 0.0; cpi->one_pass_frame_stats[i].frame_mvr_abs = 0.0; cpi->one_pass_frame_stats[i].frame_mvc = 0.0; cpi->one_pass_frame_stats[i].frame_mvc_abs = 0.0; } } #endif // Should we use the cyclic refresh method. // Currently this is tied to error resilliant mode cpi->cyclic_refresh_mode_enabled = cpi->oxcf.error_resilient_mode; cpi->cyclic_refresh_mode_max_mbs_perframe = (cpi->common.mb_rows * cpi->common.mb_cols) / 40; cpi->cyclic_refresh_mode_index = 0; cpi->cyclic_refresh_q = 32; if (cpi->cyclic_refresh_mode_enabled) { CHECK_MEM_ERROR(cpi->cyclic_refresh_map, vpx_calloc((cpi->common.mb_rows * cpi->common.mb_cols), 1)); } else cpi->cyclic_refresh_map = (signed char *) NULL; // Test function for segmentation //segmentation_test_function((VP8_PTR) cpi); // Loop filter mode / ref deltas test function //mode_ref_lf_test_function(cpi); #ifdef ENTROPY_STATS init_context_counters(); #endif #ifdef INTRARDOPT cpi->intra_rd_opt = 1; #endif cpi->frames_since_key = 8; // Give a sensible default for the first frame. cpi->key_frame_frequency = cpi->oxcf.key_freq; cpi->source_alt_ref_pending = FALSE; cpi->source_alt_ref_active = FALSE; cpi->common.refresh_alt_ref_frame = 0; cpi->b_calculate_psnr = CONFIG_PSNR; #if CONFIG_PSNR cpi->b_calculate_ssimg = 0; cpi->count = 0; cpi->bytes = 0; if (cpi->b_calculate_psnr) { cpi->total_sq_error = 0.0; cpi->total_sq_error2 = 0.0; cpi->total_y = 0.0; cpi->total_u = 0.0; cpi->total_v = 0.0; cpi->total = 0.0; cpi->totalp_y = 0.0; cpi->totalp_u = 0.0; cpi->totalp_v = 0.0; cpi->totalp = 0.0; cpi->tot_recode_hits = 0; cpi->summed_quality = 0; cpi->summed_weights = 0; } if (cpi->b_calculate_ssimg) { cpi->total_ssimg_y = 0; cpi->total_ssimg_u = 0; cpi->total_ssimg_v = 0; cpi->total_ssimg_all = 0; } #ifndef LLONG_MAX #define LLONG_MAX 9223372036854775807LL #endif cpi->first_time_stamp_ever = LLONG_MAX; #endif cpi->frames_till_gf_update_due = 0; cpi->key_frame_count = 1; cpi->tot_key_frame_bits = 0; cpi->ni_av_qi = cpi->oxcf.worst_allowed_q; cpi->ni_tot_qi = 0; cpi->ni_frames = 0; cpi->total_byte_count = 0; cpi->drop_frame = 0; cpi->drop_count = 0; cpi->max_drop_count = 0; cpi->max_consec_dropped_frames = 4; cpi->rate_correction_factor = 1.0; cpi->key_frame_rate_correction_factor = 1.0; cpi->gf_rate_correction_factor = 1.0; cpi->est_max_qcorrection_factor = 1.0; cpi->mb.mvcost[0] = &cpi->mb.mvcosts[0][mv_max+1]; cpi->mb.mvcost[1] = &cpi->mb.mvcosts[1][mv_max+1]; cpi->mb.mvsadcost[0] = &cpi->mb.mvsadcosts[0][mv_max+1]; cpi->mb.mvsadcost[1] = &cpi->mb.mvsadcosts[1][mv_max+1]; cal_mvsadcosts(cpi->mb.mvsadcost); for (i = 0; i < KEY_FRAME_CONTEXT; i++) { cpi->prior_key_frame_size[i] = cpi->intra_frame_target; cpi->prior_key_frame_distance[i] = (int)cpi->output_frame_rate; } cpi->check_freq[0] = 15; cpi->check_freq[1] = 15; #ifdef OUTPUT_YUV_SRC yuv_file = fopen("bd.yuv", "ab"); #endif #if 0 framepsnr = fopen("framepsnr.stt", "a"); kf_list = fopen("kf_list.stt", "w"); #endif cpi->output_pkt_list = oxcf->output_pkt_list; #if !(CONFIG_REALTIME_ONLY) if (cpi->pass == 1) { vp8_init_first_pass(cpi); } else if (cpi->pass == 2) { cpi->stats_in = oxcf->two_pass_stats_in.buf; cpi->stats_in_end = cpi->stats_in + oxcf->two_pass_stats_in.sz / sizeof(FIRSTPASS_STATS) - 1; vp8_init_second_pass(cpi); } #endif if (cpi->compressor_speed == 2) { cpi->cpu_freq = 0; //vp8_get_processor_freq(); cpi->avg_encode_time = 0; cpi->avg_pick_mode_time = 0; } vp8_set_speed_features(cpi); // Set starting values of RD threshold multipliers (128 = *1) for (i = 0; i < MAX_MODES; i++) { cpi->rd_thresh_mult[i] = 128; } #ifdef ENTROPY_STATS init_mv_ref_counts(); #endif vp8cx_create_encoder_threads(cpi); cpi->fn_ptr.sdf = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16); cpi->fn_ptr.vf = VARIANCE_INVOKE(&cpi->rtcd.variance, var16x16); cpi->fn_ptr.svf = VARIANCE_INVOKE(&cpi->rtcd.variance, subpixvar16x16); cpi->fn_ptr.sdx3f = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x3); cpi->fn_ptr.sdx4df = VARIANCE_INVOKE(&cpi->rtcd.variance, sad16x16x4d); #if !(CONFIG_REALTIME_ONLY) cpi->full_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, full_search); #endif cpi->diamond_search_sad = SEARCH_INVOKE(&cpi->rtcd.search, diamond_search); cpi->ready_for_new_frame = 1; cpi->source_encode_index = 0; // make sure frame 1 is okay cpi->error_bins[0] = cpi->common.MBs; //vp8cx_init_quantizer() is first called here. Add check in vp8cx_frame_init_quantizer() so that vp8cx_init_quantizer is only called later //when needed. This will avoid unnecessary calls of vp8cx_init_quantizer() for every frame. vp8cx_init_quantizer(cpi); { vp8_init_loop_filter(cm); cm->last_frame_type = KEY_FRAME; cm->last_filter_type = cm->filter_type; cm->last_sharpness_level = cm->sharpness_level; } cpi->common.error.setjmp = 0; return (VP8_PTR) cpi; } void vp8_remove_compressor(VP8_PTR *ptr) { VP8_COMP *cpi = (VP8_COMP *)(*ptr); if (!cpi) return; if (cpi && (cpi->common.current_video_frame > 0)) { #if !(CONFIG_REALTIME_ONLY) if (cpi->pass == 2) { vp8_end_second_pass(cpi); } #endif #ifdef ENTROPY_STATS print_context_counters(); print_tree_update_probs(); print_mode_context(); #endif #if CONFIG_PSNR if (cpi->pass != 1) { FILE *f = fopen("opsnr.stt", "a"); double time_encoded = (cpi->source_end_time_stamp - cpi->first_time_stamp_ever) / 10000000.000; double total_encode_time = (cpi->time_receive_data + cpi->time_compress_data) / 1000.000; double dr = (double)cpi->bytes * (double) 8 / (double)1000 / time_encoded; if (cpi->b_calculate_psnr) { YV12_BUFFER_CONFIG *lst_yv12 = &cpi->common.yv12_fb[cpi->common.lst_fb_idx]; double samples = 3.0 / 2 * cpi->count * lst_yv12->y_width * lst_yv12->y_height; double total_psnr = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error); double total_psnr2 = vp8_mse2psnr(samples, 255.0, cpi->total_sq_error2); double total_ssim = 100 * pow(cpi->summed_quality / cpi->summed_weights, 8.0); fprintf(f, "Bitrate\tAVGPsnr\tGLBPsnr\tAVPsnrP\tGLPsnrP\tVPXSSIM\t Time(us)\n"); fprintf(f, "%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f\t%7.3f %8.0f\n", dr, cpi->total / cpi->count, total_psnr, cpi->totalp / cpi->count, total_psnr2, total_ssim, total_encode_time); } if (cpi->b_calculate_ssimg) { fprintf(f, "BitRate\tSSIM_Y\tSSIM_U\tSSIM_V\tSSIM_A\t Time(us)\n"); fprintf(f, "%7.3f\t%6.4f\t%6.4f\t%6.4f\t%6.4f\t%8.0f\n", dr, cpi->total_ssimg_y / cpi->count, cpi->total_ssimg_u / cpi->count, cpi->total_ssimg_v / cpi->count, cpi->total_ssimg_all / cpi->count, total_encode_time); } fclose(f); #if 0 f = fopen("qskip.stt", "a"); fprintf(f, "minq:%d -maxq:%d skipture:skipfalse = %d:%d\n", cpi->oxcf.best_allowed_q, cpi->oxcf.worst_allowed_q, skiptruecount, skipfalsecount); fclose(f); #endif } #endif #ifdef SPEEDSTATS if (cpi->compressor_speed == 2) { int i; FILE *f = fopen("cxspeed.stt", "a"); cnt_pm /= cpi->common.MBs; for (i = 0; i < 16; i++) fprintf(f, "%5d", frames_at_speed[i]); fprintf(f, "\n"); //fprintf(f, "%10d PM %10d %10d %10d EF %10d %10d %10d\n", cpi->Speed, cpi->avg_pick_mode_time, (tot_pm/cnt_pm), cnt_pm, cpi->avg_encode_time, 0, 0); fclose(f); } #endif #ifdef MODE_STATS { extern int count_mb_seg[4]; FILE *f = fopen("modes.stt", "a"); double dr = (double)cpi->oxcf.frame_rate * (double)bytes * (double)8 / (double)count / (double)1000 ; fprintf(f, "intra_mode in Intra Frames:\n"); fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d\n", y_modes[0], y_modes[1], y_modes[2], y_modes[3], y_modes[4]); fprintf(f, "UV:%8d, %8d, %8d, %8d\n", uv_modes[0], uv_modes[1], uv_modes[2], uv_modes[3]); fprintf(f, "B: "); { int i; for (i = 0; i < 10; i++) fprintf(f, "%8d, ", b_modes[i]); fprintf(f, "\n"); } fprintf(f, "Modes in Inter Frames:\n"); fprintf(f, "Y: %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d, %8d\n", inter_y_modes[0], inter_y_modes[1], inter_y_modes[2], inter_y_modes[3], inter_y_modes[4], inter_y_modes[5], inter_y_modes[6], inter_y_modes[7], inter_y_modes[8], inter_y_modes[9]); fprintf(f, "UV:%8d, %8d, %8d, %8d\n", inter_uv_modes[0], inter_uv_modes[1], inter_uv_modes[2], inter_uv_modes[3]); fprintf(f, "B: "); { int i; for (i = 0; i < 15; i++) fprintf(f, "%8d, ", inter_b_modes[i]); fprintf(f, "\n"); } fprintf(f, "P:%8d, %8d, %8d, %8d\n", count_mb_seg[0], count_mb_seg[1], count_mb_seg[2], count_mb_seg[3]); fprintf(f, "PB:%8d, %8d, %8d, %8d\n", inter_b_modes[LEFT4X4], inter_b_modes[ABOVE4X4], inter_b_modes[ZERO4X4], inter_b_modes[NEW4X4]); fclose(f); } #endif #ifdef ENTROPY_STATS { int i, j, k; FILE *fmode = fopen("modecontext.c", "w"); fprintf(fmode, "\n#include \"entropymode.h\"\n\n"); fprintf(fmode, "const unsigned int vp8_kf_default_bmode_counts "); fprintf(fmode, "[VP8_BINTRAMODES] [VP8_BINTRAMODES] [VP8_BINTRAMODES] =\n{\n"); for (i = 0; i < 10; i++) { fprintf(fmode, " { //Above Mode : %d\n", i); for (j = 0; j < 10; j++) { fprintf(fmode, " {"); for (k = 0; k < 10; k++) { if (!intra_mode_stats[i][j][k]) fprintf(fmode, " %5d, ", 1); else fprintf(fmode, " %5d, ", intra_mode_stats[i][j][k]); } fprintf(fmode, "}, // left_mode %d\n", j); } fprintf(fmode, " },\n"); } fprintf(fmode, "};\n"); } #endif #if defined(SECTIONBITS_OUTPUT) if (0) { int i; FILE *f = fopen("tokenbits.stt", "a"); for (i = 0; i < 28; i++) fprintf(f, "%8d", (int)(Sectionbits[i] / 256)); fprintf(f, "\n"); fclose(f); } #endif #if 0 { printf("\n_pick_loop_filter_level:%d\n", cpi->time_pick_lpf / 1000); printf("\n_frames recive_data encod_mb_row compress_frame Total\n"); printf("%6d %10ld %10ld %10ld %10ld\n", cpi->common.current_video_frame, cpi->time_receive_data / 1000, cpi->time_encode_mb_row / 1000, cpi->time_compress_data / 1000, (cpi->time_receive_data + cpi->time_compress_data) / 1000); } #endif } vp8cx_remove_encoder_threads(cpi); vp8_dealloc_compressor_data(cpi); vpx_free(cpi->mb.ss); vpx_free(cpi->tok); vpx_free(cpi->rdtok); vpx_free(cpi->cyclic_refresh_map); vp8_remove_common(&cpi->common); vpx_free(cpi); *ptr = 0; #ifdef OUTPUT_YUV_SRC fclose(yuv_file); #endif #if 0 if (keyfile) fclose(keyfile); if (framepsnr) fclose(framepsnr); if (kf_list) fclose(kf_list); #endif } static uint64_t calc_plane_error(unsigned char *orig, int orig_stride, unsigned char *recon, int recon_stride, unsigned int cols, unsigned int rows, vp8_variance_rtcd_vtable_t *rtcd) { unsigned int row, col; uint64_t total_sse = 0; int diff; for (row = 0; row + 16 <= rows; row += 16) { for (col = 0; col + 16 <= cols; col += 16) { unsigned int sse; VARIANCE_INVOKE(rtcd, mse16x16)(orig + col, orig_stride, recon + col, recon_stride, &sse); total_sse += sse; } /* Handle odd-sized width */ if (col < cols) { unsigned int border_row, border_col; unsigned char *border_orig = orig; unsigned char *border_recon = recon; for (border_row = 0; border_row < 16; border_row++) { for (border_col = col; border_col < cols; border_col++) { diff = border_orig[border_col] - border_recon[border_col]; total_sse += diff * diff; } border_orig += orig_stride; border_recon += recon_stride; } } orig += orig_stride * 16; recon += recon_stride * 16; } /* Handle odd-sized height */ for (; row < rows; row++) { for (col = 0; col < cols; col++) { diff = orig[col] - recon[col]; total_sse += diff * diff; } orig += orig_stride; recon += recon_stride; } return total_sse; } static void generate_psnr_packet(VP8_COMP *cpi) { YV12_BUFFER_CONFIG *orig = cpi->Source; YV12_BUFFER_CONFIG *recon = cpi->common.frame_to_show; struct vpx_codec_cx_pkt pkt; uint64_t sse; int i; unsigned int width = cpi->common.Width; unsigned int height = cpi->common.Height; pkt.kind = VPX_CODEC_PSNR_PKT; sse = calc_plane_error(orig->y_buffer, orig->y_stride, recon->y_buffer, recon->y_stride, width, height, IF_RTCD(&cpi->rtcd.variance)); pkt.data.psnr.sse[0] = sse; pkt.data.psnr.sse[1] = sse; pkt.data.psnr.samples[0] = width * height; pkt.data.psnr.samples[1] = width * height; width = (width + 1) / 2; height = (height + 1) / 2; sse = calc_plane_error(orig->u_buffer, orig->uv_stride, recon->u_buffer, recon->uv_stride, width, height, IF_RTCD(&cpi->rtcd.variance)); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[2] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[2] = width * height; sse = calc_plane_error(orig->v_buffer, orig->uv_stride, recon->v_buffer, recon->uv_stride, width, height, IF_RTCD(&cpi->rtcd.variance)); pkt.data.psnr.sse[0] += sse; pkt.data.psnr.sse[3] = sse; pkt.data.psnr.samples[0] += width * height; pkt.data.psnr.samples[3] = width * height; for (i = 0; i < 4; i++) pkt.data.psnr.psnr[i] = vp8_mse2psnr(pkt.data.psnr.samples[i], 255.0, pkt.data.psnr.sse[i]); vpx_codec_pkt_list_add(cpi->output_pkt_list, &pkt); } int vp8_use_as_reference(VP8_PTR ptr, int ref_frame_flags) { VP8_COMP *cpi = (VP8_COMP *)(ptr); if (ref_frame_flags > 7) return -1 ; cpi->ref_frame_flags = ref_frame_flags; return 0; } int vp8_update_reference(VP8_PTR ptr, int ref_frame_flags) { VP8_COMP *cpi = (VP8_COMP *)(ptr); if (ref_frame_flags > 7) return -1 ; cpi->common.refresh_golden_frame = 0; cpi->common.refresh_alt_ref_frame = 0; cpi->common.refresh_last_frame = 0; if (ref_frame_flags & VP8_LAST_FLAG) cpi->common.refresh_last_frame = 1; if (ref_frame_flags & VP8_GOLD_FLAG) cpi->common.refresh_golden_frame = 1; if (ref_frame_flags & VP8_ALT_FLAG) cpi->common.refresh_alt_ref_frame = 1; return 0; } int vp8_get_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP8_LAST_FLAG) ref_fb_idx = cm->lst_fb_idx; else if (ref_frame_flag == VP8_GOLD_FLAG) ref_fb_idx = cm->gld_fb_idx; else if (ref_frame_flag == VP8_ALT_FLAG) ref_fb_idx = cm->alt_fb_idx; else return -1; vp8_yv12_copy_frame_ptr(&cm->yv12_fb[ref_fb_idx], sd); return 0; } int vp8_set_reference(VP8_PTR ptr, VP8_REFFRAME ref_frame_flag, YV12_BUFFER_CONFIG *sd) { VP8_COMP *cpi = (VP8_COMP *)(ptr); VP8_COMMON *cm = &cpi->common; int ref_fb_idx; if (ref_frame_flag == VP8_LAST_FLAG) ref_fb_idx = cm->lst_fb_idx; else if (ref_frame_flag == VP8_GOLD_FLAG) ref_fb_idx = cm->gld_fb_idx; else if (ref_frame_flag == VP8_ALT_FLAG) ref_fb_idx = cm->alt_fb_idx; else return -1; vp8_yv12_copy_frame_ptr(sd, &cm->yv12_fb[ref_fb_idx]); return 0; } int vp8_update_entropy(VP8_PTR comp, int update) { VP8_COMP *cpi = (VP8_COMP *) comp; VP8_COMMON *cm = &cpi->common; cm->refresh_entropy_probs = update; return 0; } void vp8_write_yuv_frame(const char *name, YV12_BUFFER_CONFIG *s) { FILE *yuv_file = fopen(name, "ab"); unsigned char *src = s->y_buffer; int h = s->y_height; do { fwrite(src, s->y_width, 1, yuv_file); src += s->y_stride; } while (--h); src = s->u_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); src = s->v_buffer; h = s->uv_height; do { fwrite(src, s->uv_width, 1, yuv_file); src += s->uv_stride; } while (--h); fclose(yuv_file); } static void scale_and_extend_source(YV12_BUFFER_CONFIG *sd, VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; // are we resizing the image if (cm->horiz_scale != 0 || cm->vert_scale != 0) { #if CONFIG_SPATIAL_RESAMPLING int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); int tmp_height; if (cm->vert_scale == 3) tmp_height = 9; else tmp_height = 11; Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); vp8_scale_frame(sd, &cpi->scaled_source, cm->temp_scale_frame.y_buffer, tmp_height, hs, hr, vs, vr, 0); cpi->Source = &cpi->scaled_source; #endif } // we may need to copy to a buffer so we can extend the image... else if (cm->Width != cm->yv12_fb[cm->lst_fb_idx].y_width || cm->Height != cm->yv12_fb[cm->lst_fb_idx].y_height) { //vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source); #if HAVE_ARMV7 vp8_yv12_copy_src_frame_func_neon(sd, &cpi->scaled_source); #else vp8_yv12_copy_frame_ptr(sd, &cpi->scaled_source); #endif cpi->Source = &cpi->scaled_source; } vp8_extend_to_multiple_of16(cpi->Source, cm->Width, cm->Height); } static void resize_key_frame(VP8_COMP *cpi) { #if CONFIG_SPATIAL_RESAMPLING VP8_COMMON *cm = &cpi->common; // Do we need to apply resampling for one pass cbr. // In one pass this is more limited than in two pass cbr // The test and any change is only made one per key frame sequence if (cpi->oxcf.allow_spatial_resampling && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) { int UNINITIALIZED_IS_SAFE(hr), UNINITIALIZED_IS_SAFE(hs); int UNINITIALIZED_IS_SAFE(vr), UNINITIALIZED_IS_SAFE(vs); int new_width, new_height; // If we are below the resample DOWN watermark then scale down a notch. if (cpi->buffer_level < (cpi->oxcf.resample_down_water_mark * cpi->oxcf.optimal_buffer_level / 100)) { cm->horiz_scale = (cm->horiz_scale < ONETWO) ? cm->horiz_scale + 1 : ONETWO; cm->vert_scale = (cm->vert_scale < ONETWO) ? cm->vert_scale + 1 : ONETWO; } // Should we now start scaling back up else if (cpi->buffer_level > (cpi->oxcf.resample_up_water_mark * cpi->oxcf.optimal_buffer_level / 100)) { cm->horiz_scale = (cm->horiz_scale > NORMAL) ? cm->horiz_scale - 1 : NORMAL; cm->vert_scale = (cm->vert_scale > NORMAL) ? cm->vert_scale - 1 : NORMAL; } // Get the new hieght and width Scale2Ratio(cm->horiz_scale, &hr, &hs); Scale2Ratio(cm->vert_scale, &vr, &vs); new_width = ((hs - 1) + (cpi->oxcf.Width * hr)) / hs; new_height = ((vs - 1) + (cpi->oxcf.Height * vr)) / vs; // If the image size has changed we need to reallocate the buffers // and resample the source image if ((cm->Width != new_width) || (cm->Height != new_height)) { cm->Width = new_width; cm->Height = new_height; vp8_alloc_compressor_data(cpi); scale_and_extend_source(cpi->un_scaled_source, cpi); } } #endif } // return of 0 means drop frame static int pick_frame_size(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; // First Frame is a special case if (cm->current_video_frame == 0) { #if !(CONFIG_REALTIME_ONLY) if (cpi->pass == 2) vp8_calc_auto_iframe_target_size(cpi); // 1 Pass there is no information on which to base size so use bandwidth per second * fixed fraction else #endif cpi->this_frame_target = cpi->oxcf.target_bandwidth / 2; // in error resilient mode the first frame is bigger since it likely contains // all the static background if (cpi->oxcf.error_resilient_mode == 1 || (cpi->compressor_speed == 2)) { cpi->this_frame_target *= 3; // 5; } // Key frame from VFW/auto-keyframe/first frame cm->frame_type = KEY_FRAME; } // Special case for forced key frames // The frame sizing here is still far from ideal for 2 pass. else if (cm->frame_flags & FRAMEFLAGS_KEY) { cm->frame_type = KEY_FRAME; resize_key_frame(cpi); vp8_calc_iframe_target_size(cpi); } else if (cm->frame_type == KEY_FRAME) { vp8_calc_auto_iframe_target_size(cpi); } else { // INTER frame: compute target frame size cm->frame_type = INTER_FRAME; vp8_calc_pframe_target_size(cpi); // Check if we're dropping the frame: if (cpi->drop_frame) { cpi->drop_frame = FALSE; cpi->drop_count++; return 0; } } // Note target_size in bits * 256 per MB cpi->target_bits_per_mb = (cpi->this_frame_target * 256) / cpi->common.MBs; return 1; } static void set_quantizer(VP8_COMP *cpi, int Q) { VP8_COMMON *cm = &cpi->common; MACROBLOCKD *mbd = &cpi->mb.e_mbd; cm->base_qindex = Q; cm->y1dc_delta_q = 0; cm->y2dc_delta_q = 0; cm->y2ac_delta_q = 0; cm->uvdc_delta_q = 0; cm->uvac_delta_q = 0; // Set Segment specific quatizers mbd->segment_feature_data[MB_LVL_ALT_Q][0] = cpi->segment_feature_data[MB_LVL_ALT_Q][0]; mbd->segment_feature_data[MB_LVL_ALT_Q][1] = cpi->segment_feature_data[MB_LVL_ALT_Q][1]; mbd->segment_feature_data[MB_LVL_ALT_Q][2] = cpi->segment_feature_data[MB_LVL_ALT_Q][2]; mbd->segment_feature_data[MB_LVL_ALT_Q][3] = cpi->segment_feature_data[MB_LVL_ALT_Q][3]; } static void update_alt_ref_frame_and_stats(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; // Update the golden frame buffer vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]); // Select an interval before next GF or altref if (!cpi->auto_gold) cpi->frames_till_gf_update_due = cpi->goldfreq; if ((cpi->pass != 2) && cpi->frames_till_gf_update_due) { cpi->current_gf_interval = cpi->frames_till_gf_update_due; // Set the bits per frame that we should try and recover in subsequent inter frames // to account for the extra GF spend... note that his does not apply for GF updates // that occur coincident with a key frame as the extra cost of key frames is dealt // with elsewhere. cpi->gf_overspend_bits += cpi->projected_frame_size; cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; } // Update data structure that monitors level of reference to last GF vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; // this frame refreshes means next frames don't unless specified by user cpi->common.frames_since_golden = 0; // Clear the alternate reference update pending flag. cpi->source_alt_ref_pending = FALSE; // Set the alternate refernce frame active flag cpi->source_alt_ref_active = TRUE; } static void update_golden_frame_and_stats(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; // Update the Golden frame reconstruction buffer if signalled and the GF usage counts. if (cm->refresh_golden_frame) { // Update the golden frame buffer vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]); // Select an interval before next GF if (!cpi->auto_gold) cpi->frames_till_gf_update_due = cpi->goldfreq; if ((cpi->pass != 2) && (cpi->frames_till_gf_update_due > 0)) { cpi->current_gf_interval = cpi->frames_till_gf_update_due; // Set the bits per frame that we should try and recover in subsequent inter frames // to account for the extra GF spend... note that his does not apply for GF updates // that occur coincident with a key frame as the extra cost of key frames is dealt // with elsewhere. if ((cm->frame_type != KEY_FRAME) && !cpi->source_alt_ref_active) { // Calcluate GF bits to be recovered // Projected size - av frame bits available for inter frames for clip as a whole