/* * Copyright (c) 2010 The VP8 project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #ifndef WIN32 # include #endif #ifdef __APPLE__ #include #endif #include "onyxd_int.h" #include "vpx_mem/vpx_mem.h" #include "threading.h" #include "loopfilter.h" #include "extend.h" #include "vpx_ports/vpx_timer.h" #define MAX_ROWS 256 extern void vp8_decode_mb_row(VP8D_COMP *pbi, VP8_COMMON *pc, int mb_row, MACROBLOCKD *xd); extern void vp8_build_uvmvs(MACROBLOCKD *x, int fullpixel); extern void vp8_decode_macroblock(VP8D_COMP *pbi, MACROBLOCKD *xd); void vp8_thread_loop_filter(VP8D_COMP *pbi, MB_ROW_DEC *mbrd, int ithread); void vp8_setup_decoding_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count) { #if CONFIG_MULTITHREAD VP8_COMMON *const pc = & pbi->common; int i, j; for (i = 0; i < count; i++) { MACROBLOCKD *mbd = &mbrd[i].mbd; #if CONFIG_RUNTIME_CPU_DETECT mbd->rtcd = xd->rtcd; #endif mbd->subpixel_predict = xd->subpixel_predict; mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; mbd->mode_info_context = pc->mi + pc->mode_info_stride * (i + 1); mbd->mode_info_stride = pc->mode_info_stride; mbd->frame_type = pc->frame_type; mbd->frames_since_golden = pc->frames_since_golden; mbd->frames_till_alt_ref_frame = pc->frames_till_alt_ref_frame; mbd->pre = pc->yv12_fb[pc->lst_fb_idx]; mbd->dst = pc->yv12_fb[pc->new_fb_idx]; vp8_setup_block_dptrs(mbd); vp8_build_block_doffsets(mbd); mbd->segmentation_enabled = xd->segmentation_enabled; mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta; vpx_memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); mbd->current_bc = &pbi->bc2; for (j = 0; j < 25; j++) { mbd->block[j].dequant = xd->block[j].dequant; } } for (i=0; i< pc->mb_rows; i++) pbi->current_mb_col[i]=-1; #else (void) pbi; (void) xd; (void) mbrd; (void) count; #endif } void vp8_setup_loop_filter_thread_data(VP8D_COMP *pbi, MACROBLOCKD *xd, MB_ROW_DEC *mbrd, int count) { #if CONFIG_MULTITHREAD VP8_COMMON *const pc = & pbi->common; int i, j; for (i = 0; i < count; i++) { MACROBLOCKD *mbd = &mbrd[i].mbd; //#if CONFIG_RUNTIME_CPU_DETECT // mbd->rtcd = xd->rtcd; //#endif //mbd->subpixel_predict = xd->subpixel_predict; //mbd->subpixel_predict8x4 = xd->subpixel_predict8x4; //mbd->subpixel_predict8x8 = xd->subpixel_predict8x8; //mbd->subpixel_predict16x16 = xd->subpixel_predict16x16; mbd->mode_info_context = pc->mi + pc->mode_info_stride * (i + 1); mbd->mode_info_stride = pc->mode_info_stride; //mbd->frame_type = pc->frame_type; //mbd->frames_since_golden = pc->frames_since_golden; //mbd->frames_till_alt_ref_frame = pc->frames_till_alt_ref_frame; //mbd->pre = pc->yv12_fb[pc->lst_fb_idx]; //mbd->dst = pc->yv12_fb[pc->new_fb_idx]; //vp8_setup_block_dptrs(mbd); //vp8_build_block_doffsets(mbd); mbd->segmentation_enabled = xd->segmentation_enabled; // mbd->mb_segement_abs_delta = xd->mb_segement_abs_delta; // vpx_memcpy(mbd->segment_feature_data, xd->segment_feature_data, sizeof(xd->segment_feature_data)); // //signed char ref_lf_deltas[MAX_REF_LF_DELTAS]; vpx_memcpy(mbd->ref_lf_deltas, xd->ref_lf_deltas, sizeof(xd->ref_lf_deltas)); //signed char mode_lf_deltas[MAX_MODE_LF_DELTAS]; vpx_memcpy(mbd->mode_lf_deltas, xd->mode_lf_deltas, sizeof(xd->mode_lf_deltas)); //unsigned char mode_ref_lf_delta_enabled; //unsigned char mode_ref_lf_delta_update; mbd->mode_ref_lf_delta_enabled = xd->mode_ref_lf_delta_enabled; mbd->mode_ref_lf_delta_update = xd->mode_ref_lf_delta_update; //mbd->mbmi.mode = DC_PRED; //mbd->mbmi.uv_mode = DC_PRED; //mbd->current_bc = &pbi->bc2; //for (j = 0; j < 25; j++) //{ // mbd->block[j].dequant = xd->block[j].dequant; //} } for (i=0; i< pc->mb_rows; i++) pbi->current_mb_col[i]=-1; #else (void) pbi; (void) xd; (void) mbrd; (void) count; #endif } THREAD_FUNCTION vp8_thread_decoding_proc(void *p_data) { #if CONFIG_MULTITHREAD int ithread = ((DECODETHREAD_DATA *)p_data)->ithread; VP8D_COMP *pbi = (VP8D_COMP *)(((DECODETHREAD_DATA *)p_data)->ptr1); MB_ROW_DEC *mbrd = (MB_ROW_DEC *)(((DECODETHREAD_DATA *)p_data)->ptr2); ENTROPY_CONTEXT_PLANES mb_row_left_context; while (1) { int current_filter_level = 0; if (pbi->b_multithreaded_rd == 0) break; //if(WaitForSingleObject(pbi->h_event_start_decoding[ithread], INFINITE) == WAIT_OBJECT_0) if (sem_wait(&pbi->h_event_start_decoding[ithread]) == 0) { if (pbi->b_multithreaded_rd == 0) break; else { VP8_COMMON *pc = &pbi->common; MACROBLOCKD *xd = &mbrd->mbd; int mb_row; int num_part = 1 << pbi->common.multi_token_partition; volatile int *last_row_current_mb_col; for (mb_row = ithread+1; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1)) { int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; pbi->mb_row_di[ithread].mb_row = mb_row; pbi->mb_row_di[ithread].mbd.current_bc = &pbi->mbc[mb_row%num_part]; last_row_current_mb_col = &pbi->current_mb_col[mb_row -1]; recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; // reset above block coeffs xd->above_context = pc->above_context; xd->left_context = &mb_row_left_context; vpx_memset(&mb_row_left_context, 0, sizeof(mb_row_left_context)); xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { if ((mb_col & 7) == 0) { while (mb_col > (*last_row_current_mb_col - 8) && *last_row_current_mb_col != pc->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *d = &xd->block[i]; vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); } } // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); // Select the appropriate reference frame for this MB if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; vp8_build_uvmvs(xd, pc->full_pixel); vp8_decode_macroblock(pbi, xd); recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; //pbi->mb_row_di[ithread].current_mb_col = mb_col; pbi->current_mb_col[mb_row] = mb_col; } // adjust to the next row of mbs vp8_extend_mb_row( &pc->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8 ); ++xd->mode_info_context; /* skip prediction column */ // since we have multithread xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count; pbi->last_mb_row_decoded = mb_row; } } } // If |pbi->common.filter_level| is 0 the value can change in-between // the sem_post and the check to call vp8_thread_loop_filter. current_filter_level = pbi->common.filter_level; // add this to each frame if ((mbrd->mb_row == pbi->common.mb_rows-1) || ((mbrd->mb_row == pbi->common.mb_rows-2) && (pbi->common.mb_rows % (pbi->decoding_thread_count+1))==1)) { //SetEvent(pbi->h_event_end_decoding); sem_post(&pbi->h_event_end_decoding); } if ((pbi->b_multithreaded_lf) && (current_filter_level)) vp8_thread_loop_filter(pbi, mbrd, ithread); } #else (void) p_data; #endif return 0 ; } void