cpi->gf_overspend_bits += (cpi->projected_frame_size - cpi->inter_frame_target); } cpi->non_gf_bitrate_adjustment = cpi->gf_overspend_bits / cpi->frames_till_gf_update_due; } // Update data structure that monitors level of reference to last GF vpx_memset(cpi->gf_active_flags, 1, (cm->mb_rows * cm->mb_cols)); cpi->gf_active_count = cm->mb_rows * cm->mb_cols; // this frame refreshes means next frames don't unless specified by user cm->refresh_golden_frame = 0; cpi->common.frames_since_golden = 0; //if ( cm->frame_type == KEY_FRAME ) //{ cpi->recent_ref_frame_usage[INTRA_FRAME] = 1; cpi->recent_ref_frame_usage[LAST_FRAME] = 1; cpi->recent_ref_frame_usage[GOLDEN_FRAME] = 1; cpi->recent_ref_frame_usage[ALTREF_FRAME] = 1; //} //else //{ // // Carry a potrtion of count over to begining of next gf sequence // cpi->recent_ref_frame_usage[INTRA_FRAME] >>= 5; // cpi->recent_ref_frame_usage[LAST_FRAME] >>= 5; // cpi->recent_ref_frame_usage[GOLDEN_FRAME] >>= 5; // cpi->recent_ref_frame_usage[ALTREF_FRAME] >>= 5; //} // ******** Fixed Q test code only ************ // If we are going to use the ALT reference for the next group of frames set a flag to say so. if (cpi->oxcf.fixed_q >= 0 && cpi->oxcf.play_alternate && !cpi->common.refresh_alt_ref_frame) { cpi->source_alt_ref_pending = TRUE; cpi->frames_till_gf_update_due = cpi->baseline_gf_interval; } if (!cpi->source_alt_ref_pending) cpi->source_alt_ref_active = FALSE; // Decrement count down till next gf if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; } else if (!cpi->common.refresh_alt_ref_frame) { // Decrement count down till next gf if (cpi->frames_till_gf_update_due > 0) cpi->frames_till_gf_update_due--; if (cpi->common.frames_till_alt_ref_frame) cpi->common.frames_till_alt_ref_frame --; cpi->common.frames_since_golden ++; if (cpi->common.frames_since_golden > 1) { cpi->recent_ref_frame_usage[INTRA_FRAME] += cpi->count_mb_ref_frame_usage[INTRA_FRAME]; cpi->recent_ref_frame_usage[LAST_FRAME] += cpi->count_mb_ref_frame_usage[LAST_FRAME]; cpi->recent_ref_frame_usage[GOLDEN_FRAME] += cpi->count_mb_ref_frame_usage[GOLDEN_FRAME]; cpi->recent_ref_frame_usage[ALTREF_FRAME] += cpi->count_mb_ref_frame_usage[ALTREF_FRAME]; } } } // This function updates the reference frame probability estimates that // will be used during mode selection static void update_rd_ref_frame_probs(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; #if 0 const int *const rfct = cpi->recent_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if (cm->frame_type == KEY_FRAME) { cpi->prob_intra_coded = 255; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } else if (!(rf_intra + rf_inter)) { // This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank. cpi->prob_intra_coded = 63; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } else { cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); if (cpi->prob_intra_coded < 1) cpi->prob_intra_coded = 1; if ((cm->frames_since_golden > 0) || cpi->source_alt_ref_active) { cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (cpi->prob_last_coded < 1) cpi->prob_last_coded = 1; cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (cpi->prob_gf_coded < 1) cpi->prob_gf_coded = 1; } } #else const int *const rfct = cpi->count_mb_ref_frame_usage; const int rf_intra = rfct[INTRA_FRAME]; const int rf_inter = rfct[LAST_FRAME] + rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]; if (cm->frame_type == KEY_FRAME) { cpi->prob_intra_coded = 255; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } else if (!(rf_intra + rf_inter)) { // This is a trap in case this function is called with cpi->recent_ref_frame_usage[] blank. cpi->prob_intra_coded = 63; cpi->prob_last_coded = 128; cpi->prob_gf_coded = 128; } else { cpi->prob_intra_coded = (rf_intra * 255) / (rf_intra + rf_inter); if (cpi->prob_intra_coded < 1) cpi->prob_intra_coded = 1; cpi->prob_last_coded = rf_inter ? (rfct[LAST_FRAME] * 255) / rf_inter : 128; if (cpi->prob_last_coded < 1) cpi->prob_last_coded = 1; cpi->prob_gf_coded = (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) ? (rfct[GOLDEN_FRAME] * 255) / (rfct[GOLDEN_FRAME] + rfct[ALTREF_FRAME]) : 128; if (cpi->prob_gf_coded < 1) cpi->prob_gf_coded = 1; } // update reference frame costs since we can do better than what we got last frame. if (cpi->common.refresh_alt_ref_frame) { cpi->prob_intra_coded += 40; cpi->prob_last_coded = 200; cpi->prob_gf_coded = 1; } else if (cpi->common.frames_since_golden == 0) { cpi->prob_last_coded = 214; cpi->prob_gf_coded = 1; } else if (cpi->common.frames_since_golden == 1) { cpi->prob_last_coded = 192; cpi->prob_gf_coded = 220; } else if (cpi->source_alt_ref_active) { //int dist = cpi->common.frames_till_alt_ref_frame + cpi->common.frames_since_golden; cpi->prob_gf_coded -= 20; if (cpi->prob_gf_coded < 10) cpi->prob_gf_coded = 10; } #endif } // 1 = key, 0 = inter static int decide_key_frame(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int code_key_frame = FALSE; cpi->kf_boost = 0; if (cpi->Speed > 11) return FALSE; // Clear down mmx registers vp8_clear_system_state(); //__asm emms; if ((cpi->compressor_speed == 2) && (cpi->Speed >= 5) && (cpi->sf.RD == 0)) { double change = 1.0 * abs((int)(cpi->intra_error - cpi->last_intra_error)) / (1 + cpi->last_intra_error); double change2 = 1.0 * abs((int)(cpi->prediction_error - cpi->last_prediction_error)) / (1 + cpi->last_prediction_error); double minerror = cm->MBs * 256; #if 0 if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15 && cpi->prediction_error > minerror && (change > .25 || change2 > .25)) { FILE *f = fopen("intra_inter.stt", "a"); if (cpi->prediction_error <= 0) cpi->prediction_error = 1; fprintf(f, "%d %d %d %d %14.4f\n", cm->current_video_frame, (int) cpi->prediction_error, (int) cpi->intra_error, (int)((10 * cpi->intra_error) / cpi->prediction_error), change); fclose(f); } #endif cpi->last_intra_error = cpi->intra_error; cpi->last_prediction_error = cpi->prediction_error; if (10 * cpi->intra_error / (1 + cpi->prediction_error) < 15 && cpi->prediction_error > minerror && (change > .25 || change2 > .25)) { /*(change > 1.4 || change < .75)&& cpi->this_frame_percent_intra > cpi->last_frame_percent_intra + 3*/ return TRUE; } return FALSE; } // If the following are true we might as well code a key frame if (((cpi->this_frame_percent_intra == 100) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 2))) || ((cpi->this_frame_percent_intra > 95) && (cpi->this_frame_percent_intra >= (cpi->last_frame_percent_intra + 5)))) { code_key_frame = TRUE; } // in addition if the following are true and this is not a golden frame then code a key frame // Note that on golden frames there often seems to be a pop in intra useage anyway hence this // restriction is designed to prevent spurious key frames. The Intra pop needs to be investigated. else if (((cpi->this_frame_percent_intra > 60) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 2))) || ((cpi->this_frame_percent_intra > 75) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra * 3 / 2))) || ((cpi->this_frame_percent_intra > 90) && (cpi->this_frame_percent_intra > (cpi->last_frame_percent_intra + 10)))) { if (!cm->refresh_golden_frame) code_key_frame = TRUE; } return code_key_frame; } #if !(CONFIG_REALTIME_ONLY) static void Pass1Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { (void) size; (void) dest; (void) frame_flags; set_quantizer(cpi, 26); scale_and_extend_source(cpi->un_scaled_source, cpi); vp8_first_pass(cpi); } #endif #if 0 void write_cx_frame_to_file(YV12_BUFFER_CONFIG *frame, int this_frame) { // write the frame FILE *yframe; int i; char filename[255]; sprintf(filename, "cx\\y%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->y_height; i++) fwrite(frame->y_buffer + i * frame->y_stride, frame->y_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\u%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->u_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); sprintf(filename, "cx\\v%04d.raw", this_frame); yframe = fopen(filename, "wb"); for (i = 0; i < frame->uv_height; i++) fwrite(frame->v_buffer + i * frame->uv_stride, frame->uv_width, 1, yframe); fclose(yframe); } #endif // return of 0 means drop frame #define USE_FILTER_LUT 1 #if VP8_TEMPORAL_ALT_REF #if USE_FILTER_LUT static int modifier_lut[7][19] = { // Strength=0 {16, 13, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Strength=1 {16, 15, 10, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Strength=2 {16, 15, 13, 9, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Strength=3 {16, 16, 15, 13, 10, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Strength=4 {16, 16, 15, 14, 13, 11, 9, 7, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0}, // Strength=5 {16, 16, 16, 15, 15, 14, 13, 11, 10, 8, 7, 5, 3, 0, 0, 0, 0, 0, 0}, // Strength=6 {16, 16, 16, 16, 15, 15, 14, 14, 13, 12, 11, 10, 9, 8, 7, 5, 4, 2, 1} }; #endif static void vp8cx_temp_blur1_c ( VP8_COMP *cpi, unsigned char **frames, int frame_count, unsigned char *src, unsigned char *dst, int width, int stride, int height, int strength, int *fixed_divide, unsigned char *motion_map_ptr, unsigned char block_size ) { int byte = 0; // Buffer offset for current pixel being filtered int frame = 0; int modifier = 0; int i, j, k; int block_ofset; int cols; unsigned char Shift = (block_size == 16) ? 4 : 3; #if USE_FILTER_LUT int *lut = modifier_lut[strength]; #endif cols = cpi->common.mb_cols; for (i = 0; i < height; i++) { block_ofset = (i >> Shift) * cols; for (j = 0; j < cols; j ++) { if (motion_map_ptr[block_ofset] > 2) { vpx_memcpy(&dst[byte], &src[byte], block_size); byte += block_size; } else { for (k = 0; k < block_size; k++) { int accumulator = 0; int count = 0; int src_byte = src[byte]; for (frame = 0; frame < frame_count; frame++) { // get current frame pixel value int pixel_value = frames[frame][byte]; #if USE_FILTER_LUT // LUT implementation -- // improves precision of filter modifier = abs(src_byte-pixel_value); modifier = modifier>18 ? 0 : lut[modifier]; #else modifier = src_byte; modifier -= pixel_value; modifier *= modifier; modifier >>= strength; modifier *= 3; if (modifier > 16) modifier = 16; modifier = 16 - modifier; #endif accumulator += modifier * pixel_value; count += modifier; } accumulator += (count >> 1); accumulator *= fixed_divide[count]; accumulator >>= 16; dst[byte] = accumulator; // move to next pixel byte++; } } block_ofset++; } // Step byte on over the UMV border to the start of the next line byte += stride - width; } } static void vp8cx_temp_filter_c ( VP8_COMP *cpi ) { YV12_BUFFER_CONFIG *temp_source_buffer; int *fixed_divide = cpi->fixed_divide; int frame = 0; int max_frames = 11; int num_frames_backward = 0; int num_frames_forward = 0; int frames_to_blur_backward = 0; int frames_to_blur_forward = 0; int frames_to_blur = 0; int start_frame = 0; int strength = cpi->oxcf.arnr_strength; int blur_type = cpi->oxcf.arnr_type; int new_max_frames = cpi->oxcf.arnr_max_frames; if (new_max_frames > 0) max_frames = new_max_frames; num_frames_backward = cpi->last_alt_ref_sei - cpi->source_encode_index; if (num_frames_backward < 0) num_frames_backward += cpi->oxcf.lag_in_frames; num_frames_forward = cpi->oxcf.lag_in_frames - (num_frames_backward + 1); switch (blur_type) { case 1: ///////////////////////////////////////// // Backward Blur frames_to_blur_backward = num_frames_backward; if (frames_to_blur_backward >= max_frames) frames_to_blur_backward = max_frames - 1; frames_to_blur = frames_to_blur_backward + 1; break; case 2: ///////////////////////////////////////// // Forward Blur frames_to_blur_forward = num_frames_forward; if (frames_to_blur_forward >= max_frames) frames_to_blur_forward = max_frames - 1; frames_to_blur = frames_to_blur_forward + 1; break; case 3: ///////////////////////////////////////// // Center Blur frames_to_blur_forward = num_frames_forward; frames_to_blur_backward = num_frames_backward; if (frames_to_blur_forward > frames_to_blur_backward) frames_to_blur_forward = frames_to_blur_backward; if (frames_to_blur_backward > frames_to_blur_forward) frames_to_blur_backward = frames_to_blur_forward; if (frames_to_blur_forward > (max_frames / 2)) frames_to_blur_forward = (max_frames / 2); if (frames_to_blur_backward > (max_frames / 2)) frames_to_blur_backward = (max_frames / 2); frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1; break; default: ///////////////////////////////////////// // At most 4 frames forward Blur frames_to_blur_forward = 4; frames_to_blur_backward = num_frames_backward; if (max_frames > 5) { if ((frames_to_blur_backward + frames_to_blur_forward) >= max_frames) { frames_to_blur_backward = max_frames - frames_to_blur_forward - 1; } } else { frames_to_blur_forward = max_frames - 1; frames_to_blur_backward = 0; } frames_to_blur = frames_to_blur_backward + frames_to_blur_forward + 1; break; } start_frame = (cpi->last_alt_ref_sei + frames_to_blur_forward) % cpi->oxcf.lag_in_frames; #ifdef DEBUGFWG // DEBUG FWG printf("max:%d FBCK:%d FFWD:%d ftb:%d ftbbck:%d ftbfwd:%d sei:%d lasei:%d start:%d" , max_frames , num_frames_backward , num_frames_forward , frames_to_blur , frames_to_blur_backward , frames_to_blur_forward , cpi->source_encode_index , cpi->last_alt_ref_sei , start_frame); #endif for (frame = 0; frame < frames_to_blur; frame++) { int which_buffer = start_frame - frame; if (which_buffer < 0) which_buffer += cpi->oxcf.lag_in_frames; cpi->frames[frame] = cpi->src_buffer[which_buffer].source_buffer.y_buffer; } temp_source_buffer = &cpi->src_buffer[cpi->last_alt_ref_sei].source_buffer; // Blur Y vp8cx_temp_blur1_c( cpi, cpi->frames, frames_to_blur, temp_source_buffer->y_buffer, // cpi->Source->y_buffer, cpi->alt_ref_buffer.source_buffer.y_buffer, // cpi->Source->y_buffer, temp_source_buffer->y_width, temp_source_buffer->y_stride, temp_source_buffer->y_height, //temp_source_buffer->y_height * temp_source_buffer->y_stride, strength, fixed_divide, cpi->fp_motion_map, 16); for (frame = 0; frame < frames_to_blur; frame++) { int which_buffer = start_frame - frame; if (which_buffer < 0) which_buffer += cpi->oxcf.lag_in_frames; cpi->frames[frame] = cpi->src_buffer[which_buffer].source_buffer.u_buffer; } // Blur U vp8cx_temp_blur1_c( cpi, cpi->frames, frames_to_blur, temp_source_buffer->u_buffer, cpi->alt_ref_buffer.source_buffer.u_buffer, // cpi->Source->u_buffer, temp_source_buffer->uv_width, temp_source_buffer->uv_stride, temp_source_buffer->uv_height, //temp_source_buffer->uv_height * temp_source_buffer->uv_stride, strength, fixed_divide, cpi->fp_motion_map, 8); for (frame = 0; frame < frames_to_blur; frame++) { int which_buffer = start_frame - frame; if (which_buffer < 0) which_buffer += cpi->oxcf.lag_in_frames; cpi->frames[frame] = cpi->src_buffer[which_buffer].source_buffer.v_buffer; } // Blur V vp8cx_temp_blur1_c( cpi, cpi->frames, frames_to_blur, temp_source_buffer->v_buffer, cpi->alt_ref_buffer.source_buffer.v_buffer, // cpi->Source->v_buffer, temp_source_buffer->uv_width, temp_source_buffer->uv_stride, //temp_source_buffer->uv_height * temp_source_buffer->uv_stride, temp_source_buffer->uv_height, strength, fixed_divide, cpi->fp_motion_map, 8); } #endif static void encode_frame_to_data_rate(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { int Q; int frame_over_shoot_limit; int frame_under_shoot_limit; int Loop = FALSE; int loop_count; int this_q; int last_zbin_oq; int q_low; int q_high; int zbin_oq_high; int zbin_oq_low = 0; int top_index; int bottom_index; VP8_COMMON *cm = &cpi->common; int active_worst_qchanged = FALSE; int overshoot_seen = FALSE; int undershoot_seen = FALSE; int drop_mark = cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100; int drop_mark75 = drop_mark * 2 / 3; int drop_mark50 = drop_mark / 4; int drop_mark25 = drop_mark / 8; // Clear down mmx registers to allow floating point in what follows vp8_clear_system_state(); // Test code for segmentation of gf/arf (0,0) //segmentation_test_function((VP8_PTR) cpi); // For an alt ref frame in 2 pass we skip the call to the second pass function that sets the target bandwidth #if !(CONFIG_REALTIME_ONLY) if (cpi->pass == 2) { if (cpi->common.refresh_alt_ref_frame) { cpi->per_frame_bandwidth = cpi->gf_bits; // Per frame bit target for the alt ref frame cpi->target_bandwidth = cpi->gf_bits * cpi->output_frame_rate; // per second target bitrate } } else #endif cpi->per_frame_bandwidth = (int)(cpi->target_bandwidth / cpi->output_frame_rate); // Default turn off buffer to buffer copying cm->copy_buffer_to_gf = 0; cm->copy_buffer_to_arf = 0; // Clear zbin over-quant value and mode boost values. cpi->zbin_over_quant = 0; cpi->zbin_mode_boost = 0; // Enable mode based tweaking of the zbin cpi->zbin_mode_boost_enabled = TRUE; // Current default encoder behaviour for the altref sign bias if (cpi->source_alt_ref_active) cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 1; else cpi->common.ref_frame_sign_bias[ALTREF_FRAME] = 0; // Check to see if a key frame is signalled // For two pass with auto key frame enabled cm->frame_type may already be set, but not for one pass. if ((cm->current_video_frame == 0) || (cm->frame_flags & FRAMEFLAGS_KEY) || (cpi->oxcf.auto_key && (cpi->frames_since_key % cpi->key_frame_frequency == 0))) { // Key frame from VFW/auto-keyframe/first frame cm->frame_type = KEY_FRAME; } // Set default state for segment and mode based loop filter update flags cpi->mb.e_mbd.update_mb_segmentation_map = 0; cpi->mb.e_mbd.update_mb_segmentation_data = 0; cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; // Set various flags etc to special state if it is a key frame if (cm->frame_type == KEY_FRAME) { int i; // If segmentation is enabled force a map update for key frames if (cpi->mb.e_mbd.segmentation_enabled) { cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } // If mode or reference frame based loop filter deltas are enabled then force an update for key frames. if (cpi->mb.e_mbd.mode_ref_lf_delta_enabled) { cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; } // The alternate reference frame cannot be active for a key frame cpi->source_alt_ref_active = FALSE; // Reset the RD threshold multipliers to default of * 1 (128) for (i = 0; i < MAX_MODES; i++) { cpi->rd_thresh_mult[i] = 128; } } // Test code for segmentation //if ( (cm->frame_type == KEY_FRAME) || ((cm->current_video_frame % 2) == 0)) //if ( (cm->current_video_frame % 2) == 0 ) // enable_segmentation((VP8_PTR)cpi); //else // disable_segmentation((VP8_PTR)cpi); #if 0 // Experimental code for lagged compress and one pass // Initialise one_pass GF frames stats // Update stats used for GF selection //if ( cpi->pass == 0 ) { cpi->one_pass_frame_index = cm->current_video_frame % MAX_LAG_BUFFERS; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frames_so_far = 0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_intra_error = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_coded_error = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_inter = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_pcnt_motion = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvr_abs = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc = 0.0; cpi->one_pass_frame_stats[cpi->one_pass_frame_index ].frame_mvc_abs = 0.0; } #endif update_rd_ref_frame_probs(cpi); if (cpi->drop_frames_allowed) { // The reset to decimation 0 is only done here for one pass. // Once it is set two pass leaves decimation on till the next kf. if ((cpi->buffer_level > drop_mark) && (cpi->decimation_factor > 0)) cpi->decimation_factor --; if (cpi->buffer_level > drop_mark75 && cpi->decimation_factor > 0) cpi->decimation_factor = 1; else if (cpi->buffer_level < drop_mark25 && (cpi->decimation_factor == 2 || cpi->decimation_factor == 3)) { cpi->decimation_factor = 3; } else if (cpi->buffer_level < drop_mark50 && (cpi->decimation_factor == 1 || cpi->decimation_factor == 2)) { cpi->decimation_factor = 2; } else if (cpi->buffer_level < drop_mark75 && (cpi->decimation_factor == 0 || cpi->decimation_factor == 1)) { cpi->decimation_factor = 1; } //vpx_log("Encoder: Decimation Factor: %d \n",cpi->decimation_factor); } // The following decimates the frame rate according to a regular pattern (i.e. to 1/2 or 2/3 frame rate) // This can be used to help prevent buffer under-run in CBR mode. Alternatively it might be desirable in // some situations to drop frame rate but throw more bits at each frame. // // Note that dropping a key frame can be problematic if spatial resampling is also active if (cpi->decimation_factor > 0) { switch (cpi->decimation_factor) { case 1: cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 3 / 2; break; case 2: cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; break; case 3: cpi->per_frame_bandwidth = cpi->per_frame_bandwidth * 5 / 4; break; } // Note that we should not throw out a key frame (especially when spatial resampling is enabled). if ((cm->frame_type == KEY_FRAME)) // && cpi->oxcf.allow_spatial_resampling ) { cpi->decimation_count = cpi->decimation_factor; } else if (cpi->decimation_count > 0) { cpi->decimation_count --; cpi->bits_off_target += cpi->av_per_frame_bandwidth; cm->current_video_frame++; cpi->frames_since_key++; #if CONFIG_PSNR cpi->count ++; #endif cpi->buffer_level = cpi->bits_off_target; return; } else cpi->decimation_count = cpi->decimation_factor; } // Decide how big to make the frame if (!pick_frame_size(cpi)) { cm->current_video_frame++; cpi->frames_since_key++; return; } // Reduce active_worst_allowed_q for CBR if our buffer is getting too full. // This has a knock on effect on active