vp8_thread_loop_filter(VP8D_COMP *pbi, MB_ROW_DEC *mbrd, int ithread) { #if CONFIG_MULTITHREAD if (sem_wait(&pbi->h_event_start_lpf[ithread]) == 0) { // if (pbi->b_multithreaded_lf == 0) // we're shutting down ???? // break; // else { VP8_COMMON *cm = &pbi->common; MACROBLOCKD *mbd = &mbrd->mbd; int default_filt_lvl = pbi->common.filter_level; YV12_BUFFER_CONFIG *post = cm->frame_to_show; loop_filter_info *lfi = cm->lf_info; //int frame_type = cm->frame_type; int mb_row; int mb_col; int filter_level; int alt_flt_enabled = mbd->segmentation_enabled; int i; unsigned char *y_ptr, *u_ptr, *v_ptr; volatile int *last_row_current_mb_col; // Set up the buffer pointers y_ptr = post->y_buffer + post->y_stride * 16 * (ithread +1); u_ptr = post->u_buffer + post->uv_stride * 8 * (ithread +1); v_ptr = post->v_buffer + post->uv_stride * 8 * (ithread +1); // vp8_filter each macro block for (mb_row = ithread+1; mb_row < cm->mb_rows; mb_row+= (pbi->decoding_thread_count + 1)) { last_row_current_mb_col = &pbi->current_mb_col[mb_row -1]; for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { int Segment = (alt_flt_enabled) ? mbd->mode_info_context->mbmi.segment_id : 0; if ((mb_col & 7) == 0) { while (mb_col > (*last_row_current_mb_col-8) && *last_row_current_mb_col != cm->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } filter_level = pbi->mt_baseline_filter_level[Segment]; // Apply any context driven MB level adjustment vp8_adjust_mb_lf_value(mbd, &filter_level); if (filter_level) { if (mb_col > 0) cm->lf_mbv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); if (mbd->mode_info_context->mbmi.dc_diff > 0) cm->lf_bv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); // don't apply across umv border if (mb_row > 0) cm->lf_mbh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); if (mbd->mode_info_context->mbmi.dc_diff > 0) cm->lf_bh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); } y_ptr += 16; u_ptr += 8; v_ptr += 8; mbd->mode_info_context++; // step to next MB pbi->current_mb_col[mb_row] = mb_col; } mbd->mode_info_context++; // Skip border mb y_ptr += post->y_stride * 16 * (pbi->decoding_thread_count + 1) - post->y_width; u_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width; v_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width; mbd->mode_info_context += pbi->decoding_thread_count * mbd->mode_info_stride; // Skip border mb } } } // add this to each frame if ((mbrd->mb_row == pbi->common.mb_rows-1) || ((mbrd->mb_row == pbi->common.mb_rows-2) && (pbi->common.mb_rows % (pbi->decoding_thread_count+1))==1)) { sem_post(&pbi->h_event_end_lpf); } #else (void) pbi; #endif } void vp8_decoder_create_threads(VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD int core_count = 0; int ithread; pbi->b_multithreaded_rd = 0; pbi->b_multithreaded_lf = 0; pbi->allocated_decoding_thread_count = 0; core_count = (pbi->max_threads > 16) ? 