best quality as well. // For CBR if the buffer reaches its maximum level then we can no longer // save up bits for later frames so we might as well use them up // on the current frame. if ((cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && (cpi->buffer_level >= cpi->oxcf.optimal_buffer_level) && cpi->buffered_mode) { int Adjustment = cpi->active_worst_quality / 4; // Max adjustment is 1/4 if (Adjustment) { int buff_lvl_step; int tmp_lvl = cpi->buffer_level; if (cpi->buffer_level < cpi->oxcf.maximum_buffer_size) { buff_lvl_step = (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level) / Adjustment; if (buff_lvl_step) { Adjustment = (cpi->buffer_level - cpi->oxcf.optimal_buffer_level) / buff_lvl_step; cpi->active_worst_quality -= Adjustment; } } else { cpi->active_worst_quality -= Adjustment; } } } // Set an active best quality and if necessary active worst quality if (cpi->pass == 2 || (cm->current_video_frame > 150)) { //if ( (cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame ) int Q; int i; int bpm_target; Q = cpi->active_worst_quality; if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cpi->common.refresh_alt_ref_frame) { vp8_clear_system_state(); if (cm->frame_type != KEY_FRAME) { // Where a gf overlays an existing arf then allow active max Q to drift to highest allowed value. //if ( cpi->common.refresh_golden_frame && cpi->source_alt_ref_active ) //cpi->active_worst_quality = cpi->worst_quality; if (cpi->avg_frame_qindex < cpi->active_worst_quality) Q = cpi->avg_frame_qindex; if (cpi->section_is_low_motion) bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * ((Q * 3 / 2) + 128)) / 64; else if (cpi->section_is_fast_motion) bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * (Q + 128)) / 64; else bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * ((Q * 5 / 4) + 128)) / 64; } // KEY FRAMES else { if (cpi->section_is_low_motion) bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * (Q + 240)) / 64; // Approx 2.5 to 4.5 where Q has the range 0-127 else bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * (Q + 160)) / 64; } for (i = Q; i > 0; i--) { if (bpm_target <= vp8_bits_per_mb[cm->frame_type][i]) break; } cpi->active_best_quality = i; // this entire section could be replaced by a look up table #if 0 { int Q, best_q[128]; for (Q = 0; Q < 128; Q++) { bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * (Q + 160)) / 64; // Approx 2.5 to 4.5 where Q has the range 0-127 for (i = Q; i > 0; i--) { if (bpm_target <= vp8_bits_per_mb[cm->frame_type][i]) break; } best_q[Q] = i; } Q += 0; } #endif } else { vp8_clear_system_state(); //bpm_target = (vp8_bits_per_mb[cm->frame_type][Q]*(Q+128))/64; // Approx 2 to 4 where Q has the range 0-127 bpm_target = (vp8_bits_per_mb[cm->frame_type][Q] * (Q + 192)) / 128; // Approx * 1.5 to 2.5 where Q has range 0-127 for (i = Q; i > 0; i--) { if (bpm_target <= vp8_bits_per_mb[cm->frame_type][i]) break; } cpi->active_best_quality = i; } // If CBR and the buffer is as full then it is reasonable to allow higher quality on the frames // to prevent bits just going to waste. if (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) { // Note that the use of >= here elliminates the risk of a devide by 0 error in the else if clause if (cpi->buffer_level >= cpi->oxcf.maximum_buffer_size) cpi->active_best_quality = cpi->best_quality; else if (cpi->buffer_level > cpi->oxcf.optimal_buffer_level) { int Fraction = ((cpi->buffer_level - cpi->oxcf.optimal_buffer_level) * 128) / (cpi->oxcf.maximum_buffer_size - cpi->oxcf.optimal_buffer_level); int min_qadjustment = ((cpi->active_best_quality - cpi->best_quality) * Fraction) / 128; cpi->active_best_quality -= min_qadjustment; } } } // Clip the active best and worst quality values to limits if (cpi->active_worst_quality > cpi->worst_quality) cpi->active_worst_quality = cpi->worst_quality; if (cpi->active_best_quality < cpi->best_quality) cpi->active_best_quality = cpi->best_quality; else if (cpi->active_best_quality > cpi->active_worst_quality) cpi->active_best_quality = cpi->active_worst_quality; // Determine initial Q to try Q = vp8_regulate_q(cpi, cpi->this_frame_target); last_zbin_oq = cpi->zbin_over_quant; // Set highest allowed value for Zbin over quant if (cm->frame_type == KEY_FRAME) zbin_oq_high = 0; //ZBIN_OQ_MAX/16 else if (cm->refresh_alt_ref_frame || (cm->refresh_golden_frame && !cpi->source_alt_ref_active)) zbin_oq_high = 16; else zbin_oq_high = ZBIN_OQ_MAX; // Setup background Q adjustment for error resilliant mode if (cpi->cyclic_refresh_mode_enabled) cyclic_background_refresh(cpi, Q, 0); vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); // Limit Q range for the adaptive loop (Values not clipped to range 20-60 as in VP8). bottom_index = cpi->active_best_quality; top_index = cpi->active_worst_quality; vp8_save_coding_context(cpi); loop_count = 0; q_low = cpi->best_quality; q_high = cpi->worst_quality; scale_and_extend_source(cpi->un_scaled_source, cpi); #if !(CONFIG_REALTIME_ONLY) && CONFIG_POSTPROC if (cpi->oxcf.noise_sensitivity > 0) { unsigned char *src; int l = 0; switch (cpi->oxcf.noise_sensitivity) { case 1: l = 20; break; case 2: l = 40; break; case 3: l = 60; break; case 4: l = 80; break; case 5: l = 100; break; case 6: l = 150; break; } if (cm->frame_type == KEY_FRAME) { vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc)); cpi->ppi.frame = 0; } else { vp8_de_noise(cpi->Source, cpi->Source, l , 1, 0, RTCD(postproc)); src = cpi->Source->y_buffer; if (cpi->Source->y_stride < 0) { src += cpi->Source->y_stride * (cpi->Source->y_height - 1); } //temp_filter(&cpi->ppi,src,src, // cm->last_frame.y_width * cm->last_frame.y_height, // cpi->oxcf.noise_sensitivity); } } #endif #ifdef OUTPUT_YUV_SRC vp8_write_yuv_frame(cpi->Source); #endif do { vp8_clear_system_state(); //__asm emms; /* if(cpi->is_src_frame_alt_ref) Q = 127; */ set_quantizer(cpi, Q); this_q = Q; // setup skip prob for costing in mode/mv decision if (cpi->common.mb_no_coeff_skip) { cpi->prob_skip_false = cpi->base_skip_false_prob[Q]; if (cm->frame_type != KEY_FRAME) { if (cpi->common.refresh_alt_ref_frame) { if (cpi->last_skip_false_probs[2] != 0) cpi->prob_skip_false = cpi->last_skip_false_probs[2]; /* if(cpi->last_skip_false_probs[2]!=0 && abs(Q- cpi->last_skip_probs_q[2])<=16 ) cpi->prob_skip_false = cpi->last_skip_false_probs[2]; else if (cpi->last_skip_false_probs[2]!=0) cpi->prob_skip_false = (cpi->last_skip_false_probs[2] + cpi->prob_skip_false ) / 2; */ } else if (cpi->common.refresh_golden_frame) { if (cpi->last_skip_false_probs[1] != 0) cpi->prob_skip_false = cpi->last_skip_false_probs[1]; /* if(cpi->last_skip_false_probs[1]!=0 && abs(Q- cpi->last_skip_probs_q[1])<=16 ) cpi->prob_skip_false = cpi->last_skip_false_probs[1]; else if (cpi->last_skip_false_probs[1]!=0) cpi->prob_skip_false = (cpi->last_skip_false_probs[1] + cpi->prob_skip_false ) / 2; */ } else { if (cpi->last_skip_false_probs[0] != 0) cpi->prob_skip_false = cpi->last_skip_false_probs[0]; /* if(cpi->last_skip_false_probs[0]!=0 && abs(Q- cpi->last_skip_probs_q[0])<=16 ) cpi->prob_skip_false = cpi->last_skip_false_probs[0]; else if(cpi->last_skip_false_probs[0]!=0) cpi->prob_skip_false = (cpi->last_skip_false_probs[0] + cpi->prob_skip_false ) / 2; */ } //as this is for cost estimate, let's make sure it does not go extreme eitehr way if (cpi->prob_skip_false < 5) cpi->prob_skip_false = 5; if (cpi->prob_skip_false > 250) cpi->prob_skip_false = 250; if (cpi->is_src_frame_alt_ref) cpi->prob_skip_false = 1; } #if 0 if (cpi->pass != 1) { FILE *f = fopen("skip.stt", "a"); fprintf(f, "%d, %d, %4d ", cpi->common.refresh_golden_frame, cpi->common.refresh_alt_ref_frame, cpi->prob_skip_false); fclose(f); } #endif } if (cm->frame_type == KEY_FRAME) vp8_setup_key_frame(cpi); // transform / motion compensation build reconstruction frame vp8_encode_frame(cpi); cpi->projected_frame_size -= vp8_estimate_entropy_savings(cpi); cpi->projected_frame_size = (cpi->projected_frame_size > 0) ? cpi->projected_frame_size : 0; vp8_clear_system_state(); //__asm emms; // Test to see if the stats generated for this frame indicate that we should have coded a key frame // (assuming that we didn't)! if (cpi->pass != 2 && cpi->oxcf.auto_key && cm->frame_type != KEY_FRAME) { if (decide_key_frame(cpi)) { vp8_calc_auto_iframe_target_size(cpi); // Reset all our sizing numbers and recode cm->frame_type = KEY_FRAME; // Clear the Alt reference frame active flag when we have a key frame cpi->source_alt_ref_active = FALSE; // If segmentation is enabled force a map update for key frames if (cpi->mb.e_mbd.segmentation_enabled) { cpi->mb.e_mbd.update_mb_segmentation_map = 1; cpi->mb.e_mbd.update_mb_segmentation_data = 1; } // If mode or reference frame based loop filter deltas are enabled then force an update for key frames. if (cpi->mb.e_mbd.mode_ref_lf_delta_enabled) { cpi->mb.e_mbd.mode_ref_lf_delta_update = 1; } vp8_restore_coding_context(cpi); Q = vp8_regulate_q(cpi, cpi->this_frame_target); q_low = cpi->best_quality; q_high = cpi->worst_quality; vp8_compute_frame_size_bounds(cpi, &frame_under_shoot_limit, &frame_over_shoot_limit); // Limit Q range for the adaptive loop (Values not clipped to range 20-60 as in VP8). bottom_index = cpi->active_best_quality; top_index = cpi->active_worst_quality; loop_count++; Loop = TRUE; resize_key_frame(cpi); continue; } } vp8_clear_system_state(); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; // Are we are overshooting and up against the limit of active max Q. if (((cpi->pass != 2) || (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER)) && (Q == cpi->active_worst_quality) && (cpi->active_worst_quality < cpi->worst_quality) && (cpi->projected_frame_size > frame_over_shoot_limit)) { int over_size_percent = ((cpi->projected_frame_size - frame_over_shoot_limit) * 100) / frame_over_shoot_limit; // If so is there any scope for relaxing it while ((cpi->active_worst_quality < cpi->worst_quality) && (over_size_percent > 0)) { cpi->active_worst_quality++; top_index = cpi->active_worst_quality; over_size_percent = (int)(over_size_percent * 0.96); // Assume 1 qstep = about 4% on frame size. } // If we have updated the active max Q do not call vp8_update_rate_correction_factors() this loop. active_worst_qchanged = TRUE; } else active_worst_qchanged = FALSE; #if !(CONFIG_REALTIME_ONLY) // Is the projected frame size out of range and are we allowed to attempt to recode. if (((cpi->sf.recode_loop == 1) || ((cpi->sf.recode_loop == 2) && (cm->refresh_golden_frame || (cm->frame_type == KEY_FRAME)))) && (((cpi->projected_frame_size > frame_over_shoot_limit) && (Q < top_index)) || //((cpi->projected_frame_size > frame_over_shoot_limit ) && (Q == top_index) && (cpi->zbin_over_quant < ZBIN_OQ_MAX)) || ((cpi->projected_frame_size < frame_under_shoot_limit) && (Q > bottom_index))) ) { int last_q = Q; int Retries = 0; // Frame size out of permitted range: // Update correction factor & compute new Q to try... if (cpi->projected_frame_size > frame_over_shoot_limit) { //if ( cpi->zbin_over_quant == 0 ) q_low = (Q < q_high) ? (Q + 1) : q_high; // Raise Qlow as to at least the current value if (cpi->zbin_over_quant > 0) // If we are using over quant do the same for zbin_oq_low zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high; //if ( undershoot_seen || (Q == MAXQ) ) if (undershoot_seen) { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 1); Q = (q_high + q_low + 1) / 2; // Adjust cpi->zbin_over_quant (only allowed when Q is max) if (Q < MAXQ) cpi->zbin_over_quant = 0; else { zbin_oq_low = (cpi->zbin_over_quant < zbin_oq_high) ? (cpi->zbin_over_quant + 1) : zbin_oq_high; cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; } } else { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); while (((Q < q_low) || (cpi->zbin_over_quant < zbin_oq_low)) && (Retries < 10)) { vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); Retries ++; } } overshoot_seen = TRUE; } else { if (cpi->zbin_over_quant == 0) q_high = (Q > q_low) ? (Q - 1) : q_low; // Lower q_high if not using over quant else // else lower zbin_oq_high zbin_oq_high = (cpi->zbin_over_quant > zbin_oq_low) ? (cpi->zbin_over_quant - 1) : zbin_oq_low; if (overshoot_seen) { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 1); Q = (q_high + q_low) / 2; // Adjust cpi->zbin_over_quant (only allowed when Q is max) if (Q < MAXQ) cpi->zbin_over_quant = 0; else cpi->zbin_over_quant = (zbin_oq_high + zbin_oq_low) / 2; } else { // Update rate_correction_factor unless cpi->active_worst_quality has changed. if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); while (((Q > q_high) || (cpi->zbin_over_quant > zbin_oq_high)) && (Retries < 10)) { vp8_update_rate_correction_factors(cpi, 0); Q = vp8_regulate_q(cpi, cpi->this_frame_target); Retries ++; } } undershoot_seen = TRUE; } // Clamp Q to upper and lower limits: if (Q > q_high) Q = q_high; else if (Q < q_low) Q = q_low; // Clamp cpi->zbin_over_quant cpi->zbin_over_quant = (cpi->zbin_over_quant < zbin_oq_low) ? zbin_oq_low : (cpi->zbin_over_quant > zbin_oq_high) ? zbin_oq_high : cpi->zbin_over_quant; //Loop = ((Q != last_q) || (last_zbin_oq != cpi->zbin_over_quant)) ? TRUE : FALSE; Loop = ((Q != last_q)) ? TRUE : FALSE; last_zbin_oq = cpi->zbin_over_quant; } else #endif Loop = FALSE; if (cpi->is_src_frame_alt_ref) Loop = FALSE; if (Loop == TRUE) { vp8_restore_coding_context(cpi); loop_count++; #if CONFIG_PSNR cpi->tot_recode_hits++; #endif } } while (Loop == TRUE); #if 0 // Experimental code for lagged and one pass // Update stats used for one pass GF selection { /* int frames_so_far; double frame_intra_error; double frame_coded_error; double frame_pcnt_inter; double frame_pcnt_motion; double frame_mvr; double frame_mvr_abs; double frame_mvc; double frame_mvc_abs; */ cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_coded_error = (double)cpi->prediction_error; cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_intra_error = (double)cpi->intra_error; cpi->one_pass_frame_stats[cpi->one_pass_frame_index].frame_pcnt_inter = (double)(100 - cpi->this_frame_percent_intra) / 100.0; } #endif // Update the GF useage maps. // This is done after completing the compression of a frame when all modes etc. are finalized but before loop filter vp8_update_gf_useage_maps(cpi, cm, &cpi->mb); if (cm->frame_type == KEY_FRAME) cm->refresh_last_frame = 1; if (0) { FILE *f = fopen("gfactive.stt", "a"); fprintf(f, "%8d %8d %8d %8d %8d\n", cm->current_video_frame, (100 * cpi->gf_active_count) / (cpi->common.mb_rows * cpi->common.mb_cols), cpi->this_iiratio, cpi->next_iiratio, cm->refresh_golden_frame); fclose(f); } // For inter frames the current default behaviour is that when cm->refresh_golden_frame is set we copy the old GF over to the ARF buffer // This is purely an encoder descision at present. if (!cpi->oxcf.error_resilient_mode && cm->refresh_golden_frame) cm->copy_buffer_to_arf = 2; else cm->copy_buffer_to_arf = 0; if (cm->refresh_last_frame) { vp8_swap_yv12_buffer(&cm->yv12_fb[cm->lst_fb_idx], &cm->yv12_fb[cm->new_fb_idx]); cm->frame_to_show = &cm->yv12_fb[cm->lst_fb_idx]; } else cm->frame_to_show = &cm->yv12_fb[cm->new_fb_idx]; //#pragma omp parallel sections { //#pragma omp section { struct vpx_usec_timer timer; vpx_usec_timer_start(&timer); if (cpi->sf.auto_filter == 0) vp8cx_pick_filter_level_fast(cpi->Source, cpi); else vp8cx_pick_filter_level(cpi->Source, cpi); vpx_usec_timer_mark(&timer); cpi->time_pick_lpf += vpx_usec_timer_elapsed(&timer); if (cm->no_lpf) cm->filter_level = 0; if (cm->filter_level > 0) { vp8cx_set_alt_lf_level(cpi, cm->filter_level); vp8_loop_filter_frame(cm, &cpi->mb.e_mbd, cm->filter_level); cm->last_frame_type = cm->frame_type; cm->last_filter_type = cm->filter_type; cm->last_sharpness_level = cm->sharpness_level; } vp8_yv12_extend_frame_borders_ptr(cm->frame_to_show); if (cpi->oxcf.error_resilient_mode == 1) { cm->refresh_entropy_probs = 0; } } //#pragma omp section { // build the bitstream vp8_pack_bitstream(cpi, dest, size); } } { YV12_BUFFER_CONFIG *lst_yv12 = &cm->yv12_fb[cm->lst_fb_idx]; YV12_BUFFER_CONFIG *new_yv12 = &cm->yv12_fb[cm->new_fb_idx]; YV12_BUFFER_CONFIG *gld_yv12 = &cm->yv12_fb[cm->gld_fb_idx]; YV12_BUFFER_CONFIG *alt_yv12 = &cm->yv12_fb[cm->alt_fb_idx]; // At this point the new frame has been encoded coded. // If any buffer copy / swaping is signalled it should be done here. if (cm->frame_type == KEY_FRAME) { vp8_yv12_copy_frame_ptr(cm->frame_to_show, gld_yv12); vp8_yv12_copy_frame_ptr(cm->frame_to_show, alt_yv12); } else // For non key frames { // Code to copy between reference buffers if (cm->copy_buffer_to_arf) { if (cm->copy_buffer_to_arf == 1) { if (cm->refresh_last_frame) // We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set. vp8_yv12_copy_frame_ptr(new_yv12, alt_yv12); else vp8_yv12_copy_frame_ptr(lst_yv12, alt_yv12); } else if (cm->copy_buffer_to_arf == 2) vp8_yv12_copy_frame_ptr(gld_yv12, alt_yv12); } if (cm->copy_buffer_to_gf) { if (cm->copy_buffer_to_gf == 1) { if (cm->refresh_last_frame) // We copy new_frame here because last and new buffers will already have been swapped if cm->refresh_last_frame is set. vp8_yv12_copy_frame_ptr(new_yv12, gld_yv12); else vp8_yv12_copy_frame_ptr(lst_yv12, gld_yv12); } else if (cm->copy_buffer_to_gf == 2) vp8_yv12_copy_frame_ptr(alt_yv12, gld_yv12); } } } // Update rate control heuristics cpi->total_byte_count += (*size); cpi->projected_frame_size = (*size) << 3; if (!active_worst_qchanged) vp8_update_rate_correction_factors(cpi, 2); cpi->last_q[cm->frame_type] = cm->base_qindex; if (cm->frame_type == KEY_FRAME) { vp8_adjust_key_frame_context(cpi); } // Keep a record of ambient average Q. if (cm->frame_type == KEY_FRAME) cpi->avg_frame_qindex = cm->base_qindex; else cpi->avg_frame_qindex = (2 + 3 * cpi->avg_frame_qindex + cm->base_qindex) >> 2; // Keep a record from which we can calculate the average Q excluding GF updates and key frames if ((cm->frame_type != KEY_FRAME) && !cm->refresh_golden_frame && !cm->refresh_alt_ref_frame) { cpi->ni_frames++; // Calculate the average Q for normal inter frames (not key or GFU frames) // This is used as a basis for setting active worst quality. if (cpi->ni_frames > 150) { cpi->ni_tot_qi += Q; cpi->ni_av_qi = (cpi->ni_tot_qi / cpi->ni_frames); } // Early in the clip ... average the current frame Q value with the default // entered by the user as a dampening measure else { cpi->ni_tot_qi += Q; cpi->ni_av_qi = ((cpi->ni_tot_qi / cpi->ni_frames) + cpi->worst_quality + 1) / 2; } // If the average Q is higher than what was used in the last frame // (after going through the recode loop to keep the frame size within range) // then use the last frame value - 1. // The -1 is designed to stop Q and hence the data rate, from progressively // falling away during difficult sections, but at the same time reduce the number of // itterations around the recode loop. if (Q > cpi->ni_av_qi) cpi->ni_av_qi = Q - 1; } #if 0 // If the frame was massively oversize and we are below optimal buffer level drop next frame if ((cpi->drop_frames_allowed) && (cpi->oxcf.end_usage == USAGE_STREAM_FROM_SERVER) && (cpi->buffer_level < cpi->oxcf.drop_frames_water_mark * cpi->oxcf.optimal_buffer_level / 100) && (cpi->projected_frame_size > (4 * cpi->this_frame_target))) { cpi->drop_frame = TRUE; } #endif // Set the count for maximum consequative dropped frames based upon the ratio of // this frame size to the target average per frame bandwidth. // (cpi->av_per_frame_bandwidth > 0) is just a sanity check to prevent / 0. if (cpi->drop_frames_allowed && (cpi->av_per_frame_bandwidth > 0)) { cpi->max_drop_count = cpi->projected_frame_size / cpi->av_per_frame_bandwidth; if (cpi->max_drop_count > cpi->max_consec_dropped_frames) cpi->max_drop_count = cpi->max_consec_dropped_frames; } // Update the buffer level variable. if (cpi->common.refresh_alt_ref_frame) cpi->bits_off_target -= cpi->projected_frame_size; else cpi->bits_off_target += cpi->av_per_frame_bandwidth - cpi->projected_frame_size; // Rolling monitors of whether we are over or underspending used to help regulate min and Max Q in two pass. cpi->rolling_target_bits = ((cpi->rolling_target_bits * 3) + cpi->this_frame_target + 2) / 4; cpi->rolling_actual_bits = ((cpi->rolling_actual_bits * 3) + cpi->projected_frame_size + 2) / 4; cpi->long_rolling_target_bits = ((cpi->long_rolling_target_bits * 31) + cpi->this_frame_target + 16) / 32; cpi->long_rolling_actual_bits = ((cpi->long_rolling_actual_bits * 31) + cpi->projected_frame_size + 16) / 32; // Actual bits spent cpi->total_actual_bits += cpi->projected_frame_size; // Debug stats cpi->total_target_vs_actual += (cpi->this_frame_target - cpi->projected_frame_size); cpi->buffer_level = cpi->bits_off_target; // Update bits left to the kf and gf groups to account for overshoot or undershoot on these frames if (cm->frame_type == KEY_FRAME) { cpi->kf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; if (cpi->kf_group_bits < 0) cpi->kf_group_bits = 0 ; } else if (cm->refresh_golden_frame || cm->refresh_alt_ref_frame) { cpi->gf_group_bits += cpi->this_frame_target - cpi->projected_frame_size; if (cpi->gf_group_bits < 0) cpi->gf_group_bits = 0 ; } if (cm->frame_type != KEY_FRAME) { if (cpi->common.refresh_alt_ref_frame) { cpi->last_skip_false_probs[2] = cpi->prob_skip_false; cpi->last_skip_probs_q[2] = cm->base_qindex; } else if (cpi->common.refresh_golden_frame) { cpi->last_skip_false_probs[1] = cpi->prob_skip_false; cpi->last_skip_probs_q[1] = cm->base_qindex; } else { cpi->last_skip_false_probs[0] = cpi->prob_skip_false; cpi->last_skip_probs_q[0] = cm->base_qindex; //update the baseline cpi->base_skip_false_prob[cm->base_qindex] = cpi->prob_skip_false; } } #if CONFIG_PSNR if (0) { FILE *f = fopen("tmp.stt", "a"); vp8_clear_system_state(); //__asm emms; if (cpi->total_coded_error_left != 0.0) fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld %6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f %10.3f %8ld\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, (cpi->projected_frame_size - cpi->this_frame_target), (int)cpi->total_target_vs_actual, (cpi->oxcf.starting_buffer_level - cpi->bits_off_target), (int)cpi->total_actual_bits, cm->base_qindex, cpi->active_best_quality, cpi->active_worst_quality, cpi->avg_frame_qindex, cpi->zbin_over_quant, cm->refresh_golden_frame, cm->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->est_max_qcorrection_factor, (int)cpi->bits_left, cpi->total_coded_error_left, (double)cpi->bits_left / cpi->total_coded_error_left, cpi->tot_recode_hits); else fprintf(f, "%10d %10d %10d %10d %10d %10d %10d %10d %6ld %6ld %6ld %6ld %5ld %5ld %5ld %8ld %8.2f %10d %10.3f %8ld\n", cpi->common.current_video_frame, cpi->this_frame_target, cpi->projected_frame_size, (cpi->projected_frame_size - cpi->this_frame_target), (int)cpi->total_target_vs_actual, (cpi->oxcf.starting_buffer_level - cpi->bits_off_target), (int)cpi->total_actual_bits, cm->base_qindex, cpi->active_best_quality, cpi->active_worst_quality, cpi->avg_frame_qindex, cpi->zbin_over_quant, cm->refresh_golden_frame, cm->refresh_alt_ref_frame, cm->frame_type, cpi->gfu_boost, cpi->est_max_qcorrection_factor, (int)cpi->bits_left, cpi->total_coded_error_left, cpi->tot_recode_hits); fclose(f); { FILE *fmodes = fopen("Modes.stt", "a"); int i; fprintf(fmodes, "%6d:%1d:%1d:%1d ", cpi->common.current_video_frame, cm->frame_type, cm->refresh_golden_frame, cm->refresh_alt_ref_frame); for (i = 0; i < MAX_MODES; i++) fprintf(fmodes, "%5d ", cpi->mode_chosen_counts[i]); fprintf(fmodes, "\n"); fclose(fmodes); } } #endif // If this was a kf or Gf note the Q if ((cm->frame_type == KEY_FRAME) || cm->refresh_golden_frame || cm->refresh_alt_ref_frame) cm->last_kf_gf_q = cm->base_qindex; if (cm->refresh_golden_frame == 1) cm->frame_flags = cm->frame_flags | FRAMEFLAGS_GOLDEN; else cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_GOLDEN; if (cm->refresh_alt_ref_frame == 1) cm->frame_flags = cm->frame_flags | FRAMEFLAGS_ALTREF; else cm->frame_flags = cm->frame_flags&~FRAMEFLAGS_ALTREF; if (cm->refresh_last_frame & cm->refresh_golden_frame) // both refreshed cpi->gold_is_last = 1; else if (cm->refresh_last_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other cpi->gold_is_last = 0; if (cm->refresh_last_frame & cm->refresh_alt_ref_frame) // both refreshed cpi->alt_is_last = 1; else if (cm->refresh_last_frame ^ cm->refresh_alt_ref_frame) // 1 refreshed but not the other cpi->alt_is_last = 0; if (cm->refresh_alt_ref_frame & cm->refresh_golden_frame) // both refreshed cpi->gold_is_alt = 1; else if (cm->refresh_alt_ref_frame ^ cm->refresh_golden_frame) // 1 refreshed but not the other cpi->gold_is_alt = 0; cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; if (cpi->gold_is_last) cpi->ref_frame_flags &= ~VP8_GOLD_FLAG; if (cpi->alt_is_last) cpi->ref_frame_flags &= ~VP8_ALT_FLAG; if (cpi->gold_is_alt) cpi->ref_frame_flags &= ~VP8_ALT_FLAG; if (cpi->oxcf.error_resilient_mode) { // Is this an alternate reference update if (cpi->common.refresh_alt_ref_frame) vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->alt_fb_idx]); if (cpi->common.refresh_golden_frame) vp8_yv12_copy_frame_ptr(cm->frame_to_show, &cm->yv12_fb[cm->gld_fb_idx]); } else { if (cpi->oxcf.play_alternate && cpi->common.refresh_alt_ref_frame) // Update the alternate reference frame and stats as appropriate. update_alt_ref_frame_and_stats(cpi); else // Update the Golden frame and golden frame and stats as appropriate. update_golden_frame_and_stats(cpi); } if (cm->frame_type == KEY_FRAME) { // Tell the caller that the frame was coded as a key frame *frame_flags = cm->frame_flags | FRAMEFLAGS_KEY; // As this frame is a key frame the next defaults to an inter frame. cm->frame_type = INTER_FRAME; cpi->last_frame_percent_intra = 100; } else { *frame_flags = cm->frame_flags&~FRAMEFLAGS_KEY; cpi->last_frame_percent_intra = cpi->this_frame_percent_intra; } // Clear the one shot update flags for segmentation map and mode/ref loop filter deltas. cpi->mb.e_mbd.update_mb_segmentation_map = 0; cpi->mb.e_mbd.update_mb_segmentation_data = 0; cpi->mb.e_mbd.mode_ref_lf_delta_update = 0; // Dont increment frame counters if this was an altref buffer update not a real frame if (cm->show_frame) { cm->current_video_frame++; cpi->frames_since_key++; } // reset to normal state now that we are done. if (0) { char filename[512]; FILE *recon_file; sprintf(filename, "enc%04d.yuv", (int) cm->current_video_frame); recon_file = fopen(filename, "wb"); fwrite(cm->yv12_fb[cm->lst_fb_idx].buffer_alloc, cm->yv12_fb[cm->lst_fb_idx].frame_size, 1, recon_file); fclose(recon_file); } // DEBUG //vp8_write_yuv_frame("encoder_recon.yuv", cm->frame_to_show); } int vp8_is_gf_update_needed(VP8_PTR ptr) { VP8_COMP *cpi = (VP8_COMP *) ptr; int ret_val; ret_val = cpi->gf_update_recommended; cpi->gf_update_recommended = 0; return ret_val; } void vp8_check_gf_quality(VP8_COMP *cpi) { VP8_COMMON *cm = &cpi->common; int gf_active_pct = (100 * cpi->gf_active_count) / (cm->mb_rows * cm->mb_cols); int gf_ref_usage_pct = (cpi->count_mb_ref_frame_usage[GOLDEN_FRAME] * 100) / (cm->mb_rows * cm->mb_cols); int last_ref_zz_useage = (cpi->inter_zz_count * 100) / (cm->mb_rows * cm->mb_cols); // Gf refresh is not currently being signalled if (cpi->gf_update_recommended == 0) { if (cpi->common.frames_since_golden > 7) { // Low use of gf if ((gf_active_pct < 10) || ((gf_active_pct + gf_ref_usage_pct) < 15)) { // ...but last frame zero zero usage is reasonbable so a new gf might be appropriate if (last_ref_zz_useage >= 25) { cpi->gf_bad_count ++; if (cpi->gf_bad_count >= 8) // Check that the condition is stable { cpi->gf_update_recommended = 1; cpi->gf_bad_count = 0; } } else cpi->gf_bad_count = 0; // Restart count as the background is not stable enough } else cpi->gf_bad_count = 0; // Gf useage has picked up so reset count } } // If the signal is set but has not been read should we cancel it. else if (last_ref_zz_useage < 15) { cpi->gf_update_recommended = 0; cpi->gf_bad_count = 0; } #if 0 if (0) { FILE *f = fopen("gfneeded.stt", "a"); fprintf(f, "%10d %10d %10d %10d %10ld \n", cm->current_video_frame, cpi->common.frames_since_golden, gf_active_pct, gf_ref_usage_pct, cpi->gf_update_recommended); fclose(f); } #endif } #if !(CONFIG_REALTIME_ONLY) static void Pass2Encode(VP8_COMP *cpi, unsigned long *size, unsigned char *dest, unsigned int *frame_flags) { if (!cpi->common.refresh_alt_ref_frame) vp8_second_pass(cpi); encode_frame_to_data_rate(cpi, size, dest, frame_flags); cpi->bits_left -= 8 * *size; if (!cpi->common.refresh_alt_ref_frame) { double two_pass_min_rate = (double)(cpi->oxcf.target_bandwidth *cpi->oxcf.two_pass_vbrmin_section / 100); cpi->bits_left += (long long)(two_pass_min_rate / cpi->oxcf.frame_rate); } } #endif //For ARM NEON, d8-d15 are callee-saved registers, and need to be saved by us. #if HAVE_ARMV7 extern void vp8_push_neon(INT64 *store); extern void vp8_pop_neon(INT64 *store); static INT64 store_reg[8]; #endif int vp8_receive_raw_frame(VP8_PTR ptr, unsigned int frame_flags, YV12_BUFFER_CONFIG *sd, INT64 time_stamp, INT64 end_time) { VP8_COMP *cpi = (VP8_COMP *) ptr; VP8_COMMON *cm = &cpi->common; struct vpx_usec_timer timer; if (!cpi) return -1; #if HAVE_ARMV7 vp8_push_neon(store_reg); #endif vpx_usec_timer_start(&timer); // no more room for frames; if (cpi->source_buffer_count != 0 && cpi->source_buffer_count >= cpi->oxcf.lag_in_frames) { #if HAVE_ARMV7 vp8_pop_neon(store_reg); #endif return -1; } //printf("in-cpi->source_buffer_count: %d\n", cpi->source_buffer_count); cm->clr_type = sd->clrtype; // make a copy of the frame for use later... #if !(CONFIG_REALTIME_ONLY) if (cpi->oxcf.allow_lag) { int which_buffer = cpi->source_encode_index - 1; SOURCE_SAMPLE *s; if (which_buffer == -1) which_buffer = cpi->oxcf.lag_in_frames - 1; if (cpi->source_buffer_count < cpi->oxcf.lag_in_frames - 1) which_buffer = cpi->source_buffer_count; s = &cpi->src_buffer[which_buffer]; s->source_time_stamp = time_stamp; s->source_end_time_stamp = end_time; s->source_frame_flags = frame_flags; vp8_yv12_copy_frame_ptr(sd, &s->source_buffer); cpi->source_buffer_count ++; } else #endif { SOURCE_SAMPLE *s; s = &cpi->src_buffer[0]; s->source_end_time_stamp = end_time; s->source_time_stamp = time_stamp; s->source_frame_flags = frame_flags; #if HAVE_ARMV7 vp8_yv12_copy_src_frame_func_neon(sd, &s->source_buffer); #else vp8_yv12_copy_frame_ptr(sd, &s->source_buffer); #endif cpi->source_buffer_count = 1; } vpx_usec_timer_mark(&timer); cpi->time_receive_data += vpx_usec_timer_elapsed(&timer); #if HAVE_ARMV7 vp8_pop_neon(store_reg); #endif return 0; } int vp8_get_compressed_data(VP8_PTR ptr, unsigned int *frame_flags, unsigned long *size, unsigned char *dest, INT64 *time_stamp, INT64 *time_end, int flush) { VP8_COMP *cpi = (VP8_COMP *) ptr; VP8_COMMON *cm = &cpi->common; struct vpx_usec_timer tsctimer; struct vpx_usec_timer ticktimer; struct vpx_usec_timer cmptimer; if (!cpi) return -1; #if HAVE_ARMV7 vp8_push_neon(store_reg); #endif vpx_usec_timer_start(&cmptimer); // flush variable tells us that even though we have less than 10 frames // in our buffer we need to start producing compressed frames. // Probably because we are at the end of a file.... if ((cpi->source_buffer_count == cpi->oxcf.lag_in_frames && cpi->oxcf.lag_in_frames > 0) || (!cpi->oxcf.allow_lag && cpi->source_buffer_count > 0) || (flush && cpi->source_buffer_count > 0)) { SOURCE_SAMPLE *s; s = &cpi->src_buffer[cpi->source_encode_index]; cpi->source_time_stamp = s->source_time_stamp; cpi->source_end_time_stamp = s->source_end_time_stamp; #if !