16 : pbi->max_threads; if (core_count > 1) { pbi->b_multithreaded_rd = 1; pbi->b_multithreaded_lf = 1; // this can be merged with pbi->b_multithreaded_rd ? pbi->decoding_thread_count = core_count -1; CHECK_MEM_ERROR(pbi->h_decoding_thread, vpx_malloc(sizeof(pthread_t) * pbi->decoding_thread_count)); CHECK_MEM_ERROR(pbi->h_event_start_decoding, vpx_malloc(sizeof(sem_t) * pbi->decoding_thread_count)); CHECK_MEM_ERROR(pbi->mb_row_di, vpx_memalign(32, sizeof(MB_ROW_DEC) * pbi->decoding_thread_count)); vpx_memset(pbi->mb_row_di, 0, sizeof(MB_ROW_DEC) * pbi->decoding_thread_count); CHECK_MEM_ERROR(pbi->de_thread_data, vpx_malloc(sizeof(DECODETHREAD_DATA) * pbi->decoding_thread_count)); CHECK_MEM_ERROR(pbi->current_mb_col, vpx_malloc(sizeof(int) * MAX_ROWS)); // pc->mb_rows)); CHECK_MEM_ERROR(pbi->h_event_start_lpf, vpx_malloc(sizeof(sem_t) * pbi->decoding_thread_count)); for (ithread = 0; ithread < pbi->decoding_thread_count; ithread++) { sem_init(&pbi->h_event_start_decoding[ithread], 0, 0); sem_init(&pbi->h_event_start_lpf[ithread], 0, 0); pbi->de_thread_data[ithread].ithread = ithread; pbi->de_thread_data[ithread].ptr1 = (void *)pbi; pbi->de_thread_data[ithread].ptr2 = (void *) &pbi->mb_row_di[ithread]; pthread_create(&pbi->h_decoding_thread[ithread], 0, vp8_thread_decoding_proc, (&pbi->de_thread_data[ithread])); } sem_init(&pbi->h_event_end_decoding, 0, 0); sem_init(&pbi->h_event_end_lpf, 0, 0); pbi->allocated_decoding_thread_count = pbi->decoding_thread_count; } #else (void) pbi; #endif } void vp8_decoder_remove_threads(VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD if (pbi->b_multithreaded_lf) { int i; pbi->b_multithreaded_lf = 0; for (i = 0; i < pbi->allocated_decoding_thread_count; i++) sem_destroy(&pbi->h_event_start_lpf[i]); sem_destroy(&pbi->h_event_end_lpf); } //shutdown MB Decoding thread; if (pbi->b_multithreaded_rd) { int i; pbi->b_multithreaded_rd = 0; // allow all threads to exit for (i = 0; i < pbi->allocated_decoding_thread_count; i++) { sem_post(&pbi->h_event_start_decoding[i]); pthread_join(pbi->h_decoding_thread[i], NULL); } for (i = 0; i < pbi->allocated_decoding_thread_count; i++) { sem_destroy(&pbi->h_event_start_decoding[i]); } sem_destroy(&pbi->h_event_end_decoding); if (pbi->h_decoding_thread) { vpx_free(pbi->h_decoding_thread); pbi->h_decoding_thread = NULL; } if (pbi->h_event_start_decoding) { vpx_free(pbi->h_event_start_decoding); pbi->h_event_start_decoding = NULL; } if (pbi->h_event_start_lpf) { vpx_free(pbi->h_event_start_lpf); pbi->h_event_start_lpf = NULL; } if (pbi->mb_row_di) { vpx_free(pbi->mb_row_di); pbi->mb_row_di = NULL ; } if (pbi->de_thread_data) { vpx_free(pbi->de_thread_data); pbi->de_thread_data = NULL; } if (pbi->current_mb_col) { vpx_free(pbi->current_mb_col); pbi->current_mb_col = NULL ; } } #else (void) pbi; #endif } void vp8_start_lfthread(VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD /* memcpy(&pbi->lpfmb, &pbi->mb, sizeof(pbi->mb)); pbi->last_mb_row_decoded = 0; sem_post(&pbi->h_event_start_lpf); */ (void) pbi; #else (void) pbi; #endif } void vp8_stop_lfthread(VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD /* struct vpx_usec_timer timer; vpx_usec_timer_start(&timer); sem_wait(&pbi->h_event_end_lpf); vpx_usec_timer_mark(&timer); pbi->time_loop_filtering += vpx_usec_timer_elapsed(&timer); */ (void) pbi; #else (void) pbi; #endif } void vp8_mtdecode_mb_rows(VP8D_COMP *pbi, MACROBLOCKD *xd) { #if CONFIG_MULTITHREAD int mb_row; VP8_COMMON *pc = &pbi->common; int ibc = 0; int num_part = 1 << pbi->common.multi_token_partition; int i; volatile int *last_row_current_mb_col = NULL; vp8_setup_decoding_thread_data(pbi, xd, pbi->mb_row_di, pbi->decoding_thread_count); for (i = 0; i < pbi->decoding_thread_count; i++) sem_post(&pbi->h_event_start_decoding[i]); for (mb_row = 0; mb_row < pc->mb_rows; mb_row += (pbi->decoding_thread_count + 1)) { int i; xd->current_bc = &pbi->mbc[mb_row%num_part]; //vp8_decode_mb_row(pbi, pc, mb_row, xd); { int i; int recon_yoffset, recon_uvoffset; int mb_col; int ref_fb_idx = pc->lst_fb_idx; int dst_fb_idx = pc->new_fb_idx; int recon_y_stride = pc->yv12_fb[ref_fb_idx].y_stride; int recon_uv_stride = pc->yv12_fb[ref_fb_idx].uv_stride; // volatile int *last_row_current_mb_col = NULL; if (mb_row > 0) last_row_current_mb_col = &pbi->current_mb_col[mb_row -1]; vpx_memset(&pc->left_context, 0, sizeof(pc->left_context)); recon_yoffset = mb_row * recon_y_stride * 16; recon_uvoffset = mb_row * recon_uv_stride * 8; // reset above block coeffs xd->above_context = pc->above_context; xd->up_available = (mb_row != 0); xd->mb_to_top_edge = -((mb_row * 16)) << 3; xd->mb_to_bottom_edge = ((pc->mb_rows - 1 - mb_row) * 16) << 3; for (mb_col = 0; mb_col < pc->mb_cols; mb_col++) { if ( mb_row > 0 && (mb_col & 7) == 0){ while (mb_col > (*last_row_current_mb_col - 8) && *last_row_current_mb_col != pc->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } if (xd->mode_info_context->mbmi.mode == SPLITMV || xd->mode_info_context->mbmi.mode == B_PRED) { for (i = 0; i < 16; i++) { BLOCKD *d = &xd->block[i]; vpx_memcpy(&d->bmi, &xd->mode_info_context->bmi[i], sizeof(B_MODE_INFO)); } } // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units xd->mb_to_left_edge = -((mb_col * 16) << 3); xd->mb_to_right_edge = ((pc->mb_cols - 1 - mb_col) * 16) << 3; xd->dst.y_buffer = pc->yv12_fb[dst_fb_idx].y_buffer + recon_yoffset; xd->dst.u_buffer = pc->yv12_fb[dst_fb_idx].u_buffer + recon_uvoffset; xd->dst.v_buffer = pc->yv12_fb[dst_fb_idx].v_buffer + recon_uvoffset; xd->left_available = (mb_col != 0); // Select the appropriate reference frame for this MB if (xd->mode_info_context->mbmi.ref_frame == LAST_FRAME) ref_fb_idx = pc->lst_fb_idx; else if (xd->mode_info_context->mbmi.ref_frame == GOLDEN_FRAME) ref_fb_idx = pc->gld_fb_idx; else ref_fb_idx = pc->alt_fb_idx; xd->pre.y_buffer = pc->yv12_fb[ref_fb_idx].y_buffer + recon_yoffset; xd->pre.u_buffer = pc->yv12_fb[ref_fb_idx].u_buffer + recon_uvoffset; xd->pre.v_buffer = pc->yv12_fb[ref_fb_idx].v_buffer + recon_uvoffset; vp8_build_uvmvs(xd, pc->full_pixel); vp8_decode_macroblock(pbi, xd); recon_yoffset += 16; recon_uvoffset += 8; ++xd->mode_info_context; /* next mb */ xd->above_context++; //pbi->current_mb_col_main = mb_col; pbi->current_mb_col[mb_row] = mb_col; } // adjust to the next row of mbs vp8_extend_mb_row( &pc->yv12_fb[dst_fb_idx], xd->dst.y_buffer + 16, xd->dst.u_buffer + 8, xd->dst.v_buffer + 8 ); ++xd->mode_info_context; /* skip prediction column */ pbi->last_mb_row_decoded = mb_row; } xd->mode_info_context += xd->mode_info_stride * pbi->decoding_thread_count; } sem_wait(&pbi->h_event_end_decoding); // add back for each frame #else (void) pbi; (void) xd; #endif } void vp8_mt_loop_filter_frame( VP8D_COMP *pbi) { #if CONFIG_MULTITHREAD VP8_COMMON *cm = &pbi->common; MACROBLOCKD *mbd = &pbi->mb; int default_filt_lvl = pbi->common.filter_level; YV12_BUFFER_CONFIG *post = cm->frame_to_show; loop_filter_info *lfi = cm->lf_info; int frame_type = cm->frame_type; int mb_row; int mb_col; int filter_level; int alt_flt_enabled = mbd->segmentation_enabled; int i; unsigned char *y_ptr, *u_ptr, *v_ptr; volatile int *last_row_current_mb_col=NULL; vp8_setup_loop_filter_thread_data(pbi, mbd, pbi->mb_row_di, pbi->decoding_thread_count); mbd->mode_info_context = cm->mi; // Point at base of Mb MODE_INFO list // Note the baseline filter values for each segment if (alt_flt_enabled) { for (i = 0; i < MAX_MB_SEGMENTS; i++) { // Abs value if (mbd->mb_segement_abs_delta == SEGMENT_ABSDATA) pbi->mt_baseline_filter_level[i] = mbd->segment_feature_data[MB_LVL_ALT_LF][i]; // Delta Value else { pbi->mt_baseline_filter_level[i] = default_filt_lvl + mbd->segment_feature_data[MB_LVL_ALT_LF][i]; pbi->mt_baseline_filter_level[i] = (pbi->mt_baseline_filter_level[i] >= 0) ? ((pbi->mt_baseline_filter_level[i] <= MAX_LOOP_FILTER) ? pbi->mt_baseline_filter_level[i] : MAX_LOOP_FILTER) : 0; // Clamp to valid range } } } else { for (i = 0; i < MAX_MB_SEGMENTS; i++) pbi->mt_baseline_filter_level[i] = default_filt_lvl; } // Initialize the loop filter for this frame. if ((cm->last_filter_type != cm->filter_type) || (cm->last_sharpness_level != cm->sharpness_level)) vp8_init_loop_filter(cm); else if (frame_type != cm->last_frame_type) vp8_frame_init_loop_filter(lfi, frame_type); for (i = 0; i < pbi->decoding_thread_count; i++) sem_post(&pbi->h_event_start_lpf[i]); // sem_post(&pbi->h_event_start_lpf); // Set up the buffer pointers y_ptr = post->y_buffer; u_ptr = post->u_buffer; v_ptr = post->v_buffer; // vp8_filter each macro block for (mb_row = 0; mb_row < cm->mb_rows; mb_row+= (pbi->decoding_thread_count + 1)) { if (mb_row > 0) last_row_current_mb_col = &pbi->current_mb_col[mb_row -1]; for (mb_col = 0; mb_col < cm->mb_cols; mb_col++) { int Segment = (alt_flt_enabled) ? mbd->mode_info_context->mbmi.segment_id : 0; if ( mb_row > 0 && (mb_col & 7) == 0){ // if ( mb_row > 0 ){ while (mb_col > (*last_row_current_mb_col-8) && *last_row_current_mb_col != cm->mb_cols - 1) { x86_pause_hint(); thread_sleep(0); } } filter_level = pbi->mt_baseline_filter_level[Segment]; // Distance of Mb to the various image edges. // These specified to 8th pel as they are always compared to values that are in 1/8th pel units // Apply any context driven MB level adjustment vp8_adjust_mb_lf_value(mbd, &filter_level); if (filter_level) { if (mb_col > 0) cm->lf_mbv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); if (mbd->mode_info_context->mbmi.dc_diff > 0) cm->lf_bv(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); // don't apply across umv border if (mb_row > 0) cm->lf_mbh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); if (mbd->mode_info_context->mbmi.dc_diff > 0) cm->lf_bh(y_ptr, u_ptr, v_ptr, post->y_stride, post->uv_stride, &lfi[filter_level], cm->simpler_lpf); } y_ptr += 16; u_ptr += 8; v_ptr += 8; mbd->mode_info_context++; // step to next MB pbi->current_mb_col[mb_row] = mb_col; } mbd->mode_info_context++; // Skip border mb //update for multi-thread y_ptr += post->y_stride * 16 * (pbi->decoding_thread_count + 1) - post->y_width; u_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width; v_ptr += post->uv_stride * 8 * (pbi->decoding_thread_count + 1) - post->uv_width; mbd->mode_info_context += pbi->decoding_thread_count * mbd->mode_info_stride; } sem_wait(&pbi->h_event_end_lpf); #else (void) pbi; #endif }