(CONFIG_REALTIME_ONLY) // Should we code an alternate reference frame if (cpi->oxcf.error_resilient_mode == 0 && cpi->oxcf.play_alternate && cpi->source_alt_ref_pending && (cpi->frames_till_gf_update_due < cpi->source_buffer_count) && cpi->oxcf.lag_in_frames != 0) { cpi->last_alt_ref_sei = (cpi->source_encode_index + cpi->frames_till_gf_update_due) % cpi->oxcf.lag_in_frames; #if VP8_TEMPORAL_ALT_REF if (cpi->oxcf.arnr_max_frames > 0) { #if 0 // my attempt at a loop that tests the results of strength filter. int start_frame = cpi->last_alt_ref_sei - 3; int i, besti = -1, pastin = cpi->oxcf.arnr_strength; int besterr; if (start_frame < 0) start_frame += cpi->oxcf.lag_in_frames; besterr = vp8_calc_low_ss_err(&cpi->src_buffer[cpi->last_alt_ref_sei].source_buffer, &cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance)); for (i = 0; i < 7; i++) { int thiserr; cpi->oxcf.arnr_strength = i; vp8cx_temp_filter_c(cpi); thiserr = vp8_calc_low_ss_err(&cpi->alt_ref_buffer.source_buffer, &cpi->src_buffer[start_frame].source_buffer, IF_RTCD(&cpi->rtcd.variance)); if (10 * thiserr < besterr * 8) { besterr = thiserr; besti = i; } } if (besti != -1) { cpi->oxcf.arnr_strength = besti; vp8cx_temp_filter_c(cpi); s = &cpi->alt_ref_buffer; // FWG not sure if I need to copy this data for the Alt Ref frame s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp; s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp; s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags; } else s = &cpi->src_buffer[cpi->last_alt_ref_sei]; #else vp8cx_temp_filter_c(cpi); s = &cpi->alt_ref_buffer; // FWG not sure if I need to copy this data for the Alt Ref frame s->source_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_time_stamp; s->source_end_time_stamp = cpi->src_buffer[cpi->last_alt_ref_sei].source_end_time_stamp; s->source_frame_flags = cpi->src_buffer[cpi->last_alt_ref_sei].source_frame_flags; #endif } else #endif s = &cpi->src_buffer[cpi->last_alt_ref_sei]; cm->frames_till_alt_ref_frame = cpi->frames_till_gf_update_due; cm->refresh_alt_ref_frame = 1; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 0; cm->show_frame = 0; cpi->source_alt_ref_pending = FALSE; // Clear Pending altf Ref flag. cpi->is_src_frame_alt_ref = 0; } else #endif { cm->show_frame = 1; #if !(CONFIG_REALTIME_ONLY) if (cpi->oxcf.allow_lag) { if (cpi->source_encode_index == cpi->last_alt_ref_sei) { cpi->is_src_frame_alt_ref = 1; cpi->last_alt_ref_sei = -1; } else cpi->is_src_frame_alt_ref = 0; cpi->source_encode_index = (cpi->source_encode_index + 1) % cpi->oxcf.lag_in_frames; } #endif cpi->source_buffer_count--; } cpi->un_scaled_source = &s->source_buffer; cpi->Source = &s->source_buffer; cpi->source_frame_flags = s->source_frame_flags; *time_stamp = cpi->source_time_stamp; *time_end = cpi->source_end_time_stamp; } else { *size = 0; #if !(CONFIG_REALTIME_ONLY) if (flush && cpi->pass == 1 && !cpi->first_pass_done) { vp8_end_first_pass(cpi); /* get last stats packet */ cpi->first_pass_done = 1; } #endif #if HAVE_ARMV7 vp8_pop_neon(store_reg); #endif return -1; } *frame_flags = cpi->source_frame_flags; #if CONFIG_PSNR if (cpi->source_time_stamp < cpi->first_time_stamp_ever) cpi->first_time_stamp_ever = cpi->source_time_stamp; #endif // adjust frame rates based on timestamps given if (!cm->refresh_alt_ref_frame) { if (cpi->last_time_stamp_seen == 0) { double this_fps = 10000000.000 / (cpi->source_end_time_stamp - cpi->source_time_stamp); vp8_new_frame_rate(cpi, this_fps); } else { long long nanosecs = cpi->source_time_stamp - cpi->last_time_stamp_seen; double this_fps = 10000000.000 / nanosecs; vp8_new_frame_rate(cpi, (7 * cpi->oxcf.frame_rate + this_fps) / 8); } cpi->last_time_stamp_seen = cpi->source_time_stamp; } if (cpi->compressor_speed == 2) { vp8_check_gf_quality(cpi); } if (!cpi) { #if HAVE_ARMV7 vp8_pop_neon(store_reg); #endif return 0; } if (cpi->compressor_speed == 2) { vpx_usec_timer_start(&tsctimer); vpx_usec_timer_start(&ticktimer); } // start with a 0 size frame *size = 0; // Clear down mmx registers vp8_clear_system_state(); //__asm emms; cm->frame_type = INTER_FRAME; cm->frame_flags = *frame_flags; #if 0 if (cm->refresh_alt_ref_frame) { //cm->refresh_golden_frame = 1; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 0; } else { cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; } #endif #if !(CONFIG_REALTIME_ONLY) if (cpi->pass == 1) { Pass1Encode(cpi, size, dest, frame_flags); } else if (cpi->pass == 2) { Pass2Encode(cpi, size, dest, frame_flags); } else #endif encode_frame_to_data_rate(cpi, size, dest, frame_flags); if (cpi->compressor_speed == 2) { unsigned int duration, duration2; vpx_usec_timer_mark(&tsctimer); vpx_usec_timer_mark(&ticktimer); duration = vpx_usec_timer_elapsed(&ticktimer); duration2 = (unsigned int)((double)duration / 2); if (cm->frame_type != KEY_FRAME) { if (cpi->avg_encode_time == 0) cpi->avg_encode_time = duration; else cpi->avg_encode_time = (7 * cpi->avg_encode_time + duration) >> 3; } if (duration2) { //if(*frame_flags!=1) { if (cpi->avg_pick_mode_time == 0) cpi->avg_pick_mode_time = duration2; else cpi->avg_pick_mode_time = (7 * cpi->avg_pick_mode_time + duration2) >> 3; } } } if (cm->refresh_entropy_probs == 0) { vpx_memcpy(&cm->fc, &cm->lfc, sizeof(cm->fc)); } // if its a dropped frame honor the requests on subsequent frames if (*size > 0) { // return to normal state cpi->ref_frame_flags = VP8_ALT_FLAG | VP8_GOLD_FLAG | VP8_LAST_FLAG; cm->refresh_entropy_probs = 1; cm->refresh_alt_ref_frame = 0; cm->refresh_golden_frame = 0; cm->refresh_last_frame = 1; cm->frame_type = INTER_FRAME; } cpi->ready_for_new_frame = 1; vpx_usec_timer_mark(&cmptimer); cpi->time_compress_data += vpx_usec_timer_elapsed(&cmptimer); if (cpi->b_calculate_psnr && cpi->pass != 1 && cm->show_frame) generate_psnr_packet(cpi); #if CONFIG_PSNR if (cpi->pass != 1) { cpi->bytes += *size; if (cm->show_frame) { cpi->count ++; if (cpi->b_calculate_psnr) { double y, u, v; double sq_error; double frame_psnr = vp8_calc_psnr(cpi->Source, cm->frame_to_show, &y, &u, &v, &sq_error); cpi->total_y += y; cpi->total_u += u; cpi->total_v += v; cpi->total_sq_error += sq_error; cpi->total += frame_psnr; { double y2, u2, v2, frame_psnr2, frame_ssim2 = 0; double weight = 0; vp8_deblock(cm->frame_to_show, &cm->post_proc_buffer, cm->filter_level * 10 / 6, 1, 0, IF_RTCD(&cm->rtcd.postproc)); vp8_clear_system_state(); frame_psnr2 = vp8_calc_psnr(cpi->Source, &cm->post_proc_buffer, &y2, &u2, &v2, &sq_error); frame_ssim2 = vp8_calc_ssim(cpi->Source, &cm->post_proc_buffer, 1, &weight); cpi->summed_quality += frame_ssim2 * weight; cpi->summed_weights += weight; cpi->totalp_y += y2; cpi->totalp_u += u2; cpi->totalp_v += v2; cpi->totalp += frame_psnr2; cpi->total_sq_error2 += sq_error; } } if (cpi->b_calculate_ssimg) { double y, u, v, frame_all; frame_all = vp8_calc_ssimg(cpi->Source, cm->frame_to_show, &y, &u, &v); cpi->total_ssimg_y += y; cpi->total_ssimg_u += u; cpi->total_ssimg_v += v; cpi->total_ssimg_all += frame_all; } } } #if 0 if (cpi->common.frame_type != 0 && cpi->common.base_qindex == cpi->oxcf.worst_allowed_q) { skiptruecount += cpi->skip_true_count; skipfalsecount += cpi->skip_false_count; } #endif #if 0 if (cpi->pass != 1) { FILE *f = fopen("skip.stt", "a"); fprintf(f, "frame:%4d flags:%4x Q:%4d P:%4d Size:%5d\n", cpi->common.current_video_frame, *frame_flags, cpi->common.base_qindex, cpi->prob_skip_false, *size); if (cpi->is_src_frame_alt_ref == 1) fprintf(f, "skipcount: %4d framesize: %d\n", cpi->skip_true_count , *size); fclose(f); } #endif #endif #if HAVE_ARMV7 vp8_pop_neon(store_reg); #endif return 0; } int vp8_get_preview_raw_frame(VP8_PTR comp, YV12_BUFFER_CONFIG *dest, int deblock_level, int noise_level, int flags) { VP8_COMP *cpi = (VP8_COMP *) comp; if (cpi->common.refresh_alt_ref_frame) return -1; else { int ret; #if CONFIG_POSTPROC ret = vp8_post_proc_frame(&cpi->common, dest, deblock_level, noise_level, flags); #else if (cpi->common.frame_to_show) { *dest = *cpi->common.frame_to_show; dest->y_width = cpi->common.Width; dest->y_height = cpi->common.Height; dest->uv_height = cpi->common.Height / 2; ret = 0; } else { ret = -1; } #endif //!CONFIG_POSTPROC vp8_clear_system_state(); return ret; } } int vp8_set_roimap(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols, int delta_q[4], int delta_lf[4], unsigned int threshold[4]) { VP8_COMP *cpi = (VP8_COMP *) comp; signed char feature_data[MB_LVL_MAX][MAX_MB_SEGMENTS]; if (cpi->common.mb_rows != rows || cpi->common.mb_cols != cols) return -1; if (!map) { disable_segmentation((VP8_PTR)cpi); return 0; } // Set the segmentation Map set_segmentation_map((VP8_PTR)cpi, map); // Activate segmentation. enable_segmentation((VP8_PTR)cpi); // Set up the quant segment data feature_data[MB_LVL_ALT_Q][0] = delta_q[0]; feature_data[MB_LVL_ALT_Q][1] = delta_q[1]; feature_data[MB_LVL_ALT_Q][2] = delta_q[2]; feature_data[MB_LVL_ALT_Q][3] = delta_q[3]; // Set up the loop segment data s feature_data[MB_LVL_ALT_LF][0] = delta_lf[0]; feature_data[MB_LVL_ALT_LF][1] = delta_lf[1]; feature_data[MB_LVL_ALT_LF][2] = delta_lf[2]; feature_data[MB_LVL_ALT_LF][3] = delta_lf[3]; cpi->segment_encode_breakout[0] = threshold[0]; cpi->segment_encode_breakout[1] = threshold[1]; cpi->segment_encode_breakout[2] = threshold[2]; cpi->segment_encode_breakout[3] = threshold[3]; // Initialise the feature data structure // SEGMENT_DELTADATA 0, SEGMENT_ABSDATA 1 set_segment_data((VP8_PTR)cpi, &feature_data[0][0], SEGMENT_DELTADATA); return 0; } int vp8_set_active_map(VP8_PTR comp, unsigned char *map, unsigned int rows, unsigned int cols) { VP8_COMP *cpi = (VP8_COMP *) comp; if (rows == cpi->common.mb_rows && cols == cpi->common.mb_cols) { if (map) { vpx_memcpy(cpi->active_map, map, rows * cols); cpi->active_map_enabled = 1; } else cpi->active_map_enabled = 0; return 0; } else { //cpi->active_map_enabled = 0; return -1 ; } } int vp8_set_internal_size(VP8_PTR comp, VPX_SCALING horiz_mode, VPX_SCALING vert_mode) { VP8_COMP *cpi = (VP8_COMP *) comp; if (horiz_mode >= NORMAL && horiz_mode <= ONETWO) cpi->common.horiz_scale = horiz_mode; else return -1; if (vert_mode >= NORMAL && vert_mode <= ONETWO) cpi->common.vert_scale = vert_mode; else return -1; return 0; } int vp8_calc_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd) { int i, j; int Total = 0; unsigned char *src = source->y_buffer; unsigned char *dst = dest->y_buffer; (void)rtcd; // Loop through the Y plane raw and reconstruction data summing (square differences) for (i = 0; i < source->y_height; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; Total += VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse); } src += 16 * source->y_stride; dst += 16 * dest->y_stride; } return Total; } int vp8_calc_low_ss_err(YV12_BUFFER_CONFIG *source, YV12_BUFFER_CONFIG *dest, const vp8_variance_rtcd_vtable_t *rtcd) { int i, j; int Total = 0; unsigned char *src = source->y_buffer; unsigned char *dst = dest->y_buffer; (void)rtcd; // Loop through the Y plane raw and reconstruction data summing (square differences) for (i = 0; i < source->y_height; i += 16) { for (j = 0; j < source->y_width; j += 16) { unsigned int sse; VARIANCE_INVOKE(rtcd, mse16x16)(src + j, source->y_stride, dst + j, dest->y_stride, &sse); if (sse < 8096) Total += sse; } src += 16 * source->y_stride; dst += 16 * dest->y_stride; } return Total; } int vp8_get_speed(VP8_PTR c) { VP8_COMP *cpi = (VP8_COMP *) c; return cpi->Speed; } int vp8_get_quantizer(VP8_PTR c) { VP8_COMP *cpi = (VP8_COMP *) c; return cpi->common.base_